1
|
Samanta P, Ghosh R, Pakhira S, Mondal M, Biswas S, Sarkar R, Bhowmik A, Saha P, Hajra S. Ribosome biogenesis and ribosomal proteins in cancer stem cells: a new therapeutic prospect. Mol Biol Rep 2024; 51:1016. [PMID: 39325314 DOI: 10.1007/s11033-024-09963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Ribosome has been considered as the fundamental macromolecular machine involved in protein synthesis in both prokaryotic and eukaryotic cells. This protein synthesis machinery consists of several rRNAs and numerous proteins. All of these factors are synthesized, translocated and assembled in a tightly regulated process known as ribosome biogenesis. Any impairment in this process causes development of several diseases like cancer. According to growing evidences, cancer cells display alteration of several ribosomal proteins. Besides, most of them are considered as key molecules involved in ribosome biogenesis, suggesting a correlation between those proteins and formation of ribosomes. Albeit, defective ribosome biogenesis in several cancers has gained prime importance, regulation of this process in cancer stem cells (CSCs) are still unrecognized. In this article, we aim to summarize the alteration of ribosome biogenesis and ribosomal proteins in CSCs. Moreover, we want to highlight the relation of ribosome biogenesis with hypoxia and drug resistance in CSCs based on the existing evidences. Lastly, this review wants to pay attention about the promising anti-cancer drugs which have potential to inhibit ribosome biogenesis in cancer cells as well as CSCs.
Collapse
Affiliation(s)
- Priya Samanta
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Rituparna Ghosh
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Shampa Pakhira
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Mrinmoyee Mondal
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Souradeep Biswas
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Rupali Sarkar
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Prosenjit Saha
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Subhadip Hajra
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India.
| |
Collapse
|
2
|
Wang M, Vulcano S, Xu C, Xie R, Peng W, Wang J, Liu Q, Jia L, Li Z, Li Y. Potentials of ribosomopathy gene as pharmaceutical targets for cancer treatment. J Pharm Anal 2024; 14:308-320. [PMID: 38618250 PMCID: PMC11010632 DOI: 10.1016/j.jpha.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 04/16/2024] Open
Abstract
Ribosomopathies encompass a spectrum of disorders arising from impaired ribosome biogenesis and reduced functionality. Mutation or dysexpression of the genes that disturb any finely regulated steps of ribosome biogenesis can result in different types of ribosomopathies in clinic, collectively known as ribosomopathy genes. Emerging data suggest that ribosomopathy patients exhibit a significantly heightened susceptibility to cancer. Abnormal ribosome biogenesis and dysregulation of some ribosomopathy genes have also been found to be intimately associated with cancer development. The correlation between ribosome biogenesis or ribosomopathy and the development of malignancies has been well established. This work aims to review the recent advances in the research of ribosomopathy genes among human cancers and meanwhile, to excavate the potential role of these genes, which have not or rarely been reported in cancer, in the disease development across cancers. We plan to establish a theoretical framework between the ribosomopathy gene and cancer development, to further facilitate the potential of these genes as diagnostic biomarker as well as pharmaceutical targets for cancer treatment.
Collapse
Affiliation(s)
- Mengxin Wang
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Stephen Vulcano
- Autoimmunity and Inflammation Program, HSS Research Institute, Hospital for Special Surgery New York, New York, NY, 10021, USA
| | - Changlu Xu
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Renjian Xie
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Weijie Peng
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jie Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Qiaojun Liu
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Lee Jia
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Zhi Li
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Yumei Li
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
3
|
Kiparaki M, Baker NE. Ribosomal protein mutations and cell competition: autonomous and nonautonomous effects on a stress response. Genetics 2023; 224:iyad080. [PMID: 37267156 PMCID: PMC10691752 DOI: 10.1093/genetics/iyad080] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/16/2023] [Indexed: 06/04/2023] Open
Abstract
Ribosomal proteins (Rps) are essential for viability. Genetic mutations affecting Rp genes were first discovered in Drosophila, where they represent a major class of haploinsufficient mutations. One mutant copy gives rise to the dominant "Minute" phenotype, characterized by slow growth and small, thin bristles. Wild-type (WT) and Minute cells compete in mosaics, that is, Rp+/- are preferentially lost when their neighbors are of the wild-type genotype. Many features of Rp gene haploinsufficiency (i.e. Rp+/- phenotypes) are mediated by a transcriptional program. In Drosophila, reduced translation and slow growth are under the control of Xrp1, a bZip-domain transcription factor induced in Rp mutant cells that leads ultimately to the phosphorylation of eIF2α and consequently inhibition of most translation. Rp mutant phenotypes are also mediated transcriptionally in yeast and in mammals. In mammals, the Impaired Ribosome Biogenesis Checkpoint activates p53. Recent findings link Rp mutant phenotypes to other cellular stresses, including the DNA damage response and endoplasmic reticulum stress. We suggest that cell competition results from nonautonomous inputs to stress responses, bringing decisions between adaptive and apoptotic outcomes under the influence of nearby cells. In Drosophila, cell competition eliminates aneuploid cells in which loss of chromosome leads to Rp gene haploinsufficiency. The effects of Rp gene mutations on the whole organism, in Minute flies or in humans with Diamond-Blackfan Anemia, may be inevitable consequences of pathways that are useful in eliminating individual cells from mosaics. Alternatively, apparently deleterious whole organism phenotypes might be adaptive, preventing even more detrimental outcomes. In mammals, for example, p53 activation appears to suppress oncogenic effects of Rp gene haploinsufficiency.
Collapse
Affiliation(s)
- Marianthi Kiparaki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, Vari 16672, Greece
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Visual Sciences and Ophthalmology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
4
|
Comerford SA, Hinnant EA, Chen Y, Hammer RE. Hepatic ribosomal protein S6 (Rps6) insufficiency results in failed bile duct development and loss of hepatocyte viability; a ribosomopathy-like phenotype that is partially p53-dependent. PLoS Genet 2023; 19:e1010595. [PMID: 36656901 PMCID: PMC9888725 DOI: 10.1371/journal.pgen.1010595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/31/2023] [Accepted: 12/26/2022] [Indexed: 01/20/2023] Open
Abstract
Defective ribosome biogenesis (RiBi) underlies a group of clinically diverse human diseases collectively known as the ribosomopathies, core manifestations of which include cytopenias and developmental abnormalities that are believed to stem primarily from an inability to synthesize adequate numbers of ribosomes and concomitant activation of p53. The importance of a correctly functioning RiBi machinery for maintaining tissue homeostasis is illustrated by the observation that, despite having a paucity of certain cell types in early life, ribosomopathy patients have an increased risk for developing cancer later in life. This suggests that hypoproliferative states trigger adaptive responses that can, over time, become maladaptive and inadvertently drive unchecked hyperproliferation and predispose to cancer. Here we describe an experimentally induced ribosomopathy in the mouse and show that a normal level of hepatic ribosomal protein S6 (Rps6) is required for proper bile duct development and preservation of hepatocyte viability and that its insufficiency later promotes overgrowth and predisposes to liver cancer which is accelerated in the absence of the tumor-suppressor PTEN. We also show that the overexpression of c-Myc in the liver ameliorates, while expression of a mutant hyperstable form of p53 partially recapitulates specific aspects of the hepatopathies induced by Rps6 deletion. Surprisingly, co-deletion of p53 in the Rps6-deficient background fails to restore biliary development or significantly improve hepatic function. This study not only reveals a previously unappreciated dependence of the developing liver on adequate levels of Rps6 and exquisitely controlled p53 signaling, but suggests that the increased cancer risk in ribosomopathy patients may, in part, stem from an inability to preserve normal tissue homeostasis in the face of chronic injury and regeneration.
Collapse
Affiliation(s)
- Sarah A. Comerford
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Elizabeth A. Hinnant
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yidong Chen
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas. United States of America
| | - Robert E. Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
5
|
Cerri F, Gentile F, Clarelli F, Santoro S, Falzone YM, Dina G, Romano A, Domi T, Pozzi L, Fazio R, Podini P, Sorosina M, Carrera P, Esposito F, Riva N, Briani C, Cavallaro T, Filippi M, Quattrini A. Clinical and pathological findings in neurolymphomatosis: Preliminary association with gene expression profiles in sural nerves. Front Oncol 2022; 12:974751. [PMID: 36226068 PMCID: PMC9549065 DOI: 10.3389/fonc.2022.974751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Although inflammation appears to play a role in neurolymphomatosis (NL), the mechanisms leading to degeneration in the peripheral nervous system are poorly understood. The purpose of this exploratory study was to identify molecular pathways underlying NL pathogenesis, combining clinical and neuropathological investigation with gene expression (GE) studies. We characterized the clinical and pathological features of eight patients with NL. We further analysed GE changes in sural nerve biopsies obtained from a subgroup of NL patients (n=3) and thirteen patients with inflammatory neuropathies as neuropathic controls. Based on the neuropathic symptoms and signs, NL patients were classified into three forms of neuropathy: chronic symmetrical sensorimotor polyneuropathy (SMPN, n=3), multiple mononeuropathy (MN, n=4) and acute motor-sensory axonal neuropathy (AMSAN, n=1). Predominantly diffuse malignant cells infiltration of epineurium was present in chronic SMPN, whereas endoneurial perivascular cells invasion was observed in MN. In contrast, diffuse endoneurium malignant cells localization occurred in AMSAN. We identified alterations in the expression of 1266 genes, with 115 up-regulated and 1151 down-regulated genes, which were mainly associated with ribosomal proteins (RP) and olfactory receptors (OR) signaling pathways, respectively. Among the top up-regulated genes were actin alpha 1 skeletal muscle (ACTA1) and desmin (DES). Similarly, in NL nerves ACTA1, DES and several RPs were highly expressed, associated with endothelial cells and pericytes abnormalities. Peripheral nerve involvement may be due to conversion towards a more aggressive phenotype, potentially explaining the poor prognosis. The candidate genes reported in this study may be a source of clinical biomarkers for NL.
Collapse
Affiliation(s)
- Federica Cerri
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Gentile
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Ferdinando Clarelli
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Santoro
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Yuri Matteo Falzone
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Giorgia Dina
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Romano
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Teuta Domi
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pozzi
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Fazio
- Department of Neurology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Paola Podini
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Melissa Sorosina
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Paola Carrera
- Division of Genetics and Cell Biology and Laboratory of Clinical Molecular Biology and Cytogenetics, Unit of Genomics for Human Disease Diagnosis, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Federica Esposito
- Department of Neurology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Nilo Riva
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- *Correspondence: Nilo Riva, ; Angelo Quattrini,
| | - Chiara Briani
- Department of Neuroscience , University of Padova, Padova, Italy
| | - Tiziana Cavallaro
- Department of Neurology, Azienda Ospedaliera Universitaria Integrata, University Hospital G.B. Rossi, Verona, Italy
| | - Massimo Filippi
- Department of Neurology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- *Correspondence: Nilo Riva, ; Angelo Quattrini,
| |
Collapse
|
6
|
Piao XM, Kim YU, Byun YJ, Zheng CM, Moon SM, Kim K, Lee HY, Jeong P, Kang HW, Kim WT, Lee SC, Kim WJ, Yun SJ. Expression of RPL9 predicts the recurrence of non-muscle invasive bladder cancer with BCG therapy. Urol Oncol 2022; 40:197.e1-197.e9. [PMID: 35382986 DOI: 10.1016/j.urolonc.2021.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Accepted: 12/14/2021] [Indexed: 01/01/2023]
Abstract
Numerous biomarkers and risk tables can be used to predict recurrence or progression of patients with primary or recurrent non-muscle invasive bladder cancer (NMIBC) receiving Bacillus Calmette-Guerin (BCG). However, few are suitable for BCG-unresponsive disease (i.e., recurrence or progression after BCG treatment). Therefore, identification of a novel marker that allows accurate prediction of prognosis, particularly risk of recurrence, is critically important in clinical practice. In the current study, gene ontology and gene set enrichment analyses of microarray datasets (GSE13507, n = 47) revealed that differentially expressed genes in recurred NMIBC patients after BCG treatment were associated with virus and ribosomal pathways. Among the core-enrichment genes, the expression of RPL9, a putative tumor suppressor, was lower in recurred NMIBC patients after BCG therapy than in patients without recurrence (P = 0.033) from the E-MTAT-4321 European cohort (n = 84). Data from The Cancer Genome Atlas (n = 406) showed that bladder cancer patients with higher RPL9 expression had a longer overall survival probability than patients with lower RPL9 expression (P = 0.011). Moreover, we used the latest digital PCR platform to examine 59 NMIBC patients and identified downregulation of RPL9 in patients with recurrence after BCG therapy (P = 0.031). The Kaplan-Meier survival estimator showed that NMIBC patients with higher expression of RPL9 had longer recurrence-free survival (log-rank test, P = 0.015). Therefore, we conclude that RPL9 expression is a prospective predictor of recurrence after BCG therapy in NMIBC patients.
Collapse
Affiliation(s)
- Xuan-Mei Piao
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, 28644, South Korea
| | - Yeong Uk Kim
- Department of Urology, College of medicine, Yeungnam University, Daegu, 42415, Korea
| | - Young Joon Byun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, 28644, South Korea
| | - Chuang-Ming Zheng
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, 28644, South Korea
| | - Sung Min Moon
- Department of Urology, Chungbuk National University Hospital, Cheongju, 28644, South Korea
| | - Kyeong Kim
- Department of Urology, Chungbuk National University Hospital, Cheongju, 28644, South Korea
| | - Hee Youn Lee
- Department of Urology, Chungbuk National University Hospital, Cheongju, 28644, South Korea
| | | | - Ho Won Kang
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, 28644, South Korea; Department of Urology, Chungbuk National University Hospital, Cheongju, 28644, South Korea
| | - Won Tae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, 28644, South Korea; Department of Urology, Chungbuk National University Hospital, Cheongju, 28644, South Korea
| | - Sang-Cheol Lee
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, 28644, South Korea; Department of Urology, Chungbuk National University Hospital, Cheongju, 28644, South Korea
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, 28644, South Korea; Institute of Urotech, Cheongju 28120, Korea
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, 28644, South Korea; Department of Urology, Chungbuk National University Hospital, Cheongju, 28644, South Korea.
| |
Collapse
|
7
|
Surya A, Sarinay-Cenik E. Cell autonomous and non-autonomous consequences of deviations in translation machinery on organism growth and the connecting signalling pathways. Open Biol 2022; 12:210308. [PMID: 35472285 PMCID: PMC9042575 DOI: 10.1098/rsob.210308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/31/2022] [Indexed: 01/09/2023] Open
Abstract
Translation machinery is responsible for the production of cellular proteins; thus, cells devote the majority of their resources to ribosome biogenesis and protein synthesis. Single-copy loss of function in the translation machinery components results in rare ribosomopathy disorders, such as Diamond-Blackfan anaemia in humans and similar developmental defects in various model organisms. Somatic copy number alterations of translation machinery components are also observed in specific tumours. The organism-wide response to haploinsufficient loss-of-function mutations in ribosomal proteins or translation machinery components is complex: variations in translation machinery lead to reduced ribosome biogenesis, protein translation and altered protein homeostasis and cellular signalling pathways. Cells are affected both autonomously and non-autonomously by changes in translation machinery or ribosome biogenesis through cell-cell interactions and secreted hormones. We first briefly introduce the model organisms where mutants or knockdowns of protein synthesis and ribosome biogenesis are characterized. Next, we specifically describe observations in Caenorhabditis elegans and Drosophila melanogaster, where insufficient protein synthesis in a subset of cells triggers cell non-autonomous growth or apoptosis responses that affect nearby cells and tissues. We then cover the characterized signalling pathways that interact with ribosome biogenesis/protein synthesis machinery with an emphasis on their respective functions during organism development.
Collapse
Affiliation(s)
- Agustian Surya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Elif Sarinay-Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
8
|
Somatilaka BN, Sadek A, McKay RM, Le LQ. Malignant peripheral nerve sheath tumor: models, biology, and translation. Oncogene 2022; 41:2405-2421. [PMID: 35393544 PMCID: PMC9035132 DOI: 10.1038/s41388-022-02290-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 01/29/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, invasive cancer that comprise around 10% of all soft tissue sarcomas and develop in about 8-13% of patients with Neurofibromatosis Type 1. They are associated with poor prognosis and are the leading cause of mortality in NF1 patients. MPNSTs can also develop sporadically or following exposure to radiation. There is currently no effective targeted therapy to treat MPNSTs and surgical removal remains the mainstay treatment. Unfortunately, surgery is not always possible due to the size and location of the tumor, thus, a better understanding of MPNST initiation and development is required to design novel therapeutics. Here, we provide an overview of MPNST biology and genetics, discuss findings regarding the developmental origin of MPNST, and summarize the various model systems employed to study MPNST. Finally, we discuss current management strategies for MPNST, as well as recent developments in translating basic research findings into potential therapies.
Collapse
Affiliation(s)
- Bandarigoda N. Somatilaka
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Ali Sadek
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Renee M. McKay
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Lu Q. Le
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Simmons Comprehensive Cancer Center, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,UTSW Comprehensive Neurofibromatosis Clinic, University of
Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Hamon Center for Regenerative Science and Medicine,
University of Texas Southwestern Medical Center at Dallas, Dallas, Texas,
75390-9069, USA,O’Donnell Brain Institute, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| |
Collapse
|
9
|
Keskus AG, Tombaz M, Arici BI, Dincaslan FB, Nabi A, Shehwana H, Konu O. Functional analysis of co-expression networks of zebrafish ace2 reveals enrichment of pathways associated with development and disease. Genome 2021; 65:57-74. [PMID: 34606733 DOI: 10.1139/gen-2021-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human Angiotensin I Converting Enzyme 2 (ACE2) plays an essential role in blood pressure regulation and SARS-CoV-2 entry. ACE2 has a highly conserved, one-to-one ortholog (ace2) in zebrafish, which is an important model for human diseases. However, the zebrafish ace2 expression profile has not yet been studied during early development, between genders, across different genotypes, or in disease. Moreover, a network-based meta-analysis for the extraction of functionally enriched pathways associated with differential ace2 expression is lacking in the literature. Herein, we first identified significant development-, tissue-, genotype-, and gender-specific modulations in ace2 expression via meta-analysis of zebrafish Affymetrix transcriptomics datasets (ndatasets = 107); and the correlation analysis of ace2 meta-differential expression profile revealed distinct positively and negatively correlated local functionally enriched gene networks. Moreover, we demonstrated that ace2 expression was significantly modulated under different physiological and pathological conditions related to development, tissue, gender, diet, infection, and inflammation using additional RNA-seq datasets. Our findings implicate a novel translational role for zebrafish ace2 in organ differentiation and pathologies observed in the intestines and liver.
Collapse
Affiliation(s)
- Ayse Gokce Keskus
- Interdisciplinary Program in Neuroscience, Bilkent University, Ankara, Turkey
| | - Melike Tombaz
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Burcin Irem Arici
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | | | - Afshan Nabi
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
| | - Huma Shehwana
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Ozlen Konu
- Interdisciplinary Program in Neuroscience, Bilkent University, Ankara, Turkey.,Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| |
Collapse
|
10
|
Chunduri NK, Menges P, Zhang X, Wieland A, Gotsmann VL, Mardin BR, Buccitelli C, Korbel JO, Willmund F, Kschischo M, Raeschle M, Storchova Z. Systems approaches identify the consequences of monosomy in somatic human cells. Nat Commun 2021; 12:5576. [PMID: 34552071 PMCID: PMC8458293 DOI: 10.1038/s41467-021-25288-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/30/2021] [Indexed: 01/22/2023] Open
Abstract
Chromosome loss that results in monosomy is detrimental to viability, yet it is frequently observed in cancers. How cancers survive with monosomy is unknown. Using p53-deficient monosomic cell lines, we find that chromosome loss impairs proliferation and genomic stability. Transcriptome and proteome analysis demonstrates reduced expression of genes encoded on the monosomes, which is partially compensated in some cases. Monosomy also induces global changes in gene expression. Pathway enrichment analysis reveals that genes involved in ribosome biogenesis and translation are downregulated in all monosomic cells analyzed. Consistently, monosomies display defects in protein synthesis and ribosome assembly. We further show that monosomies are incompatible with p53 expression, likely due to defects in ribosome biogenesis. Accordingly, impaired ribosome biogenesis and p53 inactivation are associated with monosomy in cancer. Our systematic study of monosomy in human cells explains why monosomy is so detrimental and reveals the importance of p53 for monosomy occurrence in cancer. The mechanisms that allow cancer cells to survive with monosomies are poorly understood. Here the authors analyse p53-deficient monosomic cell lines using transcriptomics and proteomics, and find that impaired ribosome biogenesis and p53 downregulation are associated with sustained monosomies.
Collapse
Affiliation(s)
| | - Paul Menges
- Department of Molecular Genetics, TU Kaiserslautern, Kaiserslautern, Germany
| | - Xiaoxiao Zhang
- University of Applied Sciences Koblenz, Remagen, Germany
| | - Angela Wieland
- Department of Molecular Genetics, TU Kaiserslautern, Kaiserslautern, Germany
| | | | - Balca R Mardin
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Jan O Korbel
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Felix Willmund
- Group Genetics of Eukaryotes, TU Kaiserslautern, Kaiserslautern, Germany
| | - Maik Kschischo
- University of Applied Sciences Koblenz, Remagen, Germany
| | - Markus Raeschle
- Department of Molecular Genetics, TU Kaiserslautern, Kaiserslautern, Germany
| | - Zuzana Storchova
- Department of Molecular Genetics, TU Kaiserslautern, Kaiserslautern, Germany.
| |
Collapse
|
11
|
Taylor AM, Macari ER, Chan IT, Blair MC, Doulatov S, Vo LT, Raiser DM, Siva K, Basak A, Pirouz M, Shah AN, McGrath K, Humphries JM, Stillman E, Alter BP, Calo E, Gregory RI, Sankaran VG, Flygare J, Ebert BL, Zhou Y, Daley GQ, Zon LI. Calmodulin inhibitors improve erythropoiesis in Diamond-Blackfan anemia. Sci Transl Med 2021; 12:12/566/eabb5831. [PMID: 33087503 DOI: 10.1126/scitranslmed.abb5831] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
Diamond-Blackfan anemia (DBA) is a rare hematopoietic disease characterized by a block in red cell differentiation. Most DBA cases are caused by mutations in ribosomal proteins and characterized by higher than normal activity of the tumor suppressor p53. Higher p53 activity is thought to contribute to DBA phenotypes by inducing apoptosis during red blood cell differentiation. Currently, there are few therapies available for patients with DBA. We performed a chemical screen using zebrafish ribosomal small subunit protein 29 (rps29) mutant embryos that have a p53-dependent anemia and identified calmodulin inhibitors that rescued the phenotype. Our studies demonstrated that calmodulin inhibitors attenuated p53 protein amount and activity. Treatment with calmodulin inhibitors led to decreased p53 translation and accumulation but does not affect p53 stability. A U.S. Food and Drug Administration-approved calmodulin inhibitor, trifluoperazine, rescued hematopoietic phenotypes of DBA models in vivo in zebrafish and mouse models. In addition, trifluoperazine rescued these phenotypes in human CD34+ hematopoietic stem and progenitor cells. Erythroid differentiation was also improved in CD34+ cells isolated from a patient with DBA. This work uncovers a potential avenue of therapeutic development for patients with DBA.
Collapse
Affiliation(s)
- Alison M Taylor
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth R Macari
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Iris T Chan
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Megan C Blair
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Sergei Doulatov
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Linda T Vo
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - David M Raiser
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Division of Hematology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kavitha Siva
- Stem Cell Center, Lund University, Lund 22184, Sweden
| | - Anindita Basak
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Mehdi Pirouz
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Arish N Shah
- MIT Department of Biology and David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Katherine McGrath
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Jessica M Humphries
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Emma Stillman
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD 20850, USA
| | - Eliezer Calo
- MIT Department of Biology and David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Richard I Gregory
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Johan Flygare
- Stem Cell Center, Lund University, Lund 22184, Sweden
| | - Benjamin L Ebert
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Yi Zhou
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - George Q Daley
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I Zon
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA 02115, USA. .,Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Boston, MA 02115, USA.,Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
12
|
Kampen KR, Sulima SO, Vereecke S, De Keersmaecker K. Hallmarks of ribosomopathies. Nucleic Acids Res 2020; 48:1013-1028. [PMID: 31350888 PMCID: PMC7026650 DOI: 10.1093/nar/gkz637] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
Ribosomopathies are diseases caused by defects in ribosomal constituents or in factors with a role in ribosome assembly. Intriguingly, congenital ribosomopathies display a paradoxical transition from early symptoms due to cellular hypo-proliferation to an elevated cancer risk later in life. Another association between ribosome defects and cancer came into view after the recent discovery of somatic mutations in ribosomal proteins and rDNA copy number changes in a variety of tumor types, giving rise to somatic ribosomopathies. Despite these clear connections between ribosome defects and cancer, the molecular mechanisms by which defects in this essential cellular machinery are oncogenic only start to emerge. In this review, the impact of ribosomal defects on the cellular function and their mechanisms of promoting oncogenesis are described. In particular, we discuss the emerging hallmarks of ribosomopathies such as the appearance of ‘onco-ribosomes’ that are specialized in translating oncoproteins, dysregulation of translation-independent extra-ribosomal functions of ribosomal proteins, rewired cellular protein and energy metabolism, and extensive oxidative stress leading to DNA damage. We end by integrating these findings in a model that can provide an explanation how ribosomopathies could lead to the transition from hypo- to hyper-proliferation in bone marrow failure syndromes with elevated cancer risk.
Collapse
Affiliation(s)
- Kim R Kampen
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Sergey O Sulima
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Stijn Vereecke
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Kim De Keersmaecker
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| |
Collapse
|
13
|
Liebl MC, Hofmann TG. Cell Fate Regulation upon DNA Damage: p53 Serine 46 Kinases Pave the Cell Death Road. Bioessays 2019; 41:e1900127. [PMID: 31621101 DOI: 10.1002/bies.201900127] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/16/2019] [Indexed: 12/20/2022]
Abstract
Mild and massive DNA damage are differentially integrated into the cellular signaling networks and, in consequence, provoke different cell fate decisions. After mild damage, the tumor suppressor p53 directs the cellular response to cell cycle arrest, DNA repair, and cell survival, whereas upon severe damage, p53 drives the cell death response. One posttranslational modification of p53, phosphorylation at Serine 46, selectively occurs after severe DNA damage and is envisioned as a marker of the cell death response. However, the molecular mechanism of action of the p53 Ser46 phospho-isomer, the molecular timing of this phosphorylation event, and its activating effects on apoptosis and ferroptosis still await exploration. In this essay, the current body of evidence on the molecular function of this deadly p53 mark, its evolutionary conservation, and the regulation of the key players of this response, the p53 Serine 46 kinases, are reviewed and dissected.
Collapse
Affiliation(s)
- Magdalena C Liebl
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg, University Mainz, Obere Zahlbacher Str. 67, 55131, Mainz, Germany
| | - Thomas G Hofmann
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg, University Mainz, Obere Zahlbacher Str. 67, 55131, Mainz, Germany
| |
Collapse
|
14
|
Functional Analysis of the Ribosomal uL6 Protein of Saccharomyces cerevisiae. Cells 2019; 8:cells8070718. [PMID: 31337056 PMCID: PMC6678285 DOI: 10.3390/cells8070718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/07/2019] [Accepted: 07/12/2019] [Indexed: 11/17/2022] Open
Abstract
The genome-wide duplication event observed in eukaryotes represents an interesting biological phenomenon, extending the biological capacity of the genome at the expense of the same genetic material. For example, most ribosomal proteins in Saccharomyces cerevisiae are encoded by a pair of paralogous genes. It is thought that gene duplication may contribute to heterogeneity of the translational machinery; however, the exact biological function of this event has not been clarified. In this study, we have investigated the functional impact of one of the duplicated ribosomal proteins, uL6, on the translational apparatus together with its consequences for aging of yeast cells. Our data show that uL6 is not required for cell survival, although lack of this protein decreases the rate of growth and inhibits budding. The uL6 protein is critical for the efficient assembly of the ribosome 60S subunit, and the two uL6 isoforms most likely serve the same function, playing an important role in the adaptation of translational machinery performance to the metabolic needs of the cell. The deletion of a single uL6 gene significantly extends the lifespan but only in cells with a high metabolic rate. We conclude that the maintenance of two copies of the uL6 gene enables the cell to cope with the high demands for effective ribosome synthesis.
Collapse
|
15
|
Sulima SO, Kampen KR, De Keersmaecker K. Cancer Biogenesis in Ribosomopathies. Cells 2019; 8:E229. [PMID: 30862070 PMCID: PMC6468915 DOI: 10.3390/cells8030229] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/23/2022] Open
Abstract
Ribosomopathies are congenital diseases with defects in ribosome assembly and are characterized by elevated cancer risks. Additionally, somatic mutations in ribosomal proteins have recently been linked to a variety of cancers. Despite a clear correlation between ribosome defects and cancer, the molecular mechanisms by which these defects promote tumorigenesis are unclear. In this review, we focus on the emerging mechanisms that link ribosomal defects in ribosomopathies to cancer progression. This includes functional "onco-specialization" of mutant ribosomes, extra-ribosomal consequences of mutations in ribosomal proteins and ribosome assembly factors, and effects of ribosomal mutations on cellular stress and metabolism. We integrate some of these recent findings in a single model that can partially explain the paradoxical transition from hypo- to hyperproliferation phenotypes, as observed in ribosomopathies. Finally, we discuss the current and potential strategies, and the associated challenges for therapeutic intervention in ribosome-mutant diseases.
Collapse
Affiliation(s)
- Sergey O Sulima
- Department of Oncology, KU Leuven, LKI⁻Leuven Cancer Institute, 3000 Leuven, Belgium.
| | - Kim R Kampen
- Department of Oncology, KU Leuven, LKI⁻Leuven Cancer Institute, 3000 Leuven, Belgium.
| | - Kim De Keersmaecker
- Department of Oncology, KU Leuven, LKI⁻Leuven Cancer Institute, 3000 Leuven, Belgium.
| |
Collapse
|
16
|
Abstract
Diamond-Blackfan anaemia (DBA) is a rare inherited marrow failure disorder, characterized by hypoplastic anaemia, congenital anomalies and a predisposition to cancer as a result of ribosomal dysfunction. Historically, treatment is based on glucocorticoids and/or blood transfusions, which is accompanied by significant toxicity and long-term sequelae. Currently, stem cell transplantation is the only curative option for the haematological DBA phenotype. Whereas this procedure has been quite successful in the last decade in selected patients, novel therapies and biological insights are still warranted to improve clinical care for all DBA patients. In addition to paediatric haematologists, other physicians (e.g. endocrinologist, gynaecologist) should ideally be involved in the care of this chronic condition from an early age, to improve lifelong management of haematological and non-haematological symptoms, and screen for DBA-associated malignancies. Here we provide an overview of current knowledge and recommendations for the day-to-day care of DBA patients.
Collapse
Affiliation(s)
- Marije Bartels
- Paediatric Haematology DepartmentWilhelmina Children's HospitalUniversity Medical Centre Utrecht Utrechtthe Netherlands
| | - Marc Bierings
- Department of Stem cell transplantationPrincess Maxima Centre for Paediatric OncologyWilhelmina Children's HospitalUniversity Medical Centre UtrechtUtrechtthe Netherlands
| |
Collapse
|
17
|
Abstract
Ribosomes, which synthesize the proteins of a cell, comprise ribosomal RNA and ribosomal proteins, which coassemble hierarchically during a process termed ribosome biogenesis. Historically, biochemical and molecular biology approaches have revealed how preribosomal particles form and mature in consecutive steps, starting in the nucleolus and terminating after nuclear export into the cytoplasm. However, only recently, due to the revolution in cryo-electron microscopy, could pseudoatomic structures of different preribosomal particles be obtained. Together with in vitro maturation assays, these findings shed light on how nascent ribosomes progress stepwise along a dynamic biogenesis pathway. Preribosomes assemble gradually, chaperoned by a myriad of assembly factors and small nucleolar RNAs, before they reach maturity and enter translation. This information will lead to a better understanding of how ribosome synthesis is linked to other cellular pathways in humans and how it can cause diseases, including cancer, if disturbed.
Collapse
Affiliation(s)
- Jochen Baßler
- Biochemistry Center, University of Heidelberg, 69120 Heidelberg, Germany; ,
| | - Ed Hurt
- Biochemistry Center, University of Heidelberg, 69120 Heidelberg, Germany; ,
| |
Collapse
|
18
|
Identification of RECK as an evolutionarily conserved tumor suppressor gene for zebrafish malignant peripheral nerve sheath tumors. Oncotarget 2018; 9:23494-23504. [PMID: 29805750 PMCID: PMC5955097 DOI: 10.18632/oncotarget.25236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 04/08/2018] [Indexed: 12/13/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are a type of sarcoma with poor prognosis due to their complex genetic changes, invasive growth, and insensitivity to chemo- and radiotherapies. One of the most frequently lost chromosome arms in human MPNSTs is chromosome 9p. However, the cancer driver genes located on it remain largely unknown, except the tumor suppressor gene, p16 (INK4)/CDKN2A. Previously, we identified RECK as a tumor suppressor gene candidate on chromosome 9p using zebrafish-human comparative oncogenomics. In this study, we investigated the tumorigenesis of the reck gene using zebrafish genetic models in both tp53 and ribosomal protein gene mutation background. We also examined the biological effects of RECK gene restoration in human MPNST cell lines. These results provide the first genetic evidence that reck is a bona fide tumor suppressor gene for MPNSTs in zebrafish. In addition, restoration of the RECK gene in human MPNST cells leads to growth inhibition suggesting that the reactivation of RECK could serve as a potential therapeutic strategy for MPNSTs.
Collapse
|
19
|
Bustelo XR, Dosil M. Ribosome biogenesis and cancer: basic and translational challenges. Curr Opin Genet Dev 2018; 48:22-29. [DOI: 10.1016/j.gde.2017.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/13/2017] [Accepted: 10/02/2017] [Indexed: 01/08/2023]
|
20
|
Warren AJ. Molecular basis of the human ribosomopathy Shwachman-Diamond syndrome. Adv Biol Regul 2018; 67:109-127. [PMID: 28942353 PMCID: PMC6710477 DOI: 10.1016/j.jbior.2017.09.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 01/05/2023]
Abstract
Mutations that target the ubiquitous process of ribosome assembly paradoxically cause diverse tissue-specific disorders (ribosomopathies) that are often associated with an increased risk of cancer. Ribosomes are the essential macromolecular machines that read the genetic code in all cells in all kingdoms of life. Following pre-assembly in the nucleus, precursors of the large 60S and small 40S ribosomal subunits are exported to the cytoplasm where the final steps in maturation are completed. Here, I review the recent insights into the conserved mechanisms of ribosome assembly that have come from functional characterisation of the genes mutated in human ribosomopathies. In particular, recent advances in cryo-electron microscopy, coupled with genetic, biochemical and prior structural data, have revealed that the SBDS protein that is deficient in the inherited leukaemia predisposition disorder Shwachman-Diamond syndrome couples the final step in cytoplasmic 60S ribosomal subunit maturation to a quality control assessment of the structural and functional integrity of the nascent particle. Thus, study of this fascinating disorder is providing remarkable insights into how the large ribosomal subunit is functionally activated in the cytoplasm to enter the actively translating pool of ribosomes.
Collapse
MESH Headings
- Bone Marrow Diseases/metabolism
- Bone Marrow Diseases/pathology
- Cryoelectron Microscopy
- Exocrine Pancreatic Insufficiency/metabolism
- Exocrine Pancreatic Insufficiency/pathology
- Humans
- Lipomatosis/metabolism
- Lipomatosis/pathology
- Mutation
- Proteins/genetics
- Proteins/metabolism
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Large, Eukaryotic/ultrastructure
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/ultrastructure
- Shwachman-Diamond Syndrome
Collapse
Affiliation(s)
- Alan J Warren
- Cambridge Institute for Medical Research, Cambridge, UK; The Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
21
|
Sulima SO, Hofman IJF, De Keersmaecker K, Dinman JD. How Ribosomes Translate Cancer. Cancer Discov 2017; 7:1069-1087. [PMID: 28923911 PMCID: PMC5630089 DOI: 10.1158/2159-8290.cd-17-0550] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
Abstract
A wealth of novel findings, including congenital ribosomal mutations in ribosomopathies and somatic ribosomal mutations in various cancers, have significantly increased our understanding of the relevance of ribosomes in oncogenesis. Here, we explore the growing list of mechanisms by which the ribosome is involved in carcinogenesis-from the hijacking of ribosomes by oncogenic factors and dysregulated translational control, to the effects of mutations in ribosomal components on cellular metabolism. Of clinical importance, the recent success of RNA polymerase inhibitors highlights the dependence on "onco-ribosomes" as an Achilles' heel of cancer cells and a promising target for further therapeutic intervention.Significance: The recent discovery of somatic mutations in ribosomal proteins in several cancers has strengthened the link between ribosome defects and cancer progression, while also raising the question of which cellular mechanisms such defects exploit. Here, we discuss the emerging molecular mechanisms by which ribosomes support oncogenesis, and how this understanding is driving the design of novel therapeutic strategies. Cancer Discov; 7(10); 1069-87. ©2017 AACR.
Collapse
Affiliation(s)
- Sergey O Sulima
- Department of Oncology, KU Leuven, University of Leuven, LKI, Leuven Cancer Institute, Leuven, Belgium
| | - Isabel J F Hofman
- Department of Oncology, KU Leuven, University of Leuven, LKI, Leuven Cancer Institute, Leuven, Belgium
| | - Kim De Keersmaecker
- Department of Oncology, KU Leuven, University of Leuven, LKI, Leuven Cancer Institute, Leuven, Belgium.
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland.
| |
Collapse
|
22
|
Ajore R, Raiser D, McConkey M, Jöud M, Boidol B, Mar B, Saksena G, Weinstock DM, Armstrong S, Ellis SR, Ebert BL, Nilsson B. Deletion of ribosomal protein genes is a common vulnerability in human cancer, especially in concert with TP53 mutations. EMBO Mol Med 2017; 9:498-507. [PMID: 28264936 PMCID: PMC5376749 DOI: 10.15252/emmm.201606660] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Heterozygous inactivating mutations in ribosomal protein genes (RPGs) are associated with hematopoietic and developmental abnormalities, activation of p53, and altered risk of cancer in humans and model organisms. Here we performed a large‐scale analysis of cancer genome data to examine the frequency and selective pressure of RPG lesions across human cancers. We found that hemizygous RPG deletions are common, occurring in about 43% of 10,744 cancer specimens and cell lines. Consistent with p53‐dependent negative selection, such lesions are underrepresented in TP53‐intact tumors (P ≪ 10−10), and shRNA‐mediated knockdown of RPGs activated p53 in TP53‐wild‐type cells. In contrast, we did not see negative selection of RPG deletions in TP53‐mutant tumors. RPGs are conserved with respect to homozygous deletions, and shRNA screening data from 174 cell lines demonstrate that further suppression of hemizygously deleted RPGs inhibits cell growth. Our results establish RPG haploinsufficiency as a strikingly common vulnerability of human cancers that associates with TP53 mutations and could be targetable therapeutically.
Collapse
Affiliation(s)
- Ram Ajore
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - David Raiser
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marie McConkey
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Magnus Jöud
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Bernd Boidol
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brenton Mar
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Steven R Ellis
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, USA
| | - Benjamin L Ebert
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA .,Broad Institute, 7 Cambridge Center, Cambridge, MA, USA
| | - Björn Nilsson
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden .,Broad Institute, 7 Cambridge Center, Cambridge, MA, USA
| |
Collapse
|
23
|
Shtraizent N, DeRossi C, Nayar S, Sachidanandam R, Katz LS, Prince A, Koh AP, Vincek A, Hadas Y, Hoshida Y, Scott DK, Eliyahu E, Freeze HH, Sadler KC, Chu J. MPI depletion enhances O-GlcNAcylation of p53 and suppresses the Warburg effect. eLife 2017. [PMID: 28644127 PMCID: PMC5495572 DOI: 10.7554/elife.22477] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Rapid cellular proliferation in early development and cancer depends on glucose metabolism to fuel macromolecule biosynthesis. Metabolic enzymes are presumed regulators of this glycolysis-driven metabolic program, known as the Warburg effect; however, few have been identified. We uncover a previously unappreciated role for Mannose phosphate isomerase (MPI) as a metabolic enzyme required to maintain Warburg metabolism in zebrafish embryos and in both primary and malignant mammalian cells. The functional consequences of MPI loss are striking: glycolysis is blocked and cells die. These phenotypes are caused by induction of p53 and accumulation of the glycolytic intermediate fructose 6-phosphate, leading to engagement of the hexosamine biosynthetic pathway (HBP), increased O-GlcNAcylation, and p53 stabilization. Inhibiting the HBP through genetic and chemical methods reverses p53 stabilization and rescues the Mpi-deficient phenotype. This work provides mechanistic evidence by which MPI loss induces p53, and identifies MPI as a novel regulator of p53 and Warburg metabolism. DOI:http://dx.doi.org/10.7554/eLife.22477.001
Collapse
Affiliation(s)
- Nataly Shtraizent
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Charles DeRossi
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Shikha Nayar
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Ravi Sachidanandam
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Liora S Katz
- Department of Medicine, Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Adam Prince
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Anna P Koh
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Adam Vincek
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Yoav Hadas
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Yujin Hoshida
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Donald K Scott
- Department of Medicine, Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Efrat Eliyahu
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Hudson H Freeze
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Kirsten C Sadler
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Jaime Chu
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
24
|
Ji B, Harris BRE, Liu Y, Deng Y, Gradilone SA, Cleary MP, Liu J, Yang DQ. Targeting IRES-Mediated p53 Synthesis for Cancer Diagnosis and Therapeutics. Int J Mol Sci 2017; 18:93. [PMID: 28054974 PMCID: PMC5297727 DOI: 10.3390/ijms18010093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 12/28/2022] Open
Abstract
While translational regulation of p53 by the internal ribosome entry site (IRES) at its 5'-untranslated region following DNA damage has been widely accepted, the detailed mechanism underlying the translational control of p53 by its IRES sequence is still poorly understood. In this review, we will focus on the latest progress in identifying novel regulatory proteins of the p53 IRES and in uncovering the functional connection between defective IRES-mediated p53 translation and tumorigenesis. We will also discuss how these findings may lead to a better understanding of the process of oncogenesis and open up new avenues for cancer diagnosis and therapeutics.
Collapse
Affiliation(s)
- Bai Ji
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital of Jilin University, Changchun 130021, China.
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA.
| | - Benjamin R E Harris
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA.
| | - Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital of Jilin University, Changchun 130021, China.
| | - Yibin Deng
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA.
- The Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Sergio A Gradilone
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA.
- The Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Margot P Cleary
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA.
- The Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jianhua Liu
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital of Jilin University, Changchun 130021, China.
| | - Da-Qing Yang
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA.
- The Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
25
|
Hayes MN, Langenau DM. Discovering novel oncogenic pathways and new therapies using zebrafish models of sarcoma. Methods Cell Biol 2017; 138:525-561. [PMID: 28129857 DOI: 10.1016/bs.mcb.2016.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Sarcoma is a type of cancer affecting connective, supportive, or soft tissue of mesenchymal origin. Despite rare incidence in adults (<1%), over 15% of pediatric cancers are sarcoma. Sadly, both adults and children with relapsed or metastatic disease have devastatingly high rates of mortality. Current treatment options for sarcoma include surgery, radiation, and/or chemotherapy; however, significant limitations exist with respect to the efficacy of these strategies. Strong impetus has been placed on the development of novel therapies and preclinical models for uncovering mechanisms involved in the development, progression, and therapy resistance of sarcoma. Over the past 15 years, the zebrafish has emerged as a powerful genetic model of human cancer. High genetic conservation when combined with a unique susceptibility to develop sarcoma has made the zebrafish an effective tool for studying these diseases. Transgenic and gene-activation strategies have been employed to develop zebrafish models of rhabdomyosarcoma, malignant peripheral nerve sheath tumors, Ewing's sarcoma, chordoma, hemangiosarcoma, and liposarcoma. These models all display remarkable molecular and histopathological conservation with their human cancer counterparts and have offered excellent platforms for understanding disease progression in vivo. Short tumor latency and the amenability of zebrafish for ex vivo manipulation, live imaging studies, and tumor cell transplantation have allowed for efficient study of sarcoma initiation, growth, self-renewal, and maintenance. When coupled with facile chemical genetic approaches, zebrafish models of sarcoma have provided a strong translational tool to uncover novel drug pathways and new therapeutic strategies.
Collapse
Affiliation(s)
- M N Hayes
- Massachusetts General Hospital, Boston, MA, United States; Massachusetts General Hospital, Charlestown, MA, United States; Harvard Stem Cell Institute, Boston, MA, United States
| | - D M Langenau
- Massachusetts General Hospital, Boston, MA, United States; Massachusetts General Hospital, Charlestown, MA, United States; Harvard Stem Cell Institute, Boston, MA, United States
| |
Collapse
|
26
|
Selenoprotein H is an essential regulator of redox homeostasis that cooperates with p53 in development and tumorigenesis. Proc Natl Acad Sci U S A 2016; 113:E5562-71. [PMID: 27588899 DOI: 10.1073/pnas.1600204113] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Selenium, an essential micronutrient known for its cancer prevention properties, is incorporated into a class of selenocysteine-containing proteins (selenoproteins). Selenoprotein H (SepH) is a recently identified nucleolar oxidoreductase whose function is not well understood. Here we report that seph is an essential gene regulating organ development in zebrafish. Metabolite profiling by targeted LC-MS/MS demonstrated that SepH deficiency impairs redox balance by reducing the levels of ascorbate and methionine, while increasing methionine sulfoxide. Transcriptome analysis revealed that SepH deficiency induces an inflammatory response and activates the p53 pathway. Consequently, loss of seph renders larvae susceptible to oxidative stress and DNA damage. Finally, we demonstrate that seph interacts with p53 deficiency in adulthood to accelerate gastrointestinal tumor development. Overall, our findings establish that seph regulates redox homeostasis and suppresses DNA damage. We hypothesize that SepH deficiency may contribute to the increased cancer risk observed in cohorts with low selenium levels.
Collapse
|
27
|
Danilova N, Gazda HT. Ribosomopathies: how a common root can cause a tree of pathologies. Dis Model Mech 2016; 8:1013-26. [PMID: 26398160 PMCID: PMC4582105 DOI: 10.1242/dmm.020529] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Defects in ribosome biogenesis are associated with a group of diseases called the ribosomopathies, of which Diamond-Blackfan anemia (DBA) is the most studied. Ribosomes are composed of ribosomal proteins (RPs) and ribosomal RNA (rRNA). RPs and multiple other factors are necessary for the processing of pre-rRNA, the assembly of ribosomal subunits, their export to the cytoplasm and for the final assembly of subunits into a ribosome. Haploinsufficiency of certain RPs causes DBA, whereas mutations in other factors cause various other ribosomopathies. Despite the general nature of their underlying defects, the clinical manifestations of ribosomopathies differ. In DBA, for example, red blood cell pathology is especially evident. In addition, individuals with DBA often have malformations of limbs, the face and various organs, and also have an increased risk of cancer. Common features shared among human DBA and animal models have emerged, such as small body size, eye defects, duplication or overgrowth of ectoderm-derived structures, and hematopoietic defects. Phenotypes of ribosomopathies are mediated both by p53-dependent and -independent pathways. The current challenge is to identify differences in response to ribosomal stress that lead to specific tissue defects in various ribosomopathies. Here, we review recent findings in this field, with a particular focus on animal models, and discuss how, in some cases, the different phenotypes of ribosomopathies might arise from differences in the spatiotemporal expression of the affected genes. Summary: This paper reviews recent data on Diamond Blackfan anemia and discusses them in connection with other ribosomopathies.
Collapse
Affiliation(s)
- Nadia Danilova
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Hanna T Gazda
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA Broad Institute, Cambridge, MA 02142, USA
| |
Collapse
|
28
|
Malignant Peripheral Nerve Sheath Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:495-530. [DOI: 10.1007/978-3-319-30654-4_22] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Liu Y, Deisenroth C, Zhang Y. RP-MDM2-p53 Pathway: Linking Ribosomal Biogenesis and Tumor Surveillance. Trends Cancer 2016; 2:191-204. [PMID: 28741571 DOI: 10.1016/j.trecan.2016.03.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 12/18/2022]
Abstract
Ribosomal biogenesis is tightly associated with cellular activities, such as growth, proliferation, and cell cycle progression. Perturbations in ribosomal biogenesis can initiate so-called nucleolar stress. The process through which ribosomal proteins (RPs) transduce nucleolar stress signals via MDM2 to p53 has been described as a crucial tumor-suppression mechanism. In this review we focus on recent progress pertaining to the function and mechanism of RPs in association with the MDM2-p53 tumor-suppression network, and the potential implications this surveillance network has for cancer development.
Collapse
Affiliation(s)
- Yong Liu
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chad Deisenroth
- The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, 6 Davis Drive, PO Box 12137, Research Triangle Park, NC 27709, USA
| | - Yanping Zhang
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, China.
| |
Collapse
|
30
|
Goudarzi KM, Lindström MS. Role of ribosomal protein mutations in tumor development (Review). Int J Oncol 2016; 48:1313-24. [PMID: 26892688 PMCID: PMC4777597 DOI: 10.3892/ijo.2016.3387] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/07/2016] [Indexed: 12/16/2022] Open
Abstract
Ribosomes are cellular machines essential for protein synthesis. The biogenesis of ribosomes is a highly complex and energy consuming process that initiates in the nucleolus. Recently, a series of studies applying whole-exome or whole-genome sequencing techniques have led to the discovery of ribosomal protein gene mutations in different cancer types. Mutations in ribosomal protein genes have for example been found in endometrial cancer (RPL22), T-cell acute lymphoblastic leukemia (RPL10, RPL5 and RPL11), chronic lymphocytic leukemia (RPS15), colorectal cancer (RPS20), and glioma (RPL5). Moreover, patients suffering from Diamond-Blackfan anemia, a bone marrow failure syndrome caused by mutant ribosomal proteins are also at higher risk for developing leukemia, or solid tumors. Different experimental models indicate potential mechanisms whereby ribosomal proteins may initiate cancer development. In particular, deregulation of the p53 tumor suppressor network and altered mRNA translation are mechanisms likely to be involved. We envisage that changes in expression and the occurrence of ribosomal protein gene mutations play important roles in cancer development. Ribosome biology constitutes a re-emerging vital area of basic and translational cancer research.
Collapse
Affiliation(s)
- Kaveh M Goudarzi
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, CCK R8:05, Karolinska University Hospital in Solna, Stockholm, Sweden
| | - Mikael S Lindström
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Kazerounian S, Ciarlini PDSC, Yuan D, Ghazvinian R, Alberich-Jorda M, Joshi M, Zhang H, Beggs AH, Gazda HT. Development of Soft Tissue Sarcomas in Ribosomal Proteins L5 and S24 Heterozygous Mice. J Cancer 2016; 7:32-6. [PMID: 26722357 PMCID: PMC4679378 DOI: 10.7150/jca.13292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/18/2015] [Indexed: 12/31/2022] Open
Abstract
Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure syndrome associated with ribosomal protein (RP) gene mutations. Recent studies have also demonstrated an increased risk of cancer predisposition among DBA patients. In this study, we report the formation of soft tissue sarcoma in the Rpl5 and Rps24 heterozygous mice. Our observation suggests that even though one wild-type allele of the Rpl5 or Rps24 gene prevents anemia in these mice, it still predisposes them to cancer development.
Collapse
Affiliation(s)
- Shideh Kazerounian
- 1. Boston Children's Hospital, Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston, MA, USA ; 2. Harvard Medical School, Boston, MA, USA
| | | | - Daniel Yuan
- 1. Boston Children's Hospital, Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston, MA, USA
| | - Roxanne Ghazvinian
- 1. Boston Children's Hospital, Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston, MA, USA
| | | | - Mugdha Joshi
- 1. Boston Children's Hospital, Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston, MA, USA ; 2. Harvard Medical School, Boston, MA, USA
| | - Hong Zhang
- 2. Harvard Medical School, Boston, MA, USA ; 5. Beth Israel Deaconess Medical Center, Hematology/Oncology Division, Boston, MA, USA
| | - Alan H Beggs
- 1. Boston Children's Hospital, Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston, MA, USA ; 2. Harvard Medical School, Boston, MA, USA
| | - Hanna T Gazda
- 1. Boston Children's Hospital, Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston, MA, USA ; 2. Harvard Medical School, Boston, MA, USA ; 6. Broad Institute, Cambridge, MA, USA
| |
Collapse
|
32
|
den Hertog J. Tumor Suppressors in Zebrafish: From TP53 to PTEN and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:87-101. [PMID: 27165350 DOI: 10.1007/978-3-319-30654-4_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Zebrafish are increasingly being used to study cancer. Almost all tumor types have been found in zebrafish. However, tumor incidence is relatively low and tumors develop late in life. Functional inactivation of tumor suppressors is a crucial step in cancer progression and more and more tumor suppressor genes are being studied in zebrafish. Most often tumor suppressors have been inactivated by reverse genetics approaches using targeted disruption. However, some tumor suppressor mutants were identified by forward genetic screens for mutants with a particular phenotype. Some of the latter genes had not been recognized as tumor suppressors yet. Similarly, a screen for genes that suppress tumor formation in zebrafish in vivo led to the identification of a novel tumor suppressor gene. In this review, I will provide an overview of what the zebrafish has taught us about tumor suppressors.
Collapse
Affiliation(s)
- Jeroen den Hertog
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands. .,Institute of Biology, Leiden University, 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
33
|
The relationship between the nucleolus and cancer: Current evidence and emerging paradigms. Semin Cancer Biol 2015; 37-38:36-50. [PMID: 26721423 DOI: 10.1016/j.semcancer.2015.12.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/15/2015] [Accepted: 12/19/2015] [Indexed: 12/13/2022]
Abstract
The nucleolus is the most prominent nuclear substructure assigned to produce ribosomes; molecular machines that are responsible for carrying out protein synthesis. To meet the increased demand for proteins during cell growth and proliferation the cell must increase protein synthetic capacity by upregulating ribosome biogenesis. While larger nucleolar size and number have been recognized as hallmark features of many tumor types, recent evidence has suggested that, in addition to overproduction of ribosomes, decreased ribosome biogenesis as well as qualitative changes in this process could also contribute to tumor initiation and cancer progression. Furthermore, the nucleolus has become the focus of intense attention for its involvement in processes that are clearly unrelated to ribosome biogenesis such as sensing and responding to endogenous and exogenous stressors, maintenance of genome stability, regulation of cell-cycle progression, cellular senescence, telomere function, chromatin structure, establishment of nuclear architecture, global regulation of gene expression and biogenesis of multiple ribonucleoprotein particles. The fact that dysregulation of many of these fundamental cellular processes may contribute to the malignant phenotype suggests that normal functioning of the nucleolus safeguards against the development of cancer and indicates its potential as a therapeutic approach. Here we review the recent advances made toward understanding these newly-recognized nucleolar functions and their roles in normal and cancer cells, and discuss possible future research directions.
Collapse
|
34
|
Astone M, Pizzi M, Peron M, Domenichini A, Guzzardo V, Töchterle S, Tiso N, Rugge M, Meyer D, Argenton F, Vettori A. A GFP-Tagged Gross Deletion on Chromosome 1 Causes Malignant Peripheral Nerve Sheath Tumors and Carcinomas in Zebrafish. PLoS One 2015; 10:e0145178. [PMID: 26695815 PMCID: PMC4687860 DOI: 10.1371/journal.pone.0145178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/30/2015] [Indexed: 11/19/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive soft-tissue sarcomas, characterized by complex karyotypes. The molecular bases of such malignancy are poorly understood and efficient targeted molecular therapies are currently lacking. Here we describe a novel zebrafish model of MPNSTs, represented by the transgenic mutant line Tg(-8.5nkx2.2a:GFP)ia2. ia2 homozygous animals displayed embryonic lethality by 72 hpf, while the heterozygotes develop visible tumor masses with high frequency in adulthood. Histological and immunohistochemical examination revealed aggressive tumors with either mesenchymal or epithelial features. The former (54% of the cases) arose either in the abdominal cavity, or as intrathecal/intraspinal lesions and is composed of cytokeratin-negative spindle cells with fascicular/storiform growth pattern consistent with zebrafish MPNSTs. The second histotype was composed by polygonal or elongated cells, immunohistochemically positive for the pan-cytokeratin AE1/AE3. The overall histologic and immunohistochemical features were consistent with a malignant epithelial neoplasm of possible gastrointestinal/pancreatic origin. With an integrated approach, based on microsatellite (VNTR) and STS markers, we showed that ia2 insertion, in Tg(-8.5nkx2.2a:GFP)ia2 embryos, is associated with a deletion of 15.2 Mb in the telomeric portion of chromosome 1. Interestingly, among ia2 deleted genes we identified the presence of the 40S ribosomal protein S6 gene that may be one of the possible drivers for the MPNSTs in ia2 mutants. Thanks to the peculiar features of zebrafish as animal model of human cancer (cellular and genomic similarity, transparency and prolificacy) and the GFP tag, the Tg(-8.5nkx2.2a:GFP)ia2 line provides a manageable tool to study in vivo with high frequency MPNST biology and genetics, and to identify, in concert with the existing zebrafish MPNST models, conserved relevant mechanisms in zebrafish and human cancer development.
Collapse
Affiliation(s)
- Matteo Astone
- Department of Biology, University of Padova, Padova, Italy
| | - Marco Pizzi
- General Pathology & Cytopathology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | | | | | - Vincenza Guzzardo
- General Pathology & Cytopathology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Sonja Töchterle
- Institute for Molecular Biology/ CMBI, University of Innsbruck, 6020 Innsbruck, Austria
| | - Natascia Tiso
- Department of Biology, University of Padova, Padova, Italy
| | - Massimo Rugge
- General Pathology & Cytopathology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Dirk Meyer
- Institute for Molecular Biology/ CMBI, University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Andrea Vettori
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
35
|
Deregulation of Internal Ribosome Entry Site-Mediated p53 Translation in Cancer Cells with Defective p53 Response to DNA Damage. Mol Cell Biol 2015; 35:4006-17. [PMID: 26391949 DOI: 10.1128/mcb.00365-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/11/2015] [Indexed: 11/20/2022] Open
Abstract
Synthesis of the p53 tumor suppressor and its subsequent activation following DNA damage are critical for its protection against tumorigenesis. We previously discovered an internal ribosome entry site (IRES) at the 5' untranslated region of the p53 mRNA. However, the connection between IRES-mediated p53 translation and p53's tumor suppressive function is unknown. In this study, we identified two p53 IRES trans-acting factors, translational control protein 80 (TCP80), and RNA helicase A (RHA), which positively regulate p53 IRES activity. Overexpression of TCP80 and RHA also leads to increased expression and synthesis of p53. Furthermore, we discovered two breast cancer cell lines that retain wild-type p53 but exhibit defective p53 induction and synthesis following DNA damage. The levels of TCP80 and RHA are extremely low in both cell lines, and expression of both proteins is required to significantly increase the p53 IRES activity in these cells. Moreover, we found cancer cells transfected with a shRNA against TCP80 not only exhibit decreased expression of TCP80 and RHA but also display defective p53 induction and diminished ability to induce senescence following DNA damage. Therefore, our findings reveal a novel mechanism of p53 inactivation that links deregulation of IRES-mediated p53 translation with tumorigenesis.
Collapse
|
36
|
Antunes AT, Goos YJ, Pereboom TC, Hermkens D, Wlodarski MW, Da Costa L, MacInnes AW. Ribosomal Protein Mutations Result in Constitutive p53 Protein Degradation through Impairment of the AKT Pathway. PLoS Genet 2015; 11:e1005326. [PMID: 26132763 PMCID: PMC4488577 DOI: 10.1371/journal.pgen.1005326] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/29/2015] [Indexed: 11/19/2022] Open
Abstract
Mutations in ribosomal protein (RP) genes can result in the loss of erythrocyte progenitor cells and cause severe anemia. This is seen in patients with Diamond-Blackfan anemia (DBA), a pure red cell aplasia and bone marrow failure syndrome that is almost exclusively linked to RP gene haploinsufficiency. While the mechanisms underlying the cytopenia phenotype of patients with these mutations are not completely understood, it is believed that stabilization of the p53 tumor suppressor protein may induce apoptosis in the progenitor cells. In stark contrast, tumor cells from zebrafish with RP gene haploinsufficiency are unable to stabilize p53 even when exposed to acute DNA damage despite transcribing wild type p53 normally. In this work we demonstrate that p53 has a limited role in eliciting the anemia phenotype of zebrafish models of DBA. In fact, we find that RP-deficient embryos exhibit the same normal p53 transcription, absence of p53 protein, and impaired p53 response to DNA damage as RP haploinsufficient tumor cells. Recently we reported that RP mutations suppress activity of the AKT pathway, and we show here that this suppression results in proteasomal degradation of p53. By re-activating the AKT pathway or by inhibiting GSK-3, a downstream modifier that normally represses AKT signaling, we are able to restore the stabilization of p53. Our work indicates that the anemia phenotype of zebrafish models of DBA is dependent on factors other than p53, and may hold clinical significance for both DBA and the increasing number of cancers revealing spontaneous mutations in RP genes. The p53 tumor suppressor is the most commonly mutated gene in human cancers. However, cancer cells exploit multiple mechanisms to silence the p53 pathway in addition to inactivation of the p53 gene. We previously reported that one of these mechanisms is found in tumor cells with ribosomal protein (RP) gene mutations. These cells transcribe wild type p53 mRNA yet do not stabilize p53 protein when exposed to DNA damaging agents. In this work we demonstrate that this loss of p53 protein is due to its constitutive degradation. This degradation is due to impairment of the AKT pathway, which normal signals for p53 to stabilize when the DNA is damaged. By re-activating the AKT pathway in RP-mutant cells we are able to restore p53 stabilization and activity, which may hold clinical significance for cancer treatment.
Collapse
Affiliation(s)
- Ana T. Antunes
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Yvonne J. Goos
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tamara C. Pereboom
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dorien Hermkens
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marcin W. Wlodarski
- Department of Pediatric Hematology and Oncology, University of Freiburg, Freiburg, Germany
| | - Lydie Da Costa
- AP-HP, Service d’Hématologie Biologique, Hôpital Robert Debré, Paris F-75019, France
- Laboratoire d'excellence, GR-Ex, Paris, France
- Université Paris VII-Denis Diderot, Sorbonne Paris Cité, Paris F-75475, France
- U1149, CRB3, Paris, France
- * E-mail: (LDC); (AWM)
| | - Alyson W. MacInnes
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
- * E-mail: (LDC); (AWM)
| |
Collapse
|
37
|
Ratner N, Miller SJ. A RASopathy gene commonly mutated in cancer: the neurofibromatosis type 1 tumour suppressor. Nat Rev Cancer 2015; 15:290-301. [PMID: 25877329 PMCID: PMC4822336 DOI: 10.1038/nrc3911] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a common genetic disorder that predisposes affected individuals to tumours. The NF1 gene encodes a RAS GTPase-activating protein called neurofibromin and is one of several genes that (when mutant) affect RAS-MAPK signalling, causing related diseases collectively known as RASopathies. Several RASopathies, beyond NF1, are cancer predisposition syndromes. Somatic NF1 mutations also occur in 5-10% of human sporadic cancers and may contribute to resistance to therapy. To highlight areas for investigation in RASopathies and sporadic tumours with NF1 mutations, we summarize current knowledge of NF1 disease, the NF1 gene and neurofibromin, neurofibromin signalling pathways and recent developments in NF1 therapeutics.
Collapse
Affiliation(s)
- Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Shyra J Miller
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| |
Collapse
|
38
|
Chua JS, Liew HP, Guo L, Lane DP. Tumor-specific signaling to p53 is mimicked by Mdm2 inactivation in zebrafish: insights from mdm2 and mdm4 mutant zebrafish. Oncogene 2015; 34:5933-41. [PMID: 25746004 PMCID: PMC4661431 DOI: 10.1038/onc.2015.57] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/11/2015] [Accepted: 01/25/2015] [Indexed: 02/07/2023]
Abstract
In mice, the deletion of either Mdm2 or Mdm4 results in a p53-dependent embryonic lethality. We used zinc-finger nucleases to construct mutations in the mdm2 and mdm4 genes of zebrafish. Although the loss of mdm2 results in a p53-dependent early embryonic lethality, mdm4 mutant fish are viable and grow to adulthood. We also found that an in-frame five-amino acid deletion in mdm2 creates a novel hypomorphic allele. The lethal phenotype observed in the mdm2 mutant fish could be partially rescued by injecting mRNA encoding functional Mdm2, and this required the E3 ligase activity of the protein. Complete rescue was obtained by crossing the mdm2 mutant fish onto a p53M214K mutant background. Although p53 mutant fish on a wild-type mdm2 background were shown to accumulate high levels of p53 protein specifically in tumor tissues, we detected extensive staining of p53 in many normal tissues of the mdm2–p53M214K double-mutant fish. Our results are suggestive of the hypothesis that p53 protein accumulates during tumor formation as a result of tumor-specific inactivation of the Mdm2 pathway.
Collapse
Affiliation(s)
- J S Chua
- p53 Laboratory, Biomedical Sciences Institutes, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - H P Liew
- p53 Laboratory, Biomedical Sciences Institutes, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - L Guo
- Aegis Biotech, Singapore, Singapore
| | - D P Lane
- p53 Laboratory, Biomedical Sciences Institutes, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
39
|
Abstract
Ribosomopathies are largely congenital diseases linked to defects in ribosomal proteins or biogenesis factors. Some of these disorders are characterized by hypoproliferative phenotypes such as bone marrow failure and anemia early in life, followed by elevated cancer risks later in life. This transition from hypo- to hyperproliferation presents an intriguing paradox in the field of hematology known as "Dameshek's riddle." Recent cancer sequencing studies also revealed somatically acquired mutations and deletions in ribosomal proteins in T-cell acute lymphoblastic leukemia and solid tumors, further extending the list of ribosomopathies and strengthening the association between ribosomal defects and oncogenesis. In this perspective, we summarize and comment on recent findings in the field of ribosomopathies. We explain how ribosomopathies may provide clues to help explain Dameshek's paradox and highlight some of the open questions and challenges in the field.
Collapse
|
40
|
Wang W, Nag S, Zhang X, Wang MH, Wang H, Zhou J, Zhang R. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med Res Rev 2014; 35:225-85. [PMID: 25164622 DOI: 10.1002/med.21327] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ribosomes are essential components of the protein synthesis machinery. The process of ribosome biogenesis is well organized and tightly regulated. Recent studies have shown that ribosomal proteins (RPs) have extraribosomal functions that are involved in cell proliferation, differentiation, apoptosis, DNA repair, and other cellular processes. The dysfunction of RPs has been linked to the development and progression of hematological, metabolic, and cardiovascular diseases and cancer. Perturbation of ribosome biogenesis results in ribosomal stress, which triggers activation of the p53 signaling pathway through RPs-MDM2 interactions, resulting in p53-dependent cell cycle arrest and apoptosis. RPs also regulate cellular functions through p53-independent mechanisms. We herein review the recent advances in several forefronts of RP research, including the understanding of their biological features and roles in regulating cellular functions, maintaining cell homeostasis, and their involvement in the pathogenesis of human diseases. We also highlight the translational potential of this research for the identification of molecular biomarkers, and in the discovery and development of novel treatments for human diseases.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106
| | | | | | | | | | | | | |
Collapse
|
41
|
Heijnen HF, van Wijk R, Pereboom TC, Goos YJ, Seinen CW, van Oirschot BA, van Dooren R, Gastou M, Giles RH, van Solinge W, Kuijpers TW, Gazda HT, Bierings MB, Da Costa L, MacInnes AW. Ribosomal protein mutations induce autophagy through S6 kinase inhibition of the insulin pathway. PLoS Genet 2014; 10:e1004371. [PMID: 24875531 PMCID: PMC4038485 DOI: 10.1371/journal.pgen.1004371] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/24/2014] [Indexed: 12/19/2022] Open
Abstract
Mutations affecting the ribosome lead to several diseases known as ribosomopathies, with phenotypes that include growth defects, cytopenia, and bone marrow failure. Diamond-Blackfan anemia (DBA), for example, is a pure red cell aplasia linked to the mutation of ribosomal protein (RP) genes. Here we show the knock-down of the DBA-linked RPS19 gene induces the cellular self-digestion process of autophagy, a pathway critical for proper hematopoiesis. We also observe an increase of autophagy in cells derived from DBA patients, in CD34+ erythrocyte progenitor cells with RPS19 knock down, in the red blood cells of zebrafish embryos with RP-deficiency, and in cells from patients with Shwachman-Diamond syndrome (SDS). The loss of RPs in all these models results in a marked increase in S6 kinase phosphorylation that we find is triggered by an increase in reactive oxygen species (ROS). We show that this increase in S6 kinase phosphorylation inhibits the insulin pathway and AKT phosphorylation activity through a mechanism reminiscent of insulin resistance. While stimulating RP-deficient cells with insulin reduces autophagy, antioxidant treatment reduces S6 kinase phosphorylation, autophagy, and stabilization of the p53 tumor suppressor. Our data suggest that RP loss promotes the aberrant activation of both S6 kinase and p53 by increasing intracellular ROS levels. The deregulation of these signaling pathways is likely playing a major role in the pathophysiology of ribosomopathies. Diseases linked to mutations affecting the ribosome, ribosomopathies, have an exceptionally wide range of phenotypes. However, many ribosomopathies have some features in common including cytopenia and growth defects. Our study aims to clarify the mechanisms behind these common phenotypes. We find that mutations in ribosomal protein genes result in a series of aberrant signaling events that cause cells to start recycling and consuming their own intracellular contents. This basic mechanism of catabolism is activated when cells are starving for nutrients, and also during the tightly regulated process of blood cell maturation. The deregulation of this mechanism provides an explanation as to why blood cells are so acutely affected by mutations in genes that impair the ribosome. Moreover, we find that the signals activating this catabolism are coupled to impairment of the highly conserved insulin-signaling pathway that is essential for growth. Taken together, our in-depth description of the pathways involved as the result of mutations affecting the ribosome increases our understanding about the etiology of these diseases and opens up previously unknown avenues of potential treatment.
Collapse
Affiliation(s)
- Harry F. Heijnen
- Cell Microscopy Center, Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Richard van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tamara C. Pereboom
- Hubrecht Institute, KNAW and University Medical Center Utrecht, The Netherlands
| | - Yvonne J. Goos
- Hubrecht Institute, KNAW and University Medical Center Utrecht, The Netherlands
| | - Cor W. Seinen
- Cell Microscopy Center, Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Brigitte A. van Oirschot
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rowie van Dooren
- Hubrecht Institute, KNAW and University Medical Center Utrecht, The Netherlands
| | - Marc Gastou
- U1009, Institut Gustave Roussy, Université Paris-Sud, Villejuif, France
| | - Rachel H. Giles
- Department of Nephrology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wouter van Solinge
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Taco W. Kuijpers
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Hanna T. Gazda
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
| | - Marc B. Bierings
- Department of Pediatric Hematology/Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lydie Da Costa
- AP-HP, Service d'Hématologie Biologique, Hôpital Robert Debré, Paris, France
- Université Paris VII-Denis Diderot, Sorbonne Paris Cité, Paris, France
- U773, CRB3, Paris, France
| | - Alyson W. MacInnes
- Hubrecht Institute, KNAW and University Medical Center Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
42
|
Whole-exome sequencing and functional studies identify RPS29 as a novel gene mutated in multicase Diamond-Blackfan anemia families. Blood 2014; 124:24-32. [PMID: 24829207 DOI: 10.1182/blood-2013-11-540278] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Diamond-Blackfan anemia (DBA) is a cancer-prone inherited bone marrow failure syndrome. Approximately half of DBA patients have a germ-line mutation in a ribosomal protein gene. We used whole-exome sequencing to identify disease-causing genes in 2 large DBA families. After filtering, 1 nonsynonymous mutation (p.I31F) in the ribosomal protein S29 (RPS29[AUQ1]) gene was present in all 5 DBA-affected individuals and the obligate carrier, and absent from the unaffected noncarrier parent in 1 DBA family. A second DBA family was found to have a different nonsynonymous mutation (p.I50T) in RPS29. Both mutations are amino acid substitutions in exon 2 predicted to be deleterious and resulted in haploinsufficiency of RPS29 expression compared with wild-type RPS29 expression from an unaffected control. The DBA proband with the p.I31F RPS29 mutation had a pre-ribosomal RNA (rRNA) processing defect compared with the healthy control. We demonstrated that both RPS29 mutations failed to rescue the defective erythropoiesis in the rps29(-/-) mutant zebra fish DBA model. RPS29 is a component of the small 40S ribosomal subunit and essential for rRNA processing and ribosome biogenesis. We uncovered a novel DBA causative gene, RPS29, and showed that germ-line mutations in RPS29 can cause a defective erythropoiesis phenotype using a zebra fish model.
Collapse
|
43
|
Loreni F, Mancino M, Biffo S. Translation factors and ribosomal proteins control tumor onset and progression: how? Oncogene 2014; 33:2145-56. [PMID: 23644661 DOI: 10.1038/onc.2013.153] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 12/18/2022]
Abstract
Gene expression is shaped by translational control. The modalities and the extent by which translation factors modify gene expression have revealed therapeutic scenarios. For instance, eukaryotic initiation factor (eIF)4E activity is controlled by the signaling cascade of growth factors, and drives tumorigenesis by favoring the translation of specific mRNAs. Highly specific drugs target the activity of eIF4E. Indeed, the antitumor action of mTOR complex 1 (mTORc1) blockers like rapamycin relies on their capability to inhibit eIF4E assembly into functional eIF4F complexes. eIF4E biology, from its inception to recent pharmacological targeting, is proof-of-principle that translational control is druggable. The case for eIF4E is not isolated. The translational machinery is involved in the biology of cancer through many other mechanisms. First, untranslated sequences on mRNAs as well as noncoding RNAs regulate the translational efficiency of mRNAs that are central for tumor progression. Second, other initiation factors like eIF6 show a tumorigenic potential by acting downstream of oncogenic pathways. Third, genetic alterations in components of the translational apparatus underlie an entire class of inherited syndromes known as 'ribosomopathies' that are associated with increased cancer risk. Taken together, data suggest that in spite of their evolutionary conservation and ubiquitous nature, variations in the activity and levels of ribosomal proteins and translation factors generate highly specific effects. Beside, as the structures and biochemical activities of several noncoding RNAs and initiation factors are known, these factors may be amenable to rational pharmacological targeting. The future is to design highly specific drugs targeting the translational apparatus.
Collapse
Affiliation(s)
- F Loreni
- Department of Biology, University 'Tor Vergata', Roma, Italy
| | - M Mancino
- 1] San Raffaele Scientific Institute, Ospedale San Raffaele, Milan, Italy [2] DISIT, Alessandria, Italy
| | - S Biffo
- 1] San Raffaele Scientific Institute, Ospedale San Raffaele, Milan, Italy [2] DISIT, Alessandria, Italy
| |
Collapse
|
44
|
Deng Q, Becker L, Ma X, Zhong X, Young K, Ramos K, Li Y. The dichotomy of p53 regulation by noncoding RNAs. J Mol Cell Biol 2014; 6:198-205. [PMID: 24706938 DOI: 10.1093/jmcb/mju017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The p53 tumor suppressor gene is the most frequently mutated gene in cancer. Significant progress has been made to discern the importance of p53 in coordinating cellular responses to DNA damage, oncogene activation, and other stresses. Noncoding RNAs are RNA molecules functioning without being translated into proteins. In this work, we discuss the dichotomy of p53 regulation by noncoding RNAs with four unconventional questions. First, is overexpression of microRNAs responsible for p53 inactivation in the absence of p53 mutation? Second, are there somatic mutations in the noncoding regions of the p53 gene? Third, is there a germline mutant in the noncoding regions of the p53 gene that predisposes carriers to cancer? Fourth, can p53 activation mediated by a noncoding RNA mutation cause cancer? This work highlights the prominence of noncoding RNAs in p53 dysregulation and tumorigenesis.
Collapse
Affiliation(s)
- Qipan Deng
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, 319 Abraham Flexner Way, Louisville, KY 40202, USA
| | - Lindsey Becker
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, 319 Abraham Flexner Way, Louisville, KY 40202, USA
| | - Xiaodong Ma
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, 319 Abraham Flexner Way, Louisville, KY 40202, USA
| | - Xiaoming Zhong
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Ken Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kenneth Ramos
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, 319 Abraham Flexner Way, Louisville, KY 40202, USA
| | - Yong Li
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, 319 Abraham Flexner Way, Louisville, KY 40202, USA School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| |
Collapse
|
45
|
Squiban B, Frazer JK. Danio rerio: Small Fish Making a Big Splash in Leukemia. CURRENT PATHOBIOLOGY REPORTS 2014; 2:61-73. [PMID: 26269780 DOI: 10.1007/s40139-014-0041-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Zebrafish (Danio rerio) are widely used for developmental biology studies. In the past decade, D. rerio have become an important oncology model as well. Leukemia is one type of cancer where zebrafish are particularly valuable. As vertebrates, fish have great anatomic and biologic similarity to humans, including their hematopoietic and immune systems. As an experimental platform, D. rerio offer many advantages that mammalian models lack. These include their ease of genetic manipulation, capacity for imaging, and suitability for large-scale phenotypic and drug screens. In this review, we present examples of these strategies and others to illustrate how zebrafish have been and can be used to study leukemia. Besides appraising the techniques researchers apply and introducing the leukemia models they have created, we also highlight recent and exciting discoveries made using D. rerio with an eye to where the field is likely headed.
Collapse
Affiliation(s)
- Barbara Squiban
- Section of Pediatric Hematology/Oncology, Department of Pediatrics, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 229, Oklahoma City, OK 73104, USA
| | - J Kimble Frazer
- Section of Pediatric Hematology/Oncology, Department of Pediatrics, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 224, Oklahoma City, OK 73104, USA
| |
Collapse
|
46
|
Shive HR, West RR, Embree LJ, Golden CD, Hickstein DD. BRCA2 and TP53 collaborate in tumorigenesis in zebrafish. PLoS One 2014; 9:e87177. [PMID: 24489863 PMCID: PMC3906131 DOI: 10.1371/journal.pone.0087177] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/23/2013] [Indexed: 12/02/2022] Open
Abstract
Germline mutations in the tumor suppressor genes BRCA2 and TP53 significantly influence human cancer risk, and cancers from humans who inherit one mutant allele for BRCA2 or TP53 often display loss of the wildtype allele. In addition, BRCA2-associated cancers often exhibit mutations in TP53. To determine the relationship between germline heterozygous mutation (haploinsufficiency) and somatic loss of heterozygosity (LOH) for BRCA2 and TP53 in carcinogenesis, we analyzed zebrafish with heritable mutations in these two genes. Tumor-bearing zebrafish were examined by histology, and normal and neoplastic tissues were collected by laser-capture microdissection for LOH analyses. Zebrafish on a heterozygous tp53M214K background had a high incidence of malignant tumors. The brca2Q658X mutation status determined both the incidence of LOH and the malignant tumor phenotype. LOH for tp53 occurred in the majority of malignant tumors from brca2 wildtype and heterozygous mutant zebrafish, and most of these were malignant peripheral nerve sheath tumors. Malignant tumors in zebrafish with heterozygous mutations in both brca2 and tp53 frequently displayed LOH for both genes. In contrast, LOH for tp53 was uncommon in malignant tumors from brca2 homozygotes, and these tumors were primarily undifferentiated sarcomas. Thus, carcinogenesis in zebrafish with combined mutations in tp53 and brca2 typically requires biallelic mutation or loss of at least one of these genes, and the specific combination of inherited mutations influences the development of LOH and the tumor phenotype. These results provide insight into cancer development associated with heritable BRCA2 and TP53 mutations.
Collapse
Affiliation(s)
- Heather R. Shive
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Robert R. West
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lisa J. Embree
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Champa D. Golden
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dennis D. Hickstein
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
47
|
Essers PB, Klasson TD, Pereboom TC, Mans DA, Nicastro M, Boldt K, Giles RH, MacInnes AW. The von Hippel-Lindau tumor suppressor regulates programmed cell death 5-mediated degradation of Mdm2. Oncogene 2014; 34:771-9. [PMID: 24469044 DOI: 10.1038/onc.2013.598] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 12/06/2013] [Accepted: 12/13/2013] [Indexed: 12/14/2022]
Abstract
Functional loss of the von Hippel-Lindau (VHL) tumor suppressor protein (pVHL), which is part of an E3-ubiquitin ligase complex, initiates most inherited and sporadic clear-cell renal cell carcinomas (ccRCC). Genetic inactivation of the TP53 gene in ccRCC is rare, suggesting that an alternate mechanism alleviates the selective pressure for TP53 mutations in ccRCC. Here we use a zebrafish model to describe the functional consequences of pVHL loss on the p53/Mdm2 pathway. We show that p53 is stabilized in the absence of pVHL and becomes hyperstabilized upon DNA damage, which we propose is because of a novel in vivo interaction revealed between human pVHL and a negative regulator of Mdm2, the programmed cell death 5 (PDCD5) protein. PDCD5 is normally localized at the plasma membrane and in the cytoplasm. However, upon hypoxia or loss of pVHL, PDCD5 relocalizes to the nucleus, an event that is coupled to the degradation of Mdm2. Despite the subsequent hyperstabilization and normal transcriptional activity of p53, we find that zebrafish vhl(-/-) cells are still as highly resistant to DNA damage-induced cell cycle arrest and apoptosis as human ccRCC cells. We suggest this is because of a marked increase in expression of birc5a, the zebrafish homolog of Survivin. Accordingly, when we knock down Survivin in human ccRCC cells we are able to restore caspase activity in response to DNA damage. Taken together, our study describes a new mechanism for p53 stabilization through PDCD5 upon hypoxia or pVHL loss, and reveals new clinical potential for the treatment of pathobiological disorders linked to hypoxic stress.
Collapse
Affiliation(s)
- P B Essers
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - T D Klasson
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - T C Pereboom
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - D A Mans
- 1] Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands [2] Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - M Nicastro
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - K Boldt
- Center for Ophthalmic Research, Medical Proteome Center, Eberhard-Karls University Tuebingen, Tuebingen, Germany
| | - R H Giles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A W MacInnes
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
48
|
Pereboom TC, Bondt A, Pallaki P, Klasson TD, Goos YJ, Essers PB, Groot Koerkamp MJA, Gazda HT, Holstege FCP, Costa LD, MacInnes AW. Translation of branched-chain aminotransferase-1 transcripts is impaired in cells haploinsufficient for ribosomal protein genes. Exp Hematol 2014; 42:394-403.e4. [PMID: 24463277 DOI: 10.1016/j.exphem.2013.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/16/2013] [Accepted: 12/20/2013] [Indexed: 11/27/2022]
Abstract
Diamond-Blackfan anemia (DBA) is a bone marrow failure syndrome linked to mutations in ribosomal protein (RP) genes that result in the impaired proliferation of hematopoietic progenitor cells. The etiology of DBA is not completely understood; however, the ribosomal nature of the genes involved has led to speculation that these mutations may alter the landscape of messenger RNA (mRNA) translation. Here, we performed comparative microarray analysis of polysomal mRNA transcripts isolated from lymphoblastoid cell lines derived from DBA patients carrying various haploinsufficient mutations in either RPS19 or RPL11. Different spectrums of changes were observed depending on the mutant gene, with large differences found in RPS19 cells and very few in RPL11 cells. However, we find that the small number of altered transcripts in RPL11 overlap for the most part with those altered in RPS19 cells. We show specifically that levels of branched-chain aminotransferase-1 (BCAT1) transcripts are significantly decreased on the polysomes of both RPS19 and RPL11 cells and that translation of BCAT1 protein is especially impaired in cells with small RP gene mutations, and we provide evidence that this effect may be due in part to the unusually long 5'UTR of the BCAT1 transcript. The BCAT1 enzyme carries out the final step in the biosynthesis and the first step of degradation of the branched-chain amino acids leucine, isoleucine, and valine. Interestingly, several animal models of DBA have reported that leucine ameliorates the anemia phenotypes generated by RPS19 loss. Our study suggests that RP mutations affect the synthesis of specific proteins involved in regulating amino acid levels that are important for maintaining the normal proliferative capacity of hematopoietic cells.
Collapse
Affiliation(s)
- Tamara C Pereboom
- Hubrecht Institute, Koninklijke Nederlandse Akademie van Wetenschappen and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Albert Bondt
- Hubrecht Institute, Koninklijke Nederlandse Akademie van Wetenschappen and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paschalina Pallaki
- Hubrecht Institute, Koninklijke Nederlandse Akademie van Wetenschappen and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tim D Klasson
- Hubrecht Institute, Koninklijke Nederlandse Akademie van Wetenschappen and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yvonne J Goos
- Hubrecht Institute, Koninklijke Nederlandse Akademie van Wetenschappen and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul B Essers
- Hubrecht Institute, Koninklijke Nederlandse Akademie van Wetenschappen and University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Hanna T Gazda
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA; Harvard Medical School, Boston, MA; Broad Institute, Cambridge, MA
| | | | - Lydie Da Costa
- AP-HP, Service d'Hématologie Biologique, Hôpital Robert Debré, Paris F-75019, France; Université Paris VII-Denis Diderot, Sorbonne Paris Cité, Paris F-75475, France; U773, CRB3, Paris F-75018, France
| | - Alyson W MacInnes
- Hubrecht Institute, Koninklijke Nederlandse Akademie van Wetenschappen and University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
49
|
Wong QWL, Li J, Ng SR, Lim SG, Yang H, Vardy LA. RPL39L is an example of a recently evolved ribosomal protein paralog that shows highly specific tissue expression patterns and is upregulated in ESCs and HCC tumors. RNA Biol 2013; 11:33-41. [PMID: 24452241 DOI: 10.4161/rna.27427] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ribosomal proteins (RPs) have been shown to be able to impart selectivity on the translating ribosome implicating them in gene expression control. Many ribosomal proteins are highly conserved and recently a number of ribosomal protein paralogs have been described in mammals. We examined the expression pattern of RPs in differentiating mouse Embryonic Stem Cells (ESCs), paying particular attention to the RP paralogs. We find the RP paralog Rpl39l is highly expressed in ESC and its expression strongly correlates with hepatocellular carcinoma tumor (HCC) samples with high tumor grading and alpha-fetoprotein level giving it diagnostic potential. We further screen the expression pattern of all RPs and their paralogs across 22 different tissues. We find that the more recently evolved RP paralogs show a much greater level of tissue-specific expression. We propose that these RP paralogs evolved more recently to provide a greater level of gene expression control to higher eukaryotes.
Collapse
Affiliation(s)
| | - Jia Li
- Cancer Science Institute; National University of Singapore; Singapore
| | - Sheng Rong Ng
- A*STAR Institute of Medical Biology; 8A Biomedical Grove; Immunos, Singapore
| | - Seng Gee Lim
- Department of Medicine; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| | - Henry Yang
- Cancer Science Institute; National University of Singapore; Singapore
| | - Leah A Vardy
- A*STAR Institute of Medical Biology; 8A Biomedical Grove; Immunos, Singapore; School of Biological Sciences; Nanyang Technological University; Singapore
| |
Collapse
|
50
|
Zhang Z, Jia H, Zhang Q, Wan Y, Zhou Y, Jia Q, Zhang W, Yuan W, Cheng T, Zhu X, Fang X. Assessment of hematopoietic failure due to Rpl11 deficiency in a zebrafish model of Diamond-Blackfan anemia by deep sequencing. BMC Genomics 2013; 14:896. [PMID: 24341334 PMCID: PMC3890587 DOI: 10.1186/1471-2164-14-896] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 12/10/2013] [Indexed: 01/18/2023] Open
Abstract
Background Diamond–Blackfan anemia is a rare congenital red blood cell dysplasia that develops soon after birth. RPL11 mutations account for approximately 4.8% of human DBA cases with defective hematopoietic phenotypes. However, the mechanisms by which RPL11 regulates hematopoiesis in DBA remain elusive. In this study, we analyzed the transcriptome using deep sequencing data from an Rpl11-deficient zebrafish model to identify Rpl11-mediated hematopoietic failure and investigate the underlying mechanisms. Results We characterized hematological defects in Rpl11-deficient zebrafish embryos by identifying affected hematological genes, hematopoiesis-associated pathways, and regulatory networks. We found that hemoglobin biosynthetic and hematological defects in Rpl11-deficient zebrafish were related to dysregulation of iron metabolism-related genes, including tfa, tfr1b, alas2 and slc25a37, which are involved in heme and hemoglobin biosynthesis. In addition, we found reduced expression of the hematopoietic stem cells (HSC) marker cmyb and HSC transcription factors tal1 and hoxb4a in Rpl11-deficient zebrafish embryos, indicating that the hematopoietic defects may be related to impaired HSC formation, differentiation, and proliferation. However, Rpl11 deficiency did not affect the development of other blood cell lineages such as granulocytes and myelocytes. Conclusion We identified hematopoietic failure of Rpl11-deficient zebrafish embryos using transcriptome deep sequencing and elucidated potential underlying mechanisms. The present analyses demonstrate that Rpl11-deficient zebrafish may serve as a model of DBA and may provide insights into the pathogenesis of mutant RPL11-mediated human DBA disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiaofan Zhu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | | |
Collapse
|