1
|
Liu Y, Wang D, Yuan Y, Liu Y, Lv B, Lv H. Transcriptome Profiling Reveals Key Regulatory Networks for Age-Dependent Vernalization in Welsh Onion ( Allium fistulosum L.). Int J Mol Sci 2024; 25:13159. [PMID: 39684870 DOI: 10.3390/ijms252313159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Plants exhibit diverse pathways to regulate the timing of flowering. Some plant species require a vegetative phase before being able to perceive cold stimuli for the acceleration of flowering through vernalization. This research confirms the correlation between the vernalization process and seedling age in Welsh onions. Findings from two vernalization experiments conducted at different time intervals demonstrate that seedlings must reach a vegetative phase of at least 8 weeks to consistently respond to vernalization. Notably, 8-week-old seedlings subjected to 6 weeks of vernalization displayed the shortest time to bolting, with an average duration of 138.1 days. Transcriptome analysis led to the identification of genes homologous to those in Arabidopsis thaliana that regulate flowering. Specifically, AfisC7G05578 (CO), AfisC2G05881 (AP1), AfisC1G07745 (FT), AfisC1G06473 (RAP2.7), and AfisC2G01843 (VIM1) were identified and suggested to have potential significance in age-dependent vernalization in Welsh onions. This study not only presents a rapid vernalization method for Welsh onions but also provides a molecular foundation for understanding the interplay between seedling age and vernalization.
Collapse
Affiliation(s)
- Yin Liu
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Dan Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu Yuan
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yue Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Bingsheng Lv
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Haiyan Lv
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
2
|
Gao L, Li S, Chang HS, Kim YJ. Sequencing CURLY LEAF-associated RNAs in Arabidopsis revealed prevalent intergenic RNAs from the nuclear mitochondrial sequence. Mol Cells 2024; 47:100131. [PMID: 39427743 PMCID: PMC11605418 DOI: 10.1016/j.mocell.2024.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024] Open
Abstract
Polycomb group (PcG) proteins play key roles in development by repressing thousands of targets through histone modifications. However, how PcG is recruited to specific targets is poorly understood. In Arabidopsis, certain noncoding RNAs are necessary for recruiting the PcG protein CURLY LEAF (CLF) to its target sites. However, RNAs associated with CLF have not been analyzed on a genomic scale; thus, it is unknown whether long noncoding RNA (lncRNA)-mediated PcG recruitment is a widespread mechanism. Here, we systematically searched for CLF-associated RNAs by RNA immunoprecipitation followed by deep sequencing. We identified 1,299 genic and 138 intergenic regions that produced CLF-associated mRNAs and putative lncRNAs, respectively. The genes producing CLF-associated RNAs are depleted in PcG targets, carry active chromatin marks, and are highly expressed, suggesting that CLF may have a nonspecific or promiscuous RNA-binding affinity, similar to animal PcG proteins. Notably, a significant portion of the CLF-associated lncRNAs is derived from the nuclear mitochondrial sequence, which is extensively marked by H3K27me3. These findings indicate that, while CLF-RNA interactions are widespread, they may not always correlate with PcG target sites, highlighting the complexity of PcG recruitment mechanisms in Arabidopsis.
Collapse
Affiliation(s)
- Lei Gao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Shengben Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Hyun Suh Chang
- Department of Systems Biology, Yonsei University, Seoul 03722, Republic of Korea
| | - Yun Ju Kim
- Department of Systems Biology, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
3
|
Long X, Cai Y, Wang H, Liu Y, Huang X, Xuan H, Li W, Zhang X, Zhang H, Fang X, He H, Xu G, Dean C, Yang H. Cotranscriptional splicing is required in the cold to produce COOLAIR isoforms that repress Arabidopsis FLC. Proc Natl Acad Sci U S A 2024; 121:e2407628121. [PMID: 39546565 PMCID: PMC11588071 DOI: 10.1073/pnas.2407628121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/04/2024] [Indexed: 11/17/2024] Open
Abstract
Plants use seasonal cold to time the transition to reproductive development. Short- and long-term cold exposure is registered via parallel transcriptional shutdown and Polycomb-dependent epigenetic silencing of the Arabidopsis thaliana major flowering repressor locus FLOWERING LOCUS C (FLC). The cold-induced antisense transcripts (COOLAIR) determine the dynamics of FLC transcriptional shutdown, but the thermosensory mechanisms are still unresolved. Here, through a forward genetic screen, we identify a mutation that perturbs cold-induced COOLAIR expression and FLC repression. The mutation is a hypomorphic allele of SUPPRESSORS OF MEC-8 AND UNC-52 1 (SMU1), a conserved subunit of the spliceosomal B complex. SMU1 interacts in vivo with the proximal region of nascent COOLAIR and RNA 3' processing/cotranscriptional regulators and enhances COOLAIR proximal intron splicing to promote specific COOLAIR isoforms. SMU1 also interacts with ELF7, an RNA Polymerase II Associated Factor (Paf1) component and limits COOLAIR transcription. Cold thus changes cotranscriptional splicing/RNA Pol II functionality in an SMU1-dependent mechanism to promote two different isoforms of COOLAIR that lead to reduced FLC transcription. Such cotranscriptional mechanisms are emerging as important regulators underlying plasticity in gene expression.
Collapse
Affiliation(s)
- Xiaogang Long
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Yajun Cai
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Huamei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
| | - Yue Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Xiaoyi Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Hua Xuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Wenjuan Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Xiaoling Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Hongya Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Xiaofeng Fang
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, NorwichNR4 7UH, United Kingdom
| | - Hang He
- College of Life Sciences, Peking University, Beijing100871, China
| | - Guoyong Xu
- Hubei Hongshan Laboratory, Wuhan430070, China
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan430072, China
| | - Caroline Dean
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, NorwichNR4 7UH, United Kingdom
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- RNA Institute, Wuhan University, Wuhan430072, China
| |
Collapse
|
4
|
Rudolf J, Tomovicova L, Panzarova K, Fajkus J, Hejatko J, Skalak J. Epigenetics and plant hormone dynamics: a functional and methodological perspective. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5267-5294. [PMID: 38373206 PMCID: PMC11389840 DOI: 10.1093/jxb/erae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Plant hormones, pivotal regulators of plant growth, development, and response to environmental cues, have recently emerged as central modulators of epigenetic processes governing gene expression and phenotypic plasticity. This review addresses the complex interplay between plant hormones and epigenetic mechanisms, highlighting the diverse methodologies that have been harnessed to decipher these intricate relationships. We present a comprehensive overview to understand how phytohormones orchestrate epigenetic modifications, shaping plant adaptation and survival strategies. Conversely, we explore how epigenetic regulators ensure hormonal balance and regulate the signalling pathways of key plant hormones. Furthermore, our investigation includes a search for novel genes that are regulated by plant hormones under the control of epigenetic processes. Our review offers a contemporary overview of the epigenetic-plant hormone crosstalk, emphasizing its significance in plant growth, development, and potential agronomical applications.
Collapse
Affiliation(s)
- Jiri Rudolf
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, CZ-61265 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Lucia Tomovicova
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Klara Panzarova
- Photon Systems Instruments, Prumyslova 470, CZ-664 24 Drasov, Czech Republic
| | - Jiri Fajkus
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, CZ-61265 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Jan Hejatko
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Jan Skalak
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| |
Collapse
|
5
|
Xin X, Wang S, Pan Y, Ye L, Zhai T, Gu M, Wang Y, Zhang J, Li X, Yang W, Zhang S. MYB Transcription Factor CDC5 Activates CBF3 Expression to Positively Regulates Freezing Tolerance via Cooperating With ICE1 and Histone Modification in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39248548 DOI: 10.1111/pce.15144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024]
Abstract
The freezing temperature greatly limits the growth, development and productivity of plants. The C-repeat/DRE binding factor (CBF) plays a major role in cold acclimation, enabling plants to increase their freezing tolerance. Notably, the INDUCER OF CBF EXPRESSION1 (ICE1) protein has garnered attention for its pivotal role in bolstering plants' resilience against freezing through transcriptional upregulation of DREB1A/CBF3. However, the research on the interaction between ICE1 and other transcription factors and its function in regulating cold stress tolerance is largely inadequate. In this study, we found that a R2R3 MYB transcription factor CDC5 interacts with ICE1 and regulates the expression of CBF3 by recruiting RNA polymerase II, overexpression of ICE1 can complements the freezing deficient phenotype of cdc5 mutant. CDC5 increases the expression of CBF3 in response to freezing. Furthermore, CDC5 influences the expression of CBF3 by altering the chromatin status through H3K4me3 and H3K27me3 modifications. Our work identified a novel component that regulates CBF3 transcription in both ICE1-dependent and ICE1-independent manner, improving the understanding of the freezing signal transduction in plants.
Collapse
Affiliation(s)
- Xin Xin
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Shu Wang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yunjiao Pan
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Linhan Ye
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Tingting Zhai
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Mengjie Gu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yanjiao Wang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Jiedao Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Xiang Li
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Wei Yang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Shuxin Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
6
|
Wang P, Su L, Cao L, Hu H, Wan H, Wu C, Zheng Y, Bao C, Liu X. AtSRT1 regulates flowering by regulating flowering integrators and energy signals in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108841. [PMID: 38879987 DOI: 10.1016/j.plaphy.2024.108841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Epigenetic modifications, such as histone alterations, play crucial roles in regulating the flowering process in Arabidopsis, a typical long-day model plant. Histone modifications are notably involved in the intricate regulation of FLC, a key inhibitor of flowering. Although sirtuin-like protein and NAD+-dependent deacetylases play an important role in regulating energy metabolism, plant stress responses, and hormonal signal transduction, the mechanisms underlying their developmental transitions remain unclear. Thus, this study aimed to reveal how Arabidopsis NAD + -dependent deacetylase AtSRT1 affects flowering by regulating the expression of flowering integrators. Genetic and molecular evidence demonstrated that AtSRT1 mediates histone deacetylation by directly binding near the transcriptional start sites (TSS) of the flowering integrator genes FT and SOC1 and negatively regulating their expression by modulating the expression of the downstream gene LFY to inhibit flowering. Additionally, AtSRT1 directly down-regulates the expression of TOR, a glucose-driven central hub of energy signaling, which controls cell metabolism and growth in response to nutritional and environmental factors. This down-regulation occurs through binding near the TSS of TOR, facilitating the addition of H3K27me3 marks on FLC via the TOR-FIE-PRC2 pathway, further repressing flowering. These results uncover a multi-pathway regulatory network involving deacetylase AtSRT1 during the flowering process, highlighting its interaction with TOR as a hub for the coordinated regulation of energy metabolism and flowering initiation. These findings significantly enhance understanding of the complexity of histone modifications in the regulation of flowering.
Collapse
Affiliation(s)
- Ping Wang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Lufang Su
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Lan Cao
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Hanbing Hu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Heping Wan
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Chunhong Wu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Yu Zheng
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Chun Bao
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Xiaoyun Liu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China.
| |
Collapse
|
7
|
Zarif M, Rousselot E, Jesus B, Tirichine L, Duc C. H3K27me3 and EZH Are Involved in the Control of the Heat-Stress-Elicited Morphological Changes in Diatoms. Int J Mol Sci 2024; 25:8373. [PMID: 39125941 PMCID: PMC11313476 DOI: 10.3390/ijms25158373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Marine water temperatures are increasing due to anthropogenic climate change, constituting a major threat to marine ecosystems. Diatoms are major marine primary producers, and as such, they are subjected to marine heat waves and rising ocean temperatures. Additionally, under low tide, diatoms are regularly exposed to high temperatures. However, physiological and epigenetic responses to long-term exposure to heat stress remain largely unknown in the diatom Phaeodactylum tricornutum. In this study, we investigated changes in cell morphology, photosynthesis, and H3K27me3 abundance (an epigenetic mark consisting of the tri-methylation of lysine 27 on histone H3) after moderate and elevated heat stresses. Mutants impaired in PtEZH-the enzyme depositing H3K27me3-presented reduced growth and moderate changes in their PSII quantum capacities. We observed shape changes for the three morphotypes of P. tricornutum (fusiform, oval, and triradiate) in response to heat stress. These changes were found to be under the control of PtEZH. Additionally, both moderate and elevated heat stresses modulated the expression of genes encoding proteins involved in photosynthesis. Finally, heat stress elicited a reduction of genome-wide H3K27me3 levels in the various morphotypes. Hence, we provided direct evidence of epigenetic control of the H3K27me3 mark in the responses of Phaeodactylum tricornutum to heat stress.
Collapse
Affiliation(s)
- Mhammad Zarif
- Nantes Université, CNRS, US2B, UMR 6286, F-44000 Nantes, France; (M.Z.); (L.T.)
| | - Ellyn Rousselot
- Nantes Université, CNRS, US2B, UMR 6286, F-44000 Nantes, France; (M.Z.); (L.T.)
| | - Bruno Jesus
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, F-44000 Nantes, France;
| | - Leïla Tirichine
- Nantes Université, CNRS, US2B, UMR 6286, F-44000 Nantes, France; (M.Z.); (L.T.)
- Institute for Marine and Antarctic Studies (IMAS), Ecology and Biodiversity Centre, University of Tasmania, Hobart, TAS 7004, Australia
| | - Céline Duc
- Nantes Université, CNRS, US2B, UMR 6286, F-44000 Nantes, France; (M.Z.); (L.T.)
| |
Collapse
|
8
|
Zhai D, Zhang LY, Li LZ, Xu ZG, Liu XL, Shang GD, Zhao B, Gao J, Wang FX, Wang JW. Reciprocal conversion between annual and polycarpic perennial flowering behavior in the Brassicaceae. Cell 2024; 187:3319-3337.e18. [PMID: 38810645 DOI: 10.1016/j.cell.2024.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
The development of perennial crops holds great promise for sustainable agriculture and food security. However, the evolution of the transition between perenniality and annuality is poorly understood. Here, using two Brassicaceae species, Crucihimalaya himalaica and Erysimum nevadense, as polycarpic perennial models, we reveal that the transition from polycarpic perennial to biennial and annual flowering behavior is a continuum determined by the dosage of three closely related MADS-box genes. Diversification of the expression patterns, functional strengths, and combinations of these genes endows species with the potential to adopt various life-history strategies. Remarkably, we find that a single gene among these three is sufficient to convert winter-annual or annual Brassicaceae plants into polycarpic perennial flowering plants. Our work delineates a genetic basis for the evolution of diverse life-history strategies in plants and lays the groundwork for the generation of diverse perennial Brassicaceae crops in the future.
Collapse
Affiliation(s)
- Dong Zhai
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Lu-Yi Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ling-Zi Li
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Xiao-Li Liu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Guan-Dong Shang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Bo Zhao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Jian Gao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Fu-Xiang Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China; New Cornerstone Science Laboratory, Shanghai 200032, China.
| |
Collapse
|
9
|
Zhang C, Li S, Wang Y, Long J, Li X, Ke L, Xu R, Wu Z, Pi Z. Vernalization promotes bolting in sugar beet by inhibiting the transcriptional repressors of BvGI. PLANT MOLECULAR BIOLOGY 2024; 114:67. [PMID: 38836995 DOI: 10.1007/s11103-024-01460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/26/2024] [Indexed: 06/06/2024]
Abstract
Sugar beet (Beta vulgaris L.), a biennial sugar crop, contributes about 16% of the world's sugar production. The transition from vegetative growth, during which sugar accumulated in beet, to reproductive growth, during which sugar exhausted in beet, is determined by vernalization and photoperiod. GIGANTEA (GI) is a key photoperiodic flowering gene that is induced by vernalization in sugar beet. To identify the upstream regulatory factors of BvGI, candidate transcription factors (TF) that were co-expressed with BvGI and could bind to the BvGI promoter were screened based on weighted gene co-expression network analysis (WGCNA) and TF binding site prediction. Subsequently, their transcriptional regulatory role on the BvGI was validated through subcellular localization, dual-luciferase assays and yeast transformation tests. A total of 7,586 differentially expressed genes were identified after vernalization and divided into 18 co-expression modules by WGCNA, of which one (MEcyan) and two (MEdarkorange2 and MEmidnightblue) modules were positively and negatively correlated with the expression of BvGI, respectively. TF binding site predictions using PlantTFDB enabled the screening of BvLHY, BvTCP4 and BvCRF4 as candidate TFs that negatively regulated the expression of BvGI by affecting its transcription. Subcellular localization showed that BvLHY, BvTCP4 and BvCRF4 were localized to the nucleus. The results of dual-luciferase assays and yeast transformation tests showed that the relative luciferase activity and expression of HIS3 was reduced in the BvLHY, BvTCP4 and BvCRF4 transformants, which suggested that the three TFs inhibited the BvGI promoter. In addition, real-time quantitative reverse transcription PCR showed that BvLHY and BvTCP4 exhibited rhythmic expression characteristics similar to that of BvGI, while BvCRF4 did not. Our results revealed that vernalization crosstalked with the photoperiod pathway to initiate bolting in sugar beet by inhibiting the transcriptional repressors of BvGI.
Collapse
Affiliation(s)
- Chunxue Zhang
- Academy of Modern Agriculture and Ecological Environment, Heilongjiang University, 150080, Harbin, China
| | - Shengnan Li
- Academy of Modern Agriculture and Ecological Environment, Heilongjiang University, 150080, Harbin, China
| | - Yuguang Wang
- Academy of Modern Agriculture and Ecological Environment, Heilongjiang University, 150080, Harbin, China
| | - Jiali Long
- College of Life Sciences, Heilongjiang University, 150080, Harbin, China
| | - Xinru Li
- Academy of Modern Agriculture and Ecological Environment, Heilongjiang University, 150080, Harbin, China
| | - Lixun Ke
- Academy of Modern Agriculture and Ecological Environment, Heilongjiang University, 150080, Harbin, China
| | - Rui Xu
- Academy of Modern Agriculture and Ecological Environment, Heilongjiang University, 150080, Harbin, China
| | - Zedong Wu
- Academy of Modern Agriculture and Ecological Environment, Heilongjiang University, 150080, Harbin, China.
| | - Zhi Pi
- Academy of Modern Agriculture and Ecological Environment, Heilongjiang University, 150080, Harbin, China.
| |
Collapse
|
10
|
Huang PK, Schmitt J, Runcie DE. Exploring the molecular regulation of vernalization-induced flowering synchrony in Arabidopsis. THE NEW PHYTOLOGIST 2024; 242:947-959. [PMID: 38509854 DOI: 10.1111/nph.19680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Many plant populations exhibit synchronous flowering, which can be advantageous in plant reproduction. However, molecular mechanisms underlying flowering synchrony remain poorly understood. We studied the role of known vernalization-response and flower-promoting pathways in facilitating synchronized flowering in Arabidopsis thaliana. Using the vernalization-responsive Col-FRI genotype, we experimentally varied germination dates and daylength among individuals to test flowering synchrony in field and controlled environments. We assessed the activity of flowering regulation pathways by measuring gene expression across leaves produced at different time points during development and through a mutant analysis. We observed flowering synchrony across germination cohorts in both environments and discovered a previously unknown process where flower-promoting and repressing signals are differentially regulated between leaves that developed under different environmental conditions. We hypothesized this mechanism may underlie synchronization. However, our experiments demonstrated that signals originating from sources other than leaves must also play a pivotal role in synchronizing flowering time, especially in germination cohorts with prolonged growth before vernalization. Our results suggest flowering synchrony is promoted by a plant-wide integration of flowering signals across leaves and among organs. To summarize our findings, we propose a new conceptual model of vernalization-induced flowering synchrony and provide suggestions for future research in this field.
Collapse
Affiliation(s)
- Po-Kai Huang
- Department of Plant Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Johanna Schmitt
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, 95616, USA
| | - Daniel E Runcie
- Department of Plant Sciences, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
11
|
Maple R, Zhu P, Hepworth J, Wang JW, Dean C. Flowering time: From physiology, through genetics to mechanism. PLANT PHYSIOLOGY 2024; 195:190-212. [PMID: 38417841 PMCID: PMC11060688 DOI: 10.1093/plphys/kiae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024]
Abstract
Plant species have evolved different requirements for environmental/endogenous cues to induce flowering. Originally, these varying requirements were thought to reflect the action of different molecular mechanisms. Thinking changed when genetic and molecular analysis in Arabidopsis thaliana revealed that a network of environmental and endogenous signaling input pathways converge to regulate a common set of "floral pathway integrators." Variation in the predominance of the different input pathways within a network can generate the diversity of requirements observed in different species. Many genes identified by flowering time mutants were found to encode general developmental and gene regulators, with their targets having a specific flowering function. Studies of natural variation in flowering were more successful at identifying genes acting as nodes in the network central to adaptation and domestication. Attention has now turned to mechanistic dissection of flowering time gene function and how that has changed during adaptation. This will inform breeding strategies for climate-proof crops and help define which genes act as critical flowering nodes in many other species.
Collapse
Affiliation(s)
- Robert Maple
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Pan Zhu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jo Hepworth
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- New Cornerstone Science Laboratory, Shanghai 200032, China
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
12
|
Gao Z, He Y. Molecular epigenetic understanding of winter memory in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:1952-1961. [PMID: 37950890 DOI: 10.1093/plphys/kiad597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/13/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Affiliation(s)
- Zheng Gao
- National Key Laboratory of Wheat Improvement, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yuehui He
- National Key Laboratory of Wheat Improvement, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| |
Collapse
|
13
|
Roelfs KU, Känel A, Twyman RM, Prüfer D, Schulze Gronover C. Epigenetic variation in early and late flowering plants of the rubber-producing Russian dandelion Taraxacum koksaghyz provides insights into the regulation of flowering time. Sci Rep 2024; 14:4283. [PMID: 38383610 PMCID: PMC10881582 DOI: 10.1038/s41598-024-54862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/17/2024] [Indexed: 02/23/2024] Open
Abstract
The Russian dandelion (Taraxacum koksaghyz) grows in temperate zones and produces large amounts of poly(cis-1,4-isoprene) in its roots, making it an attractive alternative source of natural rubber. Most T. koksaghyz plants require vernalization to trigger flower development, whereas early flowering varieties that have lost their vernalization dependence are more suitable for breeding and domestication. To provide insight into the regulation of flowering time in T. koksaghyz, we induced epigenetic variation by in vitro cultivation and applied epigenomic and transcriptomic analysis to the resulting early flowering plants and late flowering controls, allowing us to identify differences in methylation patterns and gene expression that correlated with flowering. This led to the identification of candidate genes homologous to vernalization and photoperiodism response genes in other plants, as well as epigenetic modifications that may contribute to the control of flower development. Some of the candidate genes were homologous to known floral regulators, including those that directly or indirectly regulate the major flowering control gene FT. Our atlas of genes can be used as a starting point to investigate mechanisms that control flowering time in T. koksaghyz in greater detail and to develop new breeding varieties that are more suited to domestication.
Collapse
Affiliation(s)
- Kai-Uwe Roelfs
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 48149, Münster, Germany
| | - Andrea Känel
- Institute of Plant Biology and Biotechnology, University of Münster, 48143, Münster, Germany
| | | | - Dirk Prüfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 48149, Münster, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, 48143, Münster, Germany
| | | |
Collapse
|
14
|
Rajabhoj MP, Sankar S, Bondada R, Shanmukhan AP, Prasad K, Maruthachalam R. Gametophytic epigenetic regulators, MEDEA and DEMETER, synergistically suppress ectopic shoot formation in Arabidopsis. PLANT CELL REPORTS 2024; 43:68. [PMID: 38341844 DOI: 10.1007/s00299-024-03159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/11/2024] [Indexed: 02/13/2024]
Abstract
KEY MESSAGE The gametophytic epigenetic regulators, MEA and DME, extend their synergistic role to the sporophytic development by regulating the meristematic activity via restricting the gene expression in the shoot apex. The gametophyte-to-sporophyte transition facilitates the alternation of generations in a plant life cycle. The epigenetic regulators DEMETER (DME) and MEDEA (MEA) synergistically control central cell proliferation and differentiation, ensuring proper gametophyte-to-sporophyte transition in Arabidopsis. Mutant alleles of DME and MEA are female gametophyte lethal, eluding the recovery of recessive homozygotes to examine their role in the sporophyte. Here, we exploited the paternal transmission of these mutant alleles coupled with CENH3-haploid inducer to generate mea-1;dme-2 sporophytes. Strikingly, the simultaneous loss of function of MEA and DME leads to the emergence of ectopic shoot meristems at the apical pole of the plant body axis. DME and MEA are expressed in the developing shoot apex and regulate the expression of various shoot-promoting factors. Chromatin immunoprecipitation (ChIP), DNA methylation, and gene expression analysis revealed several shoot regulators as potential targets of MEA and DME. RNA interference-mediated transcriptional downregulation of shoot-promoting factors STM, CUC2, and PLT5 rescued the twin-plant phenotype to WT in 9-23% of mea-1-/-;dme-2-/- plants. Our findings reveal a previously unrecognized synergistic role of MEA and DME in restricting the meristematic activity at the shoot apex during sporophytic development.
Collapse
Affiliation(s)
- Mohit P Rajabhoj
- School of Biology, IISER Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India
| | - Sudev Sankar
- School of Biology, IISER Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Ramesh Bondada
- School of Biology, IISER Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India
| | | | - Kalika Prasad
- Department of Biology, IISER Pune, Pune, Maharashtra, 411008, India.
| | - Ravi Maruthachalam
- School of Biology, IISER Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
15
|
Yu Y, Wang S, Wang Z, Gao R, Lee J. Arabidopsis thaliana: a powerful model organism to explore histone modifications and their upstream regulations. Epigenetics 2023; 18:2211362. [PMID: 37196184 DOI: 10.1080/15592294.2023.2211362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Histones are subjected to extensive covalent modifications that affect inter-nucleosomal interactions as well as alter chromatin structure and DNA accessibility. Through switching the corresponding histone modifications, the level of transcription and diverse downstream biological processes can be regulated. Although animal systems are widely used in studying histone modifications, the signalling processes that occur outside the nucleus prior to histone modifications have not been well understood due to the limitations including non viable mutants, partial lethality, and infertility of survivors. Here, we review the benefits of using Arabidopsis thaliana as the model organism to study histone modifications and their upstream regulations. Similarities among histones and key histone modifiers such as the Polycomb group (PcG) and Trithorax group (TrxG) in Drosophila, Human, and Arabidopsis are examined. Furthermore, prolonged cold-induced vernalization system has been well-studied and revealed the relationship between the controllable environment input (duration of vernalization), its chromatin modifications of FLOWERING LOCUS C (FLC), following gene expression, and the corresponding phenotypes. Such evidence suggests that research on Arabidopsis can bring insights into incomplete signalling pathways outside of the histone box, which can be achieved through viable reverse genetic screenings based on the phenotypes instead of direct monitoring of histone modifications among individual mutants. The potential upstream regulators in Arabidopsis can provide cues or directions for animal research based on the similarities between them.
Collapse
Affiliation(s)
- Yang Yu
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Sihan Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Ziqin Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Renwei Gao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Joohyun Lee
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| |
Collapse
|
16
|
Liu B, Woods DP, Li W, Amasino RM. INDETERMINATE1-mediated expression of FT family genes is required for proper timing of flowering in Brachypodium distachyon. Proc Natl Acad Sci U S A 2023; 120:e2312052120. [PMID: 37934817 PMCID: PMC10655584 DOI: 10.1073/pnas.2312052120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/19/2023] [Indexed: 11/09/2023] Open
Abstract
The transition to flowering is a major developmental switch in plants. In many temperate grasses, perception of indicators of seasonal change, such as changing day-length and temperature, leads to expression of FLOWERING LOCUS T1 (FT1) and FT-Like (FTL) genes that are essential for promoting the transition to flowering. However, little is known about the upstream regulators of FT1 and FTL genes in temperate grasses. Here, we characterize the monocot-specific gene INDETERMINATE1 (BdID1) in Brachypodium distachyon and demonstrate that BdID1 is a regulator of FT family genes. Mutations in ID1 impact the ability of the short-day (SD) vernalization, cold vernalization, and long-day (LD) photoperiod pathways to induce certain FTL genes. BdID1 is required for upregulation of FTL9 (FT-LIKE9) expression by the SD vernalization pathway, and overexpression of FTL9 in an id1 background can partially restore the delayed flowering phenotype of id1. We show that BdID1 binds in vitro to the promoter region of FTL genes suggesting that ID1 directly activates FTL expression. Transcriptome analysis shows that BdID1 is required for FT1, FT2, FTL12, and FTL13 expression under inductive LD photoperiods, indicating that BdID1 is a regulator of the FT gene family. Moreover, overexpression of FT1 in the id1 background results in rapid flowering similar to overexpressing FT1 in the wild type, demonstrating that BdID1 is upstream of FT family genes. Interestingly, ID1 negatively regulates a previously uncharacterized FTL gene, FTL4, and we show that FTL4 is a repressor of flowering. Thus, BdID1 is critical for proper timing of flowering in temperate grasses.
Collapse
Affiliation(s)
- Bing Liu
- Department of Biochemistry, University of Wisconsin, Madison, WI53706
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI53706
| | - Daniel P. Woods
- Department of Biochemistry, University of Wisconsin, Madison, WI53706
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI53706
- Laboratory of Genetics, University of Wisconsin, Madison, WI53706
| | - Weiya Li
- Department of Biochemistry, University of Wisconsin, Madison, WI53706
| | - Richard M. Amasino
- Department of Biochemistry, University of Wisconsin, Madison, WI53706
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI53706
| |
Collapse
|
17
|
Larran AS, Pajoro A, Qüesta JI. Is winter coming? Impact of the changing climate on plant responses to cold temperature. PLANT, CELL & ENVIRONMENT 2023; 46:3175-3193. [PMID: 37438895 DOI: 10.1111/pce.14669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Climate change is causing alterations in annual temperature regimes worldwide. Important aspects of this include the reduction of winter chilling temperatures as well as the occurrence of unpredicted frosts, both significantly affecting plant growth and yields. Recent studies advanced the knowledge of the mechanisms underlying cold responses and tolerance in the model plant Arabidopsis thaliana. However, how these cold-responsive pathways will readjust to ongoing seasonal temperature variation caused by global warming remains an open question. In this review, we highlight the plant developmental programmes that depend on cold temperature. We focus on the molecular mechanisms that plants have evolved to adjust their development and stress responses upon exposure to cold. Covering both genetic and epigenetic aspects, we present the latest insights into how alternative splicing, noncoding RNAs and the formation of biomolecular condensates play key roles in the regulation of cold responses. We conclude by commenting on attractive targets to accelerate the breeding of increased cold tolerance, bringing up biotechnological tools that might assist in overcoming current limitations. Our aim is to guide the reflection on the current agricultural challenges imposed by a changing climate and to provide useful information for improving plant resilience to unpredictable cold regimes.
Collapse
Affiliation(s)
- Alvaro Santiago Larran
- Centre for Research in Agricultural Genomics (CRAG) IRTA-CSIC-UAB-UB, Campus UAB, Barcelona, Spain
| | - Alice Pajoro
- National Research Council, Institute of Molecular Biology and Pathology, Rome, Italy
| | - Julia I Qüesta
- Centre for Research in Agricultural Genomics (CRAG) IRTA-CSIC-UAB-UB, Campus UAB, Barcelona, Spain
| |
Collapse
|
18
|
Lee Z, Kim S, Choi SJ, Joung E, Kwon M, Park HJ, Shim JS. Regulation of Flowering Time by Environmental Factors in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3680. [PMID: 37960036 PMCID: PMC10649094 DOI: 10.3390/plants12213680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The timing of floral transition is determined by both endogenous molecular pathways and external environmental conditions. Among these environmental conditions, photoperiod acts as a cue to regulate the timing of flowering in response to seasonal changes. Additionally, it has become clear that various environmental factors also control the timing of floral transition. Environmental factor acts as either a positive or negative signal to modulate the timing of flowering, thereby establishing the optimal flowering time to maximize the reproductive success of plants. This review aims to summarize the effects of environmental factors such as photoperiod, light intensity, temperature changes, vernalization, drought, and salinity on the regulation of flowering time in plants, as well as to further explain the molecular mechanisms that link environmental factors to the internal flowering time regulation pathway.
Collapse
Affiliation(s)
- Zion Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
| | - Sohyun Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
| | - Su Jeong Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
| | - Eui Joung
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
| | - Moonhyuk Kwon
- Division of Life Science, ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Hee Jin Park
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
- Institute of Synthetic Biology for Carbon Neutralization, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
19
|
Pan W, Li J, Du Y, Zhao Y, Xin Y, Wang S, Liu C, Lin Z, Fang S, Yang Y, Zaccai M, Zhang X, Yi M, Gazzarrini S, Wu J. Epigenetic silencing of callose synthase by VIL1 promotes bud-growth transition in lily bulbs. NATURE PLANTS 2023; 9:1451-1467. [PMID: 37563458 DOI: 10.1038/s41477-023-01492-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023]
Abstract
In plants, restoring intercellular communication is required for cell activity in buds during the growth transition from slow to fast growth after dormancy release. However, the epigenetic regulation of this phenomenon is far from understood. Here we demonstrate that lily VERNALIZATION INSENSITIVE 3-LIKE 1 (LoVIL1) confers growth transition by mediating plasmodesmata opening via epigenetic repression of CALLOSE SYNTHASE 3 (LoCALS3). Moreover, we found that a novel transcription factor, NUCLEAR FACTOR Y, SUBUNIT A7 (LoNFYA7), is capable of recruiting the LoVIL1-Polycomb Repressive Complex 2 (PRC2) and enhancing H3K27me3 at the LoCALS3 locus by recognizing the CCAAT cis-element (Cce) of its promoter. The LoNFYA7-LoVIL1 module serves as a key player in orchestrating the phase transition from slow to fast growth in lily bulbs. These studies also indicate that LoVIL1 is a suitable marker for the bud-growth-transition trait following dormancy release in lily cultivars.
Collapse
Affiliation(s)
- Wenqiang Pan
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Jingru Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yunpeng Du
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yajie Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yin Xin
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Shaokun Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Chang Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Zhimin Lin
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Shaozhong Fang
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yingdong Yang
- Institute of Floriculture, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Michele Zaccai
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Xiuhai Zhang
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Mingfang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Sonia Gazzarrini
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
20
|
Franco-Echevarría E, Nielsen M, Schulten A, Cheema J, Morgan TE, Bienz M, Dean C. Distinct accessory roles of Arabidopsis VEL proteins in Polycomb silencing. Genes Dev 2023; 37:801-817. [PMID: 37734835 PMCID: PMC7615239 DOI: 10.1101/gad.350814.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023]
Abstract
Polycomb repressive complex 2 (PRC2) mediates epigenetic silencing of target genes in animals and plants. In Arabidopsis, PRC2 is required for the cold-induced epigenetic silencing of the FLC floral repressor locus to align flowering with spring. During this process, PRC2 relies on VEL accessory factors, including the constitutively expressed VRN5 and the cold-induced VIN3. The VEL proteins are physically associated with PRC2, but their individual functions remain unclear. Here, we show an intimate association between recombinant VRN5 and multiple components within a reconstituted PRC2, dependent on a compact conformation of VRN5 central domains. Key residues mediating this compact conformation are conserved among VRN5 orthologs across the plant kingdom. In contrast, VIN3 interacts with VAL1, a transcriptional repressor that binds directly to FLC These associations differentially affect their role in H3K27me deposition: Both proteins are required for H3K27me3, but only VRN5 is necessary for H3K27me2. Although originally defined as vernalization regulators, VIN3 and VRN5 coassociate with many targets in the Arabidopsis genome that are modified with H3K27me3. Our work therefore reveals the distinct accessory roles for VEL proteins in conferring cold-induced silencing on FLC, with broad relevance for PRC2 targets generally.
Collapse
Affiliation(s)
- Elsa Franco-Echevarría
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Mathias Nielsen
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Anna Schulten
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Jitender Cheema
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Tomos E Morgan
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Mariann Bienz
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom;
| | - Caroline Dean
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom;
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
21
|
Zuo DD, Ahammed GJ, Guo DL. Plant transcriptional memory and associated mechanism of abiotic stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107917. [PMID: 37523825 DOI: 10.1016/j.plaphy.2023.107917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/02/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
Plants face various adverse environmental conditions, particularly with the ongoing changes in global climate, which drastically affect the growth, development and productivity of crops. To cope with these stresses, plants have evolved complex mechanisms, and one of the crucial ways is to develop transcriptional memories from stress exposure. This induced learning enables plants to better and more strongly restart the response and adaptation mechanism to stress when similar or dissimilar stresses reoccur. Understanding the molecular mechanism behind plant transcriptional memory of stress can provide a theoretical basis for breeding stress-tolerant crops with resilience to future climates. Here we review the recent research progress on the transcriptional memory of plants under various stresses and the applications of underlying mechanisms for sustainable agricultural production. We propose that a thorough understanding of plant transcriptional memory is crucial for both agronomic management and resistant breeding, and thus may help to improve agricultural yield and quality under changing climatic conditions.
Collapse
Affiliation(s)
- Ding-Ding Zuo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China.
| |
Collapse
|
22
|
Jung JH, Seo PJ, Oh E, Kim J. Temperature perception by plants. TRENDS IN PLANT SCIENCE 2023; 28:924-940. [PMID: 37045740 DOI: 10.1016/j.tplants.2023.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/16/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Plants constantly face fluctuating ambient temperatures and must adapt to survive under stressful conditions. Temperature affects many aspects of plant growth and development through a complex network of transcriptional responses. Although temperature sensing is a crucial primary step in initiating transcriptional responses via Ca2+ and/or reactive oxygen species signaling, an understanding of how plants perceive temperature has remained elusive. However, recent studies have yielded breakthroughs in our understanding of temperature sensors and thermosensation mechanisms. We review recent findings on potential temperature sensors and emerging thermosensation mechanisms, including biomolecular condensate formation through phase separation in plants. We also compare the temperature perception mechanisms of plants with those of other organisms to provide insights into understanding temperature sensing by plants.
Collapse
Affiliation(s)
- Jae-Hoon Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Eunkyoo Oh
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea; Department of Integrative Food, Bioscience, and Technology, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
23
|
Wallner ES, Tonn N, Shi D, Luzzietti L, Wanke F, Hunziker P, Xu Y, Jung I, Lopéz-Salmerón V, Gebert M, Wenzl C, Lohmann JU, Harter K, Greb T. OBERON3 and SUPPRESSOR OF MAX2 1-LIKE proteins form a regulatory module driving phloem development. Nat Commun 2023; 14:2128. [PMID: 37059727 PMCID: PMC10104830 DOI: 10.1038/s41467-023-37790-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/31/2023] [Indexed: 04/16/2023] Open
Abstract
Spatial specificity of cell fate decisions is central for organismal development. The phloem tissue mediates long-distance transport of energy metabolites along plant bodies and is characterized by an exceptional degree of cellular specialization. How a phloem-specific developmental program is implemented is, however, unknown. Here we reveal that the ubiquitously expressed PHD-finger protein OBE3 forms a central module with the phloem-specific SMXL5 protein for establishing the phloem developmental program in Arabidopsis thaliana. By protein interaction studies and phloem-specific ATAC-seq analyses, we show that OBE3 and SMXL5 proteins form a complex in nuclei of phloem stem cells where they promote a phloem-specific chromatin profile. This profile allows expression of OPS, BRX, BAM3, and CVP2 genes acting as mediators of phloem differentiation. Our findings demonstrate that OBE3/SMXL5 protein complexes establish nuclear features essential for determining phloem cell fate and highlight how a combination of ubiquitous and local regulators generate specificity of developmental decisions in plants.
Collapse
Affiliation(s)
- Eva-Sophie Wallner
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
- Gilbert Biological Sciences, Stanford University, Stanford, CA, 94305-5020, USA
| | - Nina Tonn
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Dongbo Shi
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
- Japan RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
- Institute for Biochemistry and Biology (IBB), University of Potsdam, Potsdam, 14476, Germany
- Japan Science and Technology Agency (JST), Saitama, Kawaguchi, Japan
| | - Laura Luzzietti
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Friederike Wanke
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Pascal Hunziker
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Yingqiang Xu
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Ilona Jung
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Vadir Lopéz-Salmerón
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
- BD Bioscience, 69126, Heidelberg, Germany
| | - Michael Gebert
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Christian Wenzl
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Jan U Lohmann
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Klaus Harter
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Thomas Greb
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
24
|
Kim J, Bordiya Y, Xi Y, Zhao B, Kim DH, Pyo Y, Zong W, Ricci WA, Sung S. Warm temperature-triggered developmental reprogramming requires VIL1-mediated, genome-wide H3K27me3 accumulation in Arabidopsis. Development 2023; 150:dev201343. [PMID: 36762655 PMCID: PMC10110417 DOI: 10.1242/dev.201343] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Changes in ambient temperature immensely affect developmental programs in many species. Plants adapt to high ambient growth temperature in part by vegetative and reproductive developmental reprogramming, known as thermo-morphogenesis. Thermo-morphogenesis is accompanied by massive changes in the transcriptome upon temperature change. Here, we show that transcriptome changes induced by warm ambient temperature require VERNALIZATION INSENSITIVE 3-LIKE 1 (VIL1), a facultative component of the Polycomb repressive complex PRC2, in Arabidopsis. Warm growth temperature elicits genome-wide accumulation of H3K27me3 and VIL1 is necessary for the warm temperature-mediated accumulation of H3K27me3. Consistent with its role as a mediator of thermo-morphogenesis, loss of function of VIL1 results in hypo-responsiveness to warm ambient temperature. Our results show that VIL1 is a major chromatin regulator in responses to high ambient temperature.
Collapse
Affiliation(s)
- Junghyun Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yogendra Bordiya
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yanpeng Xi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Bo Zhao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Dong-Hwan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Youngjae Pyo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Wei Zong
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - William A. Ricci
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Sibum Sung
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
25
|
Nishio H, Kudoh H. Distinct responses to autumn and spring temperatures by the key flowering-time regulator FLOWERING LOCUS C. Curr Opin Genet Dev 2023; 78:102016. [PMID: 36549195 DOI: 10.1016/j.gde.2022.102016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Despite the similarity in temperature regimes between late autumn and early spring, plants exhibit distinct developmental responses that result in distinct morphologies, that is, overwintering and reproductive forms. In Arabidopsis, the control of autumn-spring distinction involves the transcriptional regulation of the floral repressor FLOWERING LOCUS C (FLC). The memory of winter cold is registered as epigenetic silencing of FLC. Recent studies on A. thaliana FLC revealed detailed and additional mechanisms of silencing in response to autumn and winter cold. Studies on perennial Arabidopsis FLC revealed that its expression responds to spring warmth and is robustly upregulated, ignoring cold. These new studies provide mechanistic insights into the distinct regulation of FLC under autumn and spring temperature regimes.
Collapse
Affiliation(s)
- Haruki Nishio
- Center for Ecological Research, Kyoto University, Shiga 520-2113, Japan; Data Science and AI Innovation Research Promotion Center, Shiga University, Shiga 522-8522, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Shiga 520-2113, Japan.
| |
Collapse
|
26
|
Jeon M, Jeong G, Yang Y, Luo X, Jeong D, Kyung J, Hyun Y, He Y, Lee I. Vernalization-triggered expression of the antisense transcript COOLAIR is mediated by CBF genes. eLife 2023; 12:84594. [PMID: 36722843 PMCID: PMC10036118 DOI: 10.7554/elife.84594] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023] Open
Abstract
To synchronize flowering time with spring, many plants undergo vernalization, a floral-promotion process triggered by exposure to long-term winter cold. In Arabidopsis thaliana, this is achieved through cold-mediated epigenetic silencing of the floral repressor, FLOWERING LOCUS C (FLC). COOLAIR, a cold-induced antisense RNA transcribed from the FLC locus, has been proposed to facilitate FLC silencing. Here, we show that C-repeat (CRT)/dehydration-responsive elements (DREs) at the 3'-end of FLC and CRT/DRE-binding factors (CBFs) are required for cold-mediated expression of COOLAIR. CBFs bind to CRT/DREs at the 3'-end of FLC, both in vitro and in vivo, and CBF levels increase gradually during vernalization. Cold-induced COOLAIR expression is severely impaired in cbfs mutants in which all CBF genes are knocked-out. Conversely, CBF-overexpressing plants show increased COOLAIR levels even at warm temperatures. We show that COOLAIR is induced by CBFs during early stages of vernalization but COOLAIR levels decrease in later phases as FLC chromatin transitions to an inactive state to which CBFs can no longer bind. We also demonstrate that cbfs and FLCΔCOOLAIR mutants exhibit a normal vernalization response despite their inability to activate COOLAIR expression during cold, revealing that COOLAIR is not required for the vernalization process.
Collapse
Affiliation(s)
- Myeongjune Jeon
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| | - Goowon Jeong
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| | - Yupeng Yang
- Shanghai Center for Plant Stress Biology & National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Luo
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Daesong Jeong
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| | - Jinseul Kyung
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| | - Youbong Hyun
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| | - Yuehui He
- Shanghai Center for Plant Stress Biology & National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Ilha Lee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
27
|
Mitsui Y, Yokoyama H, Nakaegawa W, Tanaka K, Komatsu K, Koizuka N, Okuzaki A, Matsumoto T, Takahara M, Tabei Y. Epistatic interactions among multiple copies of FLC genes with naturally occurring insertions correlate with flowering time variation in radish. AOB PLANTS 2023; 15:plac066. [PMID: 36751367 PMCID: PMC9893874 DOI: 10.1093/aobpla/plac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Brassicaceae crops, which underwent whole-genome triplication during their evolution, have multiple copies of flowering-related genes. Interactions among multiple gene copies may be involved in flowering time regulation; however, this mechanism is poorly understood. In this study, we performed comprehensive, high-throughput RNA sequencing analysis to identify candidate genes involved in the extremely late-bolting (LB) trait in radish. Then, we examined the regulatory roles and interactions of radish FLOWERING LOCUS C (RsFLC) paralogs, the main flowering repressor candidates. Seven flowering integrator genes, five vernalization genes, nine photoperiodic/circadian clock genes and eight genes from other flowering pathways were differentially expressed in the early-bolting (EB) cultivar 'Aokubinagafuto' and LB radish cultivar 'Tokinashi' under different vernalization conditions. In the LB cultivar, RsFLC1 and RsFLC2 expression levels were maintained after 40 days of cold exposure. Bolting time was significantly correlated with the expression rates of RsFLC1 and RsFLC2. Using the EB × LB F2 population, we performed association analyses of genotypes with or without 1910- and 1627-bp insertions in the first introns of RsFLC1 and RsFLC2, respectively. The insertion alleles prevented the repression of their respective FLC genes under cold conditions. Interestingly, genotypes homozygous for RsFLC2 insertion alleles maintained high RsFLC1 and RsFLC3 expression levels under cold conditions, and two-way analysis of variance revealed that RsFLC1 and RsFLC3 expression was influenced by the RsFLC2 genotype. Our results indicate that insertions in the first introns of RsFLC1 and RsFLC2 contribute to the late-flowering trait in radish via different mechanisms. The RsFLC2 insertion allele conferred a strong delay in bolting by inhibiting the repression of all three RsFLC genes, suggesting that radish flowering time is determined by epistatic interactions among multiple FLC gene copies.
Collapse
Affiliation(s)
| | - Hinano Yokoyama
- Faculty of Agriculture, Tokyo University of Agriculture, 1737 Atsugi, Kanagawa 243-0034, Japan
| | - Wataru Nakaegawa
- Faculty of Agriculture, Tokyo University of Agriculture, 1737 Atsugi, Kanagawa 243-0034, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Kenji Komatsu
- Faculty of Agriculture, Tokyo University of Agriculture, 1737 Atsugi, Kanagawa 243-0034, Japan
| | - Nobuya Koizuka
- College of Agriculture, Tamagawa University, 6-1-1 Tamagawa Gakuen, Machida, Tokyo 194-8610, Japan
| | - Ayako Okuzaki
- College of Agriculture, Tamagawa University, 6-1-1 Tamagawa Gakuen, Machida, Tokyo 194-8610, Japan
| | - Takashi Matsumoto
- Faculty of Applied Biology, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Manabu Takahara
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8634, Japan
| | - Yutaka Tabei
- Faculty of Food and Nutritional Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| |
Collapse
|
28
|
Cheng K, Lei C, Zhang S, Zheng Q, Wei C, Huang W, Xing M, Zhang J, Zhang X, Zhang X. Genome-wide identification and characterization of polycomb repressive complex 2 core components in upland cotton (Gossypium hirsutum L.). BMC PLANT BIOLOGY 2023; 23:66. [PMID: 36721081 PMCID: PMC9890721 DOI: 10.1186/s12870-023-04075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The evolutionarily conserved Polycomb Repressive Complex 2 (PRC2) plays a vital role in epigenetic gene repression by depositing tri-methylation on lysine residue K27 of histone H3 (H3K27me3) at the target loci, thus participating in diverse biological processes. However, few reports about PRC2 are available in plant species with large and complicated genomes, like cotton. RESULTS Here, we performed a genome-wide identification and comprehensive analysis of cotton PRC2 core components, especially in upland cotton (Gossypium hirsutum). Firstly, a total of 8 and 16 PRC2 core components were identified in diploid and tetraploid cotton species, respectively. These components were classified into four groups, E(z), Su(z)12, ESC and p55, and the members in the same group displayed good collinearity, similar gene structure and domain organization. Next, we cloned G. hirsutum PRC2 (GhPRC2) core components, and found that most of GhPRC2 proteins were localized in the nucleus, and interacted with each other to form multi-subunit complexes. Moreover, we analyzed the expression profile of GhPRC2 genes. The transcriptome data and quantitative real-time PCR (qRT-PCR) assays indicated that GhPRC2 genes were ubiquitously but differentially expressed in various tissues, with high expression levels in reproductive organs like petals, stamens and pistils. And the expressions of several GhPRC2 genes, especially E(z) group genes, were responsive to various abiotic and biotic stresses, including drought, salinity, extreme temperature, and Verticillium dahliae (Vd) infection. CONCLUSION We identified PRC2 core components in upland cotton, and systematically investigated their classifications, phylogenetic and synteny relationships, gene structures, domain organizations, subcellular localizations, protein interactions, tissue-specific and stresses-responsive expression patterns. Our results will provide insights into the evolution and composition of cotton PRC2, and lay the foundation for further investigation of their biological functions and regulatory mechanisms.
Collapse
Affiliation(s)
- Kai Cheng
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Cangbao Lei
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Siyuan Zhang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Qiao Zheng
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Chunyan Wei
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Weiyi Huang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Minghui Xing
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Junli Zhang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Xiangyu Zhang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Xiao Zhang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China.
| |
Collapse
|
29
|
Patra GK, Gupta D, Rout GR, Panda SK. Role of long non coding RNA in plants under abiotic and biotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:96-110. [PMID: 36399914 DOI: 10.1016/j.plaphy.2022.10.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Evolutionary processes have evolved plants to cope with several different natural stresses. Basic physiological activities of crop plants are significantly harmed by these stresses, reducing productivity and eventually leading to death. The recent advancements in high-throughput sequencing of transcriptome and expression profiling with NGS techniques lead to the innovation of various RNAs which do not code for proteins, more specifically long non-coding RNAs (lncRNAs), undergirding regulate growth, development, and the plant defence mechanism transcriptionally under stress situations. LncRNAs are a diverse set of RNAs that play key roles in various biological processes at the level of transcription, post-transcription, and epigenetics. These are thought to serve crucial functions in plant immunity and response to changes in the environment. In plants, however, just a few lncRNAs have been functionally identified. In this review, we will address recent advancements in comprehending lncRNA regulatory functions, focusing on the expanding involvement of lncRNAs in modulating environmental stress responsiveness in plants.
Collapse
Affiliation(s)
- Gyanendra K Patra
- Department of Agriculture Biotechnology, Orissa University of Agriculture and Technology, Bhubaneswar, 751 003, Odisha, India
| | - Divya Gupta
- School of Life Sciences, Central University of Rajasthan, NH 8, Bandarsindri, Ajmer, 305817, Rajasthan, India
| | - Gyana Ranjan Rout
- Department of Agriculture Biotechnology, Orissa University of Agriculture and Technology, Bhubaneswar, 751 003, Odisha, India
| | - Sanjib Kumar Panda
- School of Life Sciences, Central University of Rajasthan, NH 8, Bandarsindri, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
30
|
Tian Y, Hou Y, Song Y. LncRNAs elevate plant adaptation under low temperature by maintaining local chromatin landscape. PLANT SIGNALING & BEHAVIOR 2022; 17:2014677. [PMID: 35352623 PMCID: PMC8973372 DOI: 10.1080/15592324.2021.2014677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Epigenetic regulation is one of the most precise and subtle ways of gene regulation, including DNA modification, histone modification, RNA modification, histone variants, chromatin remodeling, and long non-coding RNAs (lncRNAs). Chromatin modification is the most basic type of epigenetic regulation, which plays a key role in a myriad of developmental and physiological processes that have been thoroughly studied. These modifications are usually completed by a series of conserved chromatin modification complexes in eukaryotes. In recent years, a series of lncRNAs in organisms also have been described as having irreplaceable functions in biological environment adaptation, especially in biotic and abiotic stresses. Moreover, these molecules form a sophisticated regulatory network through mutual cross-regulation to achieve quantitative expression of key environmental response genes to external signals. For instance, the function of lncRNAs will directly or indirectly depend on the function of the chromatin modification complex. In this review, we mainly focus on chromatin modification, lncRNA, and their coordination mechanism to achieve the high adaptability of plants in low-temperature environments. We highlight recent findings and insights into lncRNA-mediated local chromatin environment changes during plant growth under low temperature via chromatin modification complexes, including target gene specificity for different lncRNA.
Collapse
Affiliation(s)
- Yongke Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yukang Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yuan Song
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
31
|
Huo C, Zhang B, Wang R. Research progress on plant noncoding RNAs in response to low-temperature stress. PLANT SIGNALING & BEHAVIOR 2022; 17:2004035. [PMID: 34927551 PMCID: PMC8932918 DOI: 10.1080/15592324.2021.2004035] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Low temperature (LT) is an important factor limiting plant growth and distribution. Plants have evolved sophisticated adaptive mechanisms to cope with hypothermia. RNA silencing is the orchestrator of these cellular responses. RNA silencing, which modifies gene expression through noncoding RNAs (ncRNAs), is a strategy used by plants to combat environmental stress. ncRNAs, which have very little protein-coding capacity, work by binding reverse complementary endogenous transcripts. In plants, ncRNAs include small non-coding RNAs (sncRNAs), medium-sized non-coding RNAs (mncRNAs), and long non-coding RNAs (lncRNAs). Apart from describing the biogenesis of different ncRNAs (miRNAs, siRNAs, and lncRNAs), we thoroughly discuss the functions of these ncRNAs during cold acclimation. Two major classes of sncRNAs, microRNAs and siRNAs, play essential regulatory roles in cold response processes through the posttranscriptional gene silencing (PTGS) pathway or transcriptional gene silencing (TGS) pathway. Microarray or transcriptome sequencing analysis can reveal a large number of cold-responsive miRNAs in plants. In this review, the cold-response patterns of miRNAs verified by Northern blotting or quantitative PCR in Arabidopsis thaliana, rice, and many other important crops are discussed. The detailed molecular mechanisms of several miRNAs in Arabidopsis (miR397, miR408, miR402, and miR394) and rice (Osa-miR156, Osa-miR319, and Osa-miR528) that regulate plant cold resistance are elucidated. In addition, the regulatory mechanism of the lncRNA SVALKA in the cold signaling pathway is explained in detail. Finally, we present the challenges for understanding the roles of small ncRNAs in cold signal transduction.
Collapse
Affiliation(s)
- Chenmin Huo
- College of Biology Science & Engineering, Hebei University of Economics & Business, Shijiazhuang, China
| | - Baowen Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ruiju Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- CONTACT Ruiju Wang College of Biology Science & Engineering, Hebei University of Economics & Business, Shijiazhuang, China
| |
Collapse
|
32
|
Chen Z, Li Z. Adaptation and integration of environmental cues to internal flowering network in Arabidopsis thaliana. REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
33
|
Franco-Echevarría E, Rutherford TJ, Fiedler M, Dean C, Bienz M. Plant vernalization proteins contain unusual PHD superdomains without histone H3 binding activity. J Biol Chem 2022; 298:102540. [PMID: 36174674 PMCID: PMC9640981 DOI: 10.1016/j.jbc.2022.102540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
PHD fingers are modular domains in chromatin-associated proteins that decode the methylation status of histone H3 tails. A PHD finger signature is found in plant vernalization (VEL) proteins, which function as accessory factors of the Polycomb system to control flowering in Arabidopsis through an epigenetic silencing mechanism. It has been proposed that VEL PHD fingers bind to methylated histone H3 tails to facilitate association of the Polycomb silencing machinery with target genes. Here, we use structural analysis by X-ray crystallography to show that the VEL PHD finger forms the central module of a larger compact tripartite superdomain that also contains a zinc finger and a four-helix bundle. This PHD superdomain fold is only found in one other family, the OBERON proteins, which have multiple functions in Arabidopsis meristems to control plant growth. The putative histone-binding surface of OBERON proteins exhibits the characteristic three-pronged pocket of histone-binding PHD fingers and binds to methylated histone H3 tails. However, that of VEL PHD fingers lacks this architecture and exhibits unusually high positive surface charge. This VEL PHD superdomain neither binds to unmodified nor variously modified histone H3 tails, as demonstrated by isothermal calorimetry and NMR spectroscopy. Instead, the VEL PHD superdomain interacts with negatively charged polymers. Our evidence argues for evolution of a divergent function for the PHD superdomain in vernalization that does not involve histone tail decoding.
Collapse
Affiliation(s)
| | | | - Marc Fiedler
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Caroline Dean
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom; John Innes Centre, Norwich Research Park, Norwich, United Kingdom.
| | - Mariann Bienz
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.
| |
Collapse
|
34
|
Gao Z, Zhou Y, He Y. Molecular epigenetic mechanisms for the memory of temperature stresses in plants. J Genet Genomics 2022; 49:991-1001. [PMID: 35870761 DOI: 10.1016/j.jgg.2022.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 12/29/2022]
Abstract
The sessile plants encounter various stresses; some are prolonged, whereas some others are recurrent. Temperature is crucial for plant growth and development, and plants often encounter adverse high temperature fluctuations (heat stresses) as well as prolonged cold exposure such as seasonal temperature drops in winter when grown in temperate regions. Many plants can remember past temperature stresses to get adapted to adverse local temperature changes to ensure survival and/or reproductive success. Here, we summarize chromatin-based mechanisms underlying acquired thermotolerance or thermomemory in plants and review recent progresses on molecular epigenetic understanding of 'remembering of prolonged cold in winter' or vernalization, a process critical for various over-wintering plants to acquire competence to flower in the coming spring. In addition, perspectives on future study in temperature stress memories of economically-important crops are discussed.
Collapse
Affiliation(s)
- Zhaoxu Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuehui He
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China.
| |
Collapse
|
35
|
Mikulski P, Wolff P, Lu T, Nielsen M, Echevarria EF, Zhu D, Questa JI, Saalbach G, Martins C, Dean C. VAL1 acts as an assembly platform co-ordinating co-transcriptional repression and chromatin regulation at Arabidopsis FLC. Nat Commun 2022; 13:5542. [PMID: 36130923 PMCID: PMC9492735 DOI: 10.1038/s41467-022-32897-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
Polycomb (PcG) silencing is crucial for development, but how targets are specified remains incompletely understood. The cold-induced Polycomb Repressive Complex 2 (PRC2) silencing of Arabidopsis thaliana FLOWERING LOCUS C (FLC) provides an excellent system to elucidate PcG regulation. Association of the DNA binding protein VAL1 to FLC PcG nucleation regionis an important step. VAL1 co-immunoprecipitates APOPTOSIS AND SPLICING ASSOCIATED PROTEIN (ASAP) complex and PRC1. Here, we show that ASAP and PRC1 are necessary for co-transcriptional repression and chromatin regulation at FLC. ASAP mutants affect FLC transcription in warm conditions, but the rate of FLC silencing in the cold is unaffected. PRC1-mediated H2Aub accumulation increases at the FLC nucleation region during cold, but unlike the PRC2-delivered H3K27me3, does not spread across the locus. H2Aub thus involved in the transition to epigenetic silencing at FLC, facilitating H3K27me3 accumulation and long-term epigenetic memory. Overall, our work highlights the importance of VAL1 as an assembly platform co-ordinating activities necessary for epigenetic silencing at FLC.
Collapse
Affiliation(s)
- Pawel Mikulski
- Cell and Developmental Biology, John Innes Centre, Norwich, UK. .,Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Philip Wolff
- Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | - Tiancong Lu
- Cell and Developmental Biology, John Innes Centre, Norwich, UK.,State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mathias Nielsen
- Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | | | - Danling Zhu
- Cell and Developmental Biology, John Innes Centre, Norwich, UK.,SUSTech-PKU Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Julia I Questa
- Cell and Developmental Biology, John Innes Centre, Norwich, UK.,Centre for Research in Agricultural Genomics, Barcelona, Spain
| | | | - Carlo Martins
- Biological Chemistry, John Innes Centre, Norwich, UK
| | - Caroline Dean
- Cell and Developmental Biology, John Innes Centre, Norwich, UK. .,MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
36
|
Choi BS, Choi SK, Kim NS, Choi IY. NBLAST: a graphical user interface-based two-way BLAST software with a dot plot viewer. Genomics Inform 2022; 20:e40. [PMID: 36239113 PMCID: PMC9576473 DOI: 10.5808/gi.21075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 12/31/2022] Open
Abstract
BLAST, a basic bioinformatics tool for searching local sequence similarity, has been one of the most widely used bioinformatics programs since its introduction in 1990. Users generally use the web-based NCBI-BLAST program for BLAST analysis. However, users with large sequence data are often faced with a problem of upload size limitation while using the web-based BLAST program. This proves inconvenient as scientists often want to run BLAST on their own data, such as transcriptome or whole genome sequences. To overcome this issue, we developed NBLAST, a graphical user interface-based BLAST program that employs a two-way system, allowing the use of input sequences either as "query" or "target" in the BLAST analysis. NBLAST is also equipped with a dot plot viewer, thus allowing researchers to create custom database for BLAST and run a dot plot similarity analysis within a single program. It is available to access to the NBLAST with http://nbitglobal.com/nblast.
Collapse
Affiliation(s)
| | - Seon Kang Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea
| | - Nam-Soo Kim
- BIT Institute NBIT Co., Ltd., Chuncheon 24341, Korea
| | - Ik-Young Choi
- BIT Institute NBIT Co., Ltd., Chuncheon 24341, Korea
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
37
|
Surkova SY, Samsonova MG. Mechanisms of Vernalization-Induced Flowering in Legumes. Int J Mol Sci 2022; 23:ijms23179889. [PMID: 36077286 PMCID: PMC9456104 DOI: 10.3390/ijms23179889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Vernalization is the requirement for exposure to low temperatures to trigger flowering. The best knowledge about the mechanisms of vernalization response has been accumulated for Arabidopsis and cereals. In Arabidopsis thaliana, vernalization involves an epigenetic silencing of the MADS-box gene FLOWERING LOCUS C (FLC), which is a flowering repressor. FLC silencing releases the expression of the main flowering inductor FLOWERING LOCUS T (FT), resulting in a floral transition. Remarkably, no FLC homologues have been identified in the vernalization-responsive legumes, and the mechanisms of cold-mediated transition to flowering in these species remain elusive. Nevertheless, legume FT genes have been shown to retain the function of the main vernalization signal integrators. Unlike Arabidopsis, legumes have three subclades of FT genes, which demonstrate distinct patterns of regulation with respect to environmental cues and tissue specificity. This implies complex mechanisms of vernalization signal propagation in the flowering network, that remain largely elusive. Here, for the first time, we summarize the available information on the genetic basis of cold-induced flowering in legumes with a special focus on the role of FT genes.
Collapse
|
38
|
Hung FY, Shih YH, Lin PY, Feng YR, Li C, Wu K. WRKY63 transcriptional activation of COOLAIR and COLDAIR regulates vernalization-induced flowering. PLANT PHYSIOLOGY 2022; 190:532-547. [PMID: 35708655 PMCID: PMC9434252 DOI: 10.1093/plphys/kiac295] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/21/2022] [Indexed: 05/10/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) FLOWERING LOCUS C (FLC) acts as a key flowering regulator by repressing the expression of the floral integrator FLOWERING LOCUS T (FT). Prolonged exposure to cold (vernalization) induces flowering by reducing FLC expression. The long noncoding RNAs (lncRNAs) COOLAIR and COLDAIR, which are transcribed from the 3' end and the first intron of FLC, respectively, are important for FLC repression under vernalization. However, the molecular mechanism of how COOLAIR and COLDAIR are transcriptionally activated remains elusive. In this study, we found that the group-III WRKY transcription factor WRKY63 can directly activate FLC. wrky63 mutant plants display an early flowering phenotype and are insensitive to vernalization. Interestingly, we found that WRKY63 can activate the expression of COOLAIR and COLDAIR by binding to their promoters.WRKY63 therefore acts as a dual regulator that activates FLC directly under non-vernalization conditions but represses FLC indirectly during vernalization through inducing COOLAIR and COLDAIR. Furthermore, genome-wide occupancy profile analyses indicated that the binding of WRKY63 to vernalization-induced genes increases after vernalization. In addition, WRKY63 binding is associated with decreased levels of the repressive marker Histone H3 Lysine 27 trimethylation (H3K27me3). Collectively, our results indicate that WRKY63 is an important flowering regulator involved in vernalization-induced transcriptional regulation.
Collapse
Affiliation(s)
| | | | - Pei-Yu Lin
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Yun-Ru Feng
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Chenlong Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | | |
Collapse
|
39
|
Preston JC, Fjellheim S. Flowering time runs hot and cold. PLANT PHYSIOLOGY 2022; 190:5-18. [PMID: 35274728 PMCID: PMC9434294 DOI: 10.1093/plphys/kiac111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 05/16/2023]
Abstract
Evidence suggests that anthropogenically-mediated global warming results in accelerated flowering for many plant populations. However, the fact that some plants are late flowering or unaffected by warming, underscores the complex relationship between phase change, temperature, and phylogeny. In this review, we present an emerging picture of how plants sense temperature changes, and then discuss the independent recruitment of ancient flowering pathway genes for the evolution of ambient, low, and high temperature-regulated reproductive development. As well as revealing areas of research required for a better understanding of how past thermal climates have shaped global patterns of plasticity in plant phase change, we consider the implications for these phenological thermal responses in light of climate change.
Collapse
Affiliation(s)
- Jill C Preston
- Department of Plant Biology, University of Vermont, Burlington, Vermont 05405, USA
| | - Siri Fjellheim
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås 1430, Norway
| |
Collapse
|
40
|
A Long Noncoding RNA Derived from lncRNA-mRNA Networks Modulates Seed Vigor. Int J Mol Sci 2022; 23:ijms23169472. [PMID: 36012737 PMCID: PMC9409430 DOI: 10.3390/ijms23169472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The discovery of long noncoding RNAs (lncRNAs) has filled a great gap in our understanding of posttranscriptional gene regulation in a variety of biological processes related to plant stress responses. However, systematic analyses of the lncRNAs expressed in rice seeds that germinate under cold stress have been elusive. In this study, we performed strand-specific whole transcriptome sequencing in germinated rice seeds under cold stress and normal temperature. A total of 6258 putative lncRNAs were identified and expressed in a stage-specific manner compared to mRNA. By investigating the targets of differentially expressed (DE) lncRNAs of LT-I (phase I of low temperature)/NT-I (phase I of normal temperature), it was shown that the auxin-activated signaling pathway was significantly enriched, and twenty-three protein-coding genes with most of the members of the SAUR family located in chromosome 9 were identified as the candidate target genes that may interact with five lncRNAs. A seed vigor-related lncRNA, SVR, which interplays with the members of the SAUR gene family in cis was eventually identified. The CRISPR/Cas 9 engineered mutations in SVR cause delay of germination. The findings provided new insights into the connection between lncRNAs and the auxin-activated signaling pathway in the regulation of rice seed vigor.
Collapse
|
41
|
Zhao Z, Zang S, Zou W, Pan YB, Yao W, You C, Que Y. Long Non-Coding RNAs: New Players in Plants. Int J Mol Sci 2022; 23:ijms23169301. [PMID: 36012566 PMCID: PMC9409372 DOI: 10.3390/ijms23169301] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
During the process of growth and development, plants are prone to various biotic and abiotic stresses. They have evolved a variety of strategies to resist the adverse effects of these stresses. lncRNAs (long non-coding RNAs) are a type of less conserved RNA molecules of more than 200 nt (nucleotides) in length. lncRNAs do not code for any protein, but interact with DNA, RNA, and protein to affect transcriptional, posttranscriptional, and epigenetic modulation events. As a new regulatory element, lncRNAs play a critical role in coping with environmental pressure during plant growth and development. This article presents a comprehensive review on the types of plant lncRNAs, the role and mechanism of lncRNAs at different molecular levels, the coordination between lncRNA and miRNA (microRNA) in plant immune responses, the latest research progress of lncRNAs in plant growth and development, and their response to biotic and abiotic stresses. We conclude with a discussion on future direction for the elaboration of the function and mechanism of lncRNAs.
Collapse
Affiliation(s)
- Zhennan Zhao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shoujian Zang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenhui Zou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yong-Bao Pan
- Sugarcane Research Unit, USDA-ARS, Houma, LA 70360, USA
| | - Wei Yao
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning 530005, China
| | - Cuihuai You
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (C.Y.); (Y.Q.); Tel.: +86-591-8385-2547 (C.Y. & Y.Q.)
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (C.Y.); (Y.Q.); Tel.: +86-591-8385-2547 (C.Y. & Y.Q.)
| |
Collapse
|
42
|
Genome-Wide Identification and Spatial Expression Analysis of Histone Modification Gene Families in the Rubber Dandelion Taraxacum kok-saghyz. PLANTS 2022; 11:plants11162077. [PMID: 36015381 PMCID: PMC9415798 DOI: 10.3390/plants11162077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022]
Abstract
Taraxacum kok-saghyz (Tks), also known as the Russian dandelion, is a recognized alternative source of natural rubber quite comparable, for quality and use, to the one obtained from the so-called rubber tree, Hevea brasiliensis. In addition to that, Tks roots produce several other compounds, including inulin, whose use in pharmaceutical and dietary products is quite extensive. Histone-modifying genes (HMGs) catalyze a series of post-translational modifications that affect chromatin organization and conformation, which, in turn, regulate many downstream processes, including gene expression. In this study, we present the first analysis of HMGs in Tks. Altogether, we identified 154 putative Tks homologs: 60 HMTs, 34 HDMs, 42 HATs, and 18 HDACs. Interestingly, whilst most of the classes showed similar numbers in other plant species, including M. truncatula and A. thaliana, HATs and HMT-PRMTs were indeed more abundant in Tks. Composition and structure analysis of Tks HMG proteins showed, for some classes, the presence of novel domains, suggesting a divergence from the canonical HMG model. The analysis of publicly available transcriptome datasets, combined with spatial expression of different developmental tissues, allowed us to identify several HMGs with a putative role in metabolite biosynthesis. Overall, our work describes HMG genomic organization and sets the premises for the functional characterization of epigenetic modifications in rubber-producing plants.
Collapse
|
43
|
Zong W, Kim J, Bordiya Y, Qiao H, Sung S. Abscisic acid negatively regulates the Polycomb-mediated H3K27me3 through the PHD-finger protein, VIL1. THE NEW PHYTOLOGIST 2022; 235:1057-1069. [PMID: 35403701 PMCID: PMC9673473 DOI: 10.1111/nph.18156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/06/2022] [Indexed: 06/12/2023]
Abstract
Polycomb dictates developmental programs in higher eukaryotes, including flowering plants. A phytohormone, abscisic acid (ABA), plays a pivotal role in seed and seedling development and mediates responses to multiple environmental stresses, such as salinity and drought. In this study, we show that ABA affects the Polycomb Repressive Complex 2 (PRC2)-mediated Histone H3 Lys 27 trimethylation (H3K27me3) through VIN3-LIKE1/VERNALIZATION 5 (VIL1/VRN5) to fine-tune the timely repression of ABSCISIC ACID INSENSITIVE 3 (ABI3) and ABSCISIC ACID INSENSITIVE 4 (ABI4) in Arabidopsis thaliana. vil1 mutants exhibit hypersensitivity to ABA during early seed germination and show enhanced drought tolerance. Our study revealed that the ABA signaling pathway utilizes a facultative component of the chromatin remodeling complex to demarcate the level of expression of ABA-responsive genes.
Collapse
Affiliation(s)
- Wei Zong
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Junghyun Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yogendra Bordiya
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hong Qiao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sibum Sung
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
44
|
Li Q, Peng A, Yang J, Zheng S, Li Z, Mu Y, Chen L, Si J, Ren X, Song H. A 215-bp indel at intron I of BoFLC2 affects flowering time in Brassica oleracea var. capitata during vernalization. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2785-2797. [PMID: 35760921 DOI: 10.1007/s00122-022-04149-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
In response to cold, a 215-bp deletion at intron I of BoFLC2 slows its silencing activity by feedback to the core genes of the PHD-PRC2 complex, resulting in late flowering in cabbage. Cabbage is a plant-vernalization-responsive flowering type. In response to cold, BoFLC2 is an important transcription factor, which allows cabbage plants to remain in the vegetative phase. However, there have been few reports on the detailed and functional effects of genetic variation in BoFLC2 on flowering time in cabbage. Herein, BoFLC2E and BoFLC2L, cloned from extremely early and extremely late flowering cabbages, respectively, exhibited a 215-bp indel at intron I, three non-synonymous SNPs and a 3-bp indel at exon II. BoFLC2L was found to be related to late flowering, as verified in 40 extremely early/late flowering accessions, a diverse set of cabbage inbred lines and two F2 generations by using indel-FLC2 marker. Among the genetic variation of BoFLC2, the 215-bp deletion at intron I was the main reason for the delayed flowering time, as verified in the transgenic progenies of seed-vernalization-responsive Arabidopsis thaliana (Col) and rapid cycler B. oleracea (TO1000, boflc2). This is the first report to show that the intron I indel of BoFLC2 affects the flowering time of cabbage. Although the intron I 215-bp indel between BoFLC2E and BoFLC2L did not cause alternative splicing, it slowed BoFLC2L silencing during vernalization and feedback to the core genes of the PHD-PRC2 complex, resulting in their lower transcription levels. Our study not only provides an effective molecular marker-assisted selective strategy for identifying bolting-resistant resources and breeding improved varieties in cabbage, but also provides an entry point for exploring the mechanisms of flowering time in plant-vernalization-responsive plants.
Collapse
Affiliation(s)
- Qinfei Li
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Ao Peng
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Jiaqin Yang
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Sidi Zheng
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Zhangping Li
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Yinhui Mu
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Lei Chen
- Chongqing Academy of Agricultural Sciences, Chongqing Sanqian Seed Industry Co., Ltd, Chongqing, 400060, China
| | - Jun Si
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Xuesong Ren
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China.
| | - Hongyuan Song
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
45
|
Jeong G, Jeon M, Shin J, Lee I. HEAT SHOCK TRANSCRIPTION FACTOR B2b acts as a transcriptional repressor of VIN3, a gene induced by long-term cold for flowering. Sci Rep 2022; 12:10963. [PMID: 35768490 PMCID: PMC9243095 DOI: 10.1038/s41598-022-15052-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
Vernalization, an acceleration of flowering after long-term winter cold, is an intensively studied flowering mechanism in winter annual plants. In Arabidopsis, Polycomb Repressive Complex 2 (PRC2)-mediated suppression of the strong floral repressor, FLOWERING LOCUS C (FLC), is critical for vernalization and a PHD finger domain protein, VERNALIZATION INSENSITIVE 3 (VIN3), recruits PRC2 on FLC chromatin. The level of VIN3 was found to gradually increase in proportion to the length of cold period during vernalization. However, how plants finely regulate VIN3 expression according to the cold environment has not been completely elucidated. As a result, we performed EMS mutagenesis using a transgenic line with a minimal promoter of VIN3 fused to the GUS reporter gene, and isolated a mutant, hyperactivation of VIN3 1 (hov1), which showed increased GUS signal and endogenous VIN3 transcript levels. Using positional cloning combined with whole-genome resequencing, we found that hov1 carries a nonsense mutation, leading to a premature stop codon on the HEAT SHOCK TRANSCRIPTION FACTOR B2b (HsfB2b), which encodes a repressive heat shock transcription factor. HsfB2b directly binds to the VIN3 promoter, and HsfB2b overexpression leads to reduced acceleration of flowering after vernalization. Collectively, our findings reveal a novel fine-tuning mechanism to regulate VIN3 for proper vernalization response.
Collapse
Affiliation(s)
- Goowon Jeong
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea.,Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Korea
| | - Myeongjune Jeon
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea.,Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Korea
| | - Jinwoo Shin
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea.,Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA, 02114, USA
| | - Ilha Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea. .,Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
46
|
Luo M, Liu X, Su H, Li M, Li M, Wei J. Regulatory Networks of Flowering Genes in Angelica sinensis during Vernalization. PLANTS (BASEL, SWITZERLAND) 2022; 11:1355. [PMID: 35631780 PMCID: PMC9144295 DOI: 10.3390/plants11101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022]
Abstract
Angelica sinensis is a low-temperature and long-day perennial herb that has been widely used for cardio-cerebrovascular diseases in recent years. In commercial cultivation, up to 40% of flowering decreases the officinal yield of roots and accumulation of bioactive compounds. Although the regulatory mechanism of flowering genes during the photoperiod has been revealed, the networks during vernalization have not been mapped. Here, transcriptomics profiles of A. sinensis with uncompleted (T1), completed (T2) and avoided vernalization (T3) were performed using RNA-seq, and genes expression was validated with qRT-PCR. A total of 61,241 isoforms were annotated on KEGG, KOG, Nr and Swiss-Prot databases; 4212 and 5301 differentially expressed genes (DEGs) were observed; and 151 and 155 genes involved in flowering were dug out at T2 vs. T1 and T3 vs. T1, respectively. According to functional annotation, 104 co-expressed genes were classified into six categories: FLC expression (22; e.g., VILs, FCA and FLK), sucrose metabolism (12; e.g., TPSs, SUS3 and SPSs), hormone response (18; e.g., GID1B, RAP2s and IAAs), circadian clock (2; i.e., ELF3 and COR27), downstream floral integrators and meristem identity (15; e.g., SOC1, AGL65 and SPLs) and cold response (35; e.g., PYLs, ERFs and CORs). The expression levels of candidate genes were almost consistent with FPKM values and changes in sugar and hormone contents. Based on their functions, four pathways that regulate flowering during vernalization were mapped, including the vernalization pathway, the autonomic pathway, the age pathway and the GA (hormone) pathway. This transcriptomic analysis provides new insights into the gene-regulatory networks of flowering in A. sinensis.
Collapse
Affiliation(s)
- Mimi Luo
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (X.L.); (H.S.); (M.L.)
| | - Xiaoxia Liu
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (X.L.); (H.S.); (M.L.)
| | - Hongyan Su
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (X.L.); (H.S.); (M.L.)
| | - Meiling Li
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (X.L.); (H.S.); (M.L.)
| | - Mengfei Li
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (X.L.); (H.S.); (M.L.)
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
47
|
Kumari P, Khan S, Wani IA, Gupta R, Verma S, Alam P, Alaklabi A. Unravelling the Role of Epigenetic Modifications in Development and Reproduction of Angiosperms: A Critical Appraisal. Front Genet 2022; 13:819941. [PMID: 35664328 PMCID: PMC9157814 DOI: 10.3389/fgene.2022.819941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 12/28/2022] Open
Abstract
Epigenetics are the heritable changes in gene expression patterns which occur without altering DNA sequence. These changes are reversible and do not change the sequence of the DNA but can alter the way in which the DNA sequences are read. Epigenetic modifications are induced by DNA methylation, histone modification, and RNA-mediated mechanisms which alter the gene expression, primarily at the transcriptional level. Such alterations do control genome activity through transcriptional silencing of transposable elements thereby contributing toward genome stability. Plants being sessile in nature are highly susceptible to the extremes of changing environmental conditions. This increases the likelihood of epigenetic modifications within the composite network of genes that affect the developmental changes of a plant species. Genetic and epigenetic reprogramming enhances the growth and development, imparts phenotypic plasticity, and also ensures flowering under stress conditions without changing the genotype for several generations. Epigenetic modifications hold an immense significance during the development of male and female gametophytes, fertilization, embryogenesis, fruit formation, and seed germination. In this review, we focus on the mechanism of epigenetic modifications and their dynamic role in maintaining the genomic integrity during plant development and reproduction.
Collapse
Affiliation(s)
- Priyanka Kumari
- Conservation and Molecular Biology Lab., Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Sajid Khan
- Conservation and Molecular Biology Lab., Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Ishfaq Ahmad Wani
- Conservation and Molecular Biology Lab., Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Renu Gupta
- Division of Soil Sciences & Agricultural Chemistry, Faculty of Agriculture Sher e Kashmir University of Agricultural Sciences and Technology, Chatha, India
| | - Susheel Verma
- Department of Botany, University of Jammu, Jammu, India
- *Correspondence: Susheel Verma,
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University (PSAU), Alkharj, Saudi Arabia
| | - Abdullah Alaklabi
- Department of Biology, College of Science, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
48
|
Sharma M, Kumar P, Verma V, Sharma R, Bhargava B, Irfan M. Understanding plant stress memory response for abiotic stress resilience: Molecular insights and prospects. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:10-24. [PMID: 35305363 DOI: 10.1016/j.plaphy.2022.03.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/02/2022] [Accepted: 03/05/2022] [Indexed: 05/25/2023]
Abstract
As sessile species and without the possibility of escape, plants constantly face numerous environmental stresses. To adapt in the external environmental cues, plants adjust themselves against such stresses by regulating their physiological, metabolic and developmental responses to external environmental cues. Certain environmental stresses rarely occur during plant life, while others, such as heat, drought, salinity, and cold are repetitive. Abiotic stresses are among the foremost environmental variables that have hindered agricultural production globally. Through distinct mechanisms, these stresses induce various morphological, biochemical, physiological, and metabolic changes in plants, directly impacting their growth, development, and productivity. Subsequently, plant's physiological, metabolic, and genetic adjustments to the stress occurrence provide necessary competencies to adapt, survive and nurture a condition known as "memory." This review emphasizes the advancements in various epigenetic-related chromatin modifications, DNA methylation, histone modifications, chromatin remodeling, phytohormones, and microRNAs associated with abiotic stress memory. Plants have the ability to respond quickly to stressful situations and can also improve their defense systems by retaining and sustaining stressful memories, allowing for stronger or faster responses to repeated stressful situations. Although there are relatively few examples of such memories, and no clear understanding of their duration, taking into consideration plenty of stresses in nature. Understanding these mechanisms in depth could aid in the development of genetic tools to improve breeding techniques, resulting in higher agricultural yield and quality under changing environmental conditions.
Collapse
Affiliation(s)
- Megha Sharma
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Pankaj Kumar
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| | - Vipasha Verma
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Rajnish Sharma
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Bhavya Bhargava
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
49
|
Khan A, Khan V, Pandey K, Sopory SK, Sanan-Mishra N. Thermo-Priming Mediated Cellular Networks for Abiotic Stress Management in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:866409. [PMID: 35646001 PMCID: PMC9136941 DOI: 10.3389/fpls.2022.866409] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/25/2022] [Indexed: 05/05/2023]
Abstract
Plants can adapt to different environmental conditions and can survive even under very harsh conditions. They have developed elaborate networks of receptors and signaling components, which modulate their biochemistry and physiology by regulating the genetic information. Plants also have the abilities to transmit information between their different parts to ensure a holistic response to any adverse environmental challenge. One such phenomenon that has received greater attention in recent years is called stress priming. Any milder exposure to stress is used by plants to prime themselves by modifying various cellular and molecular parameters. These changes seem to stay as memory and prepare the plants to better tolerate subsequent exposure to severe stress. In this review, we have discussed the various ways in which plants can be primed and illustrate the biochemical and molecular changes, including chromatin modification leading to stress memory, with major focus on thermo-priming. Alteration in various hormones and their subsequent role during and after priming under various stress conditions imposed by changing climate conditions are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
50
|
Haleem A, Klees S, Schmitt AO, Gültas M. Deciphering Pleiotropic Signatures of Regulatory SNPs in Zea mays L. Using Multi-Omics Data and Machine Learning Algorithms. Int J Mol Sci 2022; 23:5121. [PMID: 35563516 PMCID: PMC9100765 DOI: 10.3390/ijms23095121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 01/25/2023] Open
Abstract
Maize is one of the most widely grown cereals in the world. However, to address the challenges in maize breeding arising from climatic anomalies, there is a need for developing novel strategies to harness the power of multi-omics technologies. In this regard, pleiotropy is an important genetic phenomenon that can be utilized to simultaneously enhance multiple agronomic phenotypes in maize. In addition to pleiotropy, another aspect is the consideration of the regulatory SNPs (rSNPs) that are likely to have causal effects in phenotypic development. By incorporating both aspects in our study, we performed a systematic analysis based on multi-omics data to reveal the novel pleiotropic signatures of rSNPs in a global maize population. For this purpose, we first applied Random Forests and then Markov clustering algorithms to decipher the pleiotropic signatures of rSNPs, based on which hierarchical network models are constructed to elucidate the complex interplay among transcription factors, rSNPs, and phenotypes. The results obtained in our study could help to understand the genetic programs orchestrating multiple phenotypes and thus could provide novel breeding targets for the simultaneous improvement of several agronomic traits.
Collapse
Affiliation(s)
- Ataul Haleem
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (A.H.); (S.K.); (A.O.S.)
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany
| | - Selina Klees
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (A.H.); (S.K.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| | - Armin Otto Schmitt
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (A.H.); (S.K.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| | - Mehmet Gültas
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| |
Collapse
|