1
|
Chumley MM, Khasawneh FA, Otto A, Gedeon T. A Nonlinear Delay Model for Metabolic Oscillations in Yeast Cells. Bull Math Biol 2023; 85:122. [PMID: 37934330 DOI: 10.1007/s11538-023-01227-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023]
Abstract
We introduce two time-delay models of metabolic oscillations in yeast cells. Our model tests a hypothesis that the oscillations occur as multiple pathways share a limited resource which we equate to the number of available ribosomes. We initially explore a single-protein model with a constraint equation governing the total resource available to the cell. The model is then extended to include three proteins that share a resource pool. Three approaches are considered at constant delay to numerically detect oscillations. First, we use a spectral element method to approximate the system as a discrete map and evaluate the stability of the linearized system about its equilibria by examining its eigenvalues. For the second method, we plot amplitudes of the simulation trajectories in 2D projections of the parameter space. We use a history function that is consistent with published experimental results to obtain metabolic oscillations. Finally, the spectral element method is used to convert the system to a boundary value problem whose solutions correspond to approximate periodic solutions of the system. Our results show that certain combinations of total resource available and the time delay, lead to oscillations. We observe that an oscillation region in the parameter space is between regions admitting steady states that correspond to zero and constant production. Similar behavior is found with the three-protein model where all proteins require the same production time. However, a shift in the protein production rates peaks occurs for low available resource suggesting that our model captures the shared resource pool dynamics.
Collapse
Affiliation(s)
- Max M Chumley
- Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| | - Firas A Khasawneh
- Mechanical Engineering, Michigan State University, East Lansing, MI, USA.
| | - Andreas Otto
- Institute of Physics, Chemnitz University of Technology, 09107, Chemnitz, Germany
- Fraunhofer Institute for Machine Tools and Forming Technology IWU, Reichenhainer Str. 88, 09126, Chemnitz, Germany
| | - Tomas Gedeon
- Mathematical Sciences, Montana State University, Bozeman, MT, USA
| |
Collapse
|
2
|
Ortiz SC, Pennington K, Thomson DD, Bertuzzi M. Novel Insights into Aspergillus fumigatus Pathogenesis and Host Response from State-of-the-Art Imaging of Host-Pathogen Interactions during Infection. J Fungi (Basel) 2022; 8:264. [PMID: 35330266 PMCID: PMC8954776 DOI: 10.3390/jof8030264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
Aspergillus fumigatus spores initiate more than 3,000,000 chronic and 300,000 invasive diseases annually, worldwide. Depending on the immune status of the host, inhalation of these spores can lead to a broad spectrum of disease, including invasive aspergillosis, which carries a 50% mortality rate overall; however, this mortality rate increases substantially if the infection is caused by azole-resistant strains or diagnosis is delayed or missed. Increasing resistance to existing antifungal treatments is becoming a major concern; for example, resistance to azoles (the first-line available oral drug against Aspergillus species) has risen by 40% since 2006. Despite high morbidity and mortality, the lack of an in-depth understanding of A. fumigatus pathogenesis and host response has hampered the development of novel therapeutic strategies for the clinical management of fungal infections. Recent advances in sample preparation, infection models and imaging techniques applied in vivo have addressed important gaps in fungal research, whilst questioning existing paradigms. This review highlights the successes and further potential of these recent technologies in understanding the host-pathogen interactions that lead to aspergillosis.
Collapse
Affiliation(s)
- Sébastien C. Ortiz
- Manchester Academic Health Science Centre, Core Technology Facility, Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Grafton Street, Manchester M13 9NT, UK; (S.C.O.); (K.P.)
| | - Katie Pennington
- Manchester Academic Health Science Centre, Core Technology Facility, Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Grafton Street, Manchester M13 9NT, UK; (S.C.O.); (K.P.)
| | - Darren D. Thomson
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK;
| | - Margherita Bertuzzi
- Manchester Academic Health Science Centre, Core Technology Facility, Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Grafton Street, Manchester M13 9NT, UK; (S.C.O.); (K.P.)
| |
Collapse
|
3
|
Cykowiak M, Kleszcz R, Kucińska M, Paluszczak J, Szaefer H, Plewiński A, Piotrowska-Kempisty H, Murias M, Krajka-Kuźniak V. Attenuation of Pancreatic Cancer In Vitro and In Vivo via Modulation of Nrf2 and NF-κB Signaling Pathways by Natural Compounds. Cells 2021; 10:3556. [PMID: 34944062 PMCID: PMC8700195 DOI: 10.3390/cells10123556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is a disease in which deregulation of signaling pathways plays a key role, thus searching for their novel modulators is a promising therapeutic strategy. Hence, in this study, the effect of phytochemical combinations on the canonical and non-canonical activation of Nrf2 and its interaction with the NF-κB pathway was evaluated in extensively proliferating pancreatic cancer cell line, PSN-1, in comparison to non-cancerous MS1 cells. The activation of Nrf2 and NF-κB, expression of their target genes, and effect on cell survival were assessed in PSN-1 cells. The tumor burden was evaluated in mice carrying xenografts. PSN-1 cells were more sensitive to the tested compounds as compared to the MS1 cell line. Combination of xanthohumol and phenethyl isothiocyanate was more effective than single compounds at decreasing the canonical and non-canonical activation of Nrf2 in PSN-1 cancer cells. Decreased activation of NF-κB, and subsequent reduced cytosolic COX-2 and nuclear STAT3 level indicated their anti-inflammatory and pro-apoptotic activities. In vivo studies showed the partial response in groups treated with xanthohumol or the combination of xanthohumol and phenethyl isothiocyanate. Overall, these results suggest that the combination of xanthohumol and phenethyl isothiocyanate may be a promising therapeutic candidate against pancreatic cancer.
Collapse
Affiliation(s)
- Marta Cykowiak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcickiego Street, 60-781 Poznań, Poland; (M.C.); (R.K.); (J.P.); (H.S.)
| | - Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcickiego Street, 60-781 Poznań, Poland; (M.C.); (R.K.); (J.P.); (H.S.)
| | - Małgorzata Kucińska
- Department of Toxicology, Poznan University of Medical Sciences, 30, Dojazd Street, 60-631 Poznań, Poland; (M.K.); (H.P.-K.); (M.M.)
| | - Jarosław Paluszczak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcickiego Street, 60-781 Poznań, Poland; (M.C.); (R.K.); (J.P.); (H.S.)
| | - Hanna Szaefer
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcickiego Street, 60-781 Poznań, Poland; (M.C.); (R.K.); (J.P.); (H.S.)
| | - Adam Plewiński
- Centre for Advanced Technologies, Adam Mickiewicz University, 10, Uniwersytetu Poznańskiego Street, 61-614 Poznań, Poland;
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 30, Dojazd Street, 60-631 Poznań, Poland; (M.K.); (H.P.-K.); (M.M.)
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences, 30, Dojazd Street, 60-631 Poznań, Poland; (M.K.); (H.P.-K.); (M.M.)
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcickiego Street, 60-781 Poznań, Poland; (M.C.); (R.K.); (J.P.); (H.S.)
| |
Collapse
|
4
|
Prathom K, Young TR. Universality of stable multi-cluster periodic solutions in a population model of the cell cycle with negative feedback. JOURNAL OF BIOLOGICAL DYNAMICS 2021; 15:455-522. [PMID: 34490835 DOI: 10.1080/17513758.2021.1971781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
We study a population model where cells in one part of the cell cycle may affect the progress of cells in another part. If the influence, or feedback, from one part to another is negative, simulations of the model almost always result in multiple temporal clusters formed by groups of cells. We study regions in parameter space where periodic 'k-cyclic' solutions are stable. The regions of stability coincide with sub-triangles on which certain events occur in a fixed order. For boundary sub-triangles with order 'rs1', we prove that the k-cyclic periodic solution is asymptotically stable if the index of the sub-triangle is relatively prime with respect to the number of clusters k and neutrally stable otherwise. For negative linear feedback, we prove that the interior of the parameter set is covered by stable sub-triangles, i.e. a stable k-cyclic solution always exists for some k. We observe numerically that the result also holds for many forms of nonlinear feedback, but may break down in extreme cases.
Collapse
|
5
|
Uchida S, Yamaberi Y, Tanaka M, Oba M. A helix foldamer oligopeptide improves intracellular stability and prolongs protein expression of the delivered mRNA. NANOSCALE 2021; 13:18941-18946. [PMID: 34664600 DOI: 10.1039/d1nr03600a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Prolonging the duration of protein expression from mRNA is a major challenge in the development of mRNA nanomedicines. mRNA complexed with helix foldamer oligopeptides consisting of arginine and α-aminoisobutyric acids showed higher intracellular stability than that complexed with oligoarginines, thereby maintaining efficient protein translation for three days.
Collapse
Affiliation(s)
- Satoshi Uchida
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Yuto Yamaberi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Masakazu Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Makoto Oba
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| |
Collapse
|
6
|
Neefjes M, Housmans BAC, van den Akker GGH, van Rhijn LW, Welting TJM, van der Kraan PM. Reporter gene comparison demonstrates interference of complex body fluids with secreted luciferase activity. Sci Rep 2021; 11:1359. [PMID: 33446782 PMCID: PMC7809208 DOI: 10.1038/s41598-020-80451-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Reporter gene assays are widely used to study cellular signaling and transcriptional activity. Few studies describe the use of reporter genes for studying cellular responses on complex body fluids, such as urine and blood. Selection of the optimal reporter gene is crucial for study outcome. Here, we compared the characteristics of five reporter genes (Firefly luciferase, stable- and unstable Nano luciferase, secretable Gaussia luciferase and Red Fluorescent Protein) to study complex body fluids. For this comparison, the NFκB Response Element (NFκB-RE) and Smad Binding Element (SBE) were identically cloned into the five different reporter vectors. Reporter characteristics were evaluated by kinetic and concentration-response measurements in SW1353 and HeLa cell lines. Finally, reporter compatibility with complex body fluids (fetal calf serum, knee joint synovial fluid and human serum) and inter-donor variation were evaluated. Red Fluorescent Protein demonstrated poor inducibility as a reporter gene and slow kinetics compared to luciferases. Intracellularly measured luciferases, such as Firefly luciferase and Nano luciferase, revealed good compatibility with complex body fluids. Secreted Gaussia luciferase appeared to be incompatible with complex body fluids, due to variability in inter-donor signal interference. Unstable Nano luciferase demonstrated clear inducibility, high sensitivity and compatibility with complex body fluids and therefore can be recommended for cellular signaling studies using complex body fluids.
Collapse
Affiliation(s)
- M Neefjes
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - B A C Housmans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - G G H van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - L W van Rhijn
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Centre+, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - T J M Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands.
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Centre+, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.
| | - P M van der Kraan
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Abstract
The identification and characterization of rhythmically expressed mRNAs have been an active area of research over the past 20 years, as these mRNAs are believed to produce the daily rhythms in a wide range of biological processes. Circadian transcriptome studies have used mature mRNA as a primary readout and focused largely on rhythmic RNA synthesis as a regulatory mechanism underlying rhythmic mRNA expression. However, RNA synthesis, RNA degradation, or a combination of both must be rhythmic to drive rhythmic RNA profiles, and it is still unclear to what extent rhythmic synthesis leads to rhythmic RNA profiles. In addition, circadian RNA expression is also often tissue specific. Although a handful of genes cycle in all or most tissues, others are rhythmic only in certain tissues, even though the same core clock mechanism is believed to control the rhythmic RNA profiles in all tissues. This review focuses on the dynamics of rhythmic RNA synthesis and degradation and discusses how these steps collectively determine the rhythmicity, phase, and amplitude of RNA accumulation. In particular, we highlight a possible role of RNA degradation in driving tissue-specific RNA rhythms. By unifying findings from experimental and theoretical studies, we will provide a comprehensive overview of how rhythmic gene expression can be achieved and how each regulatory step contributes to tissue-specific circadian transcriptome output in mammals.
Collapse
Affiliation(s)
| | - Shihoko Kojima
- To whom all correspondence should be addressed: Shihoko Kojima, Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA, 24061, USA; .
| |
Collapse
|
8
|
Capturing and Understanding the Dynamics and Heterogeneity of Gene Expression in the Living Cell. Int J Mol Sci 2020; 21:ijms21218278. [PMID: 33167354 PMCID: PMC7663833 DOI: 10.3390/ijms21218278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 11/21/2022] Open
Abstract
The regulation of gene expression is a fundamental process enabling cells to respond to internal and external stimuli or to execute developmental programs. Changes in gene expression are highly dynamic and depend on many intrinsic and extrinsic factors. In this review, we highlight the dynamic nature of transient gene expression changes to better understand cell physiology and development in general. We will start by comparing recent in vivo procedures to capture gene expression in real time. Intrinsic factors modulating gene expression dynamics will then be discussed, focusing on chromatin modifications. Furthermore, we will dissect how cell physiology or age impacts on dynamic gene regulation and especially discuss molecular insights into acquired transcriptional memory. Finally, this review will give an update on the mechanisms of heterogeneous gene expression among genetically identical individual cells. We will mainly focus on state-of-the-art developments in the yeast model but also cover higher eukaryotic systems.
Collapse
|
9
|
O' Neill JS, Hoyle NP, Robertson JB, Edgar RS, Beale AD, Peak-Chew SY, Day J, Costa ASH, Frezza C, Causton HC. Eukaryotic cell biology is temporally coordinated to support the energetic demands of protein homeostasis. Nat Commun 2020; 11:4706. [PMID: 32943618 PMCID: PMC7499178 DOI: 10.1038/s41467-020-18330-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022] Open
Abstract
Yeast physiology is temporally regulated, this becomes apparent under nutrient-limited conditions and results in respiratory oscillations (YROs). YROs share features with circadian rhythms and interact with, but are independent of, the cell division cycle. Here, we show that YROs minimise energy expenditure by restricting protein synthesis until sufficient resources are stored, while maintaining osmotic homeostasis and protein quality control. Although nutrient supply is constant, cells sequester and store metabolic resources via increased transport, autophagy and biomolecular condensation. Replete stores trigger increased H+ export which stimulates TORC1 and liberates proteasomes, ribosomes, chaperones and metabolic enzymes from non-membrane bound compartments. This facilitates translational bursting, liquidation of storage carbohydrates, increased ATP turnover, and the export of osmolytes. We propose that dynamic regulation of ion transport and metabolic plasticity are required to maintain osmotic and protein homeostasis during remodelling of eukaryotic proteomes, and that bioenergetic constraints selected for temporal organisation that promotes oscillatory behaviour.
Collapse
Affiliation(s)
- John S O' Neill
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| | | | | | - Rachel S Edgar
- Molecular Virology, Department of Medicine, Imperial College, London, W2 1NY, UK
| | - Andrew D Beale
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | | | - Jason Day
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK.,Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Helen C Causton
- Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
10
|
Ciesielski A, Grzywacz R. Dynamic bifurcations in continuous process of bioethanol production under aerobic conditions using Saccharomyces cerevisiae. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Davis CR, Johnson CH, Robertson JB. A bioluminescent reporter for the halophilic archaeon Haloferax volcanii. Extremophiles 2020; 24:773-785. [PMID: 32749548 PMCID: PMC7462420 DOI: 10.1007/s00792-020-01193-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022]
Abstract
Haloarchaea have evolved to thrive in hypersaline environments. Haloferax volcanii is of particular interest due to its genetic tractability; however, few in vivo reporters exist for halophiles. Haloarchaeal proteins evolved characteristics that promote proper folding and function at high salt concentrations, but many mesophilic reporter proteins lack these characteristics. Mesophilic proteins that acquire salt-stabilizing mutations, however, can lead to proper function in haloarchaea. Using laboratory-directed evolution, we developed and demonstrated an in vivo luciferase that functions in the hypersaline cytosol of H. volcanii.
Collapse
Affiliation(s)
- Chris R Davis
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Carl H Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - J Brian Robertson
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA.
| |
Collapse
|
12
|
INO80 Chromatin Remodeling Coordinates Metabolic Homeostasis with Cell Division. Cell Rep 2019; 22:611-623. [PMID: 29346761 PMCID: PMC5949282 DOI: 10.1016/j.celrep.2017.12.079] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
Adaptive survival requires the coordination of nutrient availability with expenditure of cellular resources. For example, in nutrient-limited environments, 50% of all S. cerevisiae genes synchronize and exhibit periodic bursts of expression in coordination with respiration and cell division in the yeast metabolic cycle (YMC). Despite the importance of metabolic and proliferative synchrony, the majority of YMC regulators are currently unknown. Here, we demonstrate that the INO80 chromatin-remodeling complex is required to coordinate respiration and cell division with periodic gene expression. Specifically, INO80 mutants have severe defects in oxygen consumption and promiscuous cell division that is no longer coupled with metabolic status. In mutant cells, chromatin accessibility of periodic genes, including TORC1-responsive genes, is relatively static, concomitant with severely attenuated gene expression. Collectively, these results reveal that the INO80 complex mediates metabolic signaling to chromatin to restrict proliferation to metabolically optimal states.
Collapse
|
13
|
Catala M, Abou Elela S. Promoter-dependent nuclear RNA degradation ensures cell cycle-specific gene expression. Commun Biol 2019; 2:211. [PMID: 31240249 PMCID: PMC6572803 DOI: 10.1038/s42003-019-0441-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/29/2019] [Indexed: 11/09/2022] Open
Abstract
Cell cycle progression depends on phase-specific gene expression. Here we show that the nuclear RNA degradation machinery plays a lead role in promoting cell cycle-dependent gene expression by triggering promoter-dependent co-transcriptional RNA degradation. Single molecule quantification of RNA abundance in different phases of the cell cycle indicates that relative curtailment of gene expression in certain phases is attained even when transcription is not completely inhibited. When nuclear ribonucleases are deleted, transcription of the Saccharomyces cerevisiae G1-specific axial budding gene AXL2 is detected throughout the cell cycle and its phase-specific expression is lost. Promoter replacement abolished cell cycle-dependent RNA degradation and rendered the RNA insensitive to the deletion of nuclear ribonucleases. Together the data reveal a model of gene regulation whereby RNA abundance is controlled by promoter-dependent induction of RNA degradation.
Collapse
Affiliation(s)
- Mathieu Catala
- Département de microbiologie et d’infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8 Canada
| | - Sherif Abou Elela
- Département de microbiologie et d’infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8 Canada
| |
Collapse
|
14
|
Causton HC. Metabolic rhythms: A framework for coordinating cellular function. Eur J Neurosci 2018; 51:1-12. [PMID: 30548718 DOI: 10.1111/ejn.14296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 01/02/2023]
Abstract
Circadian clocks are widespread among eukaryotes and generally involve feedback loops coupled with metabolic processes and redox balance. The organising power of these oscillations has not only allowed organisms to anticipate day-night cycles, but also acts to temporally compartmentalise otherwise incompatible processes, enhance metabolic efficiency, make the system more robust to noise and propagate signals among cells. While daily rhythms and the function of the circadian transcription-translation loop have been the subject of extensive research over the past four decades, cycles of shorter period and respiratory oscillations, with which they are intertwined, have received less attention. Here, we describe features of yeast respiratory oscillations, which share many features with daily and 12 hr cellular oscillations in animal cells. This relatively simple system enables the analysis of dynamic rhythmic changes in metabolism, independent of cellular oscillations that are a product of the circadian transcription-translation feedback loop. Knowledge gained from studying ultradian oscillations in yeast will lead to a better understanding of the basic mechanistic principles and evolutionary origins of oscillatory behaviour among eukaryotes.
Collapse
Affiliation(s)
- Helen C Causton
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York
| |
Collapse
|
15
|
Baumgartner BL, O'Laughlin R, Jin M, Tsimring LS, Hao N, Hasty J. Flavin-based metabolic cycles are integral features of growth and division in single yeast cells. Sci Rep 2018; 8:18045. [PMID: 30575765 PMCID: PMC6303410 DOI: 10.1038/s41598-018-35936-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/02/2018] [Indexed: 11/08/2022] Open
Abstract
The yeast metabolic cycle (YMC) is a fascinating example of biological organization, in which cells constrain the function of specific genetic, protein and metabolic networks to precise temporal windows as they grow and divide. However, understanding the intracellular origins of the YMC remains a challenging goal, as measuring the oxygen oscillations traditionally associated with it requires the use of synchronized cultures growing in nutrient-limited chemostat environments. To address these limitations, we used custom-built microfluidic devices and time-lapse fluorescence microscopy to search for metabolic cycling in the form of endogenous flavin fluorescence in unsynchronized single yeast cells. We uncovered robust and pervasive metabolic cycles that were synchronized with the cell division cycle (CDC) and oscillated across four different nutrient conditions. We then studied the response of these metabolic cycles to chemical and genetic perturbations, showing that their phase synchronization with the CDC can be altered through treatment with rapamycin, and that metabolic cycles continue even in respiratory deficient strains. These results provide a foundation for future studies of the physiological importance of metabolic cycles in processes such as CDC control, metabolic regulation and cell aging.
Collapse
Affiliation(s)
- Bridget L Baumgartner
- Booz Allen Hamilton, 8283 Greensboro Drive, Hamilton Building, McLean, VA, 22102, USA
| | - Richard O'Laughlin
- University of California, San Diego, Department of Bioengineering, La Jolla, CA, 92093, USA
| | - Meng Jin
- BioCircuits Institute, University of California, San Diego, La Jolla, California, USA
| | - Lev S Tsimring
- BioCircuits Institute, University of California, San Diego, La Jolla, California, USA
| | - Nan Hao
- Molecular Biology Section, Division of Biological Science, University of California, San Diego, La Jolla, California, USA
| | - Jeff Hasty
- University of California, San Diego, Department of Bioengineering, La Jolla, CA, 92093, USA.
- BioCircuits Institute, University of California, San Diego, La Jolla, California, USA.
- Molecular Biology Section, Division of Biological Science, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
16
|
Bárány B, Moses G, Young T. Instability of the steady state solution in cell cycle population structure models with feedback. J Math Biol 2018; 78:1365-1387. [PMID: 30523382 DOI: 10.1007/s00285-018-1312-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 11/19/2018] [Indexed: 12/19/2022]
Abstract
We show that when cell-cell feedback is added to a model of the cell cycle for a large population of cells, then instability of the steady state solution occurs in many cases. We show this in the context of a generic agent-based ODE model. If the feedback is positive, then instability of the steady state solution is proved for all parameter values except for a small set on the boundary of parameter space. For negative feedback we prove instability for half the parameter space. We also show by example that instability in the other half may be proved on a case by case basis.
Collapse
Affiliation(s)
- Balázs Bárány
- Mathematics Institute, Warwick University, Coventry, UK.,Department of Stochastics, Budapest University of Technology and Economics, Budapest, Hungary
| | | | - Todd Young
- Mathematics, Ohio University, Athens, OH, USA.
| |
Collapse
|
17
|
Krishna S, Laxman S. A minimal "push-pull" bistability model explains oscillations between quiescent and proliferative cell states. Mol Biol Cell 2018; 29:2243-2258. [PMID: 30044724 PMCID: PMC6249812 DOI: 10.1091/mbc.e18-01-0017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A minimal model for oscillating between quiescent and growth/proliferation states, dependent on the availability of a central metabolic resource, is presented. From the yeast metabolic cycles, metabolic oscillations in oxygen consumption are represented as transitions between quiescent and growth states. We consider metabolic resource availability, growth rates, and switching rates (between states) to model a relaxation oscillator explaining transitions between these states. This frustrated bistability model reveals a required communication between the metabolic resource that determines oscillations and the quiescent and growth state cells. Cells in each state reflect memory, or hysteresis of their current state, and “push–pull” cells from the other state. Finally, a parsimonious argument is made for a specific central metabolite as the controller of switching between quiescence and growth states. We discuss how an oscillator built around the availability of such a metabolic resource is sufficient to generally regulate oscillations between growth and quiescence through committed transitions.
Collapse
Affiliation(s)
- Sandeep Krishna
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Sunil Laxman
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| |
Collapse
|
18
|
Suzuki H, Sakabe T, Hirose Y, Eki T. Development and evaluation of yeast-based GFP and luciferase reporter assays for chemical-induced genotoxicity and oxidative damage. Appl Microbiol Biotechnol 2016; 101:659-671. [PMID: 27766356 DOI: 10.1007/s00253-016-7911-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/21/2016] [Accepted: 09/28/2016] [Indexed: 11/30/2022]
Abstract
We aimed to develop the bioassays for genotixicity and/or oxidative damage using the recombinant yeast. A genotoxicity assay was developed using recombinant Saccharomyces cerevisiae strain BY4741 with a green fluorescent protein (GFP) reporter plasmid, driven by the DNA damage-responsive RNR3 promoter. Enhanced fluorescence induction was observed in DNA repair-deficient strains treated with methyl methanesulfonate, but not with hydrogen peroxide. A GFP reporter yeast strain driven by the oxidative stress-responsive TRX2 promoter was newly developed to assess oxidative damage, but fluorescence was poorly induced by oxidants. In place of GFP, yeast strains with luciferase gene reporter plasmids (luc2 and luc2CP, encoding stable and unstable luciferase, respectively) were prepared. Transient induction of luciferase activity was clearly detected only in a TRX2 promoter-driven luc2CP reporter strain within 90 min of oxidant exposure. However, luciferase was strongly induced by hydroxyurea in the RNR3 promoter-driven luc2 and GFP reporter strains over 8 h after the exposure, suggesting that the RNR3 promoter is continuously upregulated by DNA damage, whereas the TRX2 promoter is transiently activated by oxidative agents. Luciferase activity levels were also increased in a TRX2-promoter-driven luc2CP reporter strain treated with tert-butyl hydroperoxide and menadione and weakly induced with diamide and diethyl maleate. Weakly enhanced luciferase activity induction was detected in the sod1Δ, sod2Δ, and rad27Δ strains treated with hydrogen peroxide compared with that in the wild-type strain. In conclusion, tests using GFP and stable luciferase reporters are useful for genotoxicity, and oxidative damage can be clearly detected by assay with an unstable luciferase reporter.
Collapse
Affiliation(s)
- Hajime Suzuki
- Molecular Genetics Laboratory, Division of Bioscience and Biotechnology, Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Takahiro Sakabe
- Molecular Genetics Laboratory, Division of Bioscience and Biotechnology, Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Yuu Hirose
- Molecular Genetics Laboratory, Division of Bioscience and Biotechnology, Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan.,The Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Toshihiko Eki
- Molecular Genetics Laboratory, Division of Bioscience and Biotechnology, Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan.
| |
Collapse
|
19
|
Gresnigt MS, Rekiki A, Rasid O, Savers A, Jouvion G, Dannaoui E, Parlato M, Fitting C, Brock M, Cavaillon JM, van de Veerdonk FL, Ibrahim-Granet O. Reducing hypoxia and inflammation during invasive pulmonary aspergillosis by targeting the Interleukin-1 receptor. Sci Rep 2016; 6:26490. [PMID: 27215684 PMCID: PMC4877709 DOI: 10.1038/srep26490] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/04/2016] [Indexed: 01/05/2023] Open
Abstract
Hypoxia as a result of pulmonary tissue damage due to unresolved inflammation during invasive pulmonary aspergillosis (IPA) is associated with a poor outcome. Aspergillus fumigatus can exploit the hypoxic microenvironment in the lung, but the inflammatory response required for fungal clearance can become severely disregulated as a result of hypoxia. Since severe inflammation can be detrimental to the host, we investigated whether targeting the interleukin IL-1 pathway could reduce inflammation and tissue hypoxia, improving the outcome of IPA. The interplay between hypoxia and inflammation was investigated by in vivo imaging of hypoxia and measurement of cytokines in the lungs in a model of corticosteroid immunocompromised and in Cxcr2 deficient mice. Severe hypoxia was observed following Aspergillus infection in both models and correlated with development of pulmonary inflammation and expression of hypoxia specific transcripts. Treatment with IL-1 receptor antagonist reduced hypoxia and slightly, but significantly reduced mortality in immunosuppressed mice, but was unable to reduce hypoxia in Cxcr2(-/-) mice. Our data provides evidence that the inflammatory response during invasive pulmonary aspergillosis, and in particular the IL-1 axis, drives the development of hypoxia. Targeting the inflammatory IL-1 response could be used as a potential immunomodulatory therapy to improve the outcome of aspergillosis.
Collapse
Affiliation(s)
- Mark S Gresnigt
- Unité de recherche Cytokines &Inflammation, Institut Pasteur, Paris.,Department of Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Orhan Rasid
- Unité de recherche Cytokines &Inflammation, Institut Pasteur, Paris
| | - Amélie Savers
- Fungal Genetics and Biology, School of Life Sciences, University of Nottingham, UK
| | - Grégory Jouvion
- Unité Histopathologie Humaine et Modèles Animaux, Institut Pasteur, Paris France
| | - Eric Dannaoui
- Paris-Descartes University, Faculty of Medicine, APHP, European Georges Pompidou Hospital, Parasitology-Mycology Unit, Microbiology department, Paris, France
| | - Marianna Parlato
- INSERM UMR S1163 Institut Imagine, Laboratoire d'Immunité Intestinale, Paris France
| | | | - Matthias Brock
- Fungal Genetics and Biology, School of Life Sciences, University of Nottingham, UK
| | | | | | | |
Collapse
|
20
|
Cheng YY, Liu YJ. Vibrationally Resolved Absorption and Fluorescence Spectra of Firefly Luciferin: A Theoretical Simulation in the Gas Phase and in Solution. Photochem Photobiol 2016; 92:552-60. [PMID: 27165852 DOI: 10.1111/php.12601] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/29/2016] [Indexed: 01/03/2023]
Abstract
Firefly bioluminescence has been applied in several fields. However, the absorption and fluorescence spectra of the substrate, luciferin, have not been observed at the vibrational level. In this study, the vibrationally resolved absorption and fluorescence spectra of firefly luciferin (neutral form LH2 , phenolate ion form LH(-) and dianion form L(2-) ) are simulated using the density functional method and convoluted by a Gaussian function, with displacement, distortion and Duschinsky effects in the framework of the Franck-Condon approximation. Both neutral and anionic forms of the luciferin are considered in the gas phase and in solution. The simulated spectra have desired band maxima with the experimental ones. The vibronic structure analysis reveals that the features of the most contributive vibrational modes coincide with the key geometry-changing region during transition between the ground state and the first singlet excited state.
Collapse
Affiliation(s)
- Yuan-Yuan Cheng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| |
Collapse
|
21
|
Burnetti AJ, Aydin M, Buchler NE. Cell cycle Start is coupled to entry into the yeast metabolic cycle across diverse strains and growth rates. Mol Biol Cell 2016; 27:64-74. [PMID: 26538026 PMCID: PMC4694762 DOI: 10.1091/mbc.e15-07-0454] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/21/2015] [Accepted: 10/27/2015] [Indexed: 01/30/2023] Open
Abstract
Cells have evolved oscillators with different frequencies to coordinate periodic processes. Here we studied the interaction of two oscillators, the cell division cycle (CDC) and the yeast metabolic cycle (YMC), in budding yeast. Previous work suggested that the CDC and YMC interact to separate high oxygen consumption (HOC) from DNA replication to prevent genetic damage. To test this hypothesis, we grew diverse strains in chemostat and measured DNA replication and oxygen consumption with high temporal resolution at different growth rates. Our data showed that HOC is not strictly separated from DNA replication; rather, cell cycle Start is coupled with the initiation of HOC and catabolism of storage carbohydrates. The logic of this YMC-CDC coupling may be to ensure that DNA replication and cell division occur only when sufficient cellular energy reserves have accumulated. Our results also uncovered a quantitative relationship between CDC period and YMC period across different strains. More generally, our approach shows how studies in genetically diverse strains efficiently identify robust phenotypes and steer the experimentalist away from strain-specific idiosyncrasies.
Collapse
Affiliation(s)
- Anthony J Burnetti
- Program in Cellular & Molecular Biology, Duke University, Durham, NC 27708 University Program in Genetics & Genomics, Duke University, Durham, NC 27708 Center for Genomic & Computational Biology, Duke University, Durham, NC 22710 Department of Biology, Duke University, Durham, NC 27708
| | - Mert Aydin
- Center for Genomic & Computational Biology, Duke University, Durham, NC 22710 Department of Biology, Duke University, Durham, NC 27708
| | - Nicolas E Buchler
- Center for Genomic & Computational Biology, Duke University, Durham, NC 22710 Department of Biology, Duke University, Durham, NC 27708
| |
Collapse
|
22
|
Dual-Color Monitoring Overcomes the Limitations of Single Bioluminescent Reporters in Fast-Growing Microbes and Reveals Phase-Dependent Protein Productivity during the Metabolic Rhythms of Saccharomyces cerevisiae. Appl Environ Microbiol 2015; 81:6484-95. [PMID: 26162874 DOI: 10.1128/aem.01631-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/06/2015] [Indexed: 01/19/2023] Open
Abstract
Luciferase is a useful, noninvasive reporter of gene regulation that can be continuously monitored over long periods of time; however, its use is problematic in fast-growing microbes like bacteria and yeast because rapidly changing cell numbers and metabolic states also influence bioluminescence, thereby confounding the reporter's signal. Here we show that these problems can be overcome in the budding yeast Saccharomyces cerevisiae by simultaneously monitoring bioluminescence from two different colors of beetle luciferase, where one color (green) reports activity of a gene of interest, while a second color (red) is stably expressed and used to continuously normalize green bioluminescence for fluctuations in signal intensity that are unrelated to gene regulation. We use this dual-luciferase strategy in conjunction with a light-inducible promoter system to test whether different phases of yeast respiratory oscillations are more suitable for heterologous protein production than others. By using pulses of light to activate production of a green luciferase while normalizing signal variation to a red luciferase, we show that the early reductive phase of the yeast metabolic cycle produces more luciferase than other phases.
Collapse
|
23
|
Mazo-Vargas A, Park H, Aydin M, Buchler NE. Measuring fast gene dynamics in single cells with time-lapse luminescence microscopy. Mol Biol Cell 2014; 25:3699-708. [PMID: 25232010 PMCID: PMC4230627 DOI: 10.1091/mbc.e14-07-1187] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Beetle luciferases and time-lapse luminescence microscopy were optimized to measure the dynamics of cell cycle genes in yeast with subminute time resolution. This method is faster and the cells are smaller than in previous work. It is shown that luciferase reporters are better than fluorescent proteins at tracking gene expression. Time-lapse fluorescence microscopy is an important tool for measuring in vivo gene dynamics in single cells. However, fluorescent proteins are limited by slow chromophore maturation times and the cellular autofluorescence or phototoxicity that arises from light excitation. An alternative is luciferase, an enzyme that emits photons and is active upon folding. The photon flux per luciferase is significantly lower than that for fluorescent proteins. Thus time-lapse luminescence microscopy has been successfully used to track gene dynamics only in larger organisms and for slower processes, for which more total photons can be collected in one exposure. Here we tested green, yellow, and red beetle luciferases and optimized substrate conditions for in vivo luminescence. By combining time-lapse luminescence microscopy with a microfluidic device, we tracked the dynamics of cell cycle genes in single yeast with subminute exposure times over many generations. Our method was faster and in cells with much smaller volumes than previous work. Fluorescence of an optimized reporter (Venus) lagged luminescence by 15–20 min, which is consistent with its known rate of chromophore maturation in yeast. Our work demonstrates that luciferases are better than fluorescent proteins at faithfully tracking the underlying gene expression.
Collapse
Affiliation(s)
- Anyimilehidi Mazo-Vargas
- Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710 Duke Center for Systems Biology, Duke University, Durham, NC 27710 Department of Biology, Duke University, Durham, NC 27710
| | - Heungwon Park
- Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710 Duke Center for Systems Biology, Duke University, Durham, NC 27710 Department of Biology, Duke University, Durham, NC 27710 Department of Physics, Duke University, Durham, NC 27710
| | - Mert Aydin
- Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710 Duke Center for Systems Biology, Duke University, Durham, NC 27710 Department of Biology, Duke University, Durham, NC 27710
| | - Nicolas E Buchler
- Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710 Duke Center for Systems Biology, Duke University, Durham, NC 27710 Department of Biology, Duke University, Durham, NC 27710 Department of Physics, Duke University, Durham, NC 27710
| |
Collapse
|
24
|
Gong X, Moses G, Neiman AB, Young T. Noise-induced dispersion and breakup of clusters in cell cycle dynamics. J Theor Biol 2014; 355:160-9. [PMID: 24694583 PMCID: PMC4058369 DOI: 10.1016/j.jtbi.2014.03.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 02/19/2014] [Accepted: 03/19/2014] [Indexed: 10/25/2022]
Abstract
We study the effects of random perturbations on collective dynamics of a large ensemble of interacting cells in a model of the cell division cycle. We consider a parameter region for which the unperturbed model possesses asymptotically stable two-cluster periodic solutions. Two biologically motivated forms of random perturbations are considered: bounded variations in growth rate and asymmetric division. We compare the effects of these two dispersive mechanisms with additive Gaussian white noise perturbations. We observe three distinct phases of the response to noise in the model. First, for weak noise there is a linear relationship between the applied noise strength and the dispersion of the clusters. Second, for moderate noise strengths the clusters begin to mix, i.e. individual cells move between clusters, yet the population distribution clearly continues to maintain a two-cluster structure. Third, for strong noise the clusters are destroyed and the population is characterized by a uniform distribution. The second and third phases are separated by an order-disorder phase transition that has the characteristics of a Hopf bifurcation. Furthermore, we show that for the cell cycle model studied, the effects of bounded random perturbations are virtually indistinguishable from those induced by additive Gaussian noise, after appropriate scaling of the variance of noise strength. We then use the model to predict the strength of coupling among the cells from experimental data. In particular, we show that coupling must be rather strong to account for the observed clustering of cells given experimentally estimated noise variance.
Collapse
Affiliation(s)
- Xue Gong
- Mathematics, Ohio University, Athens, OH, USA
| | | | | | - Todd Young
- Mathematics, Ohio University, Athens, OH, USA.
| |
Collapse
|
25
|
Robinson I, Reddy AB. Molecular mechanisms of the circadian clockwork in mammals. FEBS Lett 2014; 588:2477-83. [PMID: 24911207 DOI: 10.1016/j.febslet.2014.06.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 01/14/2023]
Abstract
Circadian rhythms enable organisms to co-ordinate biological processes with the predictable 24 h cycle of day and night. Given that molecular clocks that coordinate such biological timing have evolved in almost all organisms, it is clear that being synchronous with the external environment confers competitive advantage. Conversely, it is apparent that being out of phase is detrimental, resulting in a number of clinical conditions, many of which are linked to metabolic dysfunction. The canonical clockwork involves a core set of genes that negatively regulate themselves through a so-called transcription translation feedback loop. However, recent studies describing evolutionarily conserved oscillations in redox reactions link circadian rhythms to metabolic processes, and in particular, redox pathways. In this review we describe the evidence for the interaction between transcriptional loops, redox and metabolism in mammals and suggest the clock may be potential target for the treatment of disease.
Collapse
Affiliation(s)
- I Robinson
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, NIHR Biomedical Research Centre, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - A B Reddy
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, NIHR Biomedical Research Centre, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
26
|
Cell cycle dynamics: clustering is universal in negative feedback systems. J Math Biol 2014; 70:1151-75. [PMID: 24816612 DOI: 10.1007/s00285-014-0786-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 04/01/2014] [Indexed: 10/25/2022]
Abstract
We study a model of cell cycle ensemble dynamics with cell-cell feedback in which cells in one fixed phase of the cycle S (Signaling) produce chemical agents that affect the growth and development rate of cells that are in another phase R (Responsive). For this type of system there are special periodic solutions that we call k-cyclic or clustered. Biologically, a k-cyclic solution represents k cohorts of synchronized cells spaced nearly evenly around the cell cycle. We show, under very general nonlinear feedback, that for a fixed k the stability of the k-cyclic solutions can be characterized completely in parameter space, a 2 dimensional triangle T. We show that T is naturally partitioned into k(2) sub-triangles on each of which the k-cyclic solutions all have the same stability type. For negative feedback we observe that while the synchronous solution (k = 1) is unstable, regions of stability of k ≥ 2 clustered solutions seem to occupy all of T. We also observe bi-stability or multi-stability for many parameter values in negative feedback systems. Thus in systems with negative feedback we should expect to observe cyclic solutions for some k. This is in contrast to the case of positive feedback, where we observe that the only asymptotically stable periodic orbit is the synchronous solution.
Collapse
|
27
|
Gong X, Buckalew R, Young T, Boczko E. Cell cycle dynamics in a response/signalling feedback system with a gap. JOURNAL OF BIOLOGICAL DYNAMICS 2014; 8:79-98. [PMID: 24963979 PMCID: PMC4241679 DOI: 10.1080/17513758.2014.904526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/09/2014] [Indexed: 06/03/2023]
Abstract
We consider a dynamical model of cell cycles of n cells in a culture in which cells in one specific phase (S for signalling) of the cell cycle produce chemical agents that influence the growth/cell cycle progression of cells in another phase (R for responsive). In the case that the feedback is negative, it is known that subpopulations of cells tend to become clustered in the cell cycle; while for a positive feedback, all the cells tend to become synchronized. In this paper, we suppose that there is a gap between the two phases. The gap can be thought of as modelling the physical reality of a time delay in the production and action of the signalling agents. We completely analyse the dynamics of this system when the cells are arranged into two cell cycle clusters. We also consider the stability of certain important periodic solutions in which clusters of cells have a cyclic arrangement and there are just enough clusters to allow interactions between them. We find that the inclusion of a small gap does not greatly alter the global dynamics of the system; there are still large open sets of parameters for which clustered solutions are stable. Thus, we add to the evidence that clustering can be a robust phenomenon in biological systems. However, the gap does effect the system by enhancing the stability of the stable clustered solutions. We explain this phenomenon in terms of contraction rates (Floquet exponents) in various invariant subspaces of the system. We conclude that in systems for which these models are reasonable, a delay in signalling is advantageous to the emergence of clustering.
Collapse
Affiliation(s)
- Xue Gong
- Department of Mathematics, Ohio University, Athens, OH45701, USA
| | - Richard Buckalew
- Department of Mathematics, Ohio University, Athens, OH45701, USA
| | - Todd Young
- Department of Mathematics, Ohio University, Athens, OH45701, USA
| | - Erik Boczko
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
28
|
Light-dependent and circadian transcription dynamics in vivo recorded with a destabilized luciferase reporter in Neurospora. PLoS One 2013; 8:e83660. [PMID: 24391804 PMCID: PMC3877077 DOI: 10.1371/journal.pone.0083660] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/13/2013] [Indexed: 11/19/2022] Open
Abstract
We show that firefly luciferase is a stable protein when expressed at 25 °C in Neurospora, which limits its use as transcription reporter. We created a short-lived luciferase by fusing a PEST signal to its C-terminus (LUC-PEST) and applied the LUC-PEST reporter system to record in vivo transcription dynamics associated with the Neurospora circadian clock and its blue-light photosensory system over the course of several days. We show that the tool is suitable to faithfully monitor rapid, but also subtle changes in transcription in a medium to high throughput format.
Collapse
|
29
|
Visible light alters yeast metabolic rhythms by inhibiting respiration. Proc Natl Acad Sci U S A 2013; 110:21130-5. [PMID: 24297928 DOI: 10.1073/pnas.1313369110] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Exposure of cells to visible light in nature or in fluorescence microscopy often is considered to be relatively innocuous. However, using the yeast respiratory oscillation (YRO) as a sensitive measurement of metabolism, we find that non-UV visible light has a significant impact on yeast metabolism. Blue/green wavelengths of visible light shorten the period and dampen the amplitude of the YRO, which is an ultradian rhythm of cell metabolism and transcription. The wavelengths of light that have the greatest effect coincide with the peak absorption regions of cytochromes. Moreover, treating yeast with the electron transport inhibitor sodium azide has similar effects on the YRO as visible light. Because impairment of respiration by light would change several state variables believed to play vital roles in the YRO (e.g., oxygen tension and ATP levels), we tested oxygen's role in YRO stability and found that externally induced oxygen depletion can reset the phase of the oscillation, demonstrating that respiratory capacity plays a role in the oscillation's period and phase. Light-induced damage to the cytochromes also produces reactive oxygen species that up-regulate the oxidative stress response gene TRX2 that is involved in pathways that enable sustained growth in bright visible light. Therefore, visible light can modulate cellular rhythmicity and metabolism through unexpectedly photosensitive pathways.
Collapse
|
30
|
O'Neill JS, Maywood ES, Hastings MH. Cellular mechanisms of circadian pacemaking: beyond transcriptional loops. Handb Exp Pharmacol 2013:67-103. [PMID: 23604476 DOI: 10.1007/978-3-642-25950-0_4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Circadian clocks drive the daily rhythms in our physiology and behaviour that adapt us to the 24-h solar and social worlds. Because they impinge upon every facet of metabolism, their acute or chronic disruption compromises performance (both physical and mental) and systemic health, respectively. Equally, the presence of such rhythms has significant implications for pharmacological dynamics and efficacy, because the fate of a drug and the state of its therapeutic target will vary as a function of time of day. Improved understanding of the cellular and molecular biology of circadian clocks therefore offers novel approaches for therapeutic development, for both clock-related and other conditions. At the cellular level, circadian clocks are pivoted around a transcriptional/post-translational delayed feedback loop (TTFL) in which the activation of Period and Cryptochrome genes is negatively regulated by their cognate protein products. Synchrony between these, literally countless, cellular clocks across the organism is maintained by the principal circadian pacemaker, the suprachiasmatic nucleus (SCN) of the hypothalamus. Notwithstanding the success of the TTFL model, a diverse range of experimental studies has shown that it is insufficient to account for all properties of cellular pacemaking. Most strikingly, circadian cycles of metabolic status can continue in human red blood cells, devoid of nuclei and thus incompetent to sustain a TTFL. Recent interest has therefore focused on the role of oscillatory cytosolic mechanisms as partners to the TTFL. In particular, cAMP- and Ca²⁺-dependent signalling are important components of the clock, whilst timekeeping activity is also sensitive to a series of highly conserved kinases and phosphatases. This has led to the view that the 'proto-clock' may have been a cytosolic, metabolic oscillation onto which evolution has bolted TTFLs to provide robustness and amplify circadian outputs in the form of rhythmic gene expression. This evolutionary ascent of the clock has culminated in the SCN, a true pacemaker to the innumerable clock cells distributed across the body. On the basis of findings from our own and other laboratories, we propose a model of the SCN pacemaker that synthesises the themes of TTFLs, intracellular signalling, metabolic flux and interneuronal coupling that can account for its unique circadian properties and pre-eminence.
Collapse
Affiliation(s)
- John S O'Neill
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, UK.
| | | | | |
Collapse
|
31
|
Grant GD, Gamsby J, Martyanov V, Brooks L, George LK, Mahoney JM, Loros JJ, Dunlap JC, Whitfield ML. Live-cell monitoring of periodic gene expression in synchronous human cells identifies Forkhead genes involved in cell cycle control. Mol Biol Cell 2012; 23:3079-93. [PMID: 22740631 PMCID: PMC3418304 DOI: 10.1091/mbc.e11-02-0170] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A periodic luciferase reporter system from cell cycle–regulated promoters in synchronous U2OS cells measures periodic, cell cycle–regulated gene expression in live cells. This assay is used to identify Forkhead transcription factors that control periodic gene expression, and it identifies FOXK1 as an activator of key cell cycle genes. We developed a system to monitor periodic luciferase activity from cell cycle–regulated promoters in synchronous cells. Reporters were driven by a minimal human E2F1 promoter with peak expression in G1/S or a basal promoter with six Forkhead DNA-binding sites with peak expression at G2/M. After cell cycle synchronization, luciferase activity was measured in live cells at 10-min intervals across three to four synchronous cell cycles, allowing unprecedented resolution of cell cycle–regulated gene expression. We used this assay to screen Forkhead transcription factors for control of periodic gene expression. We confirmed a role for FOXM1 and identified two novel cell cycle regulators, FOXJ3 and FOXK1. Knockdown of FOXJ3 and FOXK1 eliminated cell cycle–dependent oscillations and resulted in decreased cell proliferation rates. Analysis of genes regulated by FOXJ3 and FOXK1 showed that FOXJ3 may regulate a network of zinc finger proteins and that FOXK1 binds to the promoter and regulates DHFR, TYMS, GSDMD, and the E2F binding partner TFDP1. Chromatin immunoprecipitation followed by high-throughput sequencing analysis identified 4329 genomic loci bound by FOXK1, 83% of which contained a FOXK1-binding motif. We verified that a subset of these loci are activated by wild-type FOXK1 but not by a FOXK1 (H355A) DNA-binding mutant.
Collapse
Affiliation(s)
- Gavin D Grant
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Rienzo A, Pascual-Ahuir A, Proft M. The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell. Yeast 2012; 29:219-31. [PMID: 22674776 DOI: 10.1002/yea.2905] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/22/2012] [Accepted: 04/27/2012] [Indexed: 01/05/2023] Open
Abstract
A destabilized version of firefly luciferase was used in living yeast cells as a real-time reporter for gene expression. This highly sensitive and non-invasive system can be simultaneously used upon many different experimental conditions in small culture aliquots. This allows the dose-response behaviour of gene expression driven by any yeast promoter to be reported and can be used to quantify important parameters, such as the threshold, sensitivity, response time, maximal activity and synthesis rate for a given stimulus. We applied the luciferase assay to the nutrient-regulated GAL1 promoter and the stress-responsive GRE2 promoter. We find that luciferase expression driven by the GAL1 promoter responds dynamically to growing galactose concentrations, with increasing synthesis rates determined by the light increment in the initial linear phase of activation. In the case of the GRE2 promoter, we demonstrate that the very short-lived version of luciferase used here is an excellent tool to quantitatively describe transient transcriptional activation. The luciferase expression controlled by the GRE2 promoter responds dynamically to a gradual increase of osmotic or oxidative stress stimuli, which is mainly based on the progressive increase of the time the promoter remains active. Finally, we determined the dose-response behaviour of a single transcription factor binding site in a synthetic promoter context, using the stress response element (STRE) as an example. Taken together, the luciferase assay described here is an attractive tool to rapidly and precisely determine and compare kinetic parameters of gene expression.
Collapse
Affiliation(s)
- Alessandro Rienzo
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, Ciudad Politécnica de la Innovación, Valencia, Spain
| | | | | |
Collapse
|
33
|
Metabolic cycling without cell division cycling in respiring yeast. Proc Natl Acad Sci U S A 2011; 108:19090-5. [PMID: 22065748 DOI: 10.1073/pnas.1116998108] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite rapid progress in characterizing the yeast metabolic cycle, its connection to the cell division cycle (CDC) has remained unclear. We discovered that a prototrophic batch culture of budding yeast, growing in a phosphate-limited ethanol medium, synchronizes spontaneously and goes through multiple metabolic cycles, whereas the fraction of cells in the G1/G0 phase of the CDC increases monotonically from 90 to 99%. This demonstrates that metabolic cycling does not require cell division cycling and that metabolic synchrony does not require carbon-source limitation. More than 3,000 genes, including most genes annotated to the CDC, were expressed periodically in our batch culture, albeit a mere 10% of the cells divided asynchronously; only a smaller subset of CDC genes correlated with cell division. These results suggest that the yeast metabolic cycle reflects a growth cycle during G1/G0 and explains our previous puzzling observation that genes annotated to the CDC increase in expression at slow growth.
Collapse
|
34
|
Young TR, Fernandez B, Buckalew R, Moses G, Boczko EM. Clustering in cell cycle dynamics with general response/signaling feedback. J Theor Biol 2011; 292:103-15. [PMID: 22001733 DOI: 10.1016/j.jtbi.2011.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 09/14/2011] [Accepted: 10/03/2011] [Indexed: 10/16/2022]
Abstract
Motivated by experimental and theoretical work on autonomous oscillations in yeast, we analyze ordinary differential equations models of large populations of cells with cell-cycle dependent feedback. We assume a particular type of feedback that we call responsive/signaling (RS), but do not specify a functional form of the feedback. We study the dynamics and emergent behavior of solutions, particularly temporal clustering and stability of clustered solutions. We establish the existence of certain periodic clustered solutions as well as "uniform" solutions and add to the evidence that cell-cycle dependent feedback robustly leads to cell-cycle clustering. We highlight the fundamental differences in dynamics between systems with negative and positive feedback. For positive feedback systems the most important mechanism seems to be the stability of individual isolated clusters. On the other hand we find that in negative feedback systems, clusters must interact with each other to reinforce coherence. We conclude from various details of the mathematical analysis that negative feedback is most consistent with observations in yeast experiments.
Collapse
Affiliation(s)
- Todd R Young
- Department of Mathematics, Ohio University, Athens, OH, USA.
| | | | | | | | | |
Collapse
|
35
|
Abstract
Systems biology is all about networks. A recent trend has been to associate systems biology exclusively with the study of gene regulatory or protein-interaction networks. However, systems biology approaches can be applied at many other scales, from the subatomic to the ecosystem scales. In this review, we describe studies at the sub-cellular, tissue, whole plant and crop scales and highlight how these studies can be related to systems biology. We discuss the properties of system approaches at each scale as well as their current limits, and pinpoint in each case advances unique to the considered scale but representing potential for the other scales. We conclude by examining plant models bridging different scales and considering the future prospects of plant systems biology.
Collapse
Affiliation(s)
- Mikaël Lucas
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham, UK.
| | | | | |
Collapse
|
36
|
Robertson JB, Johnson CH. Luminescence as a continuous real-time reporter of promoter activity in yeast undergoing respiratory oscillations or cell division rhythms. Methods Mol Biol 2011; 734:63-79. [PMID: 21468985 DOI: 10.1007/978-1-61779-086-7_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter describes a method for generating yeast respiratory oscillations in continuous culture and monitoring rhythmic promoter activity of the culture by automated real-time recording of luminescence. These techniques chiefly require the use of a strain of Saccharomyces cerevisiae that has been genetically modified to express firefly luciferase under the control of a promoter of interest and a continuous culture bioreactor that incorporates a photomultiplier apparatus for detecting light emission. Additionally, this chapter describes a method for observing rhythmic (cell cycle-related) promoter activity in small batch cultures of yeast through luminescence monitoring.
Collapse
Affiliation(s)
- J Brian Robertson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
37
|
Laxman S, Tu BP. Systems approaches for the study of metabolic cycles in yeast. Curr Opin Genet Dev 2010; 20:599-604. [PMID: 21051220 DOI: 10.1016/j.gde.2010.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/02/2010] [Accepted: 09/20/2010] [Indexed: 10/18/2022]
Abstract
Over four decades ago, the first oscillations in metabolism in yeast cells were reported. Since then, multiple forms of oscillatory behavior have been observed in yeast grown under a variety of continuous culturing environments. The remarkable synchrony of cells undergoing such oscillations has made them ideal subjects for investigation using systems-based approaches. Herein, we briefly summarize previous work on the characterization of such oscillations using systems approaches, and present the long-period, Yeast Metabolic Cycle as an excellent model system for deciphering the temporal organization of fundamental cellular and metabolic processes at unprecedented resolution.
Collapse
Affiliation(s)
- Sunil Laxman
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, United States
| | | |
Collapse
|
38
|
Laxman S, Sutter BM, Tu BP. Behavior of a metabolic cycling population at the single cell level as visualized by fluorescent gene expression reporters. PLoS One 2010; 5:e12595. [PMID: 20830298 PMCID: PMC2935372 DOI: 10.1371/journal.pone.0012595] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 08/15/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND During continuous growth in specific chemostat cultures, budding yeast undergo robust oscillations in oxygen consumption that are accompanied by highly periodic changes in transcript abundance of a majority of genes, in a phenomenon called the Yeast Metabolic Cycle (YMC). This study uses fluorescent reporters of genes specific to different YMC phases in order to visualize this phenomenon and understand the temporal regulation of gene expression at the level of individual cells within the cycling population. METHODOLOGY Fluorescent gene expression reporters for different phases of the YMC were constructed and stably integrated into the yeast genome. Subsequently, these reporter-expressing yeast were used to visualize YMC dynamics at the individual cell level in cultures grown in a chemostat or in a microfluidics platform under varying glucose concentrations, using fluorescence microscopy and quantitative Western blots. CONCLUSIONS The behavior of single cells within a metabolic cycling population was visualized using phase-specific fluorescent reporters. The reporters largely recapitulated genome-specified mRNA expression profiles. A significant fraction of the cell population appeared to exhibit basal expression of the reporters, supporting the hypothesis that there are at least two distinct subpopulations of cells within the cycling population. Although approximately half of the cycling population initiated cell division in each permissive window of the YMC, metabolic synchrony of the population was maintained. Using a microfluidics platform we observed that low glucose concentrations appear to be necessary for metabolic cycling. Lastly, we propose that there is a temporal window in the oxidative growth phase of the YMC where the cycling population segregates into at least two subpopulations, one which will enter the cell cycle and one which does not.
Collapse
Affiliation(s)
- Sunil Laxman
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Benjamin M. Sutter
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Benjamin P. Tu
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| |
Collapse
|
39
|
Takakura H, Sasakura K, Ueno T, Urano Y, Terai T, Hanaoka K, Tsuboi T, Nagano T. Development of Luciferin Analogues Bearing an Amino Group and Their Application as BRET Donors. Chem Asian J 2010; 5:2053-61. [DOI: 10.1002/asia.201000219] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Cibois M, Gautier-Courteille C, Legagneux V, Paillard L. Post-transcriptional controls - adding a new layer of regulation to clock gene expression. Trends Cell Biol 2010; 20:533-41. [PMID: 20630760 DOI: 10.1016/j.tcb.2010.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/10/2010] [Accepted: 06/11/2010] [Indexed: 12/22/2022]
Abstract
Living organisms undergo biochemical, physiological and behavioral cycles with periods ranging from seconds to years. Cycles with intermediate periods are governed by endogenous clocks that depend on oscillating gene expression. Here we illustrate the modalities and specific functions of post-transcriptional control of gene expression (exerted on pre-mRNAs and mRNAs) in biological clocks through two examples: the circadian clock and the vertebrate somite segmentation clock, an embryonic clock with a period far below a day. We conclude that both constitutive and cyclic post-transcriptional controls underpin clock function.
Collapse
Affiliation(s)
- Marie Cibois
- Université de Rennes 1, Université Européenne de Bretagne, Institut Fédératif de Recherche 140, France
| | | | | | | |
Collapse
|
41
|
Boczko EM, Stowers CC, Gedeon T, Young TR. ODE, RDE and SDE models of cell cycle dynamics and clustering in yeast. JOURNAL OF BIOLOGICAL DYNAMICS 2010; 4:328-45. [PMID: 20563236 PMCID: PMC2885793 DOI: 10.1080/17513750903288003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Biologists have long observed periodic-like oxygen consumption oscillations in yeast populations under certain conditions, and several unsatisfactory explanations for this phenomenon have been proposed. These ‘autonomous oscillations’ have often appeared with periods that are nearly integer divisors of the calculated doubling time of the culture. We hypothesize that these oscillations could be caused by a form of cell cycle synchronization that we call clustering. We develop some novel ordinary differential equation models of the cell cycle. For these models, and for random and stochastic perturbations, we give both rigorous proofs and simulations showing that both positive and negative growth rate feedback within the cell cycle are possible agents that can cause clustering of populations within the cell cycle. It occurs for a variety of models and for a broad selection of parameter values. These results suggest that the clustering phenomenon is robust and is likely to be observed in nature. Since there are necessarily an integer number of clusters, clustering would lead to periodic-like behaviour with periods that are nearly integer divisors of the period of the cell cycle. Related experiments have shown conclusively that cell cycle clustering occurs in some oscillating yeast cultures.
Collapse
Affiliation(s)
- Erik M. Boczko
- Department of Biomedical Informatics, Vanderbilt University
| | | | - Tomas Gedeon
- Department of Mathematics, Montana State University
| | | |
Collapse
|
42
|
Ibrahim-Granet O, Jouvion G, Hohl TM, Droin-Bergère S, Philippart F, Kim OY, Adib-Conquy M, Schwendener R, Cavaillon JM, Brock M. In vivo bioluminescence imaging and histopathopathologic analysis reveal distinct roles for resident and recruited immune effector cells in defense against invasive aspergillosis. BMC Microbiol 2010; 10:105. [PMID: 20377900 PMCID: PMC2859869 DOI: 10.1186/1471-2180-10-105] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 04/08/2010] [Indexed: 02/08/2023] Open
Abstract
Background Invasive aspergillosis (IA) is a major cause of infectious morbidity and mortality in immune compromised patients. Studies on the pathogenesis of IA have been limited by the difficulty to monitor disease progression in real-time. For real-time monitoring of the infection, we recently engineered a bioluminescent A. fumigatus strain. Results In this study, we demonstrate that bioluminescence imaging can track the progression of IA at different anatomic locations in a murine model of disease that recapitulates the natural route of infection. To define the temporal and functional requirements of distinct innate immune cellular subsets in host defense against respiratory A. fumigatus infection, we examined the development and progression of IA using bioluminescence imaging and histopathologic analysis in mice with four different types of pharmacologic or numeric defects in innate immune function that target resident and recruited phagocyte subsets. While bioluminescence imaging can track the progression and location of invasive disease in vivo, signals can be attenuated by severe inflammation and associated tissue hypoxia. However, especially under non-inflammatory conditions, such as cyclophosphamide treatment, an increasing bioluminescence signal reflects the increasing biomass of alive fungal cells. Conclusions Imaging studies allowed an in vivo correlation between the onset, peak, and kinetics of hyphal tissue invasion from the lung under conditions of functional or numeric inactivation of phagocytes and sheds light on the germination speed of conidia under the different immunosuppression regimens. Conditions of high inflammation -either mediated by neutrophil influx under corticosteroid treatment or by monocytes recruited during antibody-mediated depletion of neutrophils- were associated with rapid conidial germination and caused an early rise in bioluminescence post-infection. In contrast, 80% alveolar macrophage depletion failed to trigger a bioluminescent signal, consistent with the notion that neutrophil recruitment is essential for early host defense, while alveolar macrophage depletion can be functionally compensated.
Collapse
|
43
|
Abstract
Circadian timing is a fundamental biological process, underlying cellular physiology in animals, plants, fungi, and cyanobacteria. Circadian clocks organize gene expression, metabolism, and behavior such that they occur at specific times of day. The biological clocks that orchestrate these daily changes confer a survival advantage and dominate daily behavior, for example, waking us in the morning and helping us to sleep at night. The molecular mechanism of circadian clocks has been sketched out in genetic model systems from prokaryotes to humans, revealing a combination of transcriptional and posttranscriptional pathways, but the clock mechanism is far from solved. Although Saccharomyces cerevisiae is among the most powerful genetic experimental systems and, as such, could greatly contribute to our understanding of cellular timing, it still remains absent from the repertoire of circadian model organisms. Here, we use continuous cultures of yeast, establishing conditions that reveal characteristic clock properties similar to those described in other species. Our results show that metabolism in yeast shows systematic circadian entrainment, responding to cycle length and zeitgeber (stimulus) strength, and a (heavily damped) free running rhythm. Furthermore, the clock is obvious in a standard, haploid, auxotrophic strain, opening the door for rapid progress into cellular clock mechanisms.
Collapse
|
44
|
Sorokina O, Kapus A, Terecskei K, Dixon LE, Kozma-Bognar L, Nagy F, Millar AJ. A switchable light-input, light-output system modelled and constructed in yeast. J Biol Eng 2009; 3:15. [PMID: 19761615 PMCID: PMC2758823 DOI: 10.1186/1754-1611-3-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 09/17/2009] [Indexed: 11/18/2022] Open
Abstract
Background Advances in synthetic biology will require spatio-temporal regulation of biological processes in heterologous host cells. We develop a light-switchable, two-hybrid interaction in yeast, based upon the Arabidopsis proteins PHYTOCHROME A and FAR-RED ELONGATED HYPOCOTYL 1-LIKE. Light input to this regulatory module allows dynamic control of a light-emitting LUCIFERASE reporter gene, which we detect by real-time imaging of yeast colonies on solid media. Results The reversible activation of the phytochrome by red light, and its inactivation by far-red light, is retained. We use this quantitative readout to construct a mathematical model that matches the system's behaviour and predicts the molecular targets for future manipulation. Conclusion Our model, methods and materials together constitute a novel system for a eukaryotic host with the potential to convert a dynamic pattern of light input into a predictable gene expression response. This system could be applied for the regulation of genetic networks - both known and synthetic.
Collapse
Affiliation(s)
- Oxana Sorokina
- Institute of Molecular Plant Sciences, The University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh EH9 3JH, UK
| | - Anita Kapus
- Institute of Plant Biology, Biological Research Center, Temesvari krt. 62, H-6726, Szeged, Hungary
| | - Kata Terecskei
- Institute of Plant Biology, Biological Research Center, Temesvari krt. 62, H-6726, Szeged, Hungary
| | - Laura E Dixon
- Institute of Molecular Plant Sciences, The University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh EH9 3JH, UK.,Centre for Systems Biology at Edinburgh, C.H. Waddington Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JD, UK
| | - Laszlo Kozma-Bognar
- Institute of Plant Biology, Biological Research Center, Temesvari krt. 62, H-6726, Szeged, Hungary
| | - Ferenc Nagy
- Institute of Molecular Plant Sciences, The University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh EH9 3JH, UK.,Institute of Plant Biology, Biological Research Center, Temesvari krt. 62, H-6726, Szeged, Hungary
| | - Andrew J Millar
- Institute of Molecular Plant Sciences, The University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh EH9 3JH, UK.,Centre for Systems Biology at Edinburgh, C.H. Waddington Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JD, UK
| |
Collapse
|
45
|
|