1
|
Alencar LRV, Schwery O, Gade MR, Domínguez-Guerrero SF, Tarimo E, Bodensteiner BL, Uyeda JC, Muñoz MM. Opportunity begets opportunity to drive macroevolutionary dynamics of a diverse lizard radiation. Evol Lett 2024; 8:623-637. [PMID: 39328284 PMCID: PMC11424082 DOI: 10.1093/evlett/qrae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 09/28/2024] Open
Abstract
Evolution proceeds unevenly across the tree of life, with some lineages accumulating diversity more rapidly than others. Explaining this disparity is challenging as similar evolutionary triggers often do not result in analogous shifts across the tree, and similar shifts may reflect different evolutionary triggers. We used a combination of approaches to directly consider such context-dependency and untangle the complex network of processes that shape macroevolutionary dynamics, focusing on Pleurodonta, a diverse radiation of lizards. Our approach shows that some lineage-wide signatures are lost when conditioned on sublineages: while viviparity appears to accelerate diversification, its effect size is overestimated by its association with the Andean mountains. Conversely, some signals that erode at broader phylogenetic scales emerge at shallower ones. Mountains, in general, do not affect speciation rates; rather, the occurrence in the Andean mountains specifically promotes diversification. Likewise, the evolution of larger sizes catalyzes diversification rates, but only within certain ecological and geographical settings. We caution that conventional methods of fitting models to entire trees may mistakenly assign diversification heterogeneity to specific factors despite evidence against their plausibility. Our study takes a significant stride toward disentangling confounding factors and identifying plausible sources of ecological opportunities in the diversification of large evolutionary radiations.
Collapse
Affiliation(s)
- Laura R V Alencar
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Orlando Schwery
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Meaghan R Gade
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | | | - Eliza Tarimo
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Brooke L Bodensteiner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Josef C Uyeda
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| |
Collapse
|
2
|
McClain CR, Webb TJ, Heim NA, Knope ML, Monarrez PM, Payne JL. Navigating uncertainty in maximum body size in marine metazoans. Ecol Evol 2024; 14:e11506. [PMID: 38840585 PMCID: PMC11151150 DOI: 10.1002/ece3.11506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
Body size is a fundamental biological trait shaping ecological interactions, evolutionary processes, and our understanding of the structure and dynamics of marine communities on a global scale. Accurately defining a species' body size, despite the ease of measurement, poses significant challenges due to varied methodologies, tool usage, and subjectivity among researchers, resulting in multiple, often discrepant size estimates. These discrepancies, stemming from diverse measurement approaches and inherent variability, could substantially impact the reliability and precision of ecological and evolutionary studies reliant on body size data across extensive species datasets. This study examines the variation in reported maximum body sizes across 69,570 individual measurements of maximum size, ranging from <0.2 μm to >45 m, for 27,271 species of marine metazoans. The research aims to investigate how reported maximum size variations within species relate to organism size, taxonomy, habitat, and the presence of skeletal structures. The investigation particularly focuses on understanding why discrepancies in maximum size estimates arise and their potential implications for broader ecological and evolutionary studies relying on body size data. Variation in reported maximum sizes is zero for 38% of species, and low for most species, although it exceeds two orders of magnitude for some species. The likelihood of zero variation in maximum size decreased with more measurements and increased in larger species, though this varied across phyla and habitats. Pelagic organisms consistently had low maximum size range values, while small species with unspecified habitats had the highest variation. Variations in maximum size within a species were notably smaller than interspecific variation at higher taxonomic levels. Significant variation in maximum size estimates exists within marine species, and partially explained by organism size, taxonomic group, and habitat. Variation in maximum size could be reduced by standardized measurement protocols and improved meta-data. Despite the variation, egregious errors in published maximum size measurements are rare, and their impact on comparative macroecological and macroevolutionary research is likely minimal.
Collapse
Affiliation(s)
- Craig R. McClain
- Department of BiologyUniversity of Louisiana at LafayetteLafayetteLouisianaUSA
| | - Thomas J. Webb
- Ecology & Evolutionary Biology, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Noel A. Heim
- Department of Earth and Climate SciencesTufts UniversityMedfordMassachusettsUSA
| | | | - Pedro M. Monarrez
- Department of Earth and Planetary SciencesStanford UniversityStanfordCaliforniaUSA
- Department of Earth, Planetary, and Space SciencesUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Jonathan L. Payne
- Department of Earth and Planetary SciencesStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
3
|
Crockett WW, Shaw JO, Simpson C, Kempes CP. Physical constraints during Snowball Earth drive the evolution of multicellularity. Proc Biol Sci 2024; 291:20232767. [PMID: 38924758 PMCID: PMC11271684 DOI: 10.1098/rspb.2023.2767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/09/2024] [Indexed: 06/28/2024] Open
Abstract
Molecular and fossil evidence suggests that complex eukaryotic multicellularity evolved during the late Neoproterozoic era, coincident with Snowball Earth glaciations, where ice sheets covered most of the globe. During this period, environmental conditions-such as seawater temperature and the availability of photosynthetically active light in the oceans-likely changed dramatically. Such changes would have had significant effects on both resource availability and optimal phenotypes. Here, we construct and apply mechanistic models to explore (i) how environmental changes during Snowball Earth and biophysical constraints generated selective pressures, and (ii) how these pressures may have had differential effects on organisms with different forms of biological organization. By testing a series of alternative-and commonly debated-hypotheses, we demonstrate how multicellularity was likely acquired differently in eukaryotes and prokaryotes owing to selective differences on their size due to the biophysical and metabolic regimes they inhabit: decreasing temperatures and resource availability instigated by the onset of glaciations generated selective pressures towards smaller sizes in organisms in the diffusive regime and towards larger sizes in motile heterotrophs. These results suggest that changing environmental conditions during Snowball Earth glaciations gave multicellular eukaryotes an evolutionary advantage, paving the way for the complex multicellular lineages that followed.
Collapse
Affiliation(s)
- William W. Crockett
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | | | - Carl Simpson
- Department of Geological Sciences and University of Colorado Museum of Natural History, University of Colorado, Boulder, CO 80309, USA
| | | |
Collapse
|
4
|
Suzuki N, Iwamura Y, Kato K, Ishioka H, Konta Y, Sato K, Uchida N, Koida N, Sekine H, Tanaka T, Kumagai N, Nakai T. Crosstalk between oxygen signaling and iron metabolism in renal interstitial fibroblasts. J Clin Biochem Nutr 2024; 74:179-184. [PMID: 38799135 PMCID: PMC11111471 DOI: 10.3164/jcbn.24-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/23/2024] [Indexed: 05/29/2024] Open
Abstract
To maintain the oxygen supply, the production of red blood cells (erythrocytes) is promoted under low-oxygen conditions (hypoxia). Oxygen is carried by hemoglobin in erythrocytes, in which the majority of the essential element iron in the body is contained. Because iron metabolism is strictly controlled in a semi-closed recycling system to protect cells from oxidative stress caused by iron, hypoxia-inducible erythropoiesis is closely coordinated by regulatory systems that mobilize stored iron for hemoglobin synthesis. The erythroid growth factor erythropoietin (EPO) is mainly secreted by interstitial fibroblasts in the renal cortex, which are known as renal EPO-producing (REP) cells, and promotes erythropoiesis and iron mobilization. Intriguingly, EPO production is strongly induced by hypoxia through iron-dependent pathways in REP cells. Here, we summarize recent studies on the network mechanisms linking hypoxia-inducible EPO production, erythropoiesis and iron metabolism. Additionally, we introduce disease mechanisms related to disorders in the network mediated by REP cell functions. Furthermore, we propose future studies regarding the application of renal cells derived from the urine of kidney disease patients to investigate the molecular pathology of chronic kidney disease and develop precise and personalized medicine for kidney disease.
Collapse
Affiliation(s)
- Norio Suzuki
- Applied Oxygen Physiology Project, New Industry Creation Hatchery Center, Tohoku University, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Division of Oxygen Biology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Yuma Iwamura
- Division of Oxygen Biology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Koichiro Kato
- Applied Oxygen Physiology Project, New Industry Creation Hatchery Center, Tohoku University, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Division of Oxygen Biology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Hirotaka Ishioka
- Division of Oxygen Biology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Department of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Yusuke Konta
- Division of Oxygen Biology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Department of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Koji Sato
- Division of Oxygen Biology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Department of Nephrology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Nao Uchida
- Department of Pediatrics, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Noa Koida
- Division of Oxygen Biology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Hiroki Sekine
- Division of Oxygen Biology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Tetsuhiro Tanaka
- Department of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Naonori Kumagai
- Department of Pediatrics, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Taku Nakai
- Division of Oxygen Biology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
5
|
Wong W, Bravo P, Yunker PJ, Ratcliff WC, Burnetti AJ. Examining the role of oxygen-binding proteins on the early evolution of multicellularity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569647. [PMID: 38106219 PMCID: PMC10723371 DOI: 10.1101/2023.12.01.569647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Oxygen availability is a key factor in the evolution of multicellularity, as larger and more sophisticated organisms often require mechanisms allowing efficient oxygen delivery to their tissues. One such mechanism is the presence of oxygen-binding proteins, such as globins and hemerythrins, which arose in the ancestor of bilaterian animals. Despite their importance, the precise mechanisms by which oxygen-binding proteins influenced the early stages of multicellular evolution under varying environmental oxygen levels are not yet clear. We addressed this knowledge gap by heterologously expressing the oxygen binding proteins myoglobin and myohemerythrin in snowflake yeast, a model system of simple, undifferentiated multicellularity. These proteins increased the depth and rate of oxygen diffusion, increasing the fitness of snowflake yeast growing aerobically. Experiments show that, paradoxically, oxygen-binding proteins confer a greater fitness benefit for larger organisms under high, not low, O2 conditions. We show via biophysical modeling that this is because facilitated diffusion is more efficient when oxygen is abundant, transporting a greater quantity of O2 which can be used for metabolism. By alleviating anatomical diffusion limitations to oxygen consumption, the evolution of O2-binding proteins in the oxygen-rich Neoproterozoic may have been a key breakthrough enabling the evolution of increasingly large, complex multicellular metazoan lineages.
Collapse
Affiliation(s)
- Whitney Wong
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Pablo Bravo
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Peter J Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anthony J Burnetti
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
6
|
Abstract
The origin of modern eukaryotes is one of the key transitions in life's history, and also one of the least understood. Although the fossil record provides the most direct view of this process, interpreting the fossils of early eukaryotes and eukaryote-grade organisms is not straightforward. We present two end-member models for the evolution of modern (i.e., crown) eukaryotes-one in which modern eukaryotes evolved early, and another in which they evolved late-and interpret key fossils within these frameworks, including where they might fit in eukaryote phylogeny and what they may tell us about the evolution of eukaryotic cell biology and ecology. Each model has different implications for understanding the rise of complex life on Earth, including different roles of Earth surface oxygenation, and makes different predictions that future paleontological studies can test.
Collapse
Affiliation(s)
- Susannah M Porter
- Department of Earth Science, University of California at Santa Barbara, Santa Barbara, California, USA;
| | - Leigh Anne Riedman
- Department of Earth Science, University of California at Santa Barbara, Santa Barbara, California, USA;
- Earth Research Institute, University of California at Santa Barbara, Santa Barbara, California, USA;
| |
Collapse
|
7
|
Craig JM, Kumar S, Hedges SB. The origin of eukaryotes and rise in complexity were synchronous with the rise in oxygen. FRONTIERS IN BIOINFORMATICS 2023; 3:1233281. [PMID: 37727796 PMCID: PMC10505794 DOI: 10.3389/fbinf.2023.1233281] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/07/2023] [Indexed: 09/21/2023] Open
Abstract
The origin of eukaryotes was among the most important events in the history of life, spawning a new evolutionary lineage that led to all complex multicellular organisms. However, the timing of this event, crucial for understanding its environmental context, has been difficult to establish. The fossil and biomarker records are sparse and molecular clocks have thus far not reached a consensus, with dates spanning 2.1-0.91 billion years ago (Ga) for critical nodes. Notably, molecular time estimates for the last common ancestor of eukaryotes are typically hundreds of millions of years younger than the Great Oxidation Event (GOE, 2.43-2.22 Ga), leading researchers to question the presumptive link between eukaryotes and oxygen. We obtained a new time estimate for the origin of eukaryotes using genetic data of both archaeal and bacterial origin, the latter rarely used in past studies. We also avoided potential calibration biases that may have affected earlier studies. We obtained a conservative interval of 2.2-1.5 Ga, with an even narrower core interval of 2.0-1.8 Ga, for the origin of eukaryotes, a period closely aligned with the rise in oxygen. We further reconstructed the history of biological complexity across the tree of life using three universal measures: cell types, genes, and genome size. We found that the rise in complexity was temporally consistent with and followed a pattern similar to the rise in oxygen. This suggests a causal relationship stemming from the increased energy needs of complex life fulfilled by oxygen.
Collapse
Affiliation(s)
- Jack M. Craig
- Center for Biodiversity, Temple University, Philadelphia, PA, United States
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Sudhir Kumar
- Center for Biodiversity, Temple University, Philadelphia, PA, United States
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - S. Blair Hedges
- Center for Biodiversity, Temple University, Philadelphia, PA, United States
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States
- Department of Biology, Temple University, Philadelphia, PA, United States
| |
Collapse
|
8
|
McShea DW. Evolutionary trends and goal directedness. SYNTHESE 2023; 201:178. [PMID: 37192961 PMCID: PMC10166038 DOI: 10.1007/s11229-023-04164-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 04/17/2023] [Indexed: 05/18/2023]
Abstract
The conventional wisdom declares that evolution is not goal directed, that teleological considerations play no part in our understanding of evolutionary trends. Here I argue that, to the contrary, under a current view of teleology, field theory, most evolutionary trends would have to be considered goal directed to some degree. Further, this view is consistent with a modern scientific outlook, and more particularly with evolutionary theory today. Field theory argues that goal directedness is produced by higher-level fields that direct entities contained within them to behave persistently and plastically, that is, returning them to a goal-directed trajectory following perturbations (persistence) and directing them to a goal-directed trajectory from a large range of alternative starting points (plasticity). The behavior of a bacterium climbing a chemical food gradient is persistent and plastic, with guidance provided by the external "food field," the chemical gradient. Likewise, an evolutionary trend that is produced by natural selection is a lineage behaving persistently and plastically under the direction of its local ecology, an "ecological field." Trends directed by selection-generated boundaries, thermodynamic gradients, and certain internal constraints, would also count as goal directed. In other words, most of the causes of evolutionary trends that have been proposed imply goal directedness. However, under field theory, not all trends are goal directed. Examples are discussed. Importantly, nothing in this view suggests that evolution is guided by intentionality, at least none at the level of animal intentionality. Finally, possible implications for our thinking about evolutionary directionality in the history of life are discussed.
Collapse
Affiliation(s)
- Daniel W. McShea
- Biology Department, Duke University, Box 90338, Durham, NC 27708 USA
| |
Collapse
|
9
|
Krause AJ, Mills BJW, Merdith AS, Lenton TM, Poulton SW. Extreme variability in atmospheric oxygen levels in the late Precambrian. SCIENCE ADVANCES 2022; 8:eabm8191. [PMID: 36240275 PMCID: PMC9565794 DOI: 10.1126/sciadv.abm8191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Mapping the history of atmospheric O2 during the late Precambrian is vital for evaluating potential links to animal evolution. Ancient O2 levels are often inferred from geochemical analyses of marine sediments, leading to the assumption that the Earth experienced a stepwise increase in atmospheric O2 during the Neoproterozoic. However, the nature of this hypothesized oxygenation event remains unknown, with suggestions of a more dynamic O2 history in the oceans and major uncertainty over any direct connection between the marine realm and atmospheric O2. Here, we present a continuous quantitative reconstruction of atmospheric O2 over the past 1.5 billion years using an isotope mass balance approach that combines bulk geochemistry and tectonic recycling rate calculations. We predict that atmospheric O2 levels during the Neoproterozoic oscillated between ~1 and ~50% of the present atmospheric level. We conclude that there was no simple unidirectional rise in atmospheric O2 during the Neoproterozoic, and the first animals evolved against a backdrop of extreme O2 variability.
Collapse
Affiliation(s)
- Alexander J. Krause
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
- Department of Earth Sciences, University College London, 5 Gower Place, London WC1E 6BS, UK
| | | | - Andrew S. Merdith
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
- Laboratoire de Géologie de Lyon: Terre, Planète, Environnement, UMR CNRS 5276, Université Claude Bernard, Lyon1, 2, rue Raphaël Dubois, 69622 Villeurbanne Cedex, France
| | | | - Simon W. Poulton
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
10
|
Reconstructing Earth's atmospheric oxygenation history using machine learning. Nat Commun 2022; 13:5862. [PMID: 36195593 PMCID: PMC9532422 DOI: 10.1038/s41467-022-33388-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
Reconstructing historical atmospheric oxygen (O2) levels at finer temporal resolution is a top priority for exploring the evolution of life on Earth. This goal, however, is challenged by gaps in traditionally employed sediment-hosted geochemical proxy data. Here, we propose an independent strategy-machine learning with global mafic igneous geochemistry big data to explore atmospheric oxygenation over the last 4.0 billion years. We observe an overall two-step rise of atmospheric O2 similar to the published curves derived from independent sediment-hosted paleo-oxybarometers but with a more detailed fabric of O2 fluctuations superimposed. These additional, shorter-term fluctuations are also consistent with previous but less well-established suggestions of O2 variability. We conclude from this agreement that Earth's oxygenated atmosphere may therefore be at least partly a natural consequence of mantle cooling and specifically that evolving mantle melts collectively have helped modulate the balance of early O2 sources and sinks.
Collapse
|
11
|
McClain CR, Bryant SR, Hanks G, Bowles MW. Extremophiles in Earth's Deep Seas: A View Toward Life in Exo-Oceans. ASTROBIOLOGY 2022; 22:1009-1028. [PMID: 35549348 DOI: 10.1089/ast.2021.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Humanity's search for extraterrestrial life is a modern manifestation of the exploratory and curious nature that has led us through millennia of scientific discoveries. With the ongoing exploration of extraterrestrial bodies, the potential for discovery of extraterrestrial life has expanded. We may better inform this search through an understanding of how life persists and flourishes on Earth in a myriad of environmental extremes. A significant proportion of our knowledge of extremophiles on Earth comes from studies on deep ocean life. Here, we review and synthesize the range of environmental extremes observed in the deep sea, the life that persists in these extreme conditions, and the biological adaptations utilized by these remarkable life-forms. We also review confirmed and predicted extraterrestrial oceans in our solar system and propose deep-sea sites that may serve as planetary field analog environments. We show that the clever ingenuity of evolution under deep-sea conditions suggests that the plausibility of extraterrestrial life is much greater than previously thought.
Collapse
Affiliation(s)
- Craig R McClain
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - S River Bryant
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Granger Hanks
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | | |
Collapse
|
12
|
Continental configuration controls ocean oxygenation during the Phanerozoic. Nature 2022; 608:523-527. [PMID: 35978129 DOI: 10.1038/s41586-022-05018-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 06/23/2022] [Indexed: 11/09/2022]
Abstract
The early evolutionary and much of the extinction history of marine animals is thought to be driven by changes in dissolved oxygen concentrations ([O2]) in the ocean1-3. In turn, [O2] is widely assumed to be dominated by the geological history of atmospheric oxygen (pO2)4,5. Here, by contrast, we show by means of a series of Earth system model experiments how continental rearrangement during the Phanerozoic Eon drives profound variations in ocean oxygenation and induces a fundamental decoupling in time between upper-ocean and benthic [O2]. We further identify the presence of state transitions in the global ocean circulation, which lead to extensive deep-ocean anoxia developing in the early Phanerozoic even under modern pO2. Our finding that ocean oxygenation oscillates over stable thousand-year (kyr) periods also provides a causal mechanism that might explain elevated rates of metazoan radiation and extinction during the early Palaeozoic Era6. The absence, in our modelling, of any simple correlation between global climate and ocean ventilation, and the occurrence of profound variations in ocean oxygenation independent of atmospheric pO2, presents a challenge to the interpretation of marine redox proxies, but also points to a hitherto unrecognized role for continental configuration in the evolution of the biosphere.
Collapse
|
13
|
Xie S, Jiao N, Luo G, Li D, Wang P. Evolution of biotic carbon pumps in Earth history: Microbial roles as a carbon sink in oceans. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-0672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Cancer recurrence and lethality are enabled by enhanced survival and reversible cell cycle arrest of polyaneuploid cells. Proc Natl Acad Sci U S A 2021; 118:2020838118. [PMID: 33504594 PMCID: PMC7896294 DOI: 10.1073/pnas.2020838118] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We present a unifying theory to explain cancer recurrence, therapeutic resistance, and lethality. The basis of this theory is the formation of simultaneously polyploid and aneuploid cancer cells, polyaneuploid cancer cells (PACCs), that avoid the toxic effects of systemic therapy by entering a state of cell cycle arrest. The theory is independent of which of the classically associated oncogenic mutations have already occurred. PACCs have been generally disregarded as senescent or dying cells. Our theory states that therapeutic resistance is driven by PACC formation that is enabled by accessing a polyploid program that allows an aneuploid cancer cell to double its genomic content, followed by entry into a nondividing cell state to protect DNA integrity and ensure cell survival. Upon removal of stress, e.g., chemotherapy, PACCs undergo depolyploidization and generate resistant progeny that make up the bulk of cancer cells within a tumor.
Collapse
|
15
|
Nguyen PD, de Bakker DEM, Bakkers J. Cardiac regenerative capacity: an evolutionary afterthought? Cell Mol Life Sci 2021; 78:5107-5122. [PMID: 33950316 PMCID: PMC8254703 DOI: 10.1007/s00018-021-03831-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023]
Abstract
Cardiac regeneration is the outcome of the highly regulated interplay of multiple processes, including the inflammatory response, cardiomyocyte dedifferentiation and proliferation, neovascularization and extracellular matrix turnover. Species-specific traits affect these injury-induced processes, resulting in a wide variety of cardiac regenerative potential between species. Indeed, while mammals are generally considered poor regenerators, certain amphibian and fish species like the zebrafish display robust regenerative capacity post heart injury. The species-specific traits underlying these differential injury responses are poorly understood. In this review, we will compare the injury induced processes of the mammalian and zebrafish heart, describing where these processes overlap and diverge. Additionally, by examining multiple species across the animal kingdom, we will highlight particular traits that either positively or negatively affect heart regeneration. Last, we will discuss the possibility of overcoming regeneration-limiting traits to induce heart regeneration in mammals.
Collapse
Affiliation(s)
- Phong D Nguyen
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Dennis E M de Bakker
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands.
- Department of Pediatric Cardiology, Division of Pediatrics, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
16
|
Abstract
Giant land vertebrates have evolved more than 30 times, notably in dinosaurs and mammals. The evolutionary and biomechanical perspectives considered here unify data from extant and extinct species, assessing current theory regarding how the locomotor biomechanics of giants has evolved. In terrestrial tetrapods, isometric and allometric scaling patterns of bones are evident throughout evolutionary history, reflecting general trends and lineage-specific divergences as animals evolve giant size. Added to data on the scaling of other supportive tissues and neuromuscular control, these patterns illuminate how lineages of giant tetrapods each evolved into robust forms adapted to the constraints of gigantism, but with some morphological variation. Insights from scaling of the leverage of limbs and trends in maximal speed reinforce the idea that, beyond 100-300 kg of body mass, tetrapods reduce their locomotor abilities, and eventually may lose entire behaviours such as galloping or even running. Compared with prehistory, extant megafaunas are depauperate in diversity and morphological disparity; therefore, turning to the fossil record can tell us more about the evolutionary biomechanics of giant tetrapods. Interspecific variation and uncertainty about unknown aspects of form and function in living and extinct taxa still render it impossible to use first principles of theoretical biomechanics to tightly bound the limits of gigantism. Yet sauropod dinosaurs demonstrate that >50 tonne masses repeatedly evolved, with body plans quite different from those of mammalian giants. Considering the largest bipedal dinosaurs, and the disparity in locomotor function of modern megafauna, this shows that even in terrestrial giants there is flexibility allowing divergent locomotor specialisations.
Collapse
Affiliation(s)
- John R. Hutchinson
- Structure & Motion Lab, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire AL9 7TA,UK
| |
Collapse
|
17
|
Bozdag GO, Libby E, Pineau R, Reinhard CT, Ratcliff WC. Oxygen suppression of macroscopic multicellularity. Nat Commun 2021; 12:2838. [PMID: 33990594 PMCID: PMC8121917 DOI: 10.1038/s41467-021-23104-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/14/2021] [Indexed: 02/04/2023] Open
Abstract
Atmospheric oxygen is thought to have played a vital role in the evolution of large, complex multicellular organisms. Challenging the prevailing theory, we show that the transition from an anaerobic to an aerobic world can strongly suppress the evolution of macroscopic multicellularity. Here we select for increased size in multicellular 'snowflake' yeast across a range of metabolically-available O2 levels. While yeast under anaerobic and high-O2 conditions evolved to be considerably larger, intermediate O2 constrained the evolution of large size. Through sequencing and synthetic strain construction, we confirm that this is due to O2-mediated divergent selection acting on organism size. We show via mathematical modeling that our results stem from nearly universal evolutionary and biophysical trade-offs, and thus should apply broadly. These results highlight the fact that oxygen is a double-edged sword: while it provides significant metabolic advantages, selection for efficient use of this resource may paradoxically suppress the evolution of macroscopic multicellular organisms.
Collapse
Affiliation(s)
- G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Eric Libby
- Integrated Science Lab, Umeå University, Umeå, Sweden
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
- Santa Fe Institute, Santa Fe, NM, USA
| | - Rozenn Pineau
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Georgia, USA
| | - Christopher T Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, CA, USA
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- NASA Astrobiology Institute, Reliving the Past Team, Atlanta, GA, USA.
| |
Collapse
|
18
|
James JE, Willis SM, Nelson PG, Weibel C, Kosinski LJ, Masel J. Universal and taxon-specific trends in protein sequences as a function of age. eLife 2021; 10:e57347. [PMID: 33416492 PMCID: PMC7819706 DOI: 10.7554/elife.57347] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 01/05/2021] [Indexed: 01/12/2023] Open
Abstract
Extant protein-coding sequences span a huge range of ages, from those that emerged only recently to those present in the last universal common ancestor. Because evolution has had less time to act on young sequences, there might be 'phylostratigraphy' trends in any properties that evolve slowly with age. A long-term reduction in hydrophobicity and hydrophobic clustering was found in previous, taxonomically restricted studies. Here we perform integrated phylostratigraphy across 435 fully sequenced species, using sensitive HMM methods to detect protein domain homology. We find that the reduction in hydrophobic clustering is universal across lineages. However, only young animal domains have a tendency to have higher structural disorder. Among ancient domains, trends in amino acid composition reflect the order of recruitment into the genetic code, suggesting that the composition of the contemporary descendants of ancient sequences reflects amino acid availability during the earliest stages of life, when these sequences first emerged.
Collapse
Affiliation(s)
- Jennifer E James
- Department of Ecology and Evolutionary Biology, University of ArizonaTucsonUnited States
| | - Sara M Willis
- Department of Ecology and Evolutionary Biology, University of ArizonaTucsonUnited States
| | - Paul G Nelson
- Department of Ecology and Evolutionary Biology, University of ArizonaTucsonUnited States
| | - Catherine Weibel
- Department of Physics, University of ArizonaTucsonUnited States
- Department of Mathematics, University of ArizonaTucsonUnited States
| | - Luke J Kosinski
- Department of Molecular and Cellular Biology, University of ArizonaTucsonUnited States
| | - Joanna Masel
- Department of Ecology and Evolutionary Biology, University of ArizonaTucsonUnited States
| |
Collapse
|
19
|
Blomquist GJ, Ginzel MD. Chemical Ecology, Biochemistry, and Molecular Biology of Insect Hydrocarbons. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:45-60. [PMID: 33417824 DOI: 10.1146/annurev-ento-031620-071754] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Insect cuticular hydrocarbons (CHCs) consist of complex mixtures of straight-chain alkanes and alkenes, and methyl-branched hydrocarbons. In addition to restricting water loss through the cuticle and preventing desiccation, they have secondarily evolved to serve a variety of functions in chemical communication and play critical roles as signals mediating the life histories of insects. In this review, we describe the physical properties of CHCs that allow for both waterproofing and signaling functions, summarize their roles as inter- and intraspecific chemical signals, and discuss the influences of diet and environment on CHC profiles. We also present advances in our understanding of hydrocarbon biosynthesis. Hydrocarbons are biosynthesized in oenocytes and transported to the cuticle by lipophorin proteins. Recent work on the synthesis of fatty acids and their ultimate reductive decarbonylation to hydrocarbons has taken advantage of powerful new tools of molecular biology, including genomics and RNA interference knockdown of specific genes, to provide new insights into the biosynthesis of hydrocarbons.
Collapse
Affiliation(s)
- Gary J Blomquist
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA;
| | - Matthew D Ginzel
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907, USA;
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
20
|
Cancer cells employ an evolutionarily conserved polyploidization program to resist therapy. Semin Cancer Biol 2020; 81:145-159. [PMID: 33276091 DOI: 10.1016/j.semcancer.2020.11.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Unusually large cancer cells with abnormal nuclei have been documented in the cancer literature since 1858. For more than 100 years, they have been generally disregarded as irreversibly senescent or dying cells, too morphologically misshapen and chromatin too disorganized to be functional. Cell enlargement, accompanied by whole genome doubling or more, is observed across organisms, often associated with mitigation strategies against environmental change, severe stress, or the lack of nutrients. Our comparison of the mechanisms for polyploidization in other organisms and non-transformed tissues suggest that cancer cells draw from a conserved program for their survival, utilizing whole genome doubling and pausing proliferation to survive stress. These polyaneuploid cancer cells (PACCs) are the source of therapeutic resistance, responsible for cancer recurrence and, ultimately, cancer lethality.
Collapse
|
21
|
D'Antonio MP, Boyce CK. Arborescent lycopsid periderm production was limited. THE NEW PHYTOLOGIST 2020; 228:741-751. [PMID: 32506426 DOI: 10.1111/nph.16727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Late Paleozoic arborescent lycopsids have been thought to have grown from sporelings into large trees through the production of a periderm cylinder, particularly massive in the proximal portion of the trunk and tapering distally, with this rind of bark providing most of their structural support. Here, we argue that physiological limitations would have prohibited the production of thick periderm and test this hypothesis using multiple independent lines of evidence derived from anatomical permineralization and surface impression fossils that allow both direct and indirect measurement of periderm radial thickness. Across all six genera of Pennsylvanian arborescent lycopsids that were investigated, all evidence indicates limited periderm production: typically < 5 cm, always < 15 cm, even in trunks that would have reached 1 m or more in diameter. The large amount of arborescent lycopsid periderm in Middle Pennsylvanian coals represents taphonomic enrichment rather than a true anatomical signal, complicating interpretation of their biology including biomechanics and early ontogeny.
Collapse
Affiliation(s)
- Michael P D'Antonio
- Department of Geological Sciences, Stanford University, 450 Jane Stanford Way, Building 320, Stanford, CA, 94305-2115, USA
| | - C Kevin Boyce
- Department of Geological Sciences, Stanford University, 450 Jane Stanford Way, Building 320, Stanford, CA, 94305-2115, USA
| |
Collapse
|
22
|
Sidorova A, Tverdislov V, Levashova N, Garaeva A. A model of autowave self-organization as a hierarchy of active media in the biological evolution. Biosystems 2020; 198:104234. [PMID: 32889101 DOI: 10.1016/j.biosystems.2020.104234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 11/28/2022]
Abstract
Within the framework of the active media concept, we develop a biophysical model of autowave self-organization which is treated as a hierarchy of active media in the evolution of the biosphere. We also propose a mathematical model of the autowave process of speciation in a flow of mutations for the three main taxonometric groups (prokaryotes, unicellular and multicellular eukaryotes) with a naturally determined lower boundary of living matter (the appearance of prokaryotes) and an open upper boundary for the formation of new species. It is shown that the fluctuation-bifurcation description of the evolution for the formation of new taxonometric groups as a trajectory of transformation of small fluctuations into giant ones adequately reflects the process of self-organization during the formation of taxa. The major concepts of biological evolution, conditions of hierarchy formation as a fundamental manifestation of self-organization and complexity in the evolution of biological systems are considered.
Collapse
Affiliation(s)
- Alla Sidorova
- Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Vsevolod Tverdislov
- Head of the Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Natalia Levashova
- Department of Mathematics, Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Anastasia Garaeva
- Postgraduate Student of the Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
23
|
Zhuravlev AY, Wood R. Dynamic and synchronous changes in metazoan body size during the Cambrian Explosion. Sci Rep 2020; 10:6784. [PMID: 32321968 PMCID: PMC7176670 DOI: 10.1038/s41598-020-63774-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/02/2020] [Indexed: 11/22/2022] Open
Abstract
Many aspects of the drivers for, and evolutionary dynamics of, the Cambrian Explosion are poorly understood. Here we quantify high-resolution changes in species body size in major metazoan groups on the Siberian Platform during the early Cambrian (ca. 540–510 Million years ago (Ma)). Archaeocyath sponges, hyolith lophophorates, and helcionelloid mollusc species show dynamic and synchronous trends over million-year timescales, with peaks in body size during the latest Tommotian/early Atbadanian and late Atdabanian/early Botoman, and notably small body sizes in the middle Atdabanian and after the Sinsk anoxic extinction event, starting ca. 513 Ma. These intervals of body size changes are also mirrored in individual species and correlate positively with increased rates of origination and broadly with total species diversity. Calcitic brachiopods (rhynchonelliformeans), however, show a general increase in body size following the increase in species diversity through this interval: phosphatic brachiopods (linguliformeans) show a body size decrease that negatively correlates with diversity. Both brachiopod groups show a rapid recovery at the Sinsk Event. The synchronous changes in these metrics in archaeocyath, hyoliths and helcionelloids suggest the operation of external drivers through the early Cambrian, such as episodic changes in oxygenation or productivity. But the trends shown by brachiopods suggests a differing physiological response. Together, these dynamics created both the distinct evolutionary record of metazoan groups during the Cambrian Explosion and determined the nature of its termination.
Collapse
Affiliation(s)
- Andrey Yu Zhuravlev
- Department of Biological Evolution, Faculty of Biology, Lomonosov Moscow State University, Leninskie gory 1(12), Moscow, 119234, Russia
| | - Rachel Wood
- School of GeoSciences, University of Edinburgh, James Hutton Road, Edinburgh, EH9 3FE, UK.
| |
Collapse
|
24
|
The Natural Selection of Metabolism Explains Curvature in Fossil Body Mass Evolution. Evol Biol 2020. [DOI: 10.1007/s11692-020-09493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Ispolatov I, Alekseeva E, Doebeli M. Competition-driven evolution of organismal complexity. PLoS Comput Biol 2019; 15:e1007388. [PMID: 31581239 PMCID: PMC6793884 DOI: 10.1371/journal.pcbi.1007388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 10/15/2019] [Accepted: 09/10/2019] [Indexed: 01/19/2023] Open
Abstract
Non-uniform rates of morphological evolution and evolutionary increases in organismal complexity, captured in metaphors like “adaptive zones”, “punctuated equilibrium” and “blunderbuss patterns”, require more elaborate explanations than a simple gradual accumulation of mutations. Here we argue that non-uniform evolutionary increases in phenotypic complexity can be caused by a threshold-like response to growing ecological pressures resulting from evolutionary diversification at a given level of complexity. Acquisition of a new phenotypic feature allows an evolving species to escape this pressure but can typically be expected to carry significant physiological costs. Therefore, the ecological pressure should exceed a certain level to make such an acquisition evolutionarily successful. We present a detailed quantitative description of this process using a microevolutionary competition model as an example. The model exhibits sequential increases in phenotypic complexity driven by diversification at existing levels of complexity and a resulting increase in competitive pressure, which can push an evolving species over the barrier of physiological costs of new phenotypic features. We provide a theoretical proof-of-principle explanation for the empirically well-documented macroevolutionary pattern of punctuated changes in organismal complexity. According to such patterns, many phenotypic properties related to organismal complexity, such as body size, the development of new sensory or locomotive capabilities, etc., show long periods of relatively slow changes interrupted by intermittent bursts of rapid evolutionary changes. Building on earlier work, we argue that punctuated expansions in organismal complexity can be caused by a threshold-like response to growing ecological pressures in diversifying communities at an existing level of complexity. Acquisition of novel phenotypic features then allows a species to escape this pressure once the existing diversity reaches a certain threshold. Continuing our previous line of research on microevolutionary models for long-term evolution in high-dimensional phenotype spaces, we present a detailed quantitative description of this process based on a classic competition model. The resulting macro-evolutionary dynamics exhibit sequential increases in phenotypic complexity driven by the build-up of competitive pressures at an existing level of complexity, which allows the evolution of novel phenotypes despite substantial physiological costs.
Collapse
Affiliation(s)
- Iaroslav Ispolatov
- Departamento de Fisica, Universidad de Santiago de Chile, Santiago, Chile
- * E-mail:
| | - Evgeniia Alekseeva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Michael Doebeli
- Department of Zoology and Department of Mathematics, University of British Columbia, Vancouver B.C. Canada
| |
Collapse
|
26
|
The relations between evolution and domestication reconsidered - Implications for systematics, ecology, and nature conservation. Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00756] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
27
|
Liow LH, Taylor PD. Cope's Rule in a modular organism: Directional evolution without an overarching macroevolutionary trend. Evolution 2019; 73:1863-1872. [PMID: 31301184 PMCID: PMC6771556 DOI: 10.1111/evo.13800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/05/2019] [Accepted: 06/15/2019] [Indexed: 11/29/2022]
Abstract
Cope's Rule describes increasing body size in evolutionary lineages through geological time. This pattern has been documented in unitary organisms but does it also apply to module size in colonial organisms? We address this question using 1169 cheilostome bryozoans ranging through the entire 150 million years of their evolutionary history. The temporal pattern evident in cheilostomes as a whole shows no overall change in zooid (module) size. However, individual subclades show size increases: within a genus, younger species often have larger zooids than older species. Analyses of (paleo)latitudinal shifts show that this pattern cannot be explained by latitudinal effects (Bergmann's Rule) coupled with younger species occupying higher latitudes than older species (an "out of the tropics" hypothesis). While it is plausible that size increase was linked to the advantages of large zooids in feeding, competition for trophic resources and living space, other proposed mechanisms for Cope's Rule in unitary organisms are either inapplicable to cheilostome zooid size or cannot be evaluated. Patterns and mechanisms in colonial organisms cannot and should not be extrapolated from the better-studied unitary organisms. And even if macroevolution simply comprises repeated rounds of microevolution, evolutionary processes occurring within lineages are not always detectable from macroevolutionary patterns.
Collapse
Affiliation(s)
- Lee Hsiang Liow
- Natural History MuseumUniversity of OsloOsloNorway
- Department of Biosciences, Centre for Ecological and Evolutionary SynthesisUniversity of OsloOsloNorway
| | | |
Collapse
|
28
|
Braakman R. Evolution of cellular metabolism and the rise of a globally productive biosphere. Free Radic Biol Med 2019; 140:172-187. [PMID: 31082508 DOI: 10.1016/j.freeradbiomed.2019.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/28/2019] [Accepted: 05/02/2019] [Indexed: 01/14/2023]
Abstract
Metabolic processes in cells and chemical processes in the environment are fundamentally intertwined and have evolved in concert for most of Earth's existence. Here I argue that intrinsic properties of cellular metabolism imposed central constraints on the historical trajectories of biopsheric productivity and atmospheric oxygenation. Photosynthesis depends on iron, but iron is highly insoluble under the aerobic conditions produced by oxygenic photosynthesis. These counteracting constraints led to two major stages of Earth oxygenation. After a cyanobacteria-driven biospheric expansion near the Archean-Proterozoic boundary, productivity remained largely restricted to continental boundaries and shallow aquatic environments where weathering inputs made iron more accessible. The anoxic deep open ocean was rich in free iron during the Proterozoic, but this iron was largely inaccessible, partly because an otherwise nutrient-poor ocean was limiting to photosynthesis, but also because a photosynthetic expansion would have quenched its own iron supply. Near the Proterozoic-Phanerozoic boundary, bioenergetics innovations allowed eukaryotic photosynthesis to overcome these interconnected negative feedbacks and begin expanding into the deep open oceans and onto the continents, where nutrients are inherently harder to come by. Key insights into what drove the ecological rise of eukaryotic photosynthesis emerge from analyses of marine Synechococcus and Prochlorococcus, abundant marine picocyanobacteria whose ancestors colonized the oceans in the Neoproterozoic. The reconstructed evolution of this group reveals a sequence of innovations that ultimately produced a form of photosynthesis in Prochlorococcus that is more like that of green plant cells than other cyanobacteria. Innovations increased the energy flux of cells, thereby enhancing their ability to acquire sparse nutrients, and as by-product also increased the production of organic carbon waste. Some of these organic waste products had the ability to chelate iron and make it bioavailable, thereby indirectly pushing the oceans through a transition from an anoxic state rich in free iron to an oxygenated state with organic carbon-bound iron. Resulting conditions (and parallel processes on the continents) in turn led to a series of positive feedbacks that increased the availability of other nutrients, thereby promoting the rise of a globally productive biosphere. In addition to the occurrence of major biospheric expansions, the several hundred million-year periods around the Archean-Proterozoic and Proterozoic-Phanerozoic boundaries share a number of other parallels. Both epochs have also been linked to major carbon cycle perturbations and global glaciations, as well as changes in the nature of plate tectonics and increases in continental exposure and weathering. This suggests the dynamics of life and Earth are intimately intertwined across many levels and that general principles governed transitions in these coupled dynamics at both times in Earth history.
Collapse
Affiliation(s)
- Rogier Braakman
- Department of Civil & Environmental Engineering, Massachusetts Institute of Technology, USA; Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, USA.
| |
Collapse
|
29
|
Bonner JT. The evolution of evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:301-306. [PMID: 31209997 DOI: 10.1002/jez.b.22859] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the past, most biologists, myself included, did not think of evolution as changing over time. The wonders of natural selection were always at hand and went into operation once there was life. However, with a little reflection it becomes obvious that evolution has changed-there has been an evolution of evolution. Evolution can be separated into four phases, or eras, that may or may not overlap. The first era starts with the evolution of life on earth, which led to single cells that multiply asexually. The second era takes advantage of the invention of sexual reproduction as evolution could now gallop forward because of a richer fare of diverse offspring for natural selection. The third era begins with the introduction of multicellularity. In the fourth era there is a radical innovation: the nervous system that arises animals by standard Darwinian selection. This has allowed major rapid changes to proceed, such as language that led to all the rapid progress we call civilization; a true revolution, and one that does not depend on the slow genetic changes of all other standard gene-controlled evolutionary steps.
Collapse
Affiliation(s)
- John T Bonner
- Department of Ecology and Evolutionary Biology, University of Princeton, Princeton, New Jersey
| |
Collapse
|
30
|
MacLean M, Nadeau J, Gurnea T, Tittiger C, Blomquist GJ. Mountain pine beetle (Dendroctonus ponderosae) CYP4Gs convert long and short chain alcohols and aldehydes to hydrocarbons. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 102:11-20. [PMID: 30243802 DOI: 10.1016/j.ibmb.2018.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/03/2018] [Accepted: 09/16/2018] [Indexed: 05/23/2023]
Abstract
Hydrocarbon biosynthesis in insects involves the elongation of fatty acyl-CoAs to very-long chain fatty acyl-CoAs that are then reduced and converted to hydrocarbon, with the last step involving the oxidative decarbonylation of an aldehyde to hydrocarbon and carbon dioxide. Cytochromes P450 in the 4G family decarbonylate aldehydes to hydrocarbon. All insect acyl-CoA reductases studied to date reduce fatty acyl-CoAs to alcohols. The results of the work reported herein demonstrate that CYP4G55 and CYP4G56 from the mountain pine beetle, Dendroctonus ponderosae, expressed as fusion proteins with house fly cytochrome P450 reductase (CPR), convert both long chain aldehydes and long chain alcohols to hydrocarbons. CYP4G55 and CYP4G56 appear to prefer primary alcohols to aldehydes as substrates. These data strongly suggest that hydrocarbon biosynthesis in insects occurs by the two-step reduction of very long chain fatty acyl-CoAs to alcohols, which are then oxidized to aldehydes and then oxidatively decarbonylated to hydrocarbon by CYP4G enzymes. In addition, both CYP4G55 and CYP4G56 fusion proteins convert C10 alcohols and aldehydes to hydrocarbons, including the conversion of (Z)-7-decenal, a putative intermediate in the exo-brevicomin pheromone biosynthetic pathway, to (Z)-3-nonene. These data demonstrate that the highly conserved CYP4G enzymes accept a broad range of carbon chain lengths, including C10 and C18, and have evolved to function in cuticular hydrocarbon biosynthesis and pheromone production.
Collapse
Affiliation(s)
- Marina MacLean
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, United States.
| | - Jeffrey Nadeau
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, United States.
| | - Taylor Gurnea
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, United States.
| | - Claus Tittiger
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, United States.
| | - Gary J Blomquist
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, United States.
| |
Collapse
|
31
|
Rebolleda-Gómez M, Travisano M. The Cost of Being Big: Local Competition, Importance of Dispersal, and Experimental Evolution of Reversal to Unicellularity. Am Nat 2018; 192:731-744. [PMID: 30444659 DOI: 10.1086/700095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Multicellularity provides multiple benefits. Nonetheless, unicellularity is ubiquitous, and there have been multiple cases of evolutionary reversal to a unicellular organization. In this article, we explore some of the costs of multicellularity as well as the possibility and dynamics of evolutionary reversals to unicellularity. We hypothesize that recently evolved multicellular organisms would face a high cost of increased competition for local resources in spatially structured environments because of larger size and increased cell densities. To test this hypothesis we conducted competition assays, computer simulations, and selection experiments using isolates of Saccharomyces cerevisiae that recently evolved multicellularity. In well-mixed environments, multicellular isolates had lower growth rates relative to their unicellular ancestor because of limitations of space and resource acquisition. In structured environments with localized resources, cells in both multicellular and unicellular isolates grew at a similar rate. Despite similar growth, higher local density of cells in multicellular groups led to increased competition and higher fitness costs in spatially structured environments. In structured environments all of the multicellular isolates rapidly evolved a predominantly unicellular life cycle, while in well-mixed environments reversal was more gradual. Taken together, these results suggest that a lack of dispersal, leading to higher local competition, might have been one of the main constraints in the evolution of early multicellular forms.
Collapse
|
32
|
Abstract
We attempt to quantify animal “bodyplans” and their variation within Metazoa. Our results challenge the view that maximum variation was achieved early in animal evolutionary history by nonuniformitarian mechanisms. Rather, they are compatible with the view that the capacity for fundamental innovation is not limited to the early evolutionary history of clades. We perform quantitative tests of the principal hypotheses of the molecular mechanisms underpinning the establishment of animal bodyplans and corroborate the hypothesis that animal evolution has been permitted or driven by gene regulatory evolution. The animal kingdom exhibits a great diversity of organismal form (i.e., disparity). Whether the extremes of disparity were achieved early in animal evolutionary history or clades continually explore the limits of possible morphospace is subject to continuing debate. Here we show, through analysis of the disparity of the animal kingdom, that, even though many clades exhibit maximal initial disparity, arthropods, chordates, annelids, echinoderms, and mollusks have continued to explore and expand the limits of morphospace throughout the Phanerozoic, expanding dramatically the envelope of disparity occupied in the Cambrian. The “clumpiness” of morphospace occupation by living clades is a consequence of the extinction of phylogenetic intermediates, indicating that the original distribution of morphologies was more homogeneous. The morphological distances between phyla mirror differences in complexity, body size, and species-level diversity across the animal kingdom. Causal hypotheses of morphologic expansion include time since origination, increases in genome size, protein repertoire, gene family expansion, and gene regulation. We find a strong correlation between increasing morphological disparity, genome size, and microRNA repertoire, but no correlation to protein domain diversity. Our results are compatible with the view that the evolution of gene regulation has been influential in shaping metazoan disparity whereas the invasion of terrestrial ecospace appears to represent an additional gestalt, underpinning the post-Cambrian expansion of metazoan disparity.
Collapse
|
33
|
Desmond H. Natural selection, plasticity, and the rationale for largest-scale trends. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2018; 68-69:25-33. [PMID: 29650327 DOI: 10.1016/j.shpsc.2018.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 01/23/2018] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
Many have argued that there is no reason why natural selection should cause directional increases in measures such as body size or complexity across evolutionary history as a whole. In this paper I argue that this conclusion does not hold for selection for adaptations to environmental variability, and that, given the inevitability of environmental variability, trends in adaptations to variability are an expected feature of evolution by natural selection. As a concrete instance of this causal structure, I outline how this may be applied to a trend in phenotypic plasticity.
Collapse
Affiliation(s)
- Hugh Desmond
- Center for Logic and Philosophy of Science, Higher Institute of Philosophy, KU Leuven, Vesaliusstraat 2/3220, 3000, Leuven, Belgium.
| |
Collapse
|
34
|
Anaerobiosis revisited: growth of Saccharomyces cerevisiae under extremely low oxygen availability. Appl Microbiol Biotechnol 2018; 102:2101-2116. [DOI: 10.1007/s00253-017-8732-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 10/18/2022]
|
35
|
Heim NA, Payne JL, Finnegan S, Knope ML, Kowalewski M, Lyons SK, McShea DW, Novack-Gottshall PM, Smith FA, Wang SC. Hierarchical complexity and the size limits of life. Proc Biol Sci 2018. [PMID: 28637850 DOI: 10.1098/rspb.2017.1039] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Over the past 3.8 billion years, the maximum size of life has increased by approximately 18 orders of magnitude. Much of this increase is associated with two major evolutionary innovations: the evolution of eukaryotes from prokaryotic cells approximately 1.9 billion years ago (Ga), and multicellular life diversifying from unicellular ancestors approximately 0.6 Ga. However, the quantitative relationship between organismal size and structural complexity remains poorly documented. We assessed this relationship using a comprehensive dataset that includes organismal size and level of biological complexity for 11 172 extant genera. We find that the distributions of sizes within complexity levels are unimodal, whereas the aggregate distribution is multimodal. Moreover, both the mean size and the range of size occupied increases with each additional level of complexity. Increases in size range are non-symmetric: the maximum organismal size increases more than the minimum. The majority of the observed increase in organismal size over the history of life on the Earth is accounted for by two discrete jumps in complexity rather than evolutionary trends within levels of complexity. Our results provide quantitative support for an evolutionary expansion away from a minimal size constraint and suggest a fundamental rescaling of the constraints on minimal and maximal size as biological complexity increases.
Collapse
Affiliation(s)
- Noel A Heim
- Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Jonathan L Payne
- Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Seth Finnegan
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Matthew L Knope
- Department of Biology, University of Hawaii, Hilo, HI 96720, USA
| | - Michał Kowalewski
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - S Kathleen Lyons
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Daniel W McShea
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | - Felisa A Smith
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Steve C Wang
- Department of Mathematics and Statistics, Swarthmore College, Swarthmore, PA 19081, USA
| |
Collapse
|
36
|
Huang S, Eronen JT, Janis CM, Saarinen JJ, Silvestro D, Fritz SA. Mammal body size evolution in North America and Europe over 20 Myr: similar trends generated by different processes. Proc Biol Sci 2018; 284:rspb.2016.2361. [PMID: 28202809 DOI: 10.1098/rspb.2016.2361] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/25/2017] [Indexed: 11/12/2022] Open
Abstract
Because body size interacts with many fundamental biological properties of a species, body size evolution can be an essential component of the generation and maintenance of biodiversity. Here we investigate how body size evolution can be linked to the clade-specific diversification dynamics in different geographical regions. We analyse an extensive body size dataset of Neogene large herbivores (covering approx. 50% of the 970 species in the orders Artiodactyla and Perissodactyla) in Europe and North America in a Bayesian framework. We reconstruct the temporal patterns of body size in each order on each continent independently, and find significant increases of minimum size in three of the continental assemblages (except European perissodactyls), suggesting an active selection for larger bodies. Assessment of trait-correlated birth-death models indicates that the common trend of body size increase is generated by different processes in different clades and regions. Larger-bodied artiodactyl species on both continents tend to have higher origination rates, and both clades in North America show strong links between large bodies and low extinction rate. Collectively, our results suggest a strong role of species selection and perhaps of higher-taxon sorting in driving body size evolution, and highlight the value of investigating evolutionary processes in a biogeographic context.
Collapse
Affiliation(s)
- Shan Huang
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
| | - Jussi T Eronen
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.,BIOS Research Unit, Helsinki, Finland
| | - Christine M Janis
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Juha J Saarinen
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.,Natural History Museum, London, UK
| | - Daniele Silvestro
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Susanne A Fritz
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany.,Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
37
|
Brown JH, Hall CAS, Sibly RM. Equal fitness paradigm explained by a trade-off between generation time and energy production rate. Nat Ecol Evol 2018; 2:262-268. [PMID: 29311701 DOI: 10.1038/s41559-017-0430-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 11/27/2017] [Indexed: 11/09/2022]
Abstract
Most plant, animal and microbial species of widely varying body size and lifestyle are nearly equally fit as evidenced by their coexistence and persistence through millions of years. All organisms compete for a limited supply of organic chemical energy, derived mostly from photosynthesis, to invest in the two components of fitness: survival and production. All organisms are mortal because molecular and cellular damage accumulates over the lifetime; life persists only because parents produce offspring. We call this the equal fitness paradigm. The equal fitness paradigm occurs because: (1) there is a trade-off between generation time and productive power, which have equal-but-opposite scalings with body size and temperature; smaller and warmer organisms have shorter lifespans but produce biomass at higher rates than larger and colder organisms; (2) the energy content of biomass is essentially constant, ~22.4 kJ g-1 dry body weight; and (3) the fraction of biomass production incorporated into surviving offspring is also roughly constant, ~10-50%. As organisms transmit approximately the same quantity of energy per gram to offspring in the next generation, no species has an inherent lasting advantage in the struggle for existence. The equal fitness paradigm emphasizes the central importance of energy, biological scaling relations and power-time trade-offs in life history, ecology and evolution.
Collapse
Affiliation(s)
- James H Brown
- Department of Biology, University of New Mexico, Albuquerque, NM, USA. .,636 Piney Way, Morro Bay, CA, USA.
| | - Charles A S Hall
- Department of Forest and Environmental Biology and Program in Environmental Science, State University of New York - College of Environmental Science and Forestry, Syracuse, NY, USA. .,26242 Montana Highway 35, Polson, MT, USA.
| | - Richard M Sibly
- School of Biological Sciences, University of Reading, Reading, UK
| |
Collapse
|
38
|
Moss DK, Ivany LC, Judd EJ, Cummings PW, Bearden CE, Kim WJ, Artruc EG, Driscoll JR. Lifespan, growth rate, and body size across latitude in marine Bivalvia, with implications for Phanerozoic evolution. Proc Biol Sci 2017; 283:rspb.2016.1364. [PMID: 27488653 DOI: 10.1098/rspb.2016.1364] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/11/2016] [Indexed: 11/12/2022] Open
Abstract
Mean body size in marine animals has increased more than 100-fold since the Cambrian, a discovery that brings to attention the key life-history parameters of lifespan and growth rate that ultimately determine size. Variation in these parameters is not well understood on the planet today, much less in deep time. Here, we present a new global database of maximum reported lifespan and shell growth coupled with body size data for 1 148 populations of marine bivalves and show that (i) lifespan increases, and growth rate decreases, with latitude, both across the group as a whole and within well-sampled species, (ii) growth rate, and hence metabolic rate, correlates inversely with lifespan, and (iii) opposing trends in lifespan and growth combined with high variance obviate any demonstrable pattern in body size with latitude. Our observations suggest that the proposed increase in metabolic activity and demonstrated increase in body size of organisms over the Phanerozoic should be accompanied by a concomitant shift towards faster growth and/or shorter lifespan in marine bivalves. This prediction, testable from the fossil record, may help to explain one of the more fundamental patterns in the evolutionary and ecological history of animal life on this planet.
Collapse
Affiliation(s)
- David K Moss
- Department of Earth Sciences, Syracuse University, Syracuse, NY 13244, USA
| | - Linda C Ivany
- Department of Earth Sciences, Syracuse University, Syracuse, NY 13244, USA
| | - Emily J Judd
- Department of Earth Sciences, Syracuse University, Syracuse, NY 13244, USA
| | - Patrick W Cummings
- Department of Earth Sciences, Syracuse University, Syracuse, NY 13244, USA
| | - Claire E Bearden
- Department of Earth Sciences, Syracuse University, Syracuse, NY 13244, USA
| | - Woo-Jun Kim
- Department of Earth Sciences, Syracuse University, Syracuse, NY 13244, USA
| | - Emily G Artruc
- Department of Earth Sciences, Syracuse University, Syracuse, NY 13244, USA
| | - Jeremy R Driscoll
- Department of Earth Sciences, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
39
|
Heterogenous oceanic redox conditions through the Ediacaran-Cambrian boundary limited the metazoan zonation. Sci Rep 2017; 7:8550. [PMID: 28819268 PMCID: PMC5561082 DOI: 10.1038/s41598-017-07904-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/05/2017] [Indexed: 11/08/2022] Open
Abstract
Recent studies have enhanced our understanding of the linkage of oxygenation and metazoan evolution in Early Cambrian time. However, little of this work has addressed the apparent lag of animal diversification and atmospheric oxygenation during this critical period of Earth history. This study utilizes the geochemical proxy and N isotope record of the Ediacaran–Cambrian boundary preserved in intra-shelf basin, slope, and slope basin deposits of the Yangtze Sea to assess the ocean redox state during the Early Cambrian metazoan radiation. Though ferruginous conditions appear to have prevailed through the water column during this time, episodes of local bottom-water anoxia extending into the photic-zone impacted the slope belt of the basin. Heterogenous oceanic redox conditions are expressed by trace element concentrations and Fe speciation, and spatial variation of N isotopes. We propose that the coupling of ocean chemistry and Early Cambrian animal diversification was not a simple cause-and-effect relationship, but rather a complex interaction. Specifically, it is likely that animal diversification expanded not only temporally but also spatially from the shallow shelf to deep-water environments in tandem with progressive oxygenation of the extensive continental margin.
Collapse
|
40
|
Using a Macroecological Approach to Study Geographic Range, Abundance and Body Size in the Fossil Record. ACTA ACUST UNITED AC 2017. [DOI: 10.1017/s1089332600001844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Macroecology is a rapidly growing sub-discipline within ecology that is concerned with characterizing statistical patterns of species' abundance, distribution and diversity at spatial and temporal scales typically ignored by traditional ecology. Both macroecology and paleoecology are concerned with answering similar questions (e.g., understanding the factors that influence geographic ranges, or the way that species assemble into communities). As such, macroecological methods easily lend themselves to many paleoecological questions. Moreover, it is possible to estimate the variables of interest to macroecologists (e.g., body size, geographic range size, abundance, diversity) using fossil data. Here we describe the measurement and estimation of the variables used in macroecological studies and potential biases introduced by using fossil data. Next we describe the methods used to analyze macroecological patterns and briefly discuss the current understanding of these patterns. This chapter is by no means an exhaustive review of macroecology and its methods. Instead, it is an introduction to macroecology that we hope will spur innovation in the application of macroecology to the study of the fossil record.
Collapse
|
41
|
Hoyal Cuthill JF, Conway Morris S. Nutrient-dependent growth underpinned the Ediacaran transition to large body size. Nat Ecol Evol 2017; 1:1201-1204. [PMID: 29046572 DOI: 10.1038/s41559-017-0222-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 05/23/2017] [Indexed: 11/09/2022]
Abstract
Macroscale rangeomorph fossils, with characteristic branching fronds, appear (571 Myr ago) after the Gaskiers glaciation (580 Myr ago). However, biological mechanisms of size growth and potential connections to ocean geochemistry were untested. Using micro-computerized tomography and photographic measurements, alongside mathematical and computer models, we demonstrate that growth of rangeomorph branch internodes declined as their relative surface area decreased. This suggests that frond size and shape were directly responsive to nutrient uptake.
Collapse
Affiliation(s)
- Jennifer F Hoyal Cuthill
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8550, Japan. .,Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK.
| | - Simon Conway Morris
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| |
Collapse
|
42
|
van Duijn M. Phylogenetic origins of biological cognition: convergent patterns in the early evolution of learning. Interface Focus 2017; 7:20160158. [PMID: 28479986 PMCID: PMC5413897 DOI: 10.1098/rsfs.2016.0158] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Various forms of elementary learning have recently been discovered in organisms lacking a nervous system, such as protists, fungi and plants. This finding has fundamental implications for how we view the role of convergent evolution in biological cognition. In this article, I first review the evidence for basic forms of learning in aneural organisms, focusing particularly on habituation and classical conditioning and considering the plausibility for convergent evolution of these capacities. Next, I examine the possible role of convergent evolution regarding these basic learning abilities during the early evolution of nervous systems. The evolution of nervous systems set the stage for at least two major events relevant to convergent evolution that are central to biological cognition: (i) nervous systems evolved, perhaps more than once, because of strong selection pressures for sustaining sensorimotor strategies in increasingly larger multicellular organisms and (ii) associative learning was a subsequent adaptation that evolved multiple times within the neuralia. Although convergent evolution of basic forms of learning among distantly related organisms such as protists, plants and neuralia is highly plausible, more research is needed to verify whether these forms of learning within the neuralia arose through convergent or parallel evolution.
Collapse
Affiliation(s)
- Marc van Duijn
- Faculty of Arts, Culture and Cognition, Rijksuniversiteit Groningen, Oude Boteringestraat 34, Groningen, The Netherlands
| |
Collapse
|
43
|
Judson OP. The energy expansions of evolution. Nat Ecol Evol 2017; 1:138. [DOI: 10.1038/s41559-017-0138] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/15/2017] [Indexed: 11/09/2022]
|
44
|
Critical appraisal of some factors pertinent to the functional designs of the gas exchangers. Cell Tissue Res 2016; 367:747-767. [PMID: 27988805 DOI: 10.1007/s00441-016-2549-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/26/2016] [Indexed: 10/20/2022]
Abstract
Respiration acquires O2 from the external fluid milieu and eliminates CO2 back into the same. Gas exchangers evolved under certain immutable physicochemical laws upon which their elemental functional design is hardwired. Adaptive changes have occurred within the constraints set by such laws to satisfy metabolic needs for O2, environmental conditions, respiratory medium utilized, lifestyle pursued and phylogenetic level of development: correlation between structure and function exists. After the inaugural simple cell membrane, as body size and structural complexity increased, respiratory organs formed by evagination or invagination: the gills developed by the former process and the lungs by the latter. Conservation of water on land was the main driver for invagination of the lungs. In gills, respiratory surface area increases by stratified arrangement of the structural components while in lungs it occurs by internal subdivision. The minuscule terminal respiratory units of lungs are stabilized by surfactant. In gas exchangers, respiratory fluid media are transported by convection over long distances, a process that requires energy. However, movement of respiratory gases across tissue barriers occurs by simple passive diffusion. Short distances and large surface areas are needed for diffusion to occur efficiently. Certain properties, e.g., diffusion of gases through the tissue barrier, stabilization of the respiratory units by surfactant and a thin tripartite tissue barrier, have been conserved during the evolution of the gas exchangers. In biology, such rare features are called Bauplans, blueprints or frozen cores. That several of them (Bauplans) exist in gas exchangers almost certainly indicates the importance of respiration to life.
Collapse
|
45
|
Robalino J, Wilkins B, Bracken-Grissom HD, Chan TY, O’Leary MA. The Origin of Large-Bodied Shrimp that Dominate Modern Global Aquaculture. PLoS One 2016; 11:e0158840. [PMID: 27415002 PMCID: PMC4945062 DOI: 10.1371/journal.pone.0158840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/22/2016] [Indexed: 11/18/2022] Open
Abstract
Several shrimp species from the clade Penaeidae are farmed industrially for human consumption, and this farming has turned shrimp into the largest seafood commodity in the world. The species that are in demand for farming are an anomaly within their clade because they grow to much larger sizes than other members of Penaeidae. Here we trace the evolutionary history of the anomalous farmed shrimp using combined data phylogenetic analysis of living and fossil species. We show that exquisitely preserved fossils of †Antrimpos speciosus from the Late Jurassic Solnhofen limestone belong to the same clade as the species that dominate modern farming, dating the origin of this clade to at least 145 mya. This finding contradicts a much younger Late Cretaceous age (ca. 95 mya) previously estimated for this clade using molecular clocks. The species in the farmed shrimp clade defy a widespread tendency, by reaching relatively large body sizes despite their warm water lifestyles. Small body sizes have been shown to be physiologically favored in warm aquatic environments because satisfying oxygen demands is difficult for large organisms breathing in warm water. Our analysis shows that large-bodied, farmed shrimp have more gills than their smaller-bodied shallow-water relatives, suggesting that extra gills may have been key to the clade's ability to meet oxygen demands at a large size. Our combined data phylogenetic tree also suggests that, during penaeid evolution, the adoption of mangrove forests as habitats for young shrimp occurred multiple times independently.
Collapse
Affiliation(s)
- Javier Robalino
- Department of Anatomical Sciences, HSC T-8 (040), Stony Brook University, Stony Brook, New York, United States of America
| | - Blake Wilkins
- Department of Biology, Florida International University, Biscayne Bay Campus, North Miami, Florida, United States of America
| | - Heather D. Bracken-Grissom
- Department of Biology, Florida International University, Biscayne Bay Campus, North Miami, Florida, United States of America
| | - Tin-Yam Chan
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan, Republic of China
| | - Maureen A. O’Leary
- Department of Anatomical Sciences, HSC T-8 (040), Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
46
|
Klompmaker AA, Schweitzer CE, Feldmann RM, Kowalewski M. Environmental and scale-dependent evolutionary trends in the body size of crustaceans. Proc Biol Sci 2016; 282:rspb.2015.0440. [PMID: 26156761 DOI: 10.1098/rspb.2015.0440] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ecological and physiological significance of body size is well recognized. However, key macroevolutionary questions regarding the dependency of body size trends on the taxonomic scale of analysis and the role of environment in controlling long-term evolution of body size are largely unknown. Here, we evaluate these issues for decapod crustaceans, a group that diversified in the Mesozoic. A compilation of body size data for 792 brachyuran crab and lobster species reveals that their maximum, mean and median body size increased, but no increase in minimum size was observed. This increase is not expressed within lineages, but is rather a product of the appearance and/or diversification of new clades of larger, primarily burrowing to shelter-seeking decapods. This argues against directional selective pressures within lineages. Rather, the trend is a macroevolutionary consequence of species sorting: preferential origination of new decapod clades with intrinsically larger body sizes. Furthermore, body size evolution appears to have been habitat-controlled. In the Cretaceous, reef-associated crabs became markedly smaller than those in other habitats, a pattern that persists today. The long-term increase in body size of crabs and lobsters, coupled with their increased diversity and abundance, suggests that their ecological impact may have increased over evolutionary time.
Collapse
Affiliation(s)
- Adiël A Klompmaker
- Florida Museum of Natural History, University of Florida, 1659 Museum Road, PO Box 117800, Gainesville, FL 32611, USA
| | - Carrie E Schweitzer
- Department of Geology, Kent State University at Stark, 6000 Frank Avenue NW, North Canton, OH 44720, USA
| | | | - Michał Kowalewski
- Florida Museum of Natural History, University of Florida, 1659 Museum Road, PO Box 117800, Gainesville, FL 32611, USA
| |
Collapse
|
47
|
Vermeij GJ. Gigantism and Its Implications for the History of Life. PLoS One 2016; 11:e0146092. [PMID: 26771527 PMCID: PMC4714876 DOI: 10.1371/journal.pone.0146092] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/14/2015] [Indexed: 11/19/2022] Open
Abstract
Gigantism-very large body size-is an ecologically important trait associated with competitive superiority. Although it has been studied in particular cases, the general conditions for the evolution and maintenance of gigantism remain obscure. I compiled sizes and dates for the largest species in 3 terrestrial and 7 marine trophic and habitat categories of animals from throughout the Phanerozoic. The largest species (global giants) in all categories are of post-Paleozoic age. Gigantism at this level appeared tens to hundreds of millions of years after mass extinctions and long after the origins of clades in which it evolved. Marine gigantism correlates with high planktic or seafloor productivity, but on land the correspondence between productivity and gigantism is weak at best. All global giants are aerobically active animals, not gentle giants with low metabolic demands. Oxygen concentration in the atmosphere correlates with gigantism in the Paleozoic but not thereafter, likely because of the elaboration of efficient gas-exchange systems in clades containing giants. Although temperature and habitat size are important in the evolution of very large size in some cases, the most important (and rare) enabling circumstance is a highly developed ecological infrastructure in which essential resources are abundant and effectively recycled and reused, permitting activity levels to increase and setting the stage for gigantic animals to evolve. Gigantism as a hallmark of competitive superiority appears to have lost its luster on land after the Mesozoic in favor of alternative means of achieving dominance, especially including social organization and coordinated food-gathering.
Collapse
Affiliation(s)
- Geerat J. Vermeij
- Department of Earth and Planetary Sciences, University of California, One Shields Avenue, Davis, California, 95616, United States of America
| |
Collapse
|
48
|
Heterochrony as Diachronically Modified Cell-Cell Interactions. BIOLOGY 2016; 5:biology5010004. [PMID: 26784244 PMCID: PMC4810161 DOI: 10.3390/biology5010004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/29/2015] [Accepted: 12/31/2015] [Indexed: 12/31/2022]
Abstract
Heterochrony is an enabling concept in evolution theory that metaphorically captures the mechanism of biologic change due to mechanisms of growth and development. The spatio-temporal patterns of morphogenesis are determined by cell-to-cell signaling mediated by specific soluble growth factors and their cognate receptors on nearby cells of different germline origins. Subsequently, down-stream production of second messengers generates patterns of form and function. Environmental upheavals such as Romer’s hypothesized drying up of bodies of water globally caused the vertebrate water-land transition. That transition caused physiologic stress, modifying cell-cell signaling to generate terrestrial adaptations of the skeleton, lung, skin, kidney and brain. These tissue-specific remodeling events occurred as a result of the duplication of the Parathyroid Hormone-related Protein Receptor (PTHrPR) gene, expressed in mesodermal fibroblasts in close proximity to ubiquitously expressed endodermal PTHrP, amplifying this signaling pathway. Examples of how and why PTHrPR amplification affected the ontogeny, phylogeny, physiology and pathophysiology of the lung are used to substantiate and further our understanding through insights to the heterochronic mechanisms of evolution, such as the fish swim bladder evolving into the vertebrate lung, interrelated by such functional homologies as surfactant and mechanotransduction. Instead of the conventional description of this phenomenon, lung evolution can now be understood as adaptive changes in the cellular-molecular signaling mechanisms underlying its ontogeny and phylogeny.
Collapse
|
49
|
Sperling EA, Knoll AH, Girguis PR. The Ecological Physiology of Earth's Second Oxygen Revolution. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2015. [DOI: 10.1146/annurev-ecolsys-110512-135808] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Living animals display a variety of morphological, physiological, and biochemical characters that enable them to live in low-oxygen environments. These features and the organisms that have evolved them are distributed in a regular pattern across dioxygen (O2) gradients associated with modern oxygen minimum zones. This distribution provides a template for interpreting the stratigraphic covariance between inferred Ediacaran-Cambrian oxygenation and early animal diversification. Although Cambrian oxygen must have reached 10–20% of modern levels, sufficient to support the animal diversity recorded by fossils, it may not have been much higher than this. Today's levels may have been approached only later in the Paleozoic Era. Nonetheless, Ediacaran-Cambrian oxygenation may have pushed surface environments across the low, but critical, physiological thresholds required for large, active animals, especially carnivores. Continued focus on the quantification of the partial pressure of oxygen (pO2) in the Proterozoic will provide the definitive tests of oxygen-based coevolutionary hypotheses.
Collapse
Affiliation(s)
- Erik A. Sperling
- Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, California 92093
- Department of Earth and Planetary Sciences and
- Present address: Department of Geological Sciences, Stanford University, Stanford, California 94305
| | - Andrew H. Knoll
- Department of Earth and Planetary Sciences and
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138;,
| | - Peter R. Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138;,
| |
Collapse
|
50
|
Ray S, Kassan A, Busija AR, Rangamani P, Patel HH. The plasma membrane as a capacitor for energy and metabolism. Am J Physiol Cell Physiol 2015; 310:C181-92. [PMID: 26771520 DOI: 10.1152/ajpcell.00087.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
When considering which components of the cell are the most critical to function and physiology, we naturally focus on the nucleus, the mitochondria that regulate energy and apoptotic signaling, or other organelles such as the endoplasmic reticulum, Golgi, ribosomes, etc. Few people will suggest that the membrane is the most critical element of a cell in terms of function and physiology. Those that consider the membrane critical will point to its obvious barrier function regulated by the lipid bilayer and numerous ion channels that regulate homeostatic gradients. What becomes evident upon closer inspection is that not all membranes are created equal and that there are lipid-rich microdomains that serve as platforms of signaling and a means of communication with the intracellular environment. In this review, we explore the evolution of membranes, focus on lipid-rich microdomains, and advance the novel concept that membranes serve as "capacitors for energy and metabolism." Within this framework, the membrane then is the primary and critical regulator of stress and disease adaptation of the cell.
Collapse
Affiliation(s)
- Supriyo Ray
- Department of Veterans Affairs San Diego Healthcare System, San Diego, California; Department of Anesthesiology, University of California, San Diego, La Jolla, California; and
| | - Adam Kassan
- Department of Veterans Affairs San Diego Healthcare System, San Diego, California; Department of Anesthesiology, University of California, San Diego, La Jolla, California; and
| | - Anna R Busija
- Department of Veterans Affairs San Diego Healthcare System, San Diego, California; Department of Anesthesiology, University of California, San Diego, La Jolla, California; and
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
| | - Hemal H Patel
- Department of Veterans Affairs San Diego Healthcare System, San Diego, California; Department of Anesthesiology, University of California, San Diego, La Jolla, California; and
| |
Collapse
|