1
|
Borges SR, Jones GG, Robinson TD. Detectability of Surface Biosignatures for Directly Imaged Rocky Exoplanets. ASTROBIOLOGY 2024; 24:283-299. [PMID: 38377582 DOI: 10.1089/ast.2023.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Modeling the detection of life has never been more opportune. With next-generation space telescopes, such as the currently developing Habitable Worlds Observatory (HWO) concept, we will begin to characterize rocky exoplanets potentially similar to Earth. However, few realistic planetary spectra containing surface biosignatures have been paired with direct imaging telescope instrument models. Therefore, we use a HWO instrument noise model to assess the detection of surface biosignatures affiliated with oxygenic, anoxygenic, and nonphotosynthetic extremophiles. We pair the HWO telescope model to a one-dimensional radiative transfer model to estimate the required exposure times necessary for detecting each biosignature on planets with global microbial coverage and varying atmospheric water vapor concentrations. For modeled planets with 0-50% cloud coverage, we determine pigments and the red edge could be detected within 1000 hr (100 hr) at distances within 15 pc (11 pc). However, tighter telescope inner working angles (2.5 λ/D) would allow surface biosignature detection at further distances. Anoxygenic photosynthetic biosignatures could also be more easily detectable than nonphotosynthetic pigments and the photosynthetic red edge when compared against a false positive iron oxide slope. Future life detection missions should evaluate the influence of false positives on the detection of multiple surface biosignatures.
Collapse
Affiliation(s)
- Schuyler R Borges
- Department of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, Arizona, USA
- Habitability, Atmospheres, and Biosignatures Laboratory, University of Arizona, Tucson, Arizona, USA
| | - Gabrielle G Jones
- Department of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, Arizona, USA
- Habitability, Atmospheres, and Biosignatures Laboratory, University of Arizona, Tucson, Arizona, USA
| | - Tyler D Robinson
- Department of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, Arizona, USA
- Habitability, Atmospheres, and Biosignatures Laboratory, University of Arizona, Tucson, Arizona, USA
- Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona, USA
- NASA Nexus for Exoplanet System Science Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Chou L, Grefenstette N, Borges S, Caro T, Catalano E, Harman CE, McKaig J, Raj CG, Trubl G, Young A. Chapter 8: Searching for Life Beyond Earth. ASTROBIOLOGY 2024; 24:S164-S185. [PMID: 38498822 DOI: 10.1089/ast.2021.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The search for life beyond Earth necessitates a rigorous and comprehensive examination of biosignatures, the types of observable imprints that life produces. These imprints and our ability to detect them with advanced instrumentation hold the key to our understanding of the presence and abundance of life in the universe. Biosignatures are the chemical or physical features associated with past or present life and may include the distribution of elements and molecules, alone or in combination, as well as changes in structural components or physical processes that would be distinct from an abiotic background. The scientific and technical strategies used to search for life on other planets include those that can be conducted in situ to planetary bodies and those that could be observed remotely. This chapter discusses numerous strategies that can be employed to look for biosignatures directly on other planetary bodies using robotic exploration including those that have been deployed to other planetary bodies, are currently being developed for flight, or will become a critical technology on future missions. Search strategies for remote observations using current and planned ground-based and space-based telescopes are also described. Evidence from spectral absorption, emission, or transmission features can be used to search for remote biosignatures and technosignatures. Improving our understanding of biosignatures, their production, transformation, and preservation on Earth can enhance our search efforts to detect life on other planets.
Collapse
Affiliation(s)
- Luoth Chou
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
- Georgetown University, Washington, DC, USA
| | - Natalie Grefenstette
- Santa Fe Institute, Santa Fe, New Mexico, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | | | - Tristan Caro
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Enrico Catalano
- Sant'Anna School of Advanced Studies, The BioRobotics Institute, Pisa, Italy
| | | | - Jordan McKaig
- Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | - Gareth Trubl
- Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Amber Young
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
3
|
Dai X, Yu Y, Ye T, Deng J, Bu Y, Shi M, Wang R, Zhou J, Sun L, Chen X, Shen X. Dynamically Reconfigurable on-Chip Polarimeters Based on Nanoantenna Enabled Polarization Dependent Optoelectronic Computing. NANO LETTERS 2024; 24:983-992. [PMID: 38206182 DOI: 10.1021/acs.nanolett.3c04454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
On-chip polarization detectors have attracted extensive research interest due to their filterless and ultracompact architecture. However, their polarization-dependent photoresponses cannot be dynamically adjusted, hindering the development toward intelligence. Here, we propose dynamically reconfigurable polarimetry based on in-sensor differentiation of two self-powered photoresponses with orthogonal polarization dependences and tunable responsivities. Such a device can be electrostatically configured in an ultrahigh polarization extinction ratio (PER) mode, where the PER tends to infinity, a Stokes parameter direct sensing mode, where the photoresponse is proportional to S1 or S2 with high accuracy (RMSES1 = 1.5%, RMSES2 = 2.0%), or a background suppressing mode, where the target-background polarization contrast is singularly enhanced. Moreover, the device achieves a polarization angle sensitivity of 0.51 mA·W-1·degree-1 and a specific polarization angle detectivity of 2.8 × 105 cm·Hz1/2·W·degree-1. This scheme is demonstrated throughout the near-to-long-wavelength infrared range, and it will bring a leap for next-generation on-chip polarimeters.
Collapse
Affiliation(s)
- Xu Dai
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yu Yu
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tao Ye
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jie Deng
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yonghao Bu
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Mengdie Shi
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Ruowen Wang
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jing Zhou
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Liaoxin Sun
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiaoshuang Chen
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xuechu Shen
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
4
|
Malaterre C, Ten Kate IL, Baqué M, Debaille V, Grenfell JL, Javaux EJ, Khawaja N, Klenner F, Lara YJ, McMahon S, Moore K, Noack L, Patty CHL, Postberg F. Is There Such a Thing as a Biosignature? ASTROBIOLOGY 2023; 23:1213-1227. [PMID: 37962841 DOI: 10.1089/ast.2023.0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The concept of a biosignature is widely used in astrobiology to suggest a link between some observation and a biological cause, given some context. The term itself has been defined and used in several ways in different parts of the scientific community involved in the search for past or present life on Earth and beyond. With the ongoing acceleration in the search for life in distant time and/or deep space, there is a need for clarity and accuracy in the formulation and reporting of claims. Here, we critically review the biosignature concept(s) and the associated nomenclature in light of several problems and ambiguities emphasized by recent works. One worry is that these terms and concepts may imply greater certainty than is usually justified by a rational interpretation of the data. A related worry is that terms such as "biosignature" may be inherently misleading, for example, because the divide between life and non-life-and their observable effects-is fuzzy. Another worry is that different parts of the multidisciplinary community may use non-equivalent or conflicting definitions and conceptions, leading to avoidable confusion. This review leads us to identify a number of pitfalls and to suggest how they can be circumvented. In general, we conclude that astrobiologists should exercise particular caution in deciding whether and how to use the concept of biosignature when thinking and communicating about habitability or life. Concepts and terms should be selected carefully and defined explicitly where appropriate. This would improve clarity and accuracy in the formulation of claims and subsequent technical and public communication about some of the most profound and important questions in science and society. With this objective in mind, we provide a checklist of questions that scientists and other interested parties should ask when assessing any reported detection of a "biosignature" to better understand exactly what is being claimed.
Collapse
Affiliation(s)
- Christophe Malaterre
- Département de philosophie, Chaire de recherche du Canada en philosophie des sciences de la vie, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
- Centre interuniversitaire de recherche sur la science et la technologie (CIRST), Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
| | - Inge Loes Ten Kate
- Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
| | - Mickael Baqué
- Planetary Laboratories Department, Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - Vinciane Debaille
- Laboratoire G-Time, Université libre de Bruxelles, Brussels, Belgium
| | - John Lee Grenfell
- Department of Extrasolar Planets and Atmospheres, Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - Emmanuelle J Javaux
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Nozair Khawaja
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Fabian Klenner
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Yannick J Lara
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Sean McMahon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
- School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Keavin Moore
- Department of Earth & Planetary Sciences, McGill University, Montreal, Québec, Canada
- Trottier Space Institute, McGill University, Montreal, Québec, Canada
| | - Lena Noack
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - C H Lucas Patty
- Physikalisches Institut, Universität Bern, Bern, Switzerland
- Center for Space and Habitability, Universität Bern, Bern, Switzerland
| | - Frank Postberg
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
5
|
Wang P, Sun H, Yang W, Fang Y. Optical Methods for Label-Free Detection of Bacteria. BIOSENSORS 2022; 12:bios12121171. [PMID: 36551138 PMCID: PMC9775963 DOI: 10.3390/bios12121171] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 05/27/2023]
Abstract
Pathogenic bacteria are the leading causes of food-borne and water-borne infections, and one of the most serious public threats. Traditional bacterial detection techniques, including plate culture, polymerase chain reaction, and enzyme-linked immunosorbent assay are time-consuming, while hindering precise therapy initiation. Thus, rapid detection of bacteria is of vital clinical importance in reducing the misuse of antibiotics. Among the most recently developed methods, the label-free optical approach is one of the most promising methods that is able to address this challenge due to its rapidity, simplicity, and relatively low-cost. This paper reviews optical methods such as surface-enhanced Raman scattering spectroscopy, surface plasmon resonance, and dark-field microscopic imaging techniques for the rapid detection of pathogenic bacteria in a label-free manner. The advantages and disadvantages of these label-free technologies for bacterial detection are summarized in order to promote their application for rapid bacterial detection in source-limited environments and for drug resistance assessments.
Collapse
Affiliation(s)
- Pengcheng Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Hao Sun
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Wei Yang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yimin Fang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
6
|
Affiliation(s)
- Huadong Guo
- International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China; Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yixing Ding
- International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China; Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Guang Liu
- International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China; Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| |
Collapse
|
7
|
Patty CL, Pommerol A, Kühn JG, Demory BO, Thomas N. Directional Aspects of Vegetation Linear and Circular Polarization Biosignatures. ASTROBIOLOGY 2022; 22:1034-1046. [PMID: 35984943 PMCID: PMC9508456 DOI: 10.1089/ast.2021.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/12/2022] [Indexed: 06/15/2023]
Abstract
Homochirality is a generic and unique property of all biochemical life and it is considered a universal and agnostic biosignature. Upon interaction with unpolarized light, homochirality induces fractional circular polarization in the light that is scattered from it, which can be sensed remotely. As such, it can be a prime candidate biosignature in the context of future life detection missions and observatories. The linear polarizance of vegetation is also sometimes envisaged as a biosignature, although it does not share the same molecular origin as circular polarization. It is known that linear polarization of surfaces is strongly dependent on the phase angle. The relationship between the phase angle and circular polarization stemming from macromolecular assemblies such as in vegetation, however, remained unclear. In this study, using the average of 27 different species, we demonstrate that the circular polarization-phase angle dependency of vegetation induces relatively small changes in spectral shape and mostly affects the signal magnitude. With these results, we underline the use of circular spectropolarimetry as a promising agnostic biosignature complementary to the use of linear spectropolarimetry and scalar reflectance.
Collapse
Affiliation(s)
- C.H. Lucas Patty
- Weltraumforschung und Planetologie (WP), Physikalisches Institut and Universität Bern, Bern, Switzerland
| | - Antoine Pommerol
- Weltraumforschung und Planetologie (WP), Physikalisches Institut and Universität Bern, Bern, Switzerland
| | - Jonas G. Kühn
- Center for Space and Habitability, Universität Bern, Bern, Switzerland
- Département d'Astronomie, Université de Genève, Versoix, Switzerland
| | | | - Nicolas Thomas
- Weltraumforschung und Planetologie (WP), Physikalisches Institut and Universität Bern, Bern, Switzerland
| |
Collapse
|
8
|
Al Khafaji MA, Cisowski CM, Jimbrown H, Croke S, Pádua S, Franke-Arnold S. Single-shot characterization of vector beams by generalized measurements. OPTICS EXPRESS 2022; 30:22396-22409. [PMID: 36224938 DOI: 10.1364/oe.458352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/11/2022] [Indexed: 06/16/2023]
Abstract
Vector vortex beams, featuring independent spatial modes in orthogonal polarization components, offer an increase in information density for emerging applications in both classical and quantum communication technology. Recent advances in optical instrumentation have led to the ability of generating and manipulating such beams. Their tomography is generally accomplished by projection measurements to identify polarization as well as spatial modes. In this paper we demonstrate spatially resolved generalized measurements of arbitrary vector vortex beams. We perform positive operator valued measurements (POVMs) in an interferometric setup that characterizes the vector light mode in a single-shot. This offers superior data acquisition speed compared to conventional Stokes tomography techniques, with potential benefits for communication protocols as well as dynamic polarization microscopy of materials.
Collapse
|
9
|
Jena S, Eyyathiyil J, Behera SK, Kitahara M, Imai Y, Thilagar P. Crystallization induced room-temperature phosphorescence and chiral photoluminescence properties of phosphoramides. Chem Sci 2022; 13:5893-5901. [PMID: 35685799 PMCID: PMC9132070 DOI: 10.1039/d2sc00990k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/06/2022] [Indexed: 11/21/2022] Open
Abstract
We report the design and synthesis of a series of room temperature phosphorescent phosphoramides TPTZPO, TPTZPS, and TPTZPSe with a donor (phenothiazine)-acceptor (P = X, X = O, S, and Se) architecture. All the compounds show structureless fluorescence with a nanosecond lifetime in dilute solutions. However, these compounds show dual fluorescence and room temperature phosphorescence (RTP) in the solid state. Both the intensity and energy of luminescence depend on the heteroatom attached to the phosphorus center. For example, compound TPTZPO with the P[double bond, length as m-dash]O unit exhibits fluorescence at a higher energy region than TPTZPS and TPTZPSe with the P[double bond, length as m-dash]S and P[double bond, length as m-dash]Se groups, respectively. Crystalline samples of TPTZPO, TPTZPS, and TPTZPSe show stronger RTP than the amorphous powder of respective compounds. Detailed steady-state, time-resolved photoluminescence and computational studies established that the 3n-π* state dominated by the phenothiazine moiety is the emissive state of these compounds. Although TPTZPS and TPTZPSe crystallized in the chiral space group, only TPTZPSe showed chiroptical properties in the solid state. The luminescence dissymmetry factor (g lum) value of TPTZPS is small and below the detection limit, and a CPL spectrum could not be observed for this compound.
Collapse
Affiliation(s)
- Satyam Jena
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore India - 560012
| | - Jusaina Eyyathiyil
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore India - 560012
| | - Santosh Kumar Behera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore India - 560012
| | - Maho Kitahara
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University 3-4-1 Kowakae, Higashi-Osaka Osaka 577-8502 Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University 3-4-1 Kowakae, Higashi-Osaka Osaka 577-8502 Japan
| | - Pakkirisamy Thilagar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore India - 560012
| |
Collapse
|
10
|
Liao P, Zang S, Wu T, Jin H, Wang W, Huang J, Tang BZ, Yan Y. Generating circularly polarized luminescence from clusterization-triggered emission using solid phase molecular self-assembly. Nat Commun 2021; 12:5496. [PMID: 34535652 PMCID: PMC8448880 DOI: 10.1038/s41467-021-25789-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
Purely-organic clusterization-triggered emission (CTE) has displayed promising abilities in bioimaging, chemical sensing, and multicolor luminescence. However, it remains absent in the field of circularly polarized luminescence (CPL) due to the difficulties in well-aligning the nonconventional luminogens. We report a case of CPL generated with CTE using the solid phase molecular self-assembly (SPMSA) of poly-L-lysine (PLL) and oleate ion (OL), that is, the macroscopic CPL supramolecular film self-assembled by the electrostatic complex of PLL/OL under mechanical pressure. Well-defined interface charge distribution, given by lamellar mesophases of OL ions, forces the PLL chains to fold regularly as a requirement of optimal electrostatic interactions. Further facilitated by hydrogen bonding, the through-space conjugation (TSC) of orderly aligned electron-rich O and N atoms leads to CTE-based CPL, which is capable of transferring energy to an acceptor via a Förster resonance energy transfer (FRET) process, making it possible to develop environmentally friendly and economic CPL from sustainable and renewable materials.
Collapse
Affiliation(s)
- Peilong Liao
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Shihao Zang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Tongyue Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hongjun Jin
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wenkai Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, 2001 Longxiang Boulevard, Longgang, Shenzhen, Guangdong, 518172, China.
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
11
|
Gómez de Castro AI, De Isidro-Gómez AI. Constraints for Use of Ultraviolet Spectropolarimetry to Detect Chiral Amino Acids from Comets. ASTROBIOLOGY 2021; 21:718-728. [PMID: 33798393 PMCID: PMC8219194 DOI: 10.1089/ast.2020.2310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Life is pervasive on planet Earth, but whether life is ubiquitous in the Galaxy and sustainable over timescales comparable to stellar evolution is unknown. Evidence suggests that life first appeared on Earth more than 3.77 Gyr ago, during a period of heavy meteoric bombardment. Amino acids, the building blocks of proteins, have been demonstrated to exist in interstellar ice. As such, the contribution of space-generated amino acids to those existing on Earth should be considered. However, detection of space amino acids is challenging. In this study, we used analytical data from several meteorites and in situ measurements of the comet 67P/Churyumov-Gerasimenko collected by the Rosetta probe to evaluate the detectability of alanine by ultraviolet spectropolarimetry. Alanine is the second-most abundant amino acid after glycine and is optically active. This chirality produces a unique signature that enables reliable identification of this amino acid using the imprint of optical rotatory dispersion (ORD) and circular dichroism (CD) in the ultraviolet spectrum (130-230 nm). Here, we show that the ORD signature could be detected in comets by using ultraviolet spectropolarimetric observations conducted at middle size space observatories. These observations can also provide crucial information for the study of sources of enantiomeric imbalance on Earth.
Collapse
|
12
|
Sparks WB, Parenteau MN, Blankenship RE, Germer TA, Patty CHL, Bott KM, Telesco CM, Meadows VS. Spectropolarimetry of Primitive Phototrophs as Global Surface Biosignatures. ASTROBIOLOGY 2021; 21:219-234. [PMID: 33216615 PMCID: PMC7876348 DOI: 10.1089/ast.2020.2272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Photosynthesis is an ancient metabolic process that began on early Earth and offers plentiful energy to organisms that can utilize it such that that they achieve global significance. The potential exists for similar processes to operate on habitable exoplanets and result in observable biosignatures. Before the advent of oxygenic photosynthesis, the most primitive phototrophs, anoxygenic phototrophs, dominated surface environments on the planet. Here, we characterize surface polarization biosignatures associated with a diverse sample of anoxygenic phototrophs and cyanobacteria, examining both pure cultures and microbial communities from the natural environment. Polarimetry is a tool that can be used to measure the chiral signature of biomolecules. Chirality is considered a universal, agnostic biosignature that is independent of a planet's biochemistry, receiving considerable interest as a target biosignature for life-detection missions. In contrast to preliminary indications from earlier work, we show that there is a diversity of distinctive circular polarization signatures, including the magnitude of the polarization, associated with the variety of chiral photosynthetic pigments and pigment complexes of anoxygenic and oxygenic phototrophs. We also show that the apparent death and release of pigments from one of the phototrophs is accompanied by an elevation of the reflectance polarization signal by an order of magnitude, which may be significant for remotely detectable environmental signatures. This work and others suggest that circular polarization signals up to ∼1% may occur, significantly stronger than previously anticipated circular polarization levels. We conclude that global surface polarization biosignatures may arise from anoxygenic and oxygenic phototrophs, which have dominated nearly 80% of the history of our rocky, inhabited planet.
Collapse
Affiliation(s)
- William B. Sparks
- SETI Institute, Mountain View, California, USA
- Space Telescope Science Institute, Baltimore, Maryland, USA
| | - Mary Niki Parenteau
- Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
- NASA Ames Research Center, Moffett Field, California, USA
| | - Robert E. Blankenship
- Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Thomas A. Germer
- National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Christian Herman Lucas Patty
- Institute of Plant Biology, Hungarian Academy of Sciences, Szeged, Hungary
- Space Research and Planetary Sciences, University of Bern, Bern, Switzerland
| | - Kimberly M. Bott
- Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
- Department of Earth and Planetary Sciences, University of California, Riverside, Riverside, California, USA
| | - Charles M. Telesco
- Department of Astronomy, University of Florida, Gainesville, Florida, USA
| | - Victoria S. Meadows
- Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
- Department of Astronomy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
13
|
Locke A, Fitzgerald S, Mahadevan-Jansen A. Advances in Optical Detection of Human-Associated Pathogenic Bacteria. Molecules 2020; 25:E5256. [PMID: 33187331 PMCID: PMC7696695 DOI: 10.3390/molecules25225256] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial infection is a global burden that results in numerous hospital visits and deaths annually. The rise of multi-drug resistant bacteria has dramatically increased this burden. Therefore, there is a clinical need to detect and identify bacteria rapidly and accurately in their native state or a culture-free environment. Current diagnostic techniques lack speed and effectiveness in detecting bacteria that are culture-negative, as well as options for in vivo detection. The optical detection of bacteria offers the potential to overcome these obstacles by providing various platforms that can detect bacteria rapidly, with minimum sample preparation, and, in some cases, culture-free directly from patient fluids or even in vivo. These modalities include infrared, Raman, and fluorescence spectroscopy, along with optical coherence tomography, interference, polarization, and laser speckle. However, these techniques are not without their own set of limitations. This review summarizes the strengths and weaknesses of utilizing each of these optical tools for rapid bacteria detection and identification.
Collapse
Affiliation(s)
- Andrea Locke
- Vanderbilt Biophotonics Center, Nashville, TN 37232, USA; (A.L.); (S.F.)
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Sean Fitzgerald
- Vanderbilt Biophotonics Center, Nashville, TN 37232, USA; (A.L.); (S.F.)
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Anita Mahadevan-Jansen
- Vanderbilt Biophotonics Center, Nashville, TN 37232, USA; (A.L.); (S.F.)
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
14
|
Kim YH, Zhai Y, Gaulding EA, Habisreutinger SN, Moot T, Rosales BA, Lu H, Hazarika A, Brunecky R, Wheeler LM, Berry JJ, Beard MC, Luther JM. Strategies to Achieve High Circularly Polarized Luminescence from Colloidal Organic-Inorganic Hybrid Perovskite Nanocrystals. ACS NANO 2020; 14:8816-8825. [PMID: 32644773 PMCID: PMC10906077 DOI: 10.1021/acsnano.0c03418] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Colloidal metal halide perovskite nanocrystals (NCs) with chiral ligands are outstanding candidates as a circularly polarized luminescence (CPL) light source due to many advantages such as high photoluminescence quantum efficiency, large spin-orbit coupling, and extensive tunability via composition and choice of organic ligands. However, achieving pronounced and controllable polarized light emission remains challenging. Here, we develop strategies to achieve high CPL responses from colloidal formamidinium lead bromide (FAPbBr3) NCs at room temperature using chiral surface ligands. First, we show that replacing a portion of typical ligands (oleylamine) with short chiral ligands ((R)-2-octylamine) during FAPbBr3 NC synthesis results in small and monodisperse NCs that yield high CPL with average luminescence dissymmetry g-factor, glum = 6.8 × 10-2. To the best of our knowledge, this is the highest among reported perovskite materials at room temperature to date and represents around 10-fold improvement over the previously reported colloidal CsPbClxBryI3-x-y NCs. In order to incorporate NCs into any optoelectronic or spintronic application, the NCs necessitate purification, which removes a substantial amount of the chiral ligands and extinguishes the CPL signals. To circumvent this issue, we also developed a postsynthetic ligand treatment using a different chiral ligand, (R-/S-)methylbenzylammonium bromide, which also induces a CPL with an average glum = ±1.18 × 10-2. This postsynthetic method is also amenable for long-range charge transport since methylbenzylammonium is quite compact in relation to other surface ligands. Our demonstrations of high CPL and glum from both as-synthesized and purified perovskite NCs at room temperature suggest a route to demonstrate colloidal NC-based spintronics.
Collapse
Affiliation(s)
- Young-Hoon Kim
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Yaxin Zhai
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - E. Ashley Gaulding
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | | | - Taylor Moot
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Bryan A. Rosales
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Haipeng Lu
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Abhijit Hazarika
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Roman Brunecky
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Lance M. Wheeler
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Joseph J. Berry
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Matthew C. Beard
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Joseph M. Luther
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
15
|
Patty CHL, Ten Kate IL, Buma WJ, van Spanning RJM, Steinbach G, Ariese F, Snik F. Circular Spectropolarimetric Sensing of Vegetation in the Field: Possibilities for the Remote Detection of Extraterrestrial Life. ASTROBIOLOGY 2019; 19:1221-1229. [PMID: 31361507 DOI: 10.1089/ast.2019.2050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Homochirality is a generic and unique property of all biochemical life, and the fractional circular polarization of light it induces therefore constitutes a potentially unambiguous biosignature. However, while high-quality circular polarimetric spectra can be easily and quickly obtained in the laboratory, accurate measurements in the field are much more challenging due to large changes in illumination and target movement. In this study, we measured various targets in the field, up to distances of a few kilometers, using the dedicated circular spectropolarimeter TreePol. We show how photosynthetic life can readily be distinguished from abiotic matter. We underline the potential of circular polarization signals as a remotely accessible means to characterize and monitor terrestrial vegetation, for example, for agriculture and forestry. In addition, we discuss the potential of circular polarization for the remote detection of extraterrestrial life.
Collapse
Affiliation(s)
- C H Lucas Patty
- Amsterdam Institute for Molecules, Medicine and Systems (AIMMS), VU Amsterdam, Amsterdam, The Netherlands
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- Biofotonika R&D Ltd., Szeged, Hungary
| | - Inge Loes Ten Kate
- Department of Earth Sciences, Utrecht University, Budapestlaan 4, Utrecht 3584 CD, The Netherlands
| | - Wybren Jan Buma
- HIMS, Photonics group, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Rob J M van Spanning
- Amsterdam Institute for Molecules, Medicine and Systems (AIMMS), VU Amsterdam, Amsterdam, The Netherlands
| | - Gábor Steinbach
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Freek Ariese
- LaserLaB, VU Amsterdam, Amsterdam, The Netherlands
| | - Frans Snik
- Leiden Observatory, Leiden University, Leiden, The Netherlands
| |
Collapse
|
16
|
Patty CHL, Ariese F, Buma WJ, Ten Kate IL, van Spanning RJM, Snik F. Circular spectropolarimetric sensing of higher plant and algal chloroplast structural variations. PHOTOSYNTHESIS RESEARCH 2019; 140:129-139. [PMID: 30141032 PMCID: PMC6548066 DOI: 10.1007/s11120-018-0572-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/04/2018] [Indexed: 05/11/2023]
Abstract
Photosynthetic eukaryotes show a remarkable variability in photosynthesis, including large differences in light-harvesting proteins and pigment composition. In vivo circular spectropolarimetry enables us to probe the molecular architecture of photosynthesis in a non-invasive and non-destructive way and, as such, can offer a wealth of physiological and structural information. In the present study, we have measured the circular polarizance of several multicellular green, red, and brown algae and higher plants, which show large variations in circular spectropolarimetric signals with differences in both spectral shape and magnitude. Many of the algae display spectral characteristics not previously reported, indicating a larger variation in molecular organization than previously assumed. As the strengths of these signals vary by three orders of magnitude, these results also have important implications in terms of detectability for the use of circular polarization as a signature of life.
Collapse
Affiliation(s)
- C H Lucas Patty
- Molecular Cell Physiology, VU Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Freek Ariese
- LaserLaB, VU Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Wybren Jan Buma
- HIMS, Photonics Group, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Inge Loes Ten Kate
- Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD, Utrecht, The Netherlands
| | - Rob J M van Spanning
- Systems Bioinformatics, VU Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Frans Snik
- Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
17
|
Ding Y, Pau S. Circularly and elliptically polarized light under water and the Umov effect. LIGHT, SCIENCE & APPLICATIONS 2019; 8:32. [PMID: 30911381 PMCID: PMC6425041 DOI: 10.1038/s41377-019-0143-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 05/15/2023]
Abstract
Total internal reflection occurs when light is incident on the interface of high- and low-refractive-index materials at an angle greater than the critical angle. Sunlight with high degree of linear polarization, such as atmospheric scattered skylight, can be converted with a high efficiency up to 53% to circular and elliptical polarizations by total internal reflection under water in the region outside Snell's window. The degree of circular polarization is observed to be inversely dependent on the albedo of underwater objects and is shown to be a direct consequence of the Umov effect. Our results are important for underwater polarimetry, surveillance applications and studies of marine animals' polarized vision near the water-air interface.
Collapse
Affiliation(s)
- Yitian Ding
- College of Optical Sciences, University of Arizona, Tucson, AZ 85721 USA
| | - Stanley Pau
- College of Optical Sciences, University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
18
|
Sparks WB, Germer TA, Sparks RM. Classical polarimetry with a twist: a compact, geometric approach. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC. ASTRONOMICAL SOCIETY OF THE PACIFIC 2019; 131:10.1088/1538-3873/ab1933. [PMID: 31579323 PMCID: PMC6774357 DOI: 10.1088/1538-3873/ab1933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present an approach to classical polarimetry that requires no moving parts, is compact and robust, and that encodes the complete polarization information on a single data frame, accomplished by replacing the rotation of components such as wave plates with position along a spatial axis. We demonstrate the concept with a polarimeter having a quarter wave plate whose fast axis direction changes with location along one axis of a 2D data frame in conjunction with a fixed-direction polarization analyzer, analogous to a classical rotating quarter wave plate polarimeter. The full set of Stokes parameters is obtained, with maximal sensitivity to circular polarization Stokes V if a quarter wave retarder is used. Linear and circular polarization terms are encoded with spatial carrier frequencies that differ by a factor two, which minimizes cross-talk. Other rotating component polarimeters lend themselves to the approach. Since the polarization modulation spatial frequencies do not change greatly, if at all, with wavelength such devices are close to achromatic, simplifying instrument design. Since the polarimetric information is acquired in a single observation, rapidly varying, transient and moving targets are accessible, loss of precision due to sequential data acquisition is avoided, and moving parts are not required.
Collapse
Affiliation(s)
- William B. Sparks
- SETI Institute, 189 Bernardo Avenue, Suite 200, Mountain View, CA 94043
| | - Thomas A. Germer
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899
| | - Rebecca M. Sparks
- Irvine Nature Center, 11201 Garrison Forest Road, Owings Mills, MD 21117
| |
Collapse
|
19
|
Catling DC, Krissansen-Totton J, Kiang NY, Crisp D, Robinson TD, DasSarma S, Rushby AJ, Del Genio A, Bains W, Domagal-Goldman S. Exoplanet Biosignatures: A Framework for Their Assessment. ASTROBIOLOGY 2018; 18:709-738. [PMID: 29676932 PMCID: PMC6049621 DOI: 10.1089/ast.2017.1737] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/05/2017] [Indexed: 05/04/2023]
Abstract
Finding life on exoplanets from telescopic observations is an ultimate goal of exoplanet science. Life produces gases and other substances, such as pigments, which can have distinct spectral or photometric signatures. Whether or not life is found with future data must be expressed with probabilities, requiring a framework of biosignature assessment. We present a framework in which we advocate using biogeochemical "Exo-Earth System" models to simulate potential biosignatures in spectra or photometry. Given actual observations, simulations are used to find the Bayesian likelihoods of those data occurring for scenarios with and without life. The latter includes "false positives" wherein abiotic sources mimic biosignatures. Prior knowledge of factors influencing planetary inhabitation, including previous observations, is combined with the likelihoods to give the Bayesian posterior probability of life existing on a given exoplanet. Four components of observation and analysis are necessary. (1) Characterization of stellar (e.g., age and spectrum) and exoplanetary system properties, including "external" exoplanet parameters (e.g., mass and radius), to determine an exoplanet's suitability for life. (2) Characterization of "internal" exoplanet parameters (e.g., climate) to evaluate habitability. (3) Assessment of potential biosignatures within the environmental context (components 1-2), including corroborating evidence. (4) Exclusion of false positives. We propose that resulting posterior Bayesian probabilities of life's existence map to five confidence levels, ranging from "very likely" (90-100%) to "very unlikely" (<10%) inhabited. Key Words: Bayesian statistics-Biosignatures-Drake equation-Exoplanets-Habitability-Planetary science. Astrobiology 18, 709-738.
Collapse
Affiliation(s)
- David C. Catling
- Astrobiology Program, Department of Earth and Space Sciences, University of Washington, Seattle, Washington
- Virtual Planetary Laboratory, University of Washington, Seattle, Washington
| | - Joshua Krissansen-Totton
- Astrobiology Program, Department of Earth and Space Sciences, University of Washington, Seattle, Washington
- Virtual Planetary Laboratory, University of Washington, Seattle, Washington
| | - Nancy Y. Kiang
- NASA Goddard Institute for Space Studies, New York, New York
| | - David Crisp
- MS 233-200, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Tyler D. Robinson
- Department of Astronomy and Astrophysics, University of California, Santa Cruz, California
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, School of Medicine, and Institute of Marine and Environmental Technology, University of Maryland, Baltimore, Maryland
| | | | | | - William Bains
- Department of Earth, Atmospheric and Planetary Science, Cambridge, Massachusetts
| | | |
Collapse
|
20
|
Schwieterman EW, Kiang NY, Parenteau MN, Harman CE, DasSarma S, Fisher TM, Arney GN, Hartnett HE, Reinhard CT, Olson SL, Meadows VS, Cockell CS, Walker SI, Grenfell JL, Hegde S, Rugheimer S, Hu R, Lyons TW. Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life. ASTROBIOLOGY 2018; 18:663-708. [PMID: 29727196 PMCID: PMC6016574 DOI: 10.1089/ast.2017.1729] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/10/2017] [Indexed: 05/04/2023]
Abstract
In the coming years and decades, advanced space- and ground-based observatories will allow an unprecedented opportunity to probe the atmospheres and surfaces of potentially habitable exoplanets for signatures of life. Life on Earth, through its gaseous products and reflectance and scattering properties, has left its fingerprint on the spectrum of our planet. Aided by the universality of the laws of physics and chemistry, we turn to Earth's biosphere, both in the present and through geologic time, for analog signatures that will aid in the search for life elsewhere. Considering the insights gained from modern and ancient Earth, and the broader array of hypothetical exoplanet possibilities, we have compiled a comprehensive overview of our current understanding of potential exoplanet biosignatures, including gaseous, surface, and temporal biosignatures. We additionally survey biogenic spectral features that are well known in the specialist literature but have not yet been robustly vetted in the context of exoplanet biosignatures. We briefly review advances in assessing biosignature plausibility, including novel methods for determining chemical disequilibrium from remotely obtainable data and assessment tools for determining the minimum biomass required to maintain short-lived biogenic gases as atmospheric signatures. We focus particularly on advances made since the seminal review by Des Marais et al. The purpose of this work is not to propose new biosignature strategies, a goal left to companion articles in this series, but to review the current literature, draw meaningful connections between seemingly disparate areas, and clear the way for a path forward. Key Words: Exoplanets-Biosignatures-Habitability markers-Photosynthesis-Planetary surfaces-Atmospheres-Spectroscopy-Cryptic biospheres-False positives. Astrobiology 18, 663-708.
Collapse
Affiliation(s)
- Edward W. Schwieterman
- Department of Earth Sciences, University of California, Riverside, California
- NASA Postdoctoral Program, Universities Space Research Association, Columbia, Maryland
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
- Blue Marble Space Institute of Science, Seattle, Washington
| | - Nancy Y. Kiang
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- NASA Goddard Institute for Space Studies, New York, New York
| | - Mary N. Parenteau
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- NASA Ames Research Center, Exobiology Branch, Mountain View, California
| | - Chester E. Harman
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- NASA Goddard Institute for Space Studies, New York, New York
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
- Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, Maryland
| | - Theresa M. Fisher
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| | - Giada N. Arney
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- Planetary Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Hilairy E. Hartnett
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
| | - Christopher T. Reinhard
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Stephanie L. Olson
- Department of Earth Sciences, University of California, Riverside, California
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
| | - Victoria S. Meadows
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, Seattle, Washington
- Astronomy Department, University of Washington, Seattle, Washington
| | - Charles S. Cockell
- University of Edinburgh School of Physics and Astronomy, Edinburgh, United Kingdom
- UK Centre for Astrobiology, Edinburgh, United Kingdom
| | - Sara I. Walker
- Blue Marble Space Institute of Science, Seattle, Washington
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona
- ASU-Santa Fe Institute Center for Biosocial Complex Systems, Arizona State University, Tempe, Arizona
| | - John Lee Grenfell
- Institut für Planetenforschung (PF), Deutsches Zentrum für Luft und Raumfahrt (DLR), Berlin, Germany
| | - Siddharth Hegde
- Carl Sagan Institute, Cornell University, Ithaca, New York
- Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, New York
| | - Sarah Rugheimer
- Department of Earth and Environmental Sciences, University of St. Andrews, St. Andrews, United Kingdom
| | - Renyu Hu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California
| | - Timothy W. Lyons
- Department of Earth Sciences, University of California, Riverside, California
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
| |
Collapse
|
21
|
Patty CHL, Luo DA, Snik F, Ariese F, Buma WJ, Ten Kate IL, van Spanning RJM, Sparks WB, Germer TA, Garab G, Kudenov MW. Imaging linear and circular polarization features in leaves with complete Mueller matrix polarimetry. Biochim Biophys Acta Gen Subj 2018. [PMID: 29526506 DOI: 10.1016/j.bbagen.2018.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Spectropolarimetry of intact plant leaves allows to probe the molecular architecture of vegetation photosynthesis in a non-invasive and non-destructive way and, as such, can offer a wealth of physiological information. In addition to the molecular signals due to the photosynthetic machinery, the cell structure and its arrangement within a leaf can create and modify polarization signals. Using Mueller matrix polarimetry with rotating retarder modulation, we have visualized spatial variations in polarization in transmission around the chlorophyll a absorbance band from 650 nm to 710 nm. We show linear and circular polarization measurements of maple leaves and cultivated maize leaves and discuss the corresponding Mueller matrices and the Mueller matrix decompositions, which show distinct features in diattenuation, polarizance, retardance and depolarization. Importantly, while normal leaf tissue shows a typical split signal with both a negative and a positive peak in the induced fractional circular polarization and circular dichroism, the signals close to the veins only display a negative band. The results are similar to the negative band as reported earlier for single macrodomains. We discuss the possible role of the chloroplast orientation around the veins as a cause of this phenomenon. Systematic artefacts are ruled out as three independent measurements by different instruments gave similar results. These results provide better insight into circular polarization measurements on whole leaves and options for vegetation remote sensing using circular polarization.
Collapse
Affiliation(s)
- C H Lucas Patty
- Molecular Cell Physiology, VU Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - David A Luo
- Optical Sensing Lab, Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Frans Snik
- Leiden Observatory, Leiden University, P.O. Box 9513, Leiden 2300 RA, The Netherlands
| | - Freek Ariese
- LaserLaB, VU Amsterdam, De Boelelaan 1083, Amsterdam 1081 HV, The Netherlands
| | - Wybren Jan Buma
- HIMS, Photonics Group, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Inge Loes Ten Kate
- Department of Earth Sciences, Utrecht University, Budapestlaan 4, Utrecht 3584 CD, The Netherlands
| | - Rob J M van Spanning
- Systems Bioinformatics, VU Amsterdam, De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands
| | - William B Sparks
- Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
| | - Thomas A Germer
- Senior Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Győző Garab
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, Szeged H-6701, Hungary; Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, Slezská Ostrava, Czech Republic
| | - Michael W Kudenov
- Optical Sensing Lab, Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
22
|
Chen L, Ke X, Guo H, Li J, Li X, Zhou L. Broadband wave plates made by plasmonic metamaterials. Sci Rep 2018; 8:1051. [PMID: 29348538 PMCID: PMC5773504 DOI: 10.1038/s41598-018-19611-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/03/2018] [Indexed: 11/09/2022] Open
Abstract
Although metamaterials wave-plates have been demonstrated previously, many of them suffer from the issue of narrow bandwidth since they typically rely on resonance principles and thus exhibit inevitable frequency dispersions. Here, we show that the dispersion of spoof surface plasmon (SSP) mode supported by a fishbone structure can be freely modulated by varying the structural parameters. This motivates us to establish a general strategy of building broadband wave-plates by cascading two fishbone structures with different propagation constants of SSP modes. We derive a criterion under which the cross-polarization phase-difference across the whole device can maintain at a nearly constant value over a wide frequency band, with frequency dispersions in the two fishbone structures cancelled out. As an illustration, we design and fabricate an efficient microwave quarter-wave plate and experimentally characterize its excellent polarization-control performances over a broad frequency band (7-9.2 GHz). Our findings can stimulate making dispersion-controlled high-performance optical functional devices in different frequency domains.
Collapse
Affiliation(s)
- Lin Chen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Xianmin Ke
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huijie Guo
- State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai, 200433, China
| | - Junhao Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xun Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lei Zhou
- State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai, 200433, China.
| |
Collapse
|
23
|
Metamaterials and Metasurfaces for Sensor Applications. SENSORS 2017; 17:s17081726. [PMID: 28749422 PMCID: PMC5579738 DOI: 10.3390/s17081726] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/21/2017] [Accepted: 07/23/2017] [Indexed: 01/19/2023]
Abstract
Electromagnetic metamaterials (MMs) and metasurfaces (MSs) are artificial media and surfaces with subwavelength separations of meta-atoms designed for anomalous manipulations of light properties. Owing to large scattering cross-sections of metallic/dielectric meta-atoms, it is possible to not only localize strong electromagnetic fields in deep subwavelength volume but also decompose and analyze incident light signal with ultracompact setup using MMs and MSs. Hence, by probing resonant spectral responses from extremely boosted interactions between analyte layer and optical MMs or MSs, sensing the variation of refractive index has been a popular and practical application in the field of photonics. Moreover, decomposing and analyzing incident light signal can be easily achieved with anisotropic MSs, which can scatter light to different directions according to its polarization or wavelength. In this paper, we present recent advances and potential applications of optical MMs and MSs for refractive index sensing and sensing light properties, which can be easily integrated with various electronic devices. The characteristics and performances of devices are summarized and compared qualitatively with suggestions of design guidelines.
Collapse
|
24
|
Yun JG, Kim SJ, Yun H, Lee K, Sung J, Kim J, Lee Y, Lee B. Broadband ultrathin circular polarizer at visible and near-infrared wavelengths using a non-resonant characteristic in helically stacked nano-gratings. OPTICS EXPRESS 2017; 25:14260-14269. [PMID: 28789011 DOI: 10.1364/oe.25.014260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/03/2017] [Indexed: 05/24/2023]
Abstract
Modern imaging and spectroscopy systems require to implement diverse functionalities with thin thickness and wide wavelength ranges. In order to meet this demand, polarization-resolved imaging has been widely investigated with integrated circular polarizers. However, the circular polarizers which operate at the entire visible wavelengths and have a thickness of several tens of nanometers have not been developed yet. Here, a circular polarizer, operating at the entire visible wavelength range, is demonstrated using helically stacked aluminum nano-grating layers. High extinction ratio and broad operation bandwidth are simultaneously achieved by using non-resonant anisotropic characteristics of the nano-grating. It is theoretically verified that the averaged extinction ratio becomes up to 8 over the entire visible wavelength range while having a thickness of 390 nm. Also, the feasibility of the proposed structure and circular polarization selectivity at the visible wavelength range are experimentally verified. It is expected that the proposed structure will lead to extreme miniaturization of a circular polarizer and contribute greatly to the development of mobile/wearable imaging systems such as virtual reality and augmented reality displays.
Collapse
|
25
|
Abstract
We present a simple model for estimating the probability of interplanetary panspermia in the recently discovered system of seven planets orbiting the ultracool dwarf star TRAPPIST-1 and find that panspermia is potentially orders of magnitude more likely to occur in the TRAPPIST-1 system compared with the Earth-to-Mars case. As a consequence, we argue that the probability of abiogenesis is enhanced on the TRAPPIST-1 planets compared with the solar system. By adopting models from theoretical ecology, we show that the number of species transferred and the number of life-bearing planets are also likely to be higher because of the increased rates of immigration. We propose observational metrics for evaluating whether life was initiated by panspermia on multiple planets in the TRAPPIST-1 system. These results are also applicable to habitable exoplanets and exomoons in other planetary systems.
Collapse
|
26
|
Poch O, Frey J, Roditi I, Pommerol A, Jost B, Thomas N. Remote Sensing of Potential Biosignatures from Rocky, Liquid, or Icy (Exo)Planetary Surfaces. ASTROBIOLOGY 2017; 17:231-252. [PMID: 28282216 DOI: 10.1089/ast.2016.1523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To detect signs of life by remote sensing on objects of our Solar System and on exoplanets, the characterization of light scattered by surface life material could complement possible clues given by the atmospheric composition. We reviewed the reflectance spectra of a broad selection of major biomolecules that constitute terrestrial carbon-based life from 0.4 to 2.4 μm, and we discuss their detectability through atmospheric spectral windows. Biomolecule features in the near-infrared (0.8-2.4 μm) will likely be obscured by water spectral features and some atmospheric gases. The visible range (0.4-0.8 μm), including the strong spectral features of pigments, is the most favorable. We investigated the detectability of a pigmented microorganism (Deinococcus radiodurans) when mixed with silica sand, liquid water, and water-ice particles representative of diverse surfaces of potentially habitable worlds. We measured the visible to near-infrared reflectance spectra (0.4-2.4 μm) and the visible phase curves (at 0.45 and 0.75 μm) of the mixtures to assess how the surface medium and the viewing geometry affect the detectability of the microorganisms. The results show that ice appears to be the most favorable medium for the detection of pigments. Water ice is bright and featureless from 0.4 to 0.8 μm, allowing the absorption of any pigment present in the ice to be well noticeable. We found that the visible phase curve of water ice is the most strongly affected by the presence of pigments, with variations of the spectral slope by more than a factor of 3 with phase angles. Finally, we show that the sublimation of the ice results in the concentration of the biological material onto the surface and the consequent increase of its signal. These results have applications to the search for life on icy worlds, such as Europa or Enceladus. Key Words: Remote sensing-Biosignatures-Reflectance spectroscopy-Exoplanets-Spectroscopic biosignatures-Pigments. Astrobiology 17, 231-252.
Collapse
Affiliation(s)
- Olivier Poch
- 1 Center for Space and Habitability , Universität Bern, Bern, Switzerland
| | - Joachim Frey
- 2 Institute of Veterinary Bacteriology, University of Bern , Bern, Switzerland
| | - Isabel Roditi
- 3 Institut für Zellbiologie (IZB) , Bern, Switzerland
| | | | - Bernhard Jost
- 4 Physikalisches Institut, Universität Bern , Bern, Switzerland
| | - Nicolas Thomas
- 4 Physikalisches Institut, Universität Bern , Bern, Switzerland
| |
Collapse
|
27
|
Lu F, Lee J, Jiang A, Jung S, Belkin MA. Thermopile detector of light ellipticity. Nat Commun 2016; 7:12994. [PMID: 27703152 PMCID: PMC5059469 DOI: 10.1038/ncomms12994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 08/22/2016] [Indexed: 11/09/2022] Open
Abstract
Polarimetric imaging is widely used in applications from material analysis to biomedical diagnostics, vision and astronomy. The degree of circular polarization, or light ellipticity, is associated with the S3 Stokes parameter which is defined as the difference in the intensities of the left- and right-circularly polarized components of light. Traditional way of determining this parameter relies on using several external optical elements, such as polarizers and wave plates, along with conventional photodetectors, and performing at least two measurements to distinguish left- and right-circularly polarized light components. Here we theoretically propose and experimentally demonstrate a thermopile photodetector element that provides bipolar voltage output directly proportional to the S3 Stokes parameter of the incident light. Differences in the intensity of the left- and right-circularly polarized components of light can provide useful information about the chirality of electromagnetic radiation. Here, the authors demonstrate a monolithic photodetector that translates this difference in incident radiation directly into a voltage
Collapse
Affiliation(s)
- Feng Lu
- Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, USA
| | - Jongwon Lee
- Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, USA.,Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, USA
| | - Aiting Jiang
- Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, USA
| | - Seungyong Jung
- Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, USA
| | - Mikhail A Belkin
- Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, USA
| |
Collapse
|
28
|
Ji R, Wang SW, Liu X, Chen X, Lu W. Broadband circular polarizers constructed using helix-like chiral metamaterials. NANOSCALE 2016; 8:14725-9. [PMID: 27352818 DOI: 10.1039/c6nr01738j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this paper, one kind of helix-like chiral metamaterial which can be realized by multiple conventional lithography or electron beam lithographic techniques is proposed to have a broadband bianisotropic optical response analogous to helical metamaterials. On the basis of twisted metamaterials, via tailoring the relative orientation within the lattice, the anisotropy of arcs is converted into magneto-electric coupling of closely spaced arc pairs, which leads to a broad bianisotropic optical response. By connecting the adjacent upper and lower arcs, the coupling of metasurface pairs is transformed into the coupling of the three-dimensional inclusions, and provides a much broader and higher bianisotropic optical response. For only a four-layer helix-like metamaterial, the maximum extinction ratio can reach 19.7. The operation band is in the wavelength range of 4.69 μm to 8.98 μm with an average extinction ratio of 6.9. And the transmittance for selective polarization is above 0.8 in the entire operation band. Such a structure is a promising candidate for integratable and scalable broadband circular polarizers, especially it has great potential to act as a broadband circular micropolarizer in the field of the full-Stokes division of focal plane polarimeters.
Collapse
Affiliation(s)
- Ruonan Ji
- National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China. and Shanghai Engineering Research Center of Energy-saving Coatings, Shanghai 200083, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shao-Wei Wang
- National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China. and Shanghai Engineering Research Center of Energy-saving Coatings, Shanghai 200083, China
| | - Xingxing Liu
- National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China. and Shanghai Engineering Research Center of Energy-saving Coatings, Shanghai 200083, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoshuang Chen
- National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China. and Shanghai Engineering Research Center of Energy-saving Coatings, Shanghai 200083, China
| | - Wei Lu
- National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China. and Shanghai Engineering Research Center of Energy-saving Coatings, Shanghai 200083, China
| |
Collapse
|
29
|
Röling WF, Aerts JW, Patty CL, ten Kate IL, Ehrenfreund P, Direito SO. The Significance of Microbe-Mineral-Biomarker Interactions in the Detection of Life on Mars and Beyond. ASTROBIOLOGY 2015; 15:492-507. [PMID: 26060985 PMCID: PMC4490593 DOI: 10.1089/ast.2014.1276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The detection of biomarkers plays a central role in our effort to establish whether there is, or was, life beyond Earth. In this review, we address the importance of considering mineralogy in relation to the selection of locations and biomarker detection methodologies with characteristics most promising for exploration. We review relevant mineral-biomarker and mineral-microbe interactions. The local mineralogy on a particular planet reflects its past and current environmental conditions and allows a habitability assessment by comparison with life under extreme conditions on Earth. The type of mineral significantly influences the potential abundances and types of biomarkers and microorganisms containing these biomarkers. The strong adsorptive power of some minerals aids in the preservation of biomarkers and may have been important in the origin of life. On the other hand, this strong adsorption as well as oxidizing properties of minerals can interfere with efficient extraction and detection of biomarkers. Differences in mechanisms of adsorption and in properties of minerals and biomarkers suggest that it will be difficult to design a single extraction procedure for a wide range of biomarkers. While on Mars samples can be used for direct detection of biomarkers such as nucleic acids, amino acids, and lipids, on other planetary bodies remote spectrometric detection of biosignatures has to be relied upon. The interpretation of spectral signatures of photosynthesis can also be affected by local mineralogy. We identify current gaps in our knowledge and indicate how they may be filled to improve the chances of detecting biomarkers on Mars and beyond.
Collapse
Affiliation(s)
- Wilfred F.M. Röling
- Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Joost W. Aerts
- Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - C.H. Lucas Patty
- Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Inge Loes ten Kate
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
| | - Pascale Ehrenfreund
- Space Policy Institute, George Washington University, Washington, DC, USA
- Leiden Observatory, University of Leiden, Leiden, the Netherlands
| | - Susana O.L. Direito
- Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, the Netherlands
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
30
|
Ribó JM, El-Hachemi Z, Crusats J. Effects of flows in auto-organization, self-assembly, and emergence of chirality. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2013. [DOI: 10.1007/s12210-013-0233-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Zhao Y, Alù A. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates. NANO LETTERS 2013; 13:1086-91. [PMID: 23384327 DOI: 10.1021/nl304392b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The response of optical metasurfaces is usually narrowband, and mechanisms to increase their bandwidth often clash with causality and passivity constraints of materials. Here we are able to theoretically and experimentally demonstrate that broadband, strong polarization conversion and quarter-wave plate functionality may be achieved using a single, ultrathin planar metasurface in the visible regime. Our realized sample is based on interleaved silver nanorods with properly tailored frequency dispersion that introduce an abrupt flat 90° phase shift for orthogonal polarizations over a thickness of few tens of nanometers, achieving achromatic quarter-wave plate behavior covering a good portion of the visible spectrum. Analogous design principles are extended to cover the entire visible spectrum and beyond.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | | |
Collapse
|
32
|
Davoyan AR, Mahmoud AM, Engheta N. Optical isolation with epsilon-near-zero metamaterials. OPTICS EXPRESS 2013; 21:3279-3286. [PMID: 23481787 DOI: 10.1364/oe.21.003279] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We suggest a principle for isolation of circularly polarized waves in magnetically active extreme-parameter metamaterials. Using theoretical analysis and numerical simulations, we show that metamaterials with extreme parameters, such as epsilon-near-zero materials (ENZ), when merged with magneto-optical materials, become transparent for forward circularly polarized waves of a given handedness and opaque for backward propagating waves of the same handedness. We theoretically study two possible implementations of such hybrid materials: (1) the case of metal-dielectric stacks; and (2) rectangular waveguide near its cut-off frequency. We prove that these structures can be utilized as compact isolators for circularly polarized waves.
Collapse
Affiliation(s)
- Arthur R Davoyan
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
33
|
Sparks W, Germer TA, MacKenty JW, Snik F. Compact and robust method for full Stokes spectropolarimetry. APPLIED OPTICS 2012; 51:5495-5511. [PMID: 22859040 DOI: 10.1364/ao.51.005495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/19/2012] [Indexed: 06/01/2023]
Abstract
We present an approach to spectropolarimetry that requires neither moving parts nor time dependent modulation, and that offers the prospect of achieving high sensitivity. The technique applies equally well, in principle, in the optical, UV, or IR. The concept, which is one of those generically known as channeled polarimetry, is to encode the polarization information at each wavelength along the spatial dimension of a two-dimensional data array using static, robust optical components. A single 2D data frame contains the full polarization information and can be configured to measure either two or all of the Stokes polarization parameters. By acquiring full polarimetric information in a single observation, we simplify polarimetry of transient sources and in situations where the instrument and target are in relative motion. The robustness and simplicity of the approach, coupled with its potential for high sensitivity, and applicability over a wide wavelength range, is likely to prove useful for applications in challenging environments such as space.
Collapse
Affiliation(s)
- William Sparks
- Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, Maryland 21218, USA.
| | | | | | | |
Collapse
|
34
|
Abstract
There are few unambiguous reports describing the transfer of chirality from stirring vortices down to the level of electronic transitions. In this tutorial review the methods reported are discussed as well as the structural trends that seem to be necessary conditions in order to detect this phenomenon.
Collapse
Affiliation(s)
- Joaquim Crusats
- Department of Organic Chemistry and Institute of Cosmos Science, University of Barcelona., c. Martí i Franquès 1, 08028-Barcelona, Catalonia, Spain
| | | | | |
Collapse
|
35
|
Will planets reveal the light of their life? Nat Methods 2009. [DOI: 10.1038/nmeth0709-487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Ball P. A circular argument? Nature 2009. [DOI: 10.1038/news.2009.390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|