1
|
Mogotsi MT, Ogunbayo AE, Bester PA, O'Neill HG, Nyaga MM. Longitudinal analysis of the enteric virome in paediatric subjects from the Free State Province, South Africa, reveals early gut colonisation and temporal dynamics. Virus Res 2024; 346:199403. [PMID: 38776984 PMCID: PMC11169482 DOI: 10.1016/j.virusres.2024.199403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
The gut of healthy neonates is devoid of viruses at birth, but rapidly becomes colonised by normal viral commensals that aid in important physiological functions like metabolism but can, in some instances, result in gastrointestinal illnesses. However, little is known about how this colonisation begins, its variability and factors shaping the gut virome composition. Thus, understanding the development, assembly, and progression of enteric viral communities over time is key. To explore early-life virome development, metagenomic sequencing was employed in faecal samples collected longitudinally from a cohort of 17 infants during their first six months of life. The gut virome analysis revealed a diverse and dynamic viral community, formed by a richness of different viruses infecting humans, non-human mammals, bacteria, and plants. Eukaryotic viruses were detected as early as one week of life, increasing in abundance and diversity over time. Most of the viruses detected are commonly associated with gastroenteritis and include members of the Caliciviridae, Picornaviridae, Astroviridae, Adenoviridae, and Sedoreoviridae families. The most common co-occurrences involved asymptomatic norovirus-parechovirus, norovirus-sapovirus, sapovirus-parechovirus, observed in at least 40 % of the samples. Majority of the plant-derived viruses detected in the infants' gut were from the Virgaviridae family. This study demonstrates the first longitudinal characterisation of the gastrointestinal virome in infants, from birth up to 6 months of age, in sub-Saharan Africa. Overall, the findings from this study delineate the composition and variability of the healthy infants' gut virome over time, which is a significant step towards understanding the dynamics and biogeography of viral communities in the infant gut.
Collapse
Affiliation(s)
- Milton Tshidiso Mogotsi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Ayodeji Emmanuel Ogunbayo
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Phillip Armand Bester
- Division of Virology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Hester Gertruida O'Neill
- Department of Microbiology and Biochemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Martin Munene Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa.
| |
Collapse
|
2
|
Mejías-Molina C, Pico-Tomàs A, Martínez-Puchol S, Itarte M, Torrell H, Canela N, Borrego CM, Corominas L, Rusiñol M, Bofill-Mas S. Wastewater-based epidemiology applied at the building-level reveals distinct virome profiles based on the age of the contributing individuals. Hum Genomics 2024; 18:10. [PMID: 38303015 PMCID: PMC10832175 DOI: 10.1186/s40246-024-00580-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/24/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Human viruses released into the environment can be detected and characterized in wastewater. The study of wastewater virome offers a consolidated perspective on the circulation of viruses within a population. Because the occurrence and severity of viral infections can vary across a person's lifetime, studying the virome in wastewater samples contributed by various demographic segments can provide valuable insights into the prevalence of viral infections within these segments. In our study, targeted enrichment sequencing was employed to characterize the human virome in wastewater at a building-level scale. This was accomplished through passive sampling of wastewater in schools, university settings, and nursing homes in two cities in Catalonia. Additionally, sewage from a large urban wastewater treatment plant was analysed to serve as a reference for examining the collective excreted human virome. RESULTS The virome obtained from influent wastewater treatment plant samples showcased the combined viral presence from individuals of varying ages, with astroviruses and human bocaviruses being the most prevalent, followed by human adenoviruses, polyomaviruses, and papillomaviruses. Significant variations in the viral profiles were observed among the different types of buildings studied. Mamastrovirus 1 was predominant in school samples, salivirus and human polyomaviruses JC and BK in the university settings while nursing homes showed a more balanced distribution of viral families presenting papillomavirus and picornaviruses and, interestingly, some viruses linked to immunosuppression. CONCLUSIONS This study shows the utility of building-level wastewater-based epidemiology as an effective tool for monitoring the presence of viruses circulating within specific age groups. It provides valuable insights for public health monitoring and epidemiological studies.
Collapse
Affiliation(s)
- Cristina Mejías-Molina
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology and Statistics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | | | - Sandra Martínez-Puchol
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology and Statistics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Itarte
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology and Statistics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
- The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Helena Torrell
- Centre for Omic Sciences (COS), Joint Unit Universitat Rovira I Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Reus, Catalonia, Spain
| | - Núria Canela
- Centre for Omic Sciences (COS), Joint Unit Universitat Rovira I Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Reus, Catalonia, Spain
| | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), Girona, Spain
- Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Catalonia, Spain
| | | | - Marta Rusiñol
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology and Statistics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
- The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Sílvia Bofill-Mas
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology and Statistics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
- The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
3
|
Zamora-Figueroa A, Rosales RE, Fernández R, Ramírez V, Bastardo M, Farías A, Vizzi E. Detection and diversity of gastrointestinal viruses in wastewater from Caracas, Venezuela, 2021-2022. Virology 2024; 589:109913. [PMID: 37924728 DOI: 10.1016/j.virol.2023.109913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Gastrointestinal viruses (GIV) are an important cause of childhood morbidity and mortality, particularly in developing countries. Their epidemiological impact in Venezuela during the COVID-19 pandemic remains unclear. GIV can also be detected in domestic sewage. Ninety-one wastewater samples from urban areas of Caracas collected over 12 months and concentrated by polyethylene-glycol-precipitation, were analyzed by multiplex reverse-transcription-PCR for rotavirus/calicivirus/astrovirus and enterovirus/klassevirus/cosavirus, and monoplex-PCR for adenovirus and Aichi virus. The overall frequency of virus detection was 46.2%, fluctuating over months, and peaking in the rainy season. Adenoviruses circulated throughout the year, especially type F41, and predominated (52.7%) over caliciviruses (29.1%) that peaked in the rainy months, rotaviruses (9.1%), cosaviruses (5.5%), astroviruses and enteroviruses (1.8%). Aichi-virus and klassevirus were absent. Rotavirus G9/G12, and P[4]/P[8]/P[14] predominated. The occurrence of GIV in wastewater reflects transmission within the population of Caracas and the persistence of a potential public health risk that needs to be adequately monitored.
Collapse
Affiliation(s)
- Alejandra Zamora-Figueroa
- Laboratorio de Ecología de Microorganismos, Centro de Ecología Aplicada. Instituto de Zoología y Ecología Tropical. Universidad Central de Venezuela, Caracas, Venezuela
| | - Rita E Rosales
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular. Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Rixio Fernández
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular. Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Viviana Ramírez
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular. Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Marjorie Bastardo
- Laboratorio de Ecología de Microorganismos, Centro de Ecología Aplicada. Instituto de Zoología y Ecología Tropical. Universidad Central de Venezuela, Caracas, Venezuela
| | - Alba Farías
- Laboratorio de Ecología de Microorganismos, Centro de Ecología Aplicada. Instituto de Zoología y Ecología Tropical. Universidad Central de Venezuela, Caracas, Venezuela
| | - Esmeralda Vizzi
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular. Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela.
| |
Collapse
|
4
|
Hogben E, Khamrin P, Kumthip K, Yodmeeklin A, Maneekarn N. Distribution and molecular characterization of saffold virus and human cosavirus in children admitted to hospitals with acute gastroenteritis in Thailand, 2017-2022. J Med Virol 2023; 95:e29159. [PMID: 37805831 DOI: 10.1002/jmv.29159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
Saffold virus (SAFV) and human cosavirus (HCoSV) are emerging viruses of the Picornaviridae family. They have been shown to associate with gastrointestinal infection and more recently these viruses have also been demonstrated to associate with other clinical infections such as the respiratory tract, cardiovascular system, and the cerebral ventricular system. In this study, 2459 stool specimens collected from pediatric patients admitted to hospitals with acute gastroenteritis from January 2017 to December 2022, were screened for SAFV and HCoSV utilizing reverse transcription-polymerase chain reaction. Positive samples were then characterized into genotypes via nucleotide sequencing and bioinformatic analysis. Of the 2459 samples, 21 and 39 were positive for SAFV (0.9%) and HCoSV (1.6%), respectively. Three genotypes of SAFV were identified-SAFV-1 (38%), SAFV-2 (24%), and SAFV-3 (38%). Two genetic groups of HCoSV were identified-HCoSV-C (97%) and HCoSV-A (3%), demonstrating a large increase of HCoSV-C as compared to those reported previously from the same geographical region in Thailand. This study provides the prevalence of SAFV and HCoSV genotypes in Chiang Mai, Thailand during a period of 6 years from 2017 to 2022.
Collapse
Affiliation(s)
- Emily Hogben
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Arpaporn Yodmeeklin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
5
|
Coutinho CRM, Cardoso JF, Siqueira JAM, Machado RS, Chagas Júnior WDD, Tavares FN, Gabbay YB. Diversity of picornaviruses detected in diarrheal samples from children in Belém, Brazilian Amazon (1982-2019). J Med Virol 2023; 95:e28873. [PMID: 37349989 DOI: 10.1002/jmv.28873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/06/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023]
Abstract
In this investigation, fecal specimens from children with diarrhea were collected from four community studies conducted between 1982 and 2019 in Belém, Brazilian Amazon. A total of 234 samples were tested by quantitative reverse transcription polymerase chain reaction (RT-qPCR) to detect infections by picornaviruses of the Enterovirus (EV), Parechovirus (HPeV), Cosavirus (HCoSV), Kobuvirus (Aichivirus - AiV) and Salivirus (SalV) genera. The positive samples were subjected to different amplification protocols of the VP1 region of the genome, such as nested PCR or snPCR, and were subsequently genotyped by sequencing VP1 and VP3 of the viral genome. Positivity was observed in 76.5% (179/234) of the samples tested using RT-qPCR for at least one virus, and co-infection was observed in 37.4% (67/179) of the cases. EV was detected in 50.8% (119/234), HPeV in 29.9% (70/234), HCoSV in 27.3% (64/234), and AiV/SalV in 2.1% (5/234) of the specimens tested by RT-qPCR. Using nested PCR and/or snPCR techniques, the positivity rates were 94.11% (112/119) for EV, 72.85% (51/70) for HPeV, and 20.31% (13/64) for HCoSV. It was not possible to amplify the samples that were positive for AiV/SalV. Sequencing revealed 67.2% (80/119) EV, 51.4% (36/70) HPeV, and 20.31% (13/64) HCoSV. Forty-five different types of EV were found among species A, B, and C; HCoSV identified five species, including a possible recombinant strain; all HPeV were identified as belonging to species A, in two samples a possible recombination involving three different strains was verified. This study demonstrated the high circulation and diversity of different types of picornaviruses in fecal samples, including those collected more than 30 years ago. This endorsed the evaluation of important points in the epidemiology of these viruses, such as the presence of co-infection and the possibility of knowing more about these agents, considering that some were recently described; therefore, their detection in older samples can provide more data about their ancestry.
Collapse
Affiliation(s)
| | - Jedson Ferreira Cardoso
- Laboratório de Bioinformática-BIOINFO, Seção de Virologia-SAVIR, Instituto Evandro Chagas-IEC, Secretaria de Vigilância em Saúde e Ambiente-SVSA, Ministério da Saúde, Ananindeua, Pará, Brazil
| | - Jones Anderson Monteiro Siqueira
- Laboratório de Vírus Gastroentéricos-LVG, Seção de Virologia-SAVIR, Instituto Evandro Chagas-IEC, Secretaria de Vigilância em Saúde e Ambiente-SVSA, Ministério da Saúde, Ananindeua, Pará, Brazil
| | - Raiana Scerni Machado
- Programa de Pós-graduação em Medicina Tropical, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - Wanderley Dias das Chagas Júnior
- Laboratório de Enterovírus-LEV, Seção de Virologia-SAVIR, Instituto Evandro Chagas-IEC, Secretaria de Vigilância em Saúde e Ambiente-SVSA, Ministério da Saúde, Ananindeua, Pará, Brazil
| | - Fernando Neto Tavares
- Laboratório de Enterovírus-LEV, Seção de Virologia-SAVIR, Instituto Evandro Chagas-IEC, Secretaria de Vigilância em Saúde e Ambiente-SVSA, Ministério da Saúde, Ananindeua, Pará, Brazil
| | - Yvone Benchimol Gabbay
- Laboratório de Vírus Gastroentéricos-LVG, Seção de Virologia-SAVIR, Instituto Evandro Chagas-IEC, Secretaria de Vigilância em Saúde e Ambiente-SVSA, Ministério da Saúde, Ananindeua, Pará, Brazil
| |
Collapse
|
6
|
Detection of human feces pecovirus in newly diagnosed HIV patients in Brazil. PLoS One 2022; 17:e0272067. [PMID: 36067165 PMCID: PMC9447917 DOI: 10.1371/journal.pone.0272067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
Circular single stranded DNA viruses (CRESS DNA) encoding a homologous replication-associated protein (REP) have been identified in most of eukaryotic groups. It is not clear yet the role in human diseases or details of the life cycle of these viruses. Recently, much interest has been raised in the evolutionary history of CRESS DNA owing to the increasing number of new sequences obtained by Next-Generation Sequencing (NGS) in distinct host species. In this study we describe two full-length CRESS DNA genomes obtained of two newly diagnosed HIV patients from São Paulo State, Brazil. The initial BLASTx search indicated that both sequences (named SP-FFB/2020 and SP-MJMS/2020) are highly similar (98%) to a previous CRESS DNA sequence detected in human fecal sample from Peru in 2016 and designated as pecovirus (Peruvian stool-associated circo-like virus). This study reported for the first time the Human feces pecovirus in the feces of two newly diagnosed HIV patients in Brazil. Our comparative analysis showed that although pecoviruses in South America share an identical genome structure they diverge and form distinct clades. Thus, we suggest the circulation of different species of pecoviruses in Latin America. Nevertheless, further studies must be done to examine the pathogenicity of this virus.
Collapse
|
7
|
Kennedy EA, Holtz LR. Gut virome in early life: origins and implications. Curr Opin Virol 2022; 55:101233. [PMID: 35690009 PMCID: PMC9575407 DOI: 10.1016/j.coviro.2022.101233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022]
Abstract
The human body is colonized by a multitude of bacteria, fungi, and viruses, which play important roles in health and disease. Microbial colonization during early life is thought to be a particularly important period with lasting consequences for health. Viral populations in the gut are particularly dynamic in early life before they stabilize in adulthood. The composition of the early-life virome is increasingly recognized as a determinant of disease later in life. Here, we review the development of the virome in healthy infants, as well as the role of the early-life virome in the development of disease states including diarrhea, malnutrition, and autoimmune diseases.
Collapse
Affiliation(s)
- Elizabeth A Kennedy
- Washington University School of Medicine, Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, St. Louis, MO 63110, USA
| | - Lori R Holtz
- Washington University School of Medicine, Department of Pediatrics, St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
Machado RS, Gomes-Neto F, Aguiar-Oliveira ML, Burlandy FM, Tavares FN, da Silva EE, Sousa IP. Analysis of Coxsackievirus B5 Infections in the Central Nervous System in Brazil: Insights into Molecular Epidemiology and Genetic Diversity. Viruses 2022; 14:v14050899. [PMID: 35632640 PMCID: PMC9146130 DOI: 10.3390/v14050899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Coxsackievirus B5 (CVB5) is one of the most prevalent enteroviruses types in humans and causes annual epidemics worldwide. In the present study, we explored viral genetic diversity, molecular and epidemiological aspects of CVB5 obtained from cerebrospinal fluid and stool samples of patients with aseptic meningitis or acute flaccid paralysis, information that is still scarce in Brazil. From 2005 to 2018, 57 isolates of CVB5 were identified in the scope of the Brazilian Poliomyelitis Surveillance Program. Phylogenetic analyses of VP1 sequences revealed the circulation of two CVB5 genogroups, with genogroup B circulating until 2017, further replaced by genogroup A. Network analysis based on deduced amino acid sequences showed important substitutions in residues known to play critical roles in viral host tropism, cell entry, and viral antigenicity. Amino acid substitutions were investigated by the Protein Variation Effect Analyzer (PROVEAN) tool, which revealed two deleterious substitutions: T130N and T130A. To the best of our knowledge, this is the first report to use in silico approaches to determine the putative impact of amino acid substitutions on the CVB5 capsid structure. This work provides valuable information on CVB5 diversity associated with central nervous system (CNS) infections, highlighting the importance of evaluating the biological impact of certain amino acids substitutions associated with epidemiological and structural analyses.
Collapse
Affiliation(s)
- Raiana S. Machado
- Laboratório de Enterovírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.S.M.); (F.M.B.); (E.E.d.S.)
- Programa de Pós-Graduação em Medicina Tropical, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Francisco Gomes-Neto
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| | - Maria L. Aguiar-Oliveira
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| | - Fernanda M. Burlandy
- Laboratório de Enterovírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.S.M.); (F.M.B.); (E.E.d.S.)
| | - Fernando N. Tavares
- Laboratório de Referência Regional em Enteroviroses, Seção de Virologia, Instituto Evandro Chagas/Serviço de Vigilância Saúde/Ministério de SaúdeS, Ananindeua 67030-000, Brazil;
| | - Edson E. da Silva
- Laboratório de Enterovírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.S.M.); (F.M.B.); (E.E.d.S.)
| | - Ivanildo P. Sousa
- Laboratório de Enterovírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.S.M.); (F.M.B.); (E.E.d.S.)
- Correspondence: ; Tel.: +55-21-2562-1781
| |
Collapse
|
9
|
First Human Cosavirus Detection From Cerebrospinal Fluid in Hospitalized Children With Aseptic Meningitis and Encephalitis in Iran. Pediatr Infect Dis J 2021; 40:e459-e461. [PMID: 34870389 DOI: 10.1097/inf.0000000000003304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Human cosavirus (HCosV) is a newly recognized virus that seems to be partly related to nonpolio flaccid paralysis and acute gastroenteritis in pediatric patients. However, the relationship between HCosV and diseases in humans is unclear. To assess an investigation for the occurrence of HCosV among pediatric patients involved in meningitis and encephalitis, we implemented a real-time quantitative polymerase chain reaction assay for detection and quantification of HCosV in stool specimens. MATERIALS AND METHODS In this study, a total of 160 cerebrospinal fluid samples from September 2019 to October 2020 were collected from presenting pediatric patients with meningitis and encephalitis in a Karaj hospital, Iran. After viral RNA extraction, the real-time quantitative polymerase chain reaction was performed to amplify the 5'Un-Translated Region region of the HCosV genome and viral load was analyzed. RESULTS Of the 160 samples tested, the HCosV genomic RNA was detected in 2/160 (1.25%) of samples. The minimum viral load of HCosV was 3.5 × 103 copies/mL from 4 years male patient. The maximum viral load was determined to be 2.4 × 105 copies/mL in one sample obtained from 3.5 years female patient. CONCLUSIONS This is the first documentation of HCosV detection in cerebrospinal fluid samples that better demonstrates relation of HCosV with neurologic diseases including meningitis and encephalitis. Also, these results indicate that HCosV has been circulating among Iranian pediatric patients.
Collapse
|
10
|
Ahmad J, Ahmad M, Usman ARA, Al-Wabel MI. Prevalence of human pathogenic viruses in wastewater: A potential transmission risk as well as an effective tool for early outbreak detection for COVID-19. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113486. [PMID: 34391102 PMCID: PMC8352675 DOI: 10.1016/j.jenvman.2021.113486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 05/09/2023]
Abstract
Millions of human pathogenic viral particles are shed from infected individuals and introduce into wastewater, subsequently causing waterborne diseases worldwide. These viruses can be transmitted from wastewater to human beings via direct contact and/or ingestion/inhalation of aerosols. Even the advanced wastewater treatment technologies are unable to remove pathogenic viruses from wastewater completely, posing a serious health risk. Recently, coronavirus disease 2019 (COVID-19) has been urged globally due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which has resulted in >4.1 million deaths until July 2021. A rapid human-to-human transmission, uncertainties in effective vaccines, non-specific medical treatments, and unclear symptoms compelled the world into complete lockdown, social distancing, air-travel suspension, and closure of educational institutions, subsequently damaging the global economy and trade. Although, few medical treatments, rapid detection tools, and vaccines have been developed so far to curb the spread of COVID-19; however, several uncertainties exist in their applicability. Further, the acceptance of vaccines among communities is lower owing to the fear of side effects such as blood-clotting and heart inflammation. SARS-CoV-2, an etiologic agent of COVID-19, has frequently been detected in wastewater, depicting a potential transmission risk to healthy individuals. Contrarily, the occurrence of SARS-CoV-2 in wastewater can be used as an early outbreak detection tool via water-based epidemiology. Therefore, the spread of SARS-CoV-2 through fecal-oral pathway can be reduced and any possible outbreak can be evaded by proper wastewater surveillance. In this review, wastewater recycling complications, potential health risks of COVID-19 emergence, and current epidemiological measures to control COVID-19 spread have been discussed. Moreover, the viability of SARS-CoV-2 in various environments and survival in wastewater has been reviewed. Additionally, the necessary actions (vaccination, face mask, social distancing, and hand sanitization) to limit the transmission of SARS-CoV-2 have been recommended. Therefore, wastewater surveillance can serve as a feasible, efficient, and reliable epidemiological measure to lessen the spread of COVID-19.
Collapse
Affiliation(s)
- Jahangir Ahmad
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Munir Ahmad
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Adel R A Usman
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia; Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Mohammad I Al-Wabel
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia; Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong.
| |
Collapse
|
11
|
Luchs A. Comments on "Detection and identification of enteroviruses circulating in children with acute gastroenteritis in Pará State, Northern Brazil (2010-2011)". Virol J 2021; 18:133. [PMID: 34193190 PMCID: PMC8243610 DOI: 10.1186/s12985-021-01602-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/10/2021] [Indexed: 11/30/2022] Open
Abstract
Investigation of human enterovirus (EV) in diarrheic fecal specimens is valuable to address EV diversity circulating worldwide. However, the detection of EV strains exclusively in fecal specimens must be interpreted cautiously. EV are well known causative agents associated with a spectrum of human diseases, but not acute gastroenteritis. EV isolation in stool samples could not necessarily be associated with diarrheic symptoms, as most EV infections appear to be asymptomatic, and healthy children could excrete EV in their stool. The diagnostic of EV is only confirmed when the neutralization test presents a significant increase in antibody titers (three times or more) in the paired serum samples (acute-phase and convalescent-phase) against the same EV serotype isolated in feces. In addition, patients suffering from acute gastroenteritis, even during an EV investigation, must be screened in parallel for gastroenteric viruses (i.e. norovirus and rotavirus) in order to clarify if the symptoms could be linked to other viral agent detected in their fecal samples. Surveillance of EV diversity among distinct patient groups, including diarrheic individuals, must be taken into consideration and can considerably increase the power of non-polio EV surveillance system in Brazil. More well-designed studies are necessary to further elucidate the role of EV in acute gastroenteritis.
Collapse
Affiliation(s)
- Adriana Luchs
- Enteric Disease Laboratory, Adolfo Lutz Institute, Virology CenterAv. Dr Arnaldo, nº 355, São Paulo, SP, 01246-902, Brazil.
| |
Collapse
|
12
|
Epidemiology, Genetic Characterization, and Evolution of Hunnivirus Carried by Rattus norvegicus and Rattus tanezumi: The First Epidemiological Evidence from Southern China. Pathogens 2021; 10:pathogens10060661. [PMID: 34071186 PMCID: PMC8226955 DOI: 10.3390/pathogens10060661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Hunnivirus is a novel member of the family Picornaviridae. A single species, Hunnivirus A, is currently described. However, there is limited information on the identification of Hunnivirus to date, and thereby the circulation of Hunnivirus is not fully understood. Thus, the objective of this study was to investigate the prevalence, genomic characteristics, and evolution of rat hunnivirus in southern China. A total of 404 fecal samples were subjected to detection of Hunnivirus from urban rats (Rattus norvegicus and Rattus tanezumi) using PCR assay based on specific primers targeted to partial 3D regions, with the prevalence of 17.8% in Rattus norvegicus and 15.6% in Rattus tanezumi. An almost full-length rat hunnivirus sequence (RatHuV/YY12/CHN) and the genome structure were acquired in the present study. Phylogenetic analysis of the P1 coding regions suggested the RatHuV/YY12/CHN sequence was found to be within the genotype of Hunnivirus A4. The negative selection was further identified based on analysis of non-synonymous to synonymous substitution rates. The present findings suggest that hunniviruses are common in urban rats. Further research is needed for increased surveillance and awareness of potential risks to human health.
Collapse
|
13
|
Vizzi E, Fernández R, Angulo LA, Blanco R, Pérez C. HUMAN COSAVIRUS INFECTION IN HIV SUBJECTS WITH DIARRHOEA: PERSISTENT DETECTION ASSOCIATED WITH FATAL OUTCOME. J Clin Virol 2021; 139:104825. [PMID: 33940330 DOI: 10.1016/j.jcv.2021.104825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/18/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Human cosavirus (HCoSV) is a new member of the Picornaviridae family, geographically widespread among humans. It has been suggested as a causative agent of acute gastroenteritis, but its pathogenicity is not currently certain. In HIV-infected subjects, diarrhoea is one of the most frequent gastrointestinal manifestations, whose aetiology remains often unexplained. OBJECTIVES To identify the cause of viral diarrhoea among HIV infected patients by molecular assays. STUDY DESIGN A total of 143 stool samples from HIV subjects with and without diarrhoea, were screened for conventional enteric viruses (rotavirus, adenovirus, norovirus and astrovirus) by molecular assays. The presence of HCoSV genome was investigated by nested RT-PCR for the 5'UTR region. Positive samples were further characterized by sequencing and phylogenetic analysis. RESULTS Enteric viruses were more frequently found in diarrhoea cases (9/82) than controls (0/61) (p=0.007). HCoSV was detected in five (3.5%) of the subjects affected by diarrhoea. Phylogenetic analysis revealed the predominance of the HCoSV species D. One patient suffered a persistent cosavirus infection with a same strain and after eight months he had a fatal outcome. No other pathogens could be detected. CONCLUSIONS The results suggest a role of non-conventional enteric viruses, as HCoSV, as a potential opportunistic agent causing persistent infection and deterioration of the clinical conditions in HIV-infected patients. Screening procedures and monitoring including such viruses would be helpful in the clinical management of such patients.
Collapse
Affiliation(s)
- Esmeralda Vizzi
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC). Carretera Panamericana Km 11, Caracas 1020-A, Edo. Miranda, Venezuela.
| | - Rixio Fernández
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC). Carretera Panamericana Km 11, Caracas 1020-A, Edo. Miranda, Venezuela
| | - Luis A Angulo
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC). Carretera Panamericana Km 11, Caracas 1020-A, Edo. Miranda, Venezuela; Present address: Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Departamento de Infectología. Laboratorio Virología Molecular. Mexico, D.F., Mexico
| | - Ruth Blanco
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC). Carretera Panamericana Km 11, Caracas 1020-A, Edo. Miranda, Venezuela; Present address: Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, IVIC. Carretera Panamericana Km 11, Caracas 1020-A, Edo. Miranda, Venezuela
| | - Carlos Pérez
- Servicio de Infectología. Hospital General del Oeste "Dr. José Gregorio Hernández". Catia, Sector Los Magallanes de Catia. Caracas, Venezuela
| |
Collapse
|
14
|
Daprà V, Galliano I, Montanari P, Zaniol E, Calvi C, Alliaudi C, Bergallo M. Bufavirus, Cosavirus, and Salivirus in Diarrheal Italian Infants. Intervirology 2021; 64:165-168. [PMID: 33784689 DOI: 10.1159/000514384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 01/13/2021] [Indexed: 11/19/2022] Open
Abstract
Three newly discovered viruses have been recently described in diarrheal patients: Cosavirus (CosV) and Salivirus (SalV), 2 picornaviruses, and bufavirus (BuV), a parvovirus. The detection rate and the role of these viruses remain to be established in acute gastroenteritis (AGE) in diarrheal Italian infants. From November 2016 to November 2017, stool samples were collected from 160 children <5 years old suffering from AGE and attending the Children's Hospital in Turin, Italy. During the study period, 1 (0.5%) sample was positive for 1 of the 3 investigated viruses: 0 (0%) CosV, 1 (0.5%) SalV, and 0 (0%) BuV, whereas 42 (26.0%) children were infected with rotavirus and 2 (1%) with adenovirus. No mixed infections involving the 3 viruses were found. Although these viruses are suspected to be responsible for AGE in children, our data showed that this association was uncertain. Therefore, further studies with large cohorts of healthy and diarrheal children will be needed to evaluate their clinical role in AGE.
Collapse
Affiliation(s)
- Valentina Daprà
- Department of Public Health and Pediatric Sciences, Pediatrics Laboratory, University of Turin, Medical School, Turin, Italy
| | - Ilaria Galliano
- Department of Public Health and Pediatric Sciences, Pediatrics Laboratory, University of Turin, Medical School, Turin, Italy.,Department of Pediatrics, Infectious Diseases Unit, Regina Margherita Children's Hospital, University of Turin, Turin, Italy
| | - Paola Montanari
- Department of Public Health and Pediatric Sciences, Pediatrics Laboratory, University of Turin, Medical School, Turin, Italy.,Department of Pediatrics, Infectious Diseases Unit, Regina Margherita Children's Hospital, University of Turin, Turin, Italy
| | - Elena Zaniol
- Department of Public Health and Pediatric Sciences, Pediatrics Laboratory, University of Turin, Medical School, Turin, Italy.,Department of Pediatrics, Infectious Diseases Unit, Regina Margherita Children's Hospital, University of Turin, Turin, Italy
| | - Cristina Calvi
- Department of Public Health and Pediatric Sciences, Pediatrics Laboratory, University of Turin, Medical School, Turin, Italy.,Department of Pediatrics, Infectious Diseases Unit, Regina Margherita Children's Hospital, University of Turin, Turin, Italy
| | - Carla Alliaudi
- Department of Pediatrics, Infectious Diseases Unit, Regina Margherita Children's Hospital, University of Turin, Turin, Italy
| | - Massimiliano Bergallo
- Department of Public Health and Pediatric Sciences, Pediatrics Laboratory, University of Turin, Medical School, Turin, Italy.,Department of Pediatrics, Infectious Diseases Unit, Regina Margherita Children's Hospital, University of Turin, Turin, Italy
| |
Collapse
|
15
|
Deep viral blood metagenomics reveals extensive anellovirus diversity in healthy humans. Sci Rep 2021; 11:6921. [PMID: 33767340 PMCID: PMC7994813 DOI: 10.1038/s41598-021-86427-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/15/2021] [Indexed: 02/08/2023] Open
Abstract
Human blood metagenomics has revealed the presence of different types of viruses in apparently healthy subjects. By far, anelloviruses constitute the viral family that is more frequently found in human blood, although amplification biases and contaminations pose a major challenge in this field. To investigate this further, we subjected pooled plasma samples from 120 healthy donors in Spain to high-speed centrifugation, RNA and DNA extraction, random amplification, and massive parallel sequencing. Our results confirm the extensive presence of anelloviruses in such samples, which represented nearly 97% of the total viral sequence reads obtained. We assembled 114 different viral genomes belonging to this family, revealing remarkable diversity. Phylogenetic analysis of ORF1 suggested 28 potentially novel anellovirus species, 24 of which were validated by Sanger sequencing to discard artifacts. These findings underscore the importance of implementing more efficient purification procedures that enrich the viral fraction as an essential step in virome studies and question the suggested pathological role of anelloviruses.
Collapse
|
16
|
López GR, Martinez LM, Freyre L, Freire MC, Vladimirsky S, Rabossi A, Cisterna DM. Persistent Detection of Cosavirus and Saffold Cardiovirus in Riachuelo River, Argentina. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:64-73. [PMID: 33165867 DOI: 10.1007/s12560-020-09451-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
Cosaviruses (CoSV) and Saffold cardiovirus (SAFV) are novel members of the Picornaviridae family. The Matanza-Riachuelo river basin covers a total area of 2200 km2 with approximately 60 km long. Its last section is called Riachuelo River. The aim of this study was to describe the circulation of both picornaviruses and their relationship with the environmental situation of the Riachuelo River using 274 samples collected from 2005 to 2015. CoSV and SAFV were investigated in samples available by two periods: 2005-2006 and 2014-2015 (103 and 101, respectively). Physicochemical and bacteriological parameters confirmed very high levels of human fecal contamination during the 11 years evaluated. CoSV was detected in 85.7% (66/77) and 65.4% (17/26) of the samples collected in 2005-2006 and 2014-2015 periods, respectively. Species A and D were identified, the first one being widely predominant: 74.1% (20/27) and 75.0% (3/4) in both periods. SAFV virus was detected in 47.1% (32/68) and 52.6% (10/19) in periods 2005-2006 and 2014-2015, respectively. SAFV-6 was the most identified genotype in the entire study, while SAFV-3 was predominant in 2005-2006. The contribution of genotypes 1, 2, 4 and 8 was minor. The high prevalence of CoSV and SAFV suggests that both viruses have been circulating in Argentina at least since 2005. Our results show that a watercourse with high rates of human fecal contamination can become a persistent source of new viruses which capacity to produce human diseases is unknown.
Collapse
Affiliation(s)
- Gabriela Riviello López
- Prefectura Naval Argentina, Av. Eduardo Madero 235 (1106ACC), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Leila Marina Martinez
- Departamento de Virología, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Dr. Carlos G. Malbran", Av. Velez Sarsfield 563 (1282AFF), Ciudad Autónoma de Buenos Aires, Argentina
| | - Laura Freyre
- Prefectura Naval Argentina, Av. Eduardo Madero 235 (1106ACC), Ciudad Autónoma de Buenos Aires, Argentina
| | - María Cecilia Freire
- Departamento de Virología, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Dr. Carlos G. Malbran", Av. Velez Sarsfield 563 (1282AFF), Ciudad Autónoma de Buenos Aires, Argentina
| | - Sara Vladimirsky
- Departamento de Virología, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Dr. Carlos G. Malbran", Av. Velez Sarsfield 563 (1282AFF), Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandro Rabossi
- IIBBA-CONICET and FIL, Av. Patricias Argentinas 435 (1405BWE), Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniel Marcelo Cisterna
- Departamento de Virología, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Dr. Carlos G. Malbran", Av. Velez Sarsfield 563 (1282AFF), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
17
|
Schneider J, Engler M, Hofmann J, Selinka HC, Jones TC, Drosten C, Diedrich S, Corman VM, Böttcher S. Molecular detection of cosaviruses in a patient with acute flaccid paralysis and in sewage samples in Germany. Virus Res 2021; 297:198285. [PMID: 33548413 DOI: 10.1016/j.virusres.2020.198285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/02/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022]
Abstract
Cosaviruses (CoSV) were first identified in stool samples collected from non-polio acute flaccid paralysis (AFP) cases and their healthy contacts in Pakistan in 2003. The clinical importance of CoSV remains unclear as data on epidemiology are scarce and no routine diagnostic testing is done. In this study, we characterized human CoSV (HCoSV) in a child with non-polio AFP and in sewage samples collected in Berlin, Germany. Using unbiased high-throughput sequencing and specific PCR, we characterized a HCoSV-D in stool samples of a three-year-old child hospitalized in Germany with non-polio AFP and travel history to Pakistan. The shedding pattern and absence of other relevant pathogens suggests that HCoSV-D may have been involved in the genesis of AFP. The HCoSV-RNA concentration was high, with 2.57 × 106 copies per mL fecal/suspension, decreasing in follow-up samples. To investigate the possibility of local circulation of HCoSV, we screened Berlin sewage samples collected between 2013 and 2018. Molecular testing of sewage samples has shown the presence of CoSV in several parts of the world, but until now not in Germany. Of our sewage samples, 54.3 % were positive for CoSV, with up to three viral species identified in samples. Phylogenetically, the German sequences clustered intermixed with sequences obtained globally. Together, these findings emphasize the need for further clinical, epidemiological, environmental, pathogenicity and phylogenetic studies of HCoSV.
Collapse
Affiliation(s)
- J Schneider
- Institute of Virology, Charité-Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany; Labor Berlin, Charité-Vivantes GmbH, Sylter Straße 2, 13353, Berlin, Germany
| | - M Engler
- Department of Paediatrics, Sana Klinikum Offenbach GmbH, Starkenburgring 66, 63069, Offenbach am Main, Germany
| | - J Hofmann
- Labor Berlin, Charité-Vivantes GmbH, Sylter Straße 2, 13353, Berlin, Germany
| | - H C Selinka
- German Environment Agency, Microbiological Risks, Corrensplatz 1, 14195, Berlin, Germany
| | - T C Jones
- Institute of Virology, Charité-Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany; Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - C Drosten
- Institute of Virology, Charité-Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany; Labor Berlin, Charité-Vivantes GmbH, Sylter Straße 2, 13353, Berlin, Germany; German Centre for Infection Research (DZIF), Associated Partner Site Berlin, Berlin, Germany
| | - S Diedrich
- National Reference Center for Poliomyelitis and Enteroviruses, Robert Koch-Institute, Nordufer 20, 13353, Berlin, Germany
| | - V M Corman
- Institute of Virology, Charité-Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany; Labor Berlin, Charité-Vivantes GmbH, Sylter Straße 2, 13353, Berlin, Germany; German Centre for Infection Research (DZIF), Associated Partner Site Berlin, Berlin, Germany.
| | - S Böttcher
- National Reference Center for Poliomyelitis and Enteroviruses, Robert Koch-Institute, Nordufer 20, 13353, Berlin, Germany.
| |
Collapse
|
18
|
Khoshbazan S, Ivani Z, Mousavi Nasab SD, Ahmadi N, Parhiz A, Khalesi B, Firouzjani MH, Ghaderi M, Barati M, Ehsani Ardakani MJ. High viral load detection of human Cosavirus in Iranian pediatric patients with acute gastroenteritis. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2021; 14:S82-S86. [PMID: 35154606 PMCID: PMC8817751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/29/2021] [Indexed: 06/14/2023]
Abstract
AIM The present study implemented an RT-qPCR assay for the detection and quantification of human cosavirus in stool specimens from pediatric patients involved in acute gastroenteritis. BACKGROUND Human cosavirus is a newly recognized virus that seems to be partly related to acute gastroenteritis in pediatric patients. However, the relationship between human cosavirus and diseases in humans is unclear. METHODS From January 2018 to December 2019, a total of 160 stool samples were collected from pediatric patients presenting with acute gastroenteritis in a hospital in Karaj, Iran. After viral RNA extraction, RT-qPCR was performed to amplify the 5'UTR region of the human cosavirus genome and viral load was analyzed. RESULTS The human cosavirus genomic RNA was detected in 4/160 (2.5%) stool samples tested. The maximum viral load was determined to be 4.6×106 copies/ml in one sample obtained from a 4-year-old patient. CONCLUSION The human cosavirus as a new member of the Picornaviridae family was illustrated in fecal samples from pediatric patients with acute gastroenteritis in Iran. This is the first documentation of human cosavirus circulation in Iranian children.
Collapse
Affiliation(s)
- Sadaf Khoshbazan
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Zahra Ivani
- Department of Animal Viral Vaccine, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO) Karaj, Iran
| | - Seyed Dawood Mousavi Nasab
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
- Department of Viral vaccines, Pasteur Institute of Iran, Tehran
| | - Nayebali Ahmadi
- Proteomics Research Center, Department of Medical Laboratory Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aynaz Parhiz
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Hassan Firouzjani
- Department of Therapeutic Sera Quality Control, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organisation (AREEO), Karaj, Iran
| | - Mostafa Ghaderi
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Maryam Barati
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Javad Ehsani Ardakani
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Lobo PS, Cardoso JF, Barata RR, Lemos PS, Guerra SFS, Soares LS, Nunes MRT, Mascarenhas JDP. Near-complete genome of cosavirus A from a child hospitalized with acute gastroenteritis, Brazil. INFECTION GENETICS AND EVOLUTION 2020; 85:104555. [PMID: 32931954 DOI: 10.1016/j.meegid.2020.104555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 11/25/2022]
Abstract
Acute gastroenteritis (AG) is responsible for 525,000 deaths worldwide in children under-5-years and is caused by the Human Cosavirus (HCoSV; family Picornaviridae, Genus Cosavirus). Although its health importance, a significant percentage of diarrhea cases (≈ 40 %) still of unknown etiology. In Brazil, few studies have reported HCoSV-A sequences analyzing partial 5' UTR. This study characterized the first near-complete genome of a Cosavirus A (strain AM326) from a child hospitalized with AG in Amazonas state, Northern Brazil. High throughput sequencing (HTS) was performed using the HiSeq™ 2500 platform (Illumina) in one fecal specimen collected from the Surveillance of Rotavirus Network of the Evandro Chagas Institute collected in 2017. Sequence reads were assembled by the De Novo approach using three distinct algorithmic (IDBA-UD, Spades, and MegaHit). The final contig was recovered from the HCoSV-AM326 sample revealing 7,735 nt in length (SRA number SRR12535029; GenBank MT023104) and the genetic characterization, as well as phylogenetic analysis demonstrated a new variant strain from Brazil, highlighting the association of HCoSV-A as a possible causative agent of AG. This finding demonstrates the importance of the metagenomic approach to elucidate cases of diarrhea without a defined etiology, as well as providing a better understanding about the virus genetics, evolution and epidemiology.
Collapse
Affiliation(s)
- Patrícia S Lobo
- Postgraduate Program in Virology, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | - Jedson F Cardoso
- Postgraduate Program in Virology, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | - Rafael R Barata
- Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Poliana S Lemos
- Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Sylvia F S Guerra
- Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Luana S Soares
- Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Márcio R T Nunes
- Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Joana D P Mascarenhas
- Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil.
| |
Collapse
|
20
|
Rao CD. Enteroviruses in gastrointestinal diseases. Rev Med Virol 2020; 31:1-12. [PMID: 32761735 DOI: 10.1002/rmv.2148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 01/04/2023]
Abstract
Gastrointestinal diseases including diarrhoea constitute a major cause of morbidity and mortality in infants and young children especially in developing countries. Worldwide deaths among all ages due to diarrhoea during 2015 were estimated to be about 1.31 million, diarrhoeal deaths in children below 5 years of age being 499 000. Rotavirus accounted for about 200 000 deaths. Although diarrhoeal deaths decreased significantly during the last two decades, they still represent the third largest cause of infantile deaths. Several bacterial, viral, parasitic, fungal and non-infectious diarrhoea causing agents have been identified, but 30% to 40% of diarrhoeal cases remain undiagnosed. Enteroviruses transmit by the faecal-oral route and replicate first in intestinal cells before spreading to the target organ. They have been associated with diarrhoea in a few studies, but their causative role in diarrhoea in humans has not been systematically demonstrated. In view of the recent demonstration that enteroviruses cause diarrhoea in newborn mice pups, thus validating Koch's postulates, the purpose of this review is to emphasise the importance of recognising enteroviruses as major gastrointestinal pathogens associated with acute and persistent diarrhoea and non-diarrhoeal increased frequency of bowel movements in infants, young children and adults. Our studies and several other subsequent studies reported from different countries should stimulate strategies to reduce the burden of infantile gastrointestinal disease, which has hitherto remained unaddressed.
Collapse
Affiliation(s)
- C Durga Rao
- Department of Biology, SRM University, Amaravati, India
| |
Collapse
|
21
|
Wan Q, Song D, Li H, He ML. Stress proteins: the biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal Transduct Target Ther 2020; 5:125. [PMID: 32661235 PMCID: PMC7356129 DOI: 10.1038/s41392-020-00233-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/26/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Stress proteins (SPs) including heat-shock proteins (HSPs), RNA chaperones, and ER associated stress proteins are molecular chaperones essential for cellular homeostasis. The major functions of HSPs include chaperoning misfolded or unfolded polypeptides, protecting cells from toxic stress, and presenting immune and inflammatory cytokines. Regarded as a double-edged sword, HSPs also cooperate with numerous viruses and cancer cells to promote their survival. RNA chaperones are a group of heterogeneous nuclear ribonucleoproteins (hnRNPs), which are essential factors for manipulating both the functions and metabolisms of pre-mRNAs/hnRNAs transcribed by RNA polymerase II. hnRNPs involve in a large number of cellular processes, including chromatin remodelling, transcription regulation, RNP assembly and stabilization, RNA export, virus replication, histone-like nucleoid structuring, and even intracellular immunity. Dysregulation of stress proteins is associated with many human diseases including human cancer, cardiovascular diseases, neurodegenerative diseases (e.g., Parkinson’s diseases, Alzheimer disease), stroke and infectious diseases. In this review, we summarized the biologic function of stress proteins, and current progress on their mechanisms related to virus reproduction and diseases caused by virus infections. As SPs also attract a great interest as potential antiviral targets (e.g., COVID-19), we also discuss the present progress and challenges in this area of HSP-based drug development, as well as with compounds already under clinical evaluation.
Collapse
Affiliation(s)
- Qianya Wan
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Dan Song
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Huangcan Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China. .,CityU Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
22
|
Liu Q, Wang H, Ling Y, Yang SX, Wang XC, Zhou R, Xiao YQ, Chen X, Yang J, Fu WG, Zhang W, Qi GL. Viral metagenomics revealed diverse CRESS-DNA virus genomes in faeces of forest musk deer. Virol J 2020; 17:61. [PMID: 32334626 PMCID: PMC7183601 DOI: 10.1186/s12985-020-01332-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/16/2020] [Indexed: 01/08/2023] Open
Abstract
Background Musk deer can produce musk which has high medicinal value and is closely related to human health. Viruses in forest musk deer both threaten the health of forest musk deer and human beings. Methods Using viral metagenomics we investigated the virome in 85 faeces samples collected from forest musk deer. Results In this article, eight novel CRESS-DNA viruses were characterized, whole genomes were 2148 nt–3852 nt in length. Phylogenetic analysis indicated that some viral genomes were part of four different groups of CRESS-DNA virus belonging in the unclassified CRESS-DNA virus, Smacoviridae, pCPa-like virus and pPAPh2-like virus. UJSL001 (MN621482), UJSL003 (MN621469) and UJSL017 (MN621476) fall into the branch of unclassified CRESS-DNA virus (CRESSV1–2), UJSL002 (MN621468), UJSL004 (MN621481) and UJSL007 (MN621470) belong to the cluster of Smacoviridae, UJSL005 (MN604398) showing close relationship with pCPa-like (pCRESS4–8) clusters and UJSL006 (MN621480) clustered into the branch of pPAPh2-like (pCRESS9) virus, respectively. Conclusion The virome in faeces samples of forest musk deer from Chengdu, Sichuan province, China was revealed, which further characterized the diversity of viruses in forest musk deer intestinal tract.
Collapse
Affiliation(s)
- Qi Liu
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.,Agricultural Engineering Research Institute, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hao Wang
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yu Ling
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Shi-Xing Yang
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xiao-Chun Wang
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Rui Zhou
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yu-Qing Xiao
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Xu Chen
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jie Yang
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Wei-Guo Fu
- Agricultural Engineering Research Institute, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Gui-Lan Qi
- Institute of Animal Husbandry, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, China.
| |
Collapse
|
23
|
Di Cristanziano V, Weimer K, Böttcher S, Sarfo FS, Dompreh A, Cesar LG, Knops E, Heger E, Wirtz M, Kaiser R, Norman B, Phillips RO, Feldt T, Eberhardt KA. Molecular Characterization and Clinical Description of Non-Polio Enteroviruses Detected in Stool Samples from HIV-Positive and HIV-Negative Adults in Ghana. Viruses 2020; 12:v12020221. [PMID: 32079128 PMCID: PMC7077198 DOI: 10.3390/v12020221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/31/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
In the post-polio eradication era, increasing attention is given to non-polio enteroviruses. Most of the data about enteroviruses in sub-Saharan Africa are related to acute flaccid paralysis surveillance and target the pediatric population. This study aimed to investigate the presence of enterovirus in PLHIV (people living with HIV) and HIV-negative individuals in Ghana. Stool samples from HIV-positive individuals (n = 250) and healthy blood donors (n = 102) attending the Komfo Anokye Teaching Hospital in Kumasi, Ghana, were screened by real-time PCR for enterovirus. Molecular typing of the VP1 region was performed. Enterovirus-positive samples were tested for norovirus, adenovirus, rotavirus, sapovirus, and cosaviruses. Twenty-six out of 250 HIV-positive subjects (10.4%) and 14 out of 102 HIV-negative individuals (13.7%) were detected enterovirus-positive, not showing a significant different infection rate between the two groups. HIV-negative individuals were infected with Enterovirus C strains only. HIV-positive participants were detected positive for species Enterovirus A, Enterovirus B, and Enterovirus C. Co-infections with other viral enteric pathogens were almost exclusively detected among HIV-positive participants. Overall, the present study provides the first data about enteroviruses within HIV-positive and HIV-negative adults living in Ghana.
Collapse
Affiliation(s)
- Veronica Di Cristanziano
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50935 Cologne, Germany; (V.D.C.); (K.W.); (E.K.); (E.H.); (M.W.); (R.K.)
| | - Kristina Weimer
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50935 Cologne, Germany; (V.D.C.); (K.W.); (E.K.); (E.H.); (M.W.); (R.K.)
| | - Sindy Böttcher
- National Reference Centre for Poliomyelitis and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany;
| | - Fred Stephen Sarfo
- Kwame Nkrumah University of Science and Technology, Kumasi 00233, Ghana; (F.S.S.); (B.N.); (R.O.P.)
- Komfo Anokye Teaching Hospital, Kumasi 00233, Ghana;
| | | | | | - Elena Knops
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50935 Cologne, Germany; (V.D.C.); (K.W.); (E.K.); (E.H.); (M.W.); (R.K.)
| | - Eva Heger
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50935 Cologne, Germany; (V.D.C.); (K.W.); (E.K.); (E.H.); (M.W.); (R.K.)
| | - Maike Wirtz
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50935 Cologne, Germany; (V.D.C.); (K.W.); (E.K.); (E.H.); (M.W.); (R.K.)
| | - Rolf Kaiser
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50935 Cologne, Germany; (V.D.C.); (K.W.); (E.K.); (E.H.); (M.W.); (R.K.)
| | - Betty Norman
- Kwame Nkrumah University of Science and Technology, Kumasi 00233, Ghana; (F.S.S.); (B.N.); (R.O.P.)
- Komfo Anokye Teaching Hospital, Kumasi 00233, Ghana;
| | - Richard Odame Phillips
- Kwame Nkrumah University of Science and Technology, Kumasi 00233, Ghana; (F.S.S.); (B.N.); (R.O.P.)
- Komfo Anokye Teaching Hospital, Kumasi 00233, Ghana;
- Kumasi Center for Collaborative Research in Tropical Medicine, Kumasi 00233, Ghana
| | - Torsten Feldt
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, 40225 Düsseldorf, Germany;
| | - Kirsten Alexandra Eberhardt
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine and I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20359 Hamburg, Germany
- Correspondence: ; Tel.: +49-40-428-180
| |
Collapse
|
24
|
French RK, Holmes EC. An Ecosystems Perspective on Virus Evolution and Emergence. Trends Microbiol 2019; 28:165-175. [PMID: 31744665 DOI: 10.1016/j.tim.2019.10.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022]
Abstract
Understanding the emergence of pathogenic viruses has dominated studies of virus evolution. However, new metagenomic studies imply that relatively few of an immense number of viruses may lead to overt disease. This suggests a change in emphasis, from viruses as habitual pathogens to integral components of ecosystems. Here we show how viruses alter interactions between host individuals, populations, and ecosystems, impacting ecosystem health, resilience, and function, and how host ecology in turn impacts viral abundance and diversity. Moving to an ecosystems perspective will put virus evolution and disease emergence in its true context, and enhance our understanding of ecological processes.
Collapse
Affiliation(s)
- Rebecca K French
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
25
|
Rezig D, Lamari A, Touzi H, Meddeb Z, Triki H. Typing of Human Cosaviruses by sequencing of full VP1: Update on global genetic diversity and identification of possible new genotypes circulating in Tunisia, North Africa. INFECTION GENETICS AND EVOLUTION 2019; 78:104115. [PMID: 31715246 DOI: 10.1016/j.meegid.2019.104115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 10/25/2022]
Abstract
Human Cosaviruses (HCoSVs) are relatively newly characterized picornaviruses; they have been described in non-polio acute flaccid paralysis, diarrheal patients, and healthy individuals. Previous studies showed HCoSV circulation in Tunisia and only six genotypes circulating in the country were reported. In the present study, we sequenced 27 complete VP1 genomic region from HCoSV isolates in human feces from healthy individuals and patients with acute flaccid paralysis in Tunisia. Most of the Tunisian sequences belong to species A (78%, 21 out of 27). Three sequences belong to species B, two to species E and one sequence to species D. The Tunisian sequences belonged to genotype A6, A7, A8, A10, A1, A17 and E2. Based on genetic distance criteria for assigning genotypes corresponding to neutralization serotypes in enteroviruses we also identified 4 new HCoSV genotypes named A25, B2, B3 and D6. Our study updates the genetic classification of HCoSVs, proposes new genotypes within species A, B and D and contributes to a better knowledge of the HCoSV circulation throughout the world.
Collapse
Affiliation(s)
- Dorra Rezig
- University of Tunis El Manar, Pasteur Institute of Tunis, Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles, 13 Place Pasteur, 1002- Le Belvédère BP74, Tunis, Tunisia.
| | - Asma Lamari
- University of Tunis El Manar, Pasteur Institute of Tunis, Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles, 13 Place Pasteur, 1002- Le Belvédère BP74, Tunis, Tunisia; University of Tunis El Manar, Faculty of Sciences, BP94 Cité Rommana, 1068 Tunis, Tunisia
| | - Henda Touzi
- University of Tunis El Manar, Pasteur Institute of Tunis, Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles, 13 Place Pasteur, 1002- Le Belvédère BP74, Tunis, Tunisia
| | - Zina Meddeb
- University of Tunis El Manar, Pasteur Institute of Tunis, Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles, 13 Place Pasteur, 1002- Le Belvédère BP74, Tunis, Tunisia
| | - Henda Triki
- University of Tunis El Manar, Pasteur Institute of Tunis, Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles, 13 Place Pasteur, 1002- Le Belvédère BP74, Tunis, Tunisia
| |
Collapse
|
26
|
Osundare FA, Opaleye OO, Akindele AA, Adedokun SA, Akanbi OA, Bock CT, Diedrich S, Böttcher S. Detection and Characterization of Human Enteroviruses, Human Cosaviruses, and a New Human Parechovirus Type in Healthy Individuals in Osun State, Nigeria, 2016/2017. Viruses 2019; 11:E1037. [PMID: 31703317 PMCID: PMC6893832 DOI: 10.3390/v11111037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022] Open
Abstract
Human enteroviruses and human parechoviruses are associated with a broad range of diseases and even severe and fatal conditions. For human cosaviruses, the etiological role is yet unknown. Little is known about the circulation of non-polio enteroviruses, human parechoviruses, and human cosaviruses in Nigeria. A total of 113 stool samples were collected from healthy individuals in Osun State between February 2016 and May 2017. RT-PCR assays targeting the 5' non-coding region (5' -NCR) were used to screen for human enteroviruses, human parechoviruses, and human cosaviruses. For human enteroviruses, species-specific RT-PCR assays targeting the VP1 regions were used for molecular typing. Inoculation was carried out on RD-A, CaCo-2, HEp-2C, and L20B cell lines to compare molecular and virological assays. Ten samples tested positive for enterovirus RNA with 11 strains detected, including CV-A13 (n = 3), E-18 (n = 2), CV-A20 (n = 1), CV-A24 (n = 1), EV-C99 (n = 1), and EV-C116 (n = 2). Three samples tested positive for human parechovirus RNA, and full genome sequencing on two samples allowed assignment to a new Parechovirus A type (HPeV-19). Thirty-three samples tested positive for cosavirus with assignment to species Cosavirus D and Cosavirus A based on the 5'-NCR region. Screening of stool samples collected from healthy individuals in Nigeria in 2016 and 2017 revealed a high diversity of circulating human enteroviruses, human parechoviruses, and human cosaviruses. Molecular assays for genotyping showed substantial benefits compared with those of cell-culture assays.
Collapse
Affiliation(s)
- Folakemi Abiodun Osundare
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo 230222, Nigeria; (F.A.O.); (O.O.O.); (A.A.A.); (S.A.A.); (O.A.A.)
- Science Laboratory Technology Department, Federal Polytechnic, Ede 232101, Nigeria
| | - Oladele Oluyinka Opaleye
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo 230222, Nigeria; (F.A.O.); (O.O.O.); (A.A.A.); (S.A.A.); (O.A.A.)
- Department of Infectious Diseases, Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany
| | - Akeem Abiodun Akindele
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo 230222, Nigeria; (F.A.O.); (O.O.O.); (A.A.A.); (S.A.A.); (O.A.A.)
| | - Samuel Adeyinka Adedokun
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo 230222, Nigeria; (F.A.O.); (O.O.O.); (A.A.A.); (S.A.A.); (O.A.A.)
| | - Olusola Anuoluwapo Akanbi
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo 230222, Nigeria; (F.A.O.); (O.O.O.); (A.A.A.); (S.A.A.); (O.A.A.)
- Department of Infectious Diseases, Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany
| | - Claus-Thomas Bock
- Department of Infectious Diseases, Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany
- Institute of Tropical Medicine, University of Tuebingen, 72074 Tuebingen, Germany
| | - Sabine Diedrich
- National Reference Center for Polioviruses and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany;
| | - Sindy Böttcher
- National Reference Center for Polioviruses and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany;
| |
Collapse
|
27
|
Okitsu S, Khamrin P, Takanashi S, Thongprachum A, Hoque SA, Takeuchi H, Khan MA, Hasan SMT, Iwata T, Shimizu H, Jimba M, Hayakawa S, Maneekarn N, Ushijima H. Molecular detection of enteric viruses in the stool samples of children without diarrhea in Bangladesh. INFECTION GENETICS AND EVOLUTION 2019; 77:104055. [PMID: 31629889 DOI: 10.1016/j.meegid.2019.104055] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/25/2019] [Accepted: 09/29/2019] [Indexed: 12/14/2022]
Abstract
A number of molecular epidemiological studies reported the detection of enteric viruses in asymptomatic children. The role of these viruses in an asymptomatic infection remains unclear. This study investigated the enteric viruses in the stool samples collected from children without diarrhea. Stool samples were collected during June to October 2016, from 227 children who lived in Matlab, Bangladesh. Seventeen enteric viruses, including rotavirus A, B, and C (RVA, RVB, and RVC), norovirus GI (NoV GI), norovirus GII (NoV GII), sapovirus (SaV), adenovirus (AdV), human astrovirus (HAstV), Aichivirus (AiV), human parechovirus (HPeV), enterovirus (EV), human bocavirus (HBoV), Saffold virus (SAFV), human cosavirus (HCoSV), bufavirus (BufV), salivirus (SalV), and rosavirus (RoV), were investigated by RT-PCR method. One hundred and eighty-two (80.2%; 182/227) samples were positive for some of these viruses, and 19.8% (45/227) were negative. Among the positive samples, 46.7% (85/182) were a single infection, and 53.3% (97/182) were coinfection with multiple viruses. The HCoSV was the most prevalent virus (41.4%), followed by EV (32.2%), NoV GII (25.6%), HPeV (8.8%), RVA (6.2%), AdV (5.7%), AiV (5.3%), SAFV (4.4%), and SaV (2.6%). Each of NoV GI, HAstV, HBoV, and BufV was detected at 0.4%. However, RVB, RVC, SalV, and RoV were not detected in this study. Phylogenetic analysis showed that diverse HCoSV species and genotypes were circulating in Bangladesh, and four strains of species A are proposed to be new genotypes. The data indicated that non-diarrheal Bangladeshi children were asymptomatically infected with wide varieties of enteric viruses.
Collapse
Affiliation(s)
- Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Japan; Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Japan.
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Sayaka Takanashi
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Japan
| | | | - Sheikh Ariful Hoque
- Cell and Tissue Culture Laboratory, Centre for Advanced Research in Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Haruko Takeuchi
- Department of Community and Global Health, Graduate School of Medicine, The University of Tokyo, Japan
| | - Md Alfazal Khan
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - S M Tafsir Hasan
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, Japan
| | - Masamine Jimba
- Department of Community and Global Health, Graduate School of Medicine, The University of Tokyo, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Japan; Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Japan
| |
Collapse
|
28
|
Li X, Lau SKP, Woo PCY. Molecular characterisation of emerging pathogens of unexplained infectious disease syndromes. Expert Rev Mol Diagn 2019; 19:839-848. [PMID: 31385539 DOI: 10.1080/14737159.2019.1651200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: The discoveries of HIV and Helicobacter pylori in the 1980s were landmarks in identification of novel pathogens causing unexplained infectious syndromes using conventional microbiological technologies. In the last few decades, advancement of molecular technologies has provided us with more robust tools to expand our armamentarium in this microbial hunting process. Areas covered: In this article, we give a brief overview of the most important molecular technologies we use for identification of emerging microbes associated with unexplained infectious syndromes, including 16S rRNA and other conserved targets sequencing for bacteria, internal transcribed spacer (ITS) and other target gene sequencing for fungi, polymerase and other gene sequencing for viruses, as well as deep sequencing. Then, we use several representative examples to illustrate how these techniques have been used for the discoveries of a few notable bacterial, fungal and viral pathogens associated with unexplained infectious syndromes in the last 20-30 years. Expert opinion: In the past and present, characterization of emerging pathogens of unexplained infectious disease syndromes has relied on a combination of conventional culture- and phenotype-based technologies and nucleic acid amplification and sequencing. In the next era, we envisage more widespread adoption of next generation technologies that can detect both known and previously undescribed pathogens.
Collapse
Affiliation(s)
- Xin Li
- Department of Microbiology, The University of Hong Kong , Hong Kong , China
| | - Susanna K P Lau
- Department of Microbiology, The University of Hong Kong , Hong Kong , China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong , Hong Kong , China.,Carol Yu Centre for Infection, The University of Hong Kong , Hong Kong , China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University , Hangzhou , China
| | - Patrick C Y Woo
- Department of Microbiology, The University of Hong Kong , Hong Kong , China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong , Hong Kong , China.,Carol Yu Centre for Infection, The University of Hong Kong , Hong Kong , China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University , Hangzhou , China
| |
Collapse
|
29
|
Abstract
Although viruses comprise the most abundant genetic material in the biosphere, to date only several thousand virus species have been formally defined. Such a limited perspective on virus diversity has in part arisen because viruses were traditionally considered only as etiologic agents of overt disease in humans or economically important species and were often difficult to identify using cell culture. This view has dramatically changed with the rise of metagenomics, which is transforming virus discovery and revealing a remarkable diversity of viruses sampled from diverse cellular organisms. These newly discovered viruses help fill major gaps in the evolutionary history of viruses, revealing a near continuum of diversity among genera, families, and even orders of RNA viruses. Herein, we review some of the recent advances in our understanding of the RNA virosphere that have stemmed from metagenomics, note future directions, and highlight some of the remaining challenges to this rapidly developing field.
Collapse
Affiliation(s)
- Yong-Zhen Zhang
- Shanghai Public Health Clinical Center and School of Public Health, Fudan University, Shanghai 200433, China; .,Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Yan-Mei Chen
- Shanghai Public Health Clinical Center and School of Public Health, Fudan University, Shanghai 200433, China; .,Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Wen Wang
- Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Xin-Chen Qin
- Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Edward C Holmes
- Shanghai Public Health Clinical Center and School of Public Health, Fudan University, Shanghai 200433, China; .,Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
30
|
Ecological Factors of Transmission, Persistence and Circulation of Pathogens In Bat Populations. FOLIA VETERINARIA 2019. [DOI: 10.2478/fv-2019-0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
The existence of bats is crucial for all ecosystem units as they fulfil numerous ecological roles. However, they are also considered to be natural reservoirs of a wide range of zoonotic microorganisms, especially viruses. In this review article we briefly summarize current knowledge about various ecological factors that facilitate bat pathogen dispersal and about the current approaches to monitoring viral communities present within bat populations. On the basis of the cited papers, we suggest that the increased focus on complex viral populations in bats and their interactions with other populations and the environment is necessary to fully comprehend the relationship between emerging infectious diseases, the environment and their toll on human health.
Collapse
|
31
|
Lamari A, Triki H, Driss N, Touzi H, Meddeb Z, Ben Yahia A, Barbouche MR, Rezig D. Iterative Excretion of Human Cosaviruses from Different Genotypes Associated with Combined Immunodeficiency Disorder. Intervirology 2019; 61:247-254. [PMID: 30726837 DOI: 10.1159/000495182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Human cosaviruses (HCoSVs) are newly discovered enteric viruses in the Picornaviridae family. They have been described in non-polio acute flaccid paralysis, diarrheal patients, and healthy individuals. They remain rarely documented in immunodeficient patients. OBJECTIVES This study reports iterative excretion of HCoSVs in a patient with major histocompatibility complex (MHC) class II combined immunodeficiency, a relatively common primary immunodeficiency in consanguineous settings. METHODS A total of 35 samples were collected from a patient followed for oral polio vaccine strains detection in stool samples during a 57-month period. Detection of HCoSVs in stools was performed by nested RT-PCR in the 5' noncoding region. The genotype identification and screening for recombinant strains was performed by sequencing in the VP1 and 3D genomic regions followed by phylogenetic analysis. RESULTS The patient was infected with HCoSVs twice at a 3-year interval. The excreted viruses belonged to 2 different genotypes with 2 probable recombinant viruses. During HCoSV infections, the patient was also excreting Sabin-related polioviruses. CONCLUSIONS This study describes excretion kinetics and genetic characteristics of HCoSVs in a patient with combined immunodeficiency due to MHC class II expression defect. The patient did not have concomitant symptoms related to the HCoSV infection.
Collapse
Affiliation(s)
- Asma Lamari
- Faculty of Sciences, University of Tunis El Manar, Tunis, Tunisia.,WHO Regional Reference Laboratory for Poliomyelitis and Measles, Laboratory of Clinical Virology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Henda Triki
- WHO Regional Reference Laboratory for Poliomyelitis and Measles, Laboratory of Clinical Virology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Nadia Driss
- WHO Regional Reference Laboratory for Poliomyelitis and Measles, Laboratory of Clinical Virology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Henda Touzi
- WHO Regional Reference Laboratory for Poliomyelitis and Measles, Laboratory of Clinical Virology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Zina Meddeb
- WHO Regional Reference Laboratory for Poliomyelitis and Measles, Laboratory of Clinical Virology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Ahlem Ben Yahia
- WHO Regional Reference Laboratory for Poliomyelitis and Measles, Laboratory of Clinical Virology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mohamed-Ridha Barbouche
- Laboratory of Immunology, Pasteur Institute of Tunis and Faculty of Medicine, University of Tunis El Manar, Tunis, Tunisia
| | - Dorra Rezig
- WHO Regional Reference Laboratory for Poliomyelitis and Measles, Laboratory of Clinical Virology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia,
| |
Collapse
|
32
|
Aiemjoy K, Altan E, Aragie S, Fry DM, Phan TG, Deng X, Chanyalew M, Tadesse Z, Callahan EK, Delwart E, Keenan JD. Viral species richness and composition in young children with loose or watery stool in Ethiopia. BMC Infect Dis 2019; 19:53. [PMID: 30642268 PMCID: PMC6332554 DOI: 10.1186/s12879-019-3674-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/02/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Stool consistency is an important diagnostic criterion in both research and clinical medicine and is often used to define diarrheal disease. METHODS We examine the pediatric enteric virome across stool consistencies to evaluate differences in richness and community composition using fecal samples collected from children aged 0 to 5 years participating in a clinical trial in the Amhara region of Ethiopia. The consistency of each sample was graded according to the modified Bristol Stool Form Scale for children (mBSFS-C) before a portion of stool was preserved for viral metagenomic analysis. Stool samples were grouped into 29 pools according to stool consistency type. Differential abundance was determined using negative-binomial modeling. RESULTS Of 446 censused children who were eligible to participate, 317 presented for the study visit examination and 269 provided stool samples. The median age of children with stool samples was 36 months. Species richness was highest in watery-consistency stool and decreased as stool consistency became firmer (Spearman's r = - 0.45, p = 0.013). The greatest differential abundance comparing loose or watery to formed stool was for norovirus GII (7.64, 95% CI 5.8, 9.5) followed by aichivirus A (5.93, 95% CI 4.0, 7.89) and adeno-associated virus 2 (5.81, 95%CI 3.9, 7.7). CONCLUSIONS In conclusion, we documented a difference in pediatric enteric viromes according to mBSFS-C stool consistency category, both in species richness and composition.
Collapse
Affiliation(s)
- Kristen Aiemjoy
- Francis I. Proctor Foundation, University of California San Francisco, 513 Parnassus Avenue, MedSci S309, Box 0412, San Francisco, CA 94143 USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, USA
| | - Eda Altan
- Blood Systems Research Institute, San Francisco, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, USA
| | | | - Dionna M. Fry
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, USA
| | - Tung G. Phan
- Blood Systems Research Institute, San Francisco, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, USA
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, USA
| | | | | | | | - Eric Delwart
- Blood Systems Research Institute, San Francisco, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, USA
| | - Jeremy D. Keenan
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, USA
- Department of Ophthalmology, University of California San Francisco, San Francisco, USA
| |
Collapse
|
33
|
Bonanno Ferraro G, Mancini P, Divizia M, Suffredini E, Della Libera S, Iaconelli M, La Rosa G. Occurrence and Genetic Diversity of Human Cosavirus in Sewage in Italy. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:386-390. [PMID: 30167976 DOI: 10.1007/s12560-018-9356-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Human Cosavirus (HCoSV) is a newly discovered virus whose role in human enteric diseases is still unknown. In Italy, the prevalence and genetic diversity of HCoSV are unexplored. One hundred forty-one raw sewage samples collected throughout Italy were screened for HCoSV by RT-nested PCR. HCoSV was detected in 25.5% of samples. Species A, C, and D, and a potentially new species were detected. Our results show a significant circulation and heterogeneity of HCoSV in Italy.
Collapse
Affiliation(s)
- G Bonanno Ferraro
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - P Mancini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Divizia
- Department Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - E Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - S Della Libera
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - G La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
34
|
Siqueira JD, Dominguez-Bello MG, Contreras M, Lander O, Caballero-Arias H, Xutao D, Noya-Alarcon O, Delwart E. Complex virome in feces from Amerindian children in isolated Amazonian villages. Nat Commun 2018; 9:4270. [PMID: 30323210 PMCID: PMC6189175 DOI: 10.1038/s41467-018-06502-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/06/2018] [Indexed: 01/22/2023] Open
Abstract
The number of viruses circulating in small isolated human populations may be reduced by viral extinctions and rare introductions. Here we used viral metagenomics to characterize the eukaryotic virome in feces from healthy children from a large urban center and from three Amerindian villages with minimal outside contact. Numerous human enteric viruses, mainly from the Picornaviridae and Caliciviridae families, were sequenced from each of the sites. Multiple children from the same villages shed closely related viruses reflecting frequent transmission clusters. Feces of isolated villagers also contained multiple viral genomes of unknown cellular origin from the Picornavirales order and CRESS-DNA group and higher levels of nematode and protozoan DNA. Despite cultural and geographic isolation, the diversity of enteric human viruses was therefore not reduced in these Amazonian villages. Frequent viral introductions and/or increased susceptibility to enteric infections may account for the complex fecal virome of Amerindian children in isolated villages.
Collapse
Affiliation(s)
- Juliana D Siqueira
- Blood Systems Research Institute, San Francisco, CA, 94118, USA.,Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro, 20.231-050, Brazil
| | - Maria Gloria Dominguez-Bello
- Department of Biochemistry and Microbiology and of Anthropology, Rutgers University, New Brunswick, NJ, 08901-8554, USA
| | - Monica Contreras
- Center for Biophysics and Biochemistry, Venezuelan Institute of Scientific Research (IVIC), Caracas, 01204, Venezuela
| | - Orlana Lander
- Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, 1051, Venezuela
| | - Hortensia Caballero-Arias
- Department of Anthropology, Venezuelan Institute of Scientific Research (IVIC), Caracas, 01204, Venezuela
| | - Deng Xutao
- Blood Systems Research Institute, San Francisco, CA, 94118, USA.,Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA, 94118, USA
| | - Oscar Noya-Alarcon
- Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, 1051, Venezuela.,Amazonic Center for Research and Control of Tropical Diseases (CAICET), Puerto Ayacucho, 7101, Venezuela
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, 94118, USA. .,Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA, 94118, USA.
| |
Collapse
|
35
|
Molecular characterization of a novel picobirnavirus in a chicken. Arch Virol 2018; 163:3455-3458. [PMID: 30191372 DOI: 10.1007/s00705-018-4012-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/17/2018] [Indexed: 12/27/2022]
Abstract
Picobirnaviruses (PBVs) are bisegmented viruses with a wide geographical and host species distribution. The number of novel PBV sequences has been increasing with the help of the viral metagenomics. A novel picobirnavirus strain, pbv/CHK/M3841/HUN/2011, was identified by viral metagenomics; the complete segment 1 (MH327933) and 2 (MH327934) sequences were obtained by RT-PCR from a cloacal sample of a diseased broiler breeder pullet in Hungary. Although the conserved nucleotide (e.g., ribosome binding site) and amino acid motifs (e.g., ExxRxNxxxE, S-domain of the viral capsid and motifs in the RNA-dependent RNA polymerase) were identifiable in the chicken picobirnavirus genome, the putative segment 1 showed low (< 30%) amino acid sequence identity to the corresponding proteins of marmot and dromedary PBVs, while segment 2 showed higher (< 70%) amino acid sequence identity to a wolf PBV protein sequence. This is the first full-genome picobirnavirus sequence from a broiler breeder chicken, but the pathogenicity of this virus is still questionable.
Collapse
|
36
|
Near full length genome of a recombinant (E/D) cosavirus strain from a rural area in the central region of Brazil. Sci Rep 2018; 8:12304. [PMID: 30120342 PMCID: PMC6098101 DOI: 10.1038/s41598-018-30214-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/23/2018] [Indexed: 11/30/2022] Open
Abstract
In the present article we report the nearly full length genome of a Cosavirus strain (BRTO-83) isolated from a child with acute gastroenteritis, and who is an inhabitant of a rural area in the central region of Brazil. The sample was previously screened and negative for both: common enteric viruses (i.e. rotavirus and norovirus), bacteria, endoparasites and helminthes. Evolutionary analysis and phylogenetic inferences indicated that the Brazilian BRTO-83 Cosavirus strain was a recombinant virus highly related to the E/D recombinant NG385 strain (Genbank JN867757), which was isolated in Nigeria from an acute flaccid paralysis patient. This is the first report of a recombinant E/D Cosavirus strain detected in Brazil, and the second genome described worldwide. Further surveillance and molecular studies are required to fully understand the epidemiology, distribution and evolution of the Cosavirus.
Collapse
|
37
|
|
38
|
Thongprachum A, Fujimoto T, Takanashi S, Saito H, Okitsu S, Shimizu H, Khamrin P, Maneekarn N, Hayakawa S, Ushijima H. Detection of nineteen enteric viruses in raw sewage in Japan. INFECTION GENETICS AND EVOLUTION 2018; 63:17-23. [PMID: 29753903 DOI: 10.1016/j.meegid.2018.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/18/2018] [Accepted: 05/09/2018] [Indexed: 11/19/2022]
Abstract
One-year surveillance for enteric viruses in raw sewage was conducted in Kansai area, central part of Japan from July 2015 to June 2016. The raw sewage was collected monthly from an inlet polluted pool and was concentrated by polyethylene glycol (PEG) precipitation. Twelve sewage samples were screened for nineteen kinds of enteric viruses by using RT-PCR method and further analyzed by nucleotide sequencing. Twelve enteric viruses were found in the investigative sewage samples. Rotavirus A and norovirus GI and GII with several genotypes were detected all year round. Interestingly, norovirus GII.17 (Kawasaki-like strain) and rotavirus G2 that caused the outbreaks in Japan last epidemic season were also found in sewage. Moreover, adenovirus, astrovirus, sapovirus, bocavirus, human parechovirus, enterovirus, Aichi virus, Saffold virus and salivirus were also detected. Enterovirus D68 was detected only in the same month as those of enterovirus D68 outbreak in Japan. The rotavirus B and C, hepatitis A and E viruses, human cosavirus, bufavirus and rosavirus were not detected in this surveillance. The study provides the information on the enteric viruses contaminated in raw sewage, which is valuable for risk assessment. Our results imply that the viruses detected in sewage may be associated with infections in the Japanese population.
Collapse
Affiliation(s)
- Aksara Thongprachum
- Faculty of Public Health, Chiang Mai University, Chiang Mai, Thailand; Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Tsuguto Fujimoto
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sayaka Takanashi
- Department of Developmental Medical Sciences, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Saito
- Akita Prefectural Research Center for Public Health and Environment, Akita, Japan
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan; Department of Developmental Medical Sciences, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan; Department of Developmental Medical Sciences, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
39
|
Greninger AL. A decade of RNA virus metagenomics is (not) enough. Virus Res 2018; 244:218-229. [PMID: 29055712 PMCID: PMC7114529 DOI: 10.1016/j.virusres.2017.10.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 12/16/2022]
Abstract
It is hard to overemphasize the role that metagenomics has had on our recent understanding of RNA virus diversity. Metagenomics in the 21st century has brought with it an explosion in the number of RNA virus species, genera, and families far exceeding that following the discovery of the microscope in the 18th century for eukaryotic life or culture media in the 19th century for bacteriology or the 20th century for virology. When the definition of success in organism discovery is measured by sequence diversity and evolutionary distance, RNA viruses win. This review explores the history of RNA virus metagenomics, reasons for the successes so far in RNA virus metagenomics, and methodological concerns. In addition, the review briefly covers clinical metagenomics and environmental metagenomics and highlights some of the critical accomplishments that have defined the fast pace of RNA virus discoveries in recent years. Slightly more than a decade in, the field is exhausted from its discoveries but knows that there is yet even more out there to be found.
Collapse
Affiliation(s)
- Alexander L Greninger
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, United States; Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
40
|
Abstract
Next-generation sequencing has opened avenues to studying complex populations such as the bacteriome (all bacteria), mycobiome (all fungi), and virome (all viruses in a given sample). Viromes are less often investigated as compared to bacteriomes. The reasons are mostly methodological: because no common pan-viral sequence signature exists, metagenomic sequencing remains the only option. This brings about the need of laborious virus enrichment, multiple signal amplification steps with virtually no possibility of interim quality control, and complicated bioinformatic analysis of the ensuing sequence data. Nevertheless, over the past decade virome sequencing has been enormously successful in identifying new agents in human and animal diseases, and in characterizing viruses in various ecological niches. Recently, virome sequencing has been also employed in studies of non-infectious diseases, which has brought about new challenges of sensitivity, costs, and reproducibility in testing of large sets of samples. Here, we present a detailed protocol that has been utilized in virome studies where hundreds of samples had to be reliably tested in order to assess the association of the stool virome with susceptibility to type 1 diabetes, a non-infectious autoimmune disease.
Collapse
Affiliation(s)
- Lenka Kramná
- Department of Pediatrics, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Medical Microbiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ondřej Cinek
- Department of Pediatrics, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
- Department of Medical Microbiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
41
|
Abstract
Picornaviruses are small, nonenveloped, icosahedral RNA viruses with positive-strand polarity. Although the vast majority of picornavirus infections remain asymptomatic, many picornaviruses are important human and animal pathogens and cause diseases that affect the central nervous system, the respiratory and gastrointestinal tracts, heart, liver, pancreas, skin and eye. A stunning increase in the number of newly identified picornaviruses in the past decade has shown that picornaviruses are globally distributed and infect vertebrates of all classes. Moreover, picornaviruses exhibit a surprising diversity of both genome sequences and genome layouts, sometimes challenging the definition of taxonomic relevant criteria. At present, 35 genera comprising 80 species and more than 500 types are acknowledged. Fifteen species within five new and three existing genera have been proposed in 2017, but more than 50 picornaviruses still remain unassigned.
Collapse
Affiliation(s)
- Roland Zell
- Division of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Str. 2, 07745, Jena, Germany.
| |
Collapse
|
42
|
Prevalence of human cosavirus and saffold virus with an emergence of saffold virus genotype 6 in patients hospitalized with acute gastroenteritis in Chiang Mai, Thailand, 2014–2016. INFECTION GENETICS AND EVOLUTION 2017; 53:1-6. [DOI: 10.1016/j.meegid.2017.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/02/2017] [Accepted: 05/07/2017] [Indexed: 12/12/2022]
|
43
|
Yu JM, Ao YY, Li LL, Duan ZJ. Identification of a novel cosavirus species in faeces of children and its relationship with acute gastroenteritis in China. Clin Microbiol Infect 2017; 23:550-554. [DOI: 10.1016/j.cmi.2017.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 02/08/2017] [Accepted: 02/14/2017] [Indexed: 11/26/2022]
|
44
|
Abstract
Viruses rapidly evolve and can emerge in unpredictable ways. Transmission pathways by which foodborne viruses may enter human populations and evolutionary mechanisms by which viruses can become virulent are discussed in this chapter. A majority of viruses emerge from zoonotic animal reservoirs, often by adapting and infecting intermediate hosts, such as domestic animals and livestock. Viruses that are known foodborne threats include hepatitis E virus, tick-borne encephalitis virus, enteroviruses, adenovirus, and astroviruses, among others. Viruses may potentially evolve and emerge as a result of modern agricultural practices which can concentrate livestock and bring them into contact with wild animals. Examples of viruses that have emerged in this manner are influenza, coronaviruses such as severe acute respiratory syndrome and Middle East respiratory syndrome, and the Nipah virus. The role of bats, bush meat, rodents, pigs, cattle, and poultry as reservoirs from which infectious pathogenic viruses emerge are discussed.
Collapse
|
45
|
Kumar A, Murthy S, Kapoor A. Evolution of selective-sequencing approaches for virus discovery and virome analysis. Virus Res 2017; 239:172-179. [PMID: 28583442 PMCID: PMC5819613 DOI: 10.1016/j.virusres.2017.06.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/28/2016] [Accepted: 06/02/2017] [Indexed: 12/11/2022]
Abstract
Description of virus enrichment techniques for metagenomics based virome analysis. Usefulness of recently developed virome capture sequencing techniques. Perspective on negative and positive selection approaches for virome analysis.
Recent advances in sequencing technologies have transformed the field of virus discovery and virome analysis. Once mostly confined to the traditional Sanger sequencing based individual virus discovery, is now entirely replaced by high throughput sequencing (HTS) based virus metagenomics that can be used to characterize the nature and composition of entire viromes. To better harness the potential of HTS for the study of viromes, sample preparation methodologies use different approaches to exclude amplification of non-viral components that can overshadow low-titer viruses. These virus-sequence enrichment approaches mostly focus on the sample preparation methods, like enzymatic digestion of non-viral nucleic acids and size exclusion of non-viral constituents by column filtration, ultrafiltration or density gradient centrifugation. However, recently a new approach of virus-sequence enrichment called virome-capture sequencing, focused on the amplification or HTS library preparation stage, was developed to increase the ability of virome characterization. This new approach has the potential to further transform the field of virus discovery and virome analysis, but its technical complexity and sequence-dependence warrants further improvements. In this review we discuss the different methods, their applications and evolution, for selective sequencing based virome analysis and also propose refinements needed to harness the full potential of HTS for virome analysis.
Collapse
Affiliation(s)
- Arvind Kumar
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Satyapramod Murthy
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Amit Kapoor
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, College of Medicine and Public Health, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
46
|
Gerba CP, Betancourt WQ, Kitajima M. How much reduction of virus is needed for recycled water: A continuous changing need for assessment? WATER RESEARCH 2017; 108:25-31. [PMID: 27838026 PMCID: PMC7112101 DOI: 10.1016/j.watres.2016.11.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 05/10/2023]
Abstract
To ensure the safety of wastewater reuse for irrigation of food crops and drinking water pathogenic viruses must be reduced to levels that pose no significant risk. To achieve this goal minimum reduction of viruses by treatment trains have been suggested. For use of edible crops a 6-log reduction and for production of potable drinking water a 12-log reduction has been suggested. These reductions were based on assuming infective virus concentrations of 105 to 106 per liter. Recent application of molecular methods suggests that some pathogenic viruses may be occurring in concentrations of 107 to 109 per liter. Factors influencing these levels include the development of molecular methods for virus detection, emergence of newly recognized viruses, decrease in per capita water use due to conservation measures, and outbreaks. Since neither cell culture nor molecular methods can assess all the potentially infectious virus in wastewater conservative estimates should be used to assess the virus load in untreated wastewater. This review indicates that an additional 2- to 3-log reduction of viruses above current recommendations may be needed to ensure the safety of recycled water. Information is needed on peak loading of viruses. In addition, more virus groups need to be quantified using better methods of virus quantification, including more accurate methods for measuring viral infectivity in order to better quantify risks from viruses in recycled water.
Collapse
Affiliation(s)
- Charles P Gerba
- The Water, Energy and Sustainable Technology Center, Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ, United States.
| | - Walter Q Betancourt
- The Water, Energy and Sustainable Technology Center, Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ, United States.
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
47
|
Thongprachum A, Khamrin P, Pham NTK, Takanashi S, Okitsu S, Shimizu H, Maneekarn N, Hayakawa S, Ushijima H. Multiplex RT-PCR for rapid detection of viruses commonly causing diarrhea in pediatric patients. J Med Virol 2016; 89:818-824. [PMID: 27735999 DOI: 10.1002/jmv.24711] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2016] [Indexed: 01/16/2023]
Abstract
Multiplex RT-PCR method using five sets of panel primers was developed for the detection of diarrheal viruses, including rotavirus A, B, and C, adenovirus, astrovirus, norovirus GI and GII, sapovirus, Aichi virus, parechovirus, enterovirus, cosavirus, bocavirus, and Saffold virus. The sensitivity of the method was evaluated and tested with 751 fecal specimens collected from Japanese children with acute diarrhea. Several kinds of viruses were detected in 528 out of 751 (70.3%) fecal specimens. Mixed-infection with different viruses in clinical specimens could also be effectively detected. The method proved to be reliable with highly sensitive and specific and useful for routine diagnosis. J. Med. Virol. 89:818-824, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aksara Thongprachum
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.,Department of Developmental Medical Sciences, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ngan Thi Kim Pham
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Sayaka Takanashi
- Department of Developmental Medical Sciences, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.,Department of Developmental Medical Sciences, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Disease, Tokyo, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.,Department of Developmental Medical Sciences, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
48
|
Lau SKP, Woo PCY, Li KSM, Zhang HJ, Fan RYY, Zhang AJX, Chan BCC, Lam CSF, Yip CCY, Yuen MC, Chan KH, Chen ZW, Yuen KY. Identification of Novel Rosavirus Species That Infects Diverse Rodent Species and Causes Multisystemic Dissemination in Mouse Model. PLoS Pathog 2016; 12:e1005911. [PMID: 27737017 PMCID: PMC5063349 DOI: 10.1371/journal.ppat.1005911] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/02/2016] [Indexed: 01/14/2023] Open
Abstract
While novel picornaviruses are being discovered in rodents, their host range and pathogenicity are largely unknown. We identified two novel picornaviruses, rosavirus B from the street rat, Norway rat, and rosavirus C from five different wild rat species (chestnut spiny rat, greater bandicoot rat, Indochinese forest rat, roof rat and Coxing's white-bellied rat) in China. Analysis of 13 complete genome sequences showed that “Rosavirus B” and “Rosavirus C” represent two potentially novel picornavirus species infecting different rodents. Though being most closely related to rosavirus A, rosavirus B and C possessed distinct protease cleavage sites and variations in Yn-Xm-AUG sequence in 5’UTR and myristylation site in VP4. Anti-rosavirus B VP1 antibodies were detected in Norway rats, whereas anti-rosavirus C VP1 and neutralizing antibodies were detected in Indochinese forest rats and Coxing's white-bellied rats. While the highest prevalence was observed in Coxing's white-bellied rats by RT-PCR, the detection of rosavirus C from different rat species suggests potential interspecies transmission. Rosavirus C isolated from 3T3 cells causes multisystemic diseases in a mouse model, with high viral loads and positive viral antigen expression in organs of infected mice after oral or intracerebral inoculation. Histological examination revealed alveolar fluid exudation, interstitial infiltration, alveolar fluid exudate and wall thickening in lungs, and hepatocyte degeneration and lymphocytic/monocytic inflammatory infiltrates with giant cell formation in liver sections of sacrificed mice. Since rosavirus A2 has been detected in fecal samples of children, further studies should elucidate the pathogenicity and emergence potential of different rosaviruses. We identified two novel picornaviruses, rosavirus B and C, infecting street and wild rats respectively in China. While rosavirus B was detected from Norway rats, rosavirus C was detected from five different wild rat species (chestnut spiny rat, greater bandicoot rat, Indochinese forest rat, roof rat and Coxing's white-bellied rat) by RT-PCR. Anti-rosavirus B antibodies were detected in Norway rats, whereas anti-rosavirus C antibodies were detected in Indochinese forest rats and Coxing's white-bellied rats, supporting potential interspecies transmission of rosavirus C. Genome analysis supported the classification of rosavirus B and C as two novel picornavirus species, with genome features distinct from rosavirus A. Rosavirus C isolated from 3T3 cells causes multisystemic diseases in a mouse model, with viruses and pathologies detected in various organs of infected mice after oral or intracerebral inoculation. Our results extend our knowledge on the host range and pathogenicity of rodent picornaviruses.
Collapse
Affiliation(s)
- Susanna K. P. Lau
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Patrick C. Y. Woo
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Kenneth S. M. Li
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Hao-Ji Zhang
- Department of Veterinary Medicine, Foshan University, Foshan, China
| | - Rachel Y. Y. Fan
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Anna J. X. Zhang
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Brandon C. C. Chan
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Carol S. F. Lam
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Cyril C. Y. Yip
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Ming-Chi Yuen
- Food and Environmental Hygiene Department, Hong Kong, China
| | - Kwok-Hung Chan
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Zhi-Wei Chen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
- * E-mail:
| |
Collapse
|
49
|
Yang Y, Ju A, Xu X, Cao X, Tao Y. A novel type of cosavirus from children with nonpolio acute flaccid paralysis. Virol J 2016; 13:169. [PMID: 27729038 PMCID: PMC5059993 DOI: 10.1186/s12985-016-0630-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/03/2016] [Indexed: 11/10/2022] Open
Abstract
Human cosavirus (HCoSV) is a genus recently identified in the family Picornaviridae, which contains important pathogens to human health. Here, a novel type of HCoSV strain, cosavirus-zj-1 (GenBank no. KX545380), was identified in the fecal sample of a child with nonpolio acute flaccid paralysis (AFP) in China. Phylogenetic and sequence analyses suggested that this virus strain belonged to a new genotype in HCoSV B species. Our data show that surveillance of HCoSV is necessary for detecting viral agents in children with AFP, despite being the low detection rate.
Collapse
Affiliation(s)
- Yan Yang
- The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, China.
| | - Aiping Ju
- Department of Clinical Laboratory, Women and Children's Hospital of Huadu District, Guangzhou, Guangdong, 510800, China
| | - Xiaofen Xu
- The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, China
| | - Xinyu Cao
- The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, China
| | - Ying Tao
- The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, China
| |
Collapse
|
50
|
Ayouni S, Estienney M, Hammami S, Neji Guediche M, Pothier P, Aouni M, Belliot G, de Rougemont A. Cosavirus, Salivirus and Bufavirus in Diarrheal Tunisian Infants. PLoS One 2016; 11:e0162255. [PMID: 27631733 PMCID: PMC5025138 DOI: 10.1371/journal.pone.0162255] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/21/2016] [Indexed: 11/17/2022] Open
Abstract
Three newly discovered viruses have been recently described in diarrheal patients: Cosavirus (CosV) and Salivirus (SalV), two picornaviruses, and Bufavirus (BuV), a parvovirus. The detection rate and the role of these viruses remain to be established in acute gastroenteritis (AGE) in diarrheal Tunisian infants. From October 2010 through March 2012, stool samples were collected from 203 children <5 years-old suffering from AGE and attending the Children's Hospital in Monastir, Tunisia. All samples were screened for CosV, SalV and BuV as well as for norovirus (NoV) and group A rotavirus (RVA) by molecular biology. Positive samples for the three screened viruses were also tested for astrovirus, sapovirus, adenovirus, and Aichi virus, then genotyped when technically feasible. During the study period, 11 (5.4%) samples were positive for one of the three investigated viruses: 2 (1.0%) CosV-A10, 7 (3.5%) SalV-A1 and 2 (1.0%) BuV-1, whereas 71 (35.0%) children were infected with NoV and 50 (24.6%) with RVA. No mixed infections involving the three viruses were found, but multiple infections with up to 4 classic enteric viruses were found in all cases. Although these viruses are suspected to be responsible for AGE in children, our data showed that this association was uncertain since all infected children also presented infections with several enteric viruses, suggesting here potential water-borne transmission. Therefore, further studies with large cohorts of healthy and diarrheal children will be needed to evaluate their clinical role in AGE.
Collapse
Affiliation(s)
- Siwar Ayouni
- Centre National de Référence des virus entériques, Laboratoire de virologie-sérologie, Pôle Technique de Biologie, CHU de Dijon, Dijon, France.,Faculté de Pharmacie, Université de Monastir, Monastir, Tunisie
| | - Marie Estienney
- Centre National de Référence des virus entériques, Laboratoire de virologie-sérologie, Pôle Technique de Biologie, CHU de Dijon, Dijon, France
| | - Sabeur Hammami
- Service de Pédiatrie, Hôpital Universitaire Fattouma-Bourguiba, Monastir, Tunisie.,Faculté de Médicine, Université de Monastir, Monastir, Tunisie
| | - Mohamed Neji Guediche
- Service de Pédiatrie, Hôpital Universitaire Fattouma-Bourguiba, Monastir, Tunisie.,Faculté de Médicine, Université de Monastir, Monastir, Tunisie
| | - Pierre Pothier
- Centre National de Référence des virus entériques, Laboratoire de virologie-sérologie, Pôle Technique de Biologie, CHU de Dijon, Dijon, France.,UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Dijon, France
| | - Mahjoub Aouni
- Faculté de Pharmacie, Université de Monastir, Monastir, Tunisie
| | - Gael Belliot
- Centre National de Référence des virus entériques, Laboratoire de virologie-sérologie, Pôle Technique de Biologie, CHU de Dijon, Dijon, France.,UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Dijon, France
| | - Alexis de Rougemont
- Centre National de Référence des virus entériques, Laboratoire de virologie-sérologie, Pôle Technique de Biologie, CHU de Dijon, Dijon, France.,UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Dijon, France
| |
Collapse
|