1
|
Kukushkin NV, Williams SP, Carew TJ. Neurotropic and modulatory effects of insulin-like growth factor II in Aplysia. Sci Rep 2019; 9:14379. [PMID: 31591438 PMCID: PMC6779898 DOI: 10.1038/s41598-019-50923-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/12/2019] [Indexed: 01/19/2023] Open
Abstract
Insulin-like growth factor II (IGF2) enhances memory in rodents via the mannose-6-phosphate receptor (M6PR), but the underlying mechanisms remain poorly understood. We found that human IGF2 produces an enhancement of both synaptic transmission and neurite outgrowth in the marine mollusk Aplysia californica. These findings were unexpected since Aplysia lack the mammal-specific affinity between insulin-like ligands and M6PR. Surprisingly, this effect was observed in parallel with a suppression of neuronal excitability in a well-understood circuit that supports several temporally and mechanistically distinct forms of memory in the defensive withdrawal reflex, suggesting functional coordination between excitability and memory formation. We hypothesize that these effects represent behavioral adaptations to feeding that are mediated by the endogenous Aplysia insulin-like system. Indeed, the exogenous application of a single recombinant insulin-like peptide cloned from the Aplysia CNS cDNA replicated both the enhancement of synaptic transmission, the reduction of excitability, and promoted clearance of glucose from the hemolymph, a hallmark of bona fide insulin action.
Collapse
Affiliation(s)
| | | | - Thomas James Carew
- Center for Neural Science, New York University, 4 Washington Pl, New York, NY, 10003, USA.
| |
Collapse
|
2
|
Awata H, Takakura M, Kimura Y, Iwata I, Masuda T, Hirano Y. The neural circuit linking mushroom body parallel circuits induces memory consolidation in Drosophila. Proc Natl Acad Sci U S A 2019; 116:16080-16085. [PMID: 31337675 PMCID: PMC6690006 DOI: 10.1073/pnas.1901292116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Memory consolidation is augmented by repeated learning following rest intervals, which is known as the spacing effect. Although the spacing effect has been associated with cumulative cellular responses in the neurons engaged in memory, here, we report the neural circuit-based mechanism for generating the spacing effect in the memory-related mushroom body (MB) parallel circuits in Drosophila To investigate the neurons activated during the training, we monitored expression of phosphorylation of mitogen-activated protein kinase (MAPK), ERK [phosphorylation of extracellular signal-related kinase (pERK)]. In an olfactory spaced training paradigm, pERK expression in one of the parallel circuits, consisting of γm neurons, was progressively inhibited via dopamine. This inhibition resulted in reduced pERK expression in a postsynaptic GABAergic neuron that, in turn, led to an increase in pERK expression in a dopaminergic neuron specifically in the later session during spaced training, suggesting that disinhibition of the dopaminergic neuron occurs during spaced training. The dopaminergic neuron was significant for gene expression in the different MB parallel circuits consisting of α/βs neurons for memory consolidation. Our results suggest that the spacing effect-generating neurons and the neurons engaged in memory reside in the distinct MB parallel circuits and that the spacing effect can be a consequence of evolved neural circuit architecture.
Collapse
Affiliation(s)
- Hiroko Awata
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, 606-8507 Kyoto, Japan
| | - Mai Takakura
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, 606-8507 Kyoto, Japan
| | - Yoko Kimura
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, 606-8507 Kyoto, Japan
| | - Ikuko Iwata
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, 606-8507 Kyoto, Japan
| | - Tomoko Masuda
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, 606-8507 Kyoto, Japan
| | - Yukinori Hirano
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, 606-8507 Kyoto, Japan
| |
Collapse
|
3
|
Mitra T, Menon SN, Sinha S. Emergent memory in cell signaling: Persistent adaptive dynamics in cascades can arise from the diversity of relaxation time-scales. Sci Rep 2018; 8:13230. [PMID: 30185923 PMCID: PMC6125488 DOI: 10.1038/s41598-018-31626-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) signaling cascade, an evolutionarily conserved motif present in all eukaryotic cells, is involved in coordinating crucial cellular functions. While the asymptotic dynamical behavior of the pathway stimulated by a time-invariant signal is relatively well-understood, we show using a computational model that it exhibits a rich repertoire of transient adaptive responses to changes in stimuli. When the signal is switched on, the response is characterized by long-lived modulations in frequency as well as amplitude. On withdrawing the stimulus, the activity decays over long timescales, exhibiting reverberations characterized by repeated spiking in the activated MAPK concentration. The long-term persistence of such post-stimulus activity suggests that the cascade retains memory of the signal for a significant duration following its removal. The molecular mechanism underlying the reverberatory activity is related to the existence of distinct relaxation rates for the different cascade components. This results in the imbalance of fluxes between different layers of the cascade, with the reuse of activated kinases as enzymes when they are released from sequestration in complexes. The persistent adaptive response, indicative of a cellular “short-term” memory, suggests that this ubiquitous signaling pathway plays an even more central role in information processing by eukaryotic cells.
Collapse
Affiliation(s)
- Tanmay Mitra
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, 600113, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Shakti N Menon
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, 600113, India
| | - Sitabhra Sinha
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, 600113, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
4
|
Nishijima S, Maruyama IN. Appetitive Olfactory Learning and Long-Term Associative Memory in Caenorhabditis elegans. Front Behav Neurosci 2017; 11:80. [PMID: 28507513 PMCID: PMC5410607 DOI: 10.3389/fnbeh.2017.00080] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/13/2017] [Indexed: 01/06/2023] Open
Abstract
Because of the relative simplicity of its nervous system, Caenorhabditis elegans is a useful model organism to study learning and memory at cellular and molecular levels. For appetitive conditioning in C. elegans, food has exclusively been used as an unconditioned stimulus (US). It may be difficult to analyze neuronal circuits for associative memory since food is a multimodal combination of olfactory, gustatory, and mechanical stimuli. Here, we report classical appetitive conditioning and associative memory in C. elegans, using 1-nonanol as a conditioned stimulus (CS), and potassium chloride (KCl) as a US. Before conditioning, C. elegans innately avoided 1-nonanol, an aversive olfactory stimulus, and was attracted by KCl, an appetitive gustatory stimulus, on assay agar plates. Both massed training without an intertrial interval (ITI) and spaced training with a 10-min ITI induced significant levels of memory of association regarding the two chemicals. Memory induced by massed training decayed within 6 h, while that induced by spaced training was retained for more than 6 h. Animals treated with inhibitors of transcription or translation formed the memory induced by spaced training less efficiently than untreated animals, whereas the memory induced by massed training was not significantly affected by such treatments. By definition, therefore, memories induced by massed training and spaced training are classified as short-term memory (STM) and long-term memory (LTM), respectively. When animals conditioned by spaced training were exposed to 1-nonanol alone, their learning index was lower than that of untreated animals, suggesting that extinction learning occurs in C. elegans. In support of these results, C. elegans mutants defective in nmr-1, encoding an NMDA receptor subunit, formed both STM and LTM less efficiently than wild-type animals, while mutations in crh-1, encoding a ubiquitous transcription factor CREB required for memory consolidation, affected LTM, but not STM. The paradigm established in the present study should allow us to elucidate neuronal circuit plasticity for appetitive learning and memory in C. elegans.
Collapse
Affiliation(s)
| | - Ichiro N. Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate UniversityOkinawa, Japan
| |
Collapse
|
5
|
Biphasic Regulation of p38 MAPK by Serotonin Contributes to the Efficacy of Stimulus Protocols That Induce Long-Term Synaptic Facilitation. eNeuro 2017; 4:eN-NWR-0373-16. [PMID: 28197555 PMCID: PMC5307297 DOI: 10.1523/eneuro.0373-16.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 12/24/2022] Open
Abstract
The MAPK isoforms ERK and p38 MAPK are believed to play opposing roles in long-term synaptic facilitation (LTF) induced by serotonin (5-HT) in Aplysia. To fully understand their roles, however, it is necessary to consider the dynamics of ERK and p38 MAPK activation. Previous studies determined that activation of ERK occurred ∼45 min after a 5-min pulse of 5-HT treatment. The dynamics of p38 MAPK activation following 5-HT are yet to be elucidated. Here, the activity of p38 MAPK was examined at different times after 5-HT, and the interaction between the ERK and p38 MAPK pathways was investigated. A 5-min pulse of 5-HT induced a transient inhibition of p38 MAPK, followed by a delayed activation between 25 and 45 min. This activation was blocked by a MAPK kinase inhibitor, suggesting that similar pathways are involved in activation of ERK and p38 MAPK. ERK activity decreased shortly after the activation of p38 MAPK. A p38 MAPK inhibitor blocked this decrease in ERK activity, suggesting a causal relationship. The p38 MAPK activity ∼45 min after different stimulus protocols was also characterized. These data were incorporated into a computational model for the induction of LTF. Simulations and empirical data suggest that p38 MAPK, together with ERK, contributes to the efficacy of spaced stimulus protocols to induce LTF, a correlate of long-term memory (LTM). For example, decreased p38 MAPK activity ∼45 min after the first of two sensitizing stimuli might be an important determinant of an optimal interstimulus interval (ISI) for LTF induction.
Collapse
|
6
|
Mirisis AA, Alexandrescu A, Carew TJ, Kopec AM. The Contribution of Spatial and Temporal Molecular Networks in the Induction of Long-term Memory and Its Underlying Synaptic Plasticity. AIMS Neurosci 2016; 3:356-384. [PMID: 27819030 PMCID: PMC5096789 DOI: 10.3934/neuroscience.2016.3.356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to form long-lasting memories is critical to survival and thus is highly conserved across the animal kingdom. By virtue of its complexity, this same ability is vulnerable to disruption by a wide variety of neuronal traumas and pathologies. To identify effective therapies with which to treat memory disorders, it is critical to have a clear understanding of the cellular and molecular mechanisms which subserve normal learning and memory. A significant challenge to achieving this level of understanding is posed by the wide range of distinct temporal and spatial profiles of molecular signaling induced by learning-related stimuli. In this review we propose that a useful framework within which to address this challenge is to view the molecular foundation of long-lasting plasticity as composed of unique spatial and temporal molecular networks that mediate signaling both within neurons (such as via kinase signaling) as well as between neurons (such as via growth factor signaling). We propose that evaluating how cells integrate and interpret these concurrent and interacting molecular networks has the potential to significantly advance our understanding of the mechanisms underlying learning and memory formation.
Collapse
Affiliation(s)
- Anastasios A. Mirisis
- Center for Neural Science, New York University, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Anamaria Alexandrescu
- Center for Neural Science, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Thomas J. Carew
- Center for Neural Science, New York University, New York, NY, USA
| | - Ashley M. Kopec
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Devinney MJ, Nichols NL, Mitchell GS. Sustained Hypoxia Elicits Competing Spinal Mechanisms of Phrenic Motor Facilitation. J Neurosci 2016; 36:7877-85. [PMID: 27466333 PMCID: PMC4961775 DOI: 10.1523/jneurosci.4122-15.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 05/03/2016] [Accepted: 05/23/2016] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Acute intermittent hypoxia (AIH) induces phrenic long-term facilitation (pLTF), a form of spinal motor plasticity. Competing mechanisms give rise to phrenic motor facilitation (pMF; a general term including pLTF) depending on the severity of hypoxia within episodes. In contrast, moderate acute sustained hypoxia (mASH) does not elicit pMF. By varying the severity of ASH and targeting competing mechanisms of pMF, we sought to illustrate why moderate AIH (mAIH) elicits pMF but mASH does not. Although mAIH elicits serotonin-dependent pLTF, mASH does not; thus, mAIH-induced pLTF is pattern sensitive. In contrast, severe AIH (sAIH) elicits pLTF through adenosine-dependent mechanisms, likely from greater extracellular adenosine accumulation. Because serotonin- and adenosine-dependent pMF interact via cross talk inhibition, we hypothesized that pMF is obscured because the competing mechanisms of pMF are balanced and offsetting during mASH. Here, we demonstrate the following: (1) blocking spinal A2A receptors with MSX-3 reveals mASH-induced pMF; and (2) sASH elicits A2A-dependent pMF. In anesthetized rats pretreated with intrathecal A2A receptor antagonist injections before mASH (PaO2 = 40-54 mmHg) or sASH (PaO2 = 25-36 mmHg), (1) mASH induced a serotonin-dependent pMF and (2) sASH induced an adenosine-dependent pMF, which was enhanced by spinal serotonin receptor inhibition. Thus, competing adenosine- and serotonin-dependent mechanisms contribute differentially to pMF depending on the pattern/severity of hypoxia. Understanding interactions between these mechanisms has clinical relevance as we develop therapies to treat severe neuromuscular disorders that compromise somatic motor behaviors, including breathing. Moreover, these results demonstrate how competing mechanisms of plasticity can give rise to pattern sensitivity in pLTF. SIGNIFICANCE STATEMENT Intermittent hypoxia elicits pattern-sensitive spinal plasticity and improves motor function after spinal injury or during neuromuscular disease. Specific mechanisms of pattern sensitivity in this form of plasticity are unknown. We provide evidence that competing mechanisms of phrenic motor facilitation mediated by adenosine 2A and serotonin 2 receptors are differentially expressed, depending on the pattern/severity of hypoxia. Understanding how these distinct mechanisms interact during hypoxic exposures differing in severity and duration will help explain interesting properties of plasticity, such as pattern sensitivity, and may help optimize therapies to restore motor function in patients with neuromuscular disorders that compromise movement.
Collapse
Affiliation(s)
- Michael J Devinney
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin 53706, and
| | - Nicole L Nichols
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin 53706, and
| | - Gordon S Mitchell
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin 53706, and Department of Physical Therapy, Center for Respiratory Research and Rehabilitation and McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
8
|
A Gα-Stimulated RapGEF Is a Receptor-Proximal Regulator of Dictyostelium Chemotaxis. Dev Cell 2016; 37:458-72. [PMID: 27237792 DOI: 10.1016/j.devcel.2016.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 02/15/2016] [Accepted: 04/29/2016] [Indexed: 12/19/2022]
Abstract
Chemotaxis, or directional movement toward extracellular chemical gradients, is an important property of cells that is mediated through G-protein-coupled receptors (GPCRs). Although many chemotaxis pathways downstream of Gβγ have been identified, few Gα effectors are known. Gα effectors are of particular importance because they allow the cell to distinguish signals downstream of distinct chemoattractant GPCRs. Here we identify GflB, a Gα2 binding partner that directly couples the Dictyostelium cyclic AMP GPCR to Rap1. GflB localizes to the leading edge and functions as a Gα-stimulated, Rap1-specific guanine nucleotide exchange factor required to balance Ras and Rap signaling. The kinetics of GflB translocation are fine-tuned by GSK-3 phosphorylation. Cells lacking GflB display impaired Rap1/Ras signaling and actin and myosin dynamics, resulting in defective chemotaxis. Our observations demonstrate that GflB is an essential upstream regulator of chemoattractant-mediated cell polarity and cytoskeletal reorganization functioning to directly link Gα activation to monomeric G-protein signaling.
Collapse
|
9
|
Pandey K, Sharma KP, Sharma SK. Histone deacetylase inhibition facilitates massed pattern-induced synaptic plasticity and memory. Learn Mem 2015; 22:514-8. [PMID: 26373830 PMCID: PMC4579358 DOI: 10.1101/lm.039289.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/09/2015] [Indexed: 11/24/2022]
Abstract
Massed training is less effective for long-term memory formation than the spaced training. The role of acetylation in synaptic plasticity and memory is now well established. However, the role of this important protein modification in synaptic plasticity induced by massed pattern of stimulation or memory induced by massed training is not well understood. Here we show that increasing the level of acetylation enhances long-term potentiation induced by massed pattern of high frequency stimulation. Furthermore, enhancing acetylation level facilitates long-term memory by massed training. Thus, increasing acetylation level facilitates synaptic plasticity and memory by massed patterns.
Collapse
Affiliation(s)
- Kiran Pandey
- National Brain Research Centre, Manesar, Haryana 122051, India
| | | | - Shiv K Sharma
- National Brain Research Centre, Manesar, Haryana 122051, India
| |
Collapse
|
10
|
Lee KJ, Hoe HS, Pak DT. Plk2 Raps up Ras to subdue synapses. Small GTPases 2014; 2:162-166. [PMID: 21776418 DOI: 10.4161/sgtp.2.3.16454] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 05/11/2011] [Indexed: 11/19/2022] Open
Abstract
We recently identified the activity-inducible protein kinase Plk2 as a novel overseer of the balance between Ras and Rap small GTPases. Plk2 achieves a profound level of regulatory control by interacting with and phosphorylating at least four Ras and Rap guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Combined, these actions result in synergistic suppression of Ras and hyperstimulation of Rap signaling. Perturbation of Plk2 function abolished homeostatic adaptation of synapses to enhanced activity and impaired behavioral adaptation in various learning tasks, indicating that this regulation was critical for maintaining appropriate Ras/Rap levels. These studies provide insights into the highly cooperative nature of Ras and Rap regulation in neurons. However, different GEF and GAP substrates of Plk2 also controlled specific aspects of dendritic spine morphology, illustrating the ability of individual GAPs/GEFs to assemble microdomains of Ras and Rap signaling that respond to different stimuli and couple to distinct output pathways.
Collapse
Affiliation(s)
- Kea Joo Lee
- Department of Pharmacology; Georgetown University; Medical Center; Washington, DC USA
| | | | | |
Collapse
|
11
|
A novel cysteine-rich neurotrophic factor in Aplysia facilitates growth, MAPK activation, and long-term synaptic facilitation. Learn Mem 2014; 21:215-22. [PMID: 24639488 PMCID: PMC3966541 DOI: 10.1101/lm.033662.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Neurotrophins are critically involved in developmental processes such as neuronal cell survival, growth, and differentiation, as well as in adult synaptic plasticity contributing to learning and memory. Our previous studies examining neurotrophins and memory formation in Aplysia showed that a TrkB ligand is required for MAPK activation, long-term synaptic facilitation (LTF), and long-term memory (LTM) for sensitization. These studies indicate that neurotrophin-like molecules in Aplysia can act as key elements in a functionally conserved TrkB signaling pathway. Here we report that we have cloned and characterized a novel neurotrophic factor, Aplysia cysteine-rich neurotrophic factor (apCRNF), which shares classical structural and functional characteristics with mammalian neurotrophins. We show that apCRNF (1) is highly enriched in the CNS, (2) enhances neurite elongation and branching, (3) interacts with mammalian TrkB and p75NTR, (4) is released from Aplysia CNS in an activity-dependent fashion, (5) facilitates MAPK activation in a tyrosine kinase dependent manner in response to sensitizing stimuli, and (6) facilitates the induction of LTF. These results show that apCRNF is a native neurotrophic factor in Aplysia that can engage the molecular and synaptic mechanisms underlying memory formation.
Collapse
|
12
|
Fischbach S, Kopec AM, Carew TJ. Activity-dependent inhibitory gating in molecular signaling cascades induces a novel form of intermediate-term synaptic facilitation in Aplysia californica. Learn Mem 2014; 21:199-204. [PMID: 24639486 PMCID: PMC3966539 DOI: 10.1101/lm.033894.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/31/2014] [Indexed: 11/24/2022]
Abstract
Mechanistically distinct forms of long-lasting plasticity and memory can be induced by a variety of different training patterns. Although several studies have identified distinct molecular pathways that are engaged during these different training patterns, relatively little work has explored potential interactions between pathways when they are simultaneously engaged in the same neurons and circuits during memory formation. Aplysia californica exhibits two forms of intermediate-term synaptic facilitation (ITF) in response to two different training patterns: (1) repeated trial (RT) ITF (induced by repeated tail nerve shocks [TNSs] or repeated serotonin [5HT] application) and (2) activity-dependent (AD) ITF (induced by sensory neuron activation paired with a single TNS or 5HT pulse). RT-ITF requires PKA activation and de novo protein synthesis, while AD-ITF requires PKC activation and has no requirement for protein synthesis. Here, we explored how these distinct molecular pathways underlying ITF interact when both training patterns occur in temporal register (an "Interactive" training pattern). We found that (1) RT, AD, and Interactive training all induce ITF; (2) Interactive ITF requires PKC activity but not de novo protein synthesis; and (3), surprisingly, Interactive training blocks persistent PKA activity 1 h after training, and this block is PKC-independent. These data support the hypothesis that sensory neuron activity coincident with the last RT training trial is sufficient to convert the molecular signaling already established by RT training into an AD-like molecular phenotype.
Collapse
Affiliation(s)
- Soren Fischbach
- Department of Neurobiology & Behavior, University of California–Irvine, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, USA
| | - Ashley M. Kopec
- Department of Neurobiology & Behavior, University of California–Irvine, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, USA
- Center for Neural Science, New York University, New York 10003, USA
| | - Thomas J. Carew
- Department of Neurobiology & Behavior, University of California–Irvine, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, USA
- Center for Neural Science, New York University, New York 10003, USA
| |
Collapse
|
13
|
Philips GT, Kopec AM, Carew TJ. Pattern and predictability in memory formation: from molecular mechanisms to clinical relevance. Neurobiol Learn Mem 2013; 105:117-24. [PMID: 23727358 PMCID: PMC4020421 DOI: 10.1016/j.nlm.2013.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/08/2013] [Accepted: 05/12/2013] [Indexed: 12/13/2022]
Abstract
Most long-term memories are formed as a consequence of multiple experiences. The temporal spacing of these experiences is of considerable importance: experiences distributed over time (spaced training) are more easily encoded and remembered than either closely spaced experiences, or a single prolonged experience (massed training). In this article, we first review findings from studies in animal model systems that examine the cellular and molecular properties of the neurons and circuits in the brain that underlie training pattern sensitivity during long-term memory (LTM) formation. We next focus on recent findings which have begun to elucidate the mechanisms that support inter-trial interactions during the induction of LTM. Finally, we consider the implications of these findings for developing therapeutic strategies to address questions of direct clinical relevance.
Collapse
Affiliation(s)
- Gary T Philips
- Center for Neural Science, New York University, 4 Washington Place, Room 809, New York, NY 10003, United States.
| | | | | |
Collapse
|
14
|
Kopec AM, Carew TJ. Growth factor signaling and memory formation: temporal and spatial integration of a molecular network. Learn Mem 2013; 20:531-9. [PMID: 24042849 PMCID: PMC3768197 DOI: 10.1101/lm.031377.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Growth factor (GF) signaling is critically important for developmental plasticity. It also plays a crucial role in adult plasticity, such as that required for memory formation. Although different GFs interact with receptors containing distinct types of kinase domains, they typically signal through converging intracellular cascades (e.g., Ras–MEK–MAPK) to mediate overlapping functional endpoints. Several GFs have been implicated in memory formation, but due to a high level of convergent signaling, the unique contributions of individual GFs as well as the interactions between GF signaling cascades during the induction of memory is not well known. In this review, we highlight the unique roles of specific GFs in dendritic plasticity, and discuss the spatial and temporal profiles of different GFs during memory formation. Collectively, the data suggest that the roles of GF signaling in long-lasting behavioral and structural plasticity may be best viewed as interactive components in a complex molecular network.
Collapse
Affiliation(s)
- Ashley M Kopec
- Center for Neural Science, New York University, New York, New York 10003, USA
| | | |
Collapse
|
15
|
Cyriac A, Holmes G, Lass J, Belchenko D, Calin-Jageman RJ, Calin-Jageman IE. An Aplysia Egr homolog is rapidly and persistently regulated by long-term sensitization training. Neurobiol Learn Mem 2013; 102:43-51. [PMID: 23567107 DOI: 10.1016/j.nlm.2013.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/21/2013] [Accepted: 03/24/2013] [Indexed: 02/03/2023]
Abstract
The Egr family of transcription factors plays a key role in long-term plasticity and memory in a number of vertebrate species. Here we identify and characterize ApEgr (GenBank: KC608221), an Egr homolog in the marine mollusk Aplysia californica. ApEgr codes for a predicted 593-amino acid protein with the highly conserved trio of zinc-fingered domains in the C-terminus that characterizes the Egr family of transcription factors. Promoter analysis shows that the ApEgr protein selectively recognizes the GSG motif recognized by vertebrate Egrs. Like mammalian Egrs, ApEgr is constitutively expressed in a range of tissues, including the CNS. Moreover, expression of ApEgr is bi-directionally regulated by changes in neural activity. Of most interest, the association between ApEgr function and memory may be conserved in Aplysia, as we observe rapid and long-lasting up-regulation of expression after long-term sensitization training. Taken together, our results suggest that Egrs may have memory functions that are conserved from mammals to mollusks.
Collapse
Affiliation(s)
- Ashly Cyriac
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | | | | | | | | | | |
Collapse
|
16
|
Local synaptic integration of mitogen-activated protein kinase and protein kinase A signaling mediates intermediate-term synaptic facilitation in Aplysia. Proc Natl Acad Sci U S A 2012; 109:18162-7. [PMID: 23071303 DOI: 10.1073/pnas.1209956109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is widely appreciated that memory processing engages a wide range of molecular signaling cascades in neurons, but how these cascades are temporally and spatially integrated is not well understood. To explore this important question, we used Aplysia californica as a model system. We simultaneously examined the timing and subcellular location of two signaling molecules, MAPK (ERK1/2) and protein kinase A (PKA), both of which are critical for the formation of enduring memory for sensitization. We also explored their interaction during the formation of enduring synaptic facilitation, a cellular correlate of memory, at tail sensory-to-motor neuron synapses. We find that repeated tail nerve shock (TNS, an analog of sensitizing training) immediately and persistently activates MAPK in both sensory neuron somata and synaptic neuropil. In contrast, we observe immediate PKA activation only in the synaptic neuropil. It is followed by PKA activation in both compartments 1 h after TNS. Interestingly, blocking MAPK activation during, but not after, TNS impairs PKA activation in synaptic neuropil without affecting the delayed PKA activation in sensory neuron somata. Finally, by applying inhibitors restricted to the synaptic compartment, we show that synaptic MAPK activation during TNS is required for the induction of intermediate-term synaptic facilitation, which leads to the persistent synaptic PKA activation required to maintain this facilitation. Collectively, our results elucidate how MAPK and PKA signaling cascades are spatiotemporally integrated in a single neuron to support synaptic plasticity underlying memory formation.
Collapse
|
17
|
Molecular characterization and expression profile of MAP2K1ip1/MP1 gene from tiger shrimp, Penaeus monodon. Mol Biol Rep 2011; 39:5811-8. [DOI: 10.1007/s11033-011-1391-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 12/17/2011] [Indexed: 01/03/2023]
|
18
|
Amano H, Maruyama IN. Aversive olfactory learning and associative long-term memory in Caenorhabditis elegans. Learn Mem 2011; 18:654-65. [PMID: 21960709 DOI: 10.1101/lm.2224411] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The nematode Caenorhabditis elegans (C. elegans) adult hermaphrodite has 302 invariant neurons and is suited for cellular and molecular studies on complex behaviors including learning and memory. Here, we have developed protocols for classical conditioning of worms with 1-propanol, as a conditioned stimulus (CS), and hydrochloride (HCl) (pH 4.0), as an unconditioned stimulus (US). Before the conditioning, worms were attracted to 1-propanol and avoided HCl in chemotaxis assay. In contrast, after massed or spaced training, worms were either not attracted at all to or repelled from 1-propanol on the assay plate. The memory after the spaced training was retained for 24 h, while the memory after the massed training was no longer observable within 3 h. Worms pretreated with transcription and translation inhibitors failed to form the memory by the spaced training, whereas the memory after the massed training was not significantly affected by the inhibitors and was sensitive to cold-shock anesthesia. Therefore, the memories after the spaced and massed trainings can be classified as long-term memory (LTM) and short-term/middle-term memory (STM/MTM), respectively. Consistently, like other organisms including Aplysia, Drosophila, and mice, C. elegans mutants defective in nmr-1 encoding an NMDA receptor subunit failed to form both LTM and STM/MTM, while mutations in crh-1 encoding the CREB transcription factor affected only the LTM.
Collapse
Affiliation(s)
- Hisayuki Amano
- Information Processing Biology Unit, Okinawa Institute of Science and Technology, Okinawa 904-0412, Japan
| | | |
Collapse
|
19
|
Philips GT, Sherff CM, Menges SA, Carew TJ. The tail-elicited tail withdrawal reflex of Aplysia is mediated centrally at tail sensory-motor synapses and exhibits sensitization across multiple temporal domains. Learn Mem 2011; 18:272-82. [PMID: 21450911 DOI: 10.1101/lm.2125311] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The defensive withdrawal reflexes of Aplysia californica have provided powerful behavioral systems for studying the cellular and molecular basis of memory formation. Among these reflexes the tail-elicited tail withdrawal reflex (T-TWR) has been especially useful. In vitro studies examining the monosynaptic circuit for the T-TWR, the tail sensory-motor (SN-MN) synapses, have identified the induction requirements and molecular basis of different temporal phases of synaptic facilitation that underlie sensitization in this system. They have also permitted more recent studies elucidating the role of synaptic and nuclear signaling during synaptic facilitation. Here we report the development of a novel, compartmentalized semi-intact T-TWR preparation that allows examination of the unique contributions of processing in the SN somatic compartment (the pleural ganglion) and the SN-MN synaptic compartment (the pedal ganglion) during the induction of sensitization. Using this preparation we find that the T-TWR is mediated entirely by central connections in the synaptic compartment. Moreover, the reflex is stably expressed for at least 24 h, and can be modified by tail shocks that induce sensitization across multiple temporal domains, as well as direct application of the modulatory neurotransmitter serotonin. This preparation now provides an experimentally powerful system in which to directly examine the unique and combined roles of synaptic and nuclear signaling in different temporal domains of memory formation.
Collapse
Affiliation(s)
- Gary T Philips
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California Irvine, California 92697-4550, USA
| | | | | | | |
Collapse
|
20
|
Gong LQ, He LJ, Dong ZY, Lu XH, Poo MM, Zhang XH. Postinduction requirement of NMDA receptor activation for late-phase long-term potentiation of developing retinotectal synapses in vivo. J Neurosci 2011; 31:3328-35. [PMID: 21368044 PMCID: PMC3096838 DOI: 10.1523/jneurosci.5936-10.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 12/21/2010] [Accepted: 12/29/2010] [Indexed: 11/21/2022] Open
Abstract
Spaced patterns of repetitive synaptic activation often result in a long-lasting, protein synthesis-dependent potentiation of synaptic transmission, known as late-phase long-term potentiation (L-LTP) that may serve as a substrate for long-term memory. Behavioral studies showed that posttraining blockade of NMDA subtype of the glutamate receptor (NMDAR) impaired long-term memory, although NMDAR activation is generally known to be required during LTP induction. In this study, we found that the establishment of L-LTP in vivo requires NMDAR activation within a critical time window after LTP induction. In the developing visual system of Xenopus laevis tadpole, L-LTP of retinotectal synapses could be induced by three episodes of theta burst stimulation (TBS) of the optic nerve with 5 min spacing ("spaced TBS"), but not by three TBS episodes applied en masse or spaced with intervals ≥10 min. Within a time window of ∼30 min after the spaced TBS, local perfusion of the tectum with NMDAR antagonist d-AP5 or Ca(2+)-chelator EGTA-AM impaired the establishment of L-LTP, indicating the requirement of postinduction activation of NMDAR/Ca(2+) signaling. Moreover, inhibiting spontaneous spiking activity in the tectum by local application of tetrodotoxin (TTX) prevented L-LTP when TTX was applied for 15 min immediately after the spaced TBS but not 1 h later, whereas the same postinduction TTX application in the retina had no effect. These findings offer new insights into the synaptic basis for the requirement of postlearning activation of NMDARs and point to the importance of postlearning spontaneous circuit activity in memory formation.
Collapse
Affiliation(s)
- Li-qin Gong
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China, and
| | - Ling-jie He
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China, and
| | - Zhi-yuan Dong
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China, and
| | - Xiao-hui Lu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China, and
| | - Mu-ming Poo
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China, and
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720-3200
| | - Xiao-hui Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China, and
| |
Collapse
|
21
|
Ye X, Carew TJ. Small G protein signaling in neuronal plasticity and memory formation: the specific role of ras family proteins. Neuron 2010; 68:340-61. [PMID: 21040840 PMCID: PMC3008420 DOI: 10.1016/j.neuron.2010.09.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2010] [Indexed: 01/04/2023]
Abstract
Small G proteins are an extensive family of proteins that bind and hydrolyze GTP. They are ubiquitous inside cells, regulating a wide range of cellular processes. Recently, many studies have examined the role of small G proteins, particularly the Ras family of G proteins, in memory formation. Once thought to be primarily involved in the transduction of a variety of extracellular signals during development, it is now clear that Ras family proteins also play critical roles in molecular processing underlying neuronal and behavioral plasticity. We here review a number of recent studies that explore how the signaling of Ras family proteins contributes to memory formation. Understanding these signaling processes is of fundamental importance both from a basic scientific perspective, with the goal of providing mechanistic insights into a critical aspect of cognitive behavior, and from a clinical perspective, with the goal of providing effective therapies for a range of disorders involving cognitive impairments.
Collapse
Affiliation(s)
- Xiaojing Ye
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
22
|
Abstract
In the formation of long-term memories, a "spaced" distribution of study sessions is more beneficial than closely spaced "massed" study sessions. Pagani et al. (2009) examine the molecular basis of this spacing effect in Drosophila and find a role for the SHP2 homolog, corkscrew, an activator of Ras/MAPK signaling, in establishing optimal spacing intervals.
Collapse
Affiliation(s)
- Gary T Philips
- Department of Neurobiology and Behavior and the Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, CA 92607-4450, USA
| | | |
Collapse
|
23
|
Abstract
The importance of the second messengers calcium (Ca(2+)) and diacylglycerol (DAG) in platelet signal transduction was established more than 30 years ago. Whereas protein kinase C (PKC) family members were discovered as the targets of DAG, little is known about the molecular identity of the main Ca(2+) sensor(s). We here identify Ca(2+) and DAG-regulated guanine nucleotide exchange factor I (CalDAG-GEFI) as a critical molecule in Ca(2+)-dependent platelet activation. CalDAG-GEFI, through activation of the small GTPase Rap1, directly triggers integrin activation and extracellular signal-regulated kinase-dependent thromboxane A(2) (TxA(2)) release. CalDAG-GEFI-dependent TxA(2) generation provides crucial feedback for PKC activation and granule release, particularly at threshold agonist concentrations. PKC/P2Y12 signaling in turn mediates a second wave of Rap1 activation, necessary for sustained platelet activation and thrombus stabilization. Our results lead to a revised model for platelet activation that establishes one molecule, CalDAG-GEFI, at the nexus of Ca(2+)-induced integrin activation, TxA(2) generation, and granule release. The preferential activation of CalDAG-GEFI over PKC downstream of phospholipase C activation, and the different kinetics of CalDAG-GEFI- and PKC/P2Y12-mediated Rap1 activation demonstrate an unexpected complexity to the platelet activation process, and they challenge the current model that DAG/PKC-dependent signaling events are crucial for the initiation of platelet adhesion.
Collapse
|