1
|
Romanowicz KJ, Zhang F, Wang S, Veličković D, Chu RK, Shaked Y, Boiteau RM. Single-colony MALDI mass spectrometry imaging reveals spatial differences in metabolite abundance between natural and cultured Trichodesmium morphotypes. mSystems 2024; 9:e0115224. [PMID: 39315778 PMCID: PMC11501100 DOI: 10.1128/msystems.01152-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Trichodesmium, a globally significant N2-fixing marine cyanobacterium, forms extensive surface blooms in nutrient-poor ocean regions. These blooms consist of a dynamic assemblage of Trichodesmium species that form distinct colony morphotypes and are inhabited by diverse microorganisms. Trichodesmium colony morphotypes vary in ecological niche, nutrient uptake, and organic molecule release, differentially impacting ocean carbon and nitrogen biogeochemical cycles. Here, we assessed the poorly studied spatial abundance of metabolites within and between three morphologically distinct Trichodesmium colonies collected from the Red Sea. We also compared these results with two morphotypes of the cultivable Trichodesmium strain IMS101. Using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) coupled with liquid extraction surface analysis (LESA) tandem mass spectrometry (MS2), we identified and localized a wide range of small metabolites associated with single-colony Trichodesmium morphotypes. Our untargeted MALDI-MSI approach revealed 80 unique features (metabolites) shared between Trichodesmium morphotypes. Discrimination analysis showed spatial variations in 57 shared metabolites, accounting for 62% of the observed variation between morphotypes. The greatest variations in metabolite abundance were observed between the cultured morphotypes compared to the natural colony morphotypes, suggesting substantial differences in metabolite production between the cultivable strain IMS101 and the naturally occurring colony morphotypes that the cultivable strain is meant to represent. This study highlights the variations in metabolite abundance between natural and cultured Trichodesmium morphotypes and provides valuable insights into metabolites common to morphologically distinct Trichodesmium colonies, offering a foundation for future targeted metabolomic investigations.IMPORTANCEThis work demonstrates that the application of spatial mass spectrometry imaging at single-colony resolution can successfully resolve metabolite differences between natural and cultured Trichodesmium morphotypes, shedding light on their distinct biochemical profiles. Understanding the morphological differences between Trichodesmium colonies is crucial because they impact nutrient uptake, organic molecule production, and carbon and nitrogen export, and subsequently influence ocean biogeochemical cycles. As such, our study serves as an important initial assessment of metabolite differences between distinct Trichodesmium colony types, identifying features that can serve as ideal candidates for future targeted metabolomic studies.
Collapse
Affiliation(s)
- Karl J. Romanowicz
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Futing Zhang
- Fredy and Nadine Hermann Institute of Earth Sciences, Hebrew University, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Siyuan Wang
- Fredy and Nadine Hermann Institute of Earth Sciences, Hebrew University, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Dušan Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Rosalie K. Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Yeala Shaked
- Fredy and Nadine Hermann Institute of Earth Sciences, Hebrew University, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Rene M. Boiteau
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Zehr JP, Capone DG. Unsolved mysteries in marine nitrogen fixation. Trends Microbiol 2024; 32:532-545. [PMID: 37658011 DOI: 10.1016/j.tim.2023.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/03/2023]
Abstract
Biological nitrogen (N2) fixation is critical in global biogeochemical cycles and in sustaining the productivity of the oceans. There remain many unanswered questions, unresolved hypotheses, and unchallenged paradigms. The fundamental balance of N input and losses has not been fully resolved. One of the major N2-fixers, Trichodesmium, remains an enigma with intriguing biological and ecological secrets. Cyanobacterial N2 fixation, once thought to be primarily due to free-living cyanobacteria, now also appears to be dependent on microbial interactions, from microbiomes to unicellular symbioses, which remain poorly characterized. Nitrogenase genes associated with diverse non-cyanobacterial diazotrophs (NCDs) are prevalent, but their significance remains a huge knowledge gap. Answering questions, new and old, such as those discussed here, is needed to understand the ocean's N and C cycles and their responses to environmental change.
Collapse
Affiliation(s)
- Jonathan P Zehr
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA, USA.
| | - Douglas G Capone
- Marine and Environmental Biology Section of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Kang W, Mu L, Hu X. Marine Colloids Boost Nitrogen Fixation in Trichodesmium erythraeum by Photoelectrophy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9236-9249. [PMID: 38748855 DOI: 10.1021/acs.est.4c01849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Nitrogen fixation by the diazotrophic cyanobacterium Trichodesmium contributes up to 50% of the bioavailable nitrogen in the ocean. N2 fixation by Trichodesmium is limited by the availability of nutrients, such as iron (Fe) and phosphorus (P). Although colloids are ubiquitous in the ocean, the effects of Fe limitation on nitrogen fixation by marine colloids (MC) and the related mechanisms are largely unexplored. In this study, we found that MC exhibit photoelectrochemical properties that boost nitrogen fixation by photoelectrophy in Trichodesmium erythraeum. MC efficiently promote photosynthesis in T. erythraeum, thus enhancing its growth. Photoexcited electrons from MC are directly transferred to the photosynthetic electron transport chain and contribute to nitrogen fixation and ammonia assimilation. Transcriptomic analysis revealed that MC significantly upregulates genes related to the electron transport chain, photosystem, and photosynthesis, which is consistent with elevated photosynthetic capacities (e.g., Fv/Fm and carboxysomes). As a result, MC increase the N2 fixation rate by 67.5-89.3%. Our findings highlight a proof-of-concept electron transfer pathway by which MC boost nitrogen fixation, broadening our knowledge on the role of ubiquitous colloids in marine nitrogen biogeochemistry.
Collapse
Affiliation(s)
- Weilu Kang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-Environment and Product Safety, Key Laboratory for Environmental Factors Controlling Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
4
|
Eichner M, Inomura K, Pierella Karlusich JJ, Shaked Y. Better together? Lessons on sociality from Trichodesmium. Trends Microbiol 2023; 31:1072-1084. [PMID: 37244772 DOI: 10.1016/j.tim.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023]
Abstract
The N2-fixing cyanobacterium Trichodesmium is an important player in the oceanic nitrogen and carbon cycles. Trichodesmium occurs both as single trichomes and as colonies containing hundreds of trichomes. In this review, we explore the benefits and disadvantages of colony formation, considering physical, chemical, and biological effects from nanometer to kilometer scale. Showing that all major life challenges are affected by colony formation, we claim that Trichodesmium's ecological success is tightly linked to its colonial lifestyle. Microbial interactions in the microbiome, chemical gradients within the colony, interactions with particles, and elevated mobility in the water column shape a highly dynamic microenvironment. We postulate that these dynamics are key to the resilience of Trichodesmium and other colony formers in our changing environment.
Collapse
Affiliation(s)
- Meri Eichner
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic.
| | - Keisuke Inomura
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | | | - Yeala Shaked
- Freddy and Nadine Herrmann Institute of Earth Sciences, Hebrew University, Jerusalem, Israel; Interuniversity Institute for Marine Sciences, Eilat, Israel
| |
Collapse
|
5
|
Sharon I, Hilvert D, Schmeing TM. Cyanophycin and its biosynthesis: not hot but very cool. Nat Prod Rep 2023; 40:1479-1497. [PMID: 37231979 DOI: 10.1039/d2np00092j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Covering: 1878 to early 2023Cyanophycin is a biopolymer consisting of a poly-aspartate backbone with arginines linked to each Asp sidechain through isopeptide bonds. Cyanophycin is made by cyanophycin synthetase 1 or 2 through ATP-dependent polymerization of Asp and Arg, or β-Asp-Arg, respectively. It is degraded into dipeptides by exo-cyanophycinases, and these dipeptides are hydrolyzed into free amino acids by general or dedicated isodipeptidase enzymes. When synthesized, chains of cyanophycin coalesce into large, inert, membrane-less granules. Although discovered in cyanobacteria, cyanophycin is made by species throughout the bacterial kingdom, and cyanophycin metabolism provides advantages for toxic bloom forming algae and some human pathogens. Some bacteria have developed dedicated schemes for cyanophycin accumulation and use, which include fine temporal and spatial regulation. Cyanophycin has also been heterologously produced in a variety of host organisms to a remarkable level, over 50% of the host's dry mass, and has potential for a variety of green industrial applications. In this review, we summarize the progression of cyanophycin research, with an emphasis on recent structural studies of enzymes in the cyanophycin biosynthetic pathway. These include several unexpected revelations that show cyanophycin synthetase to be a very cool, multi-functional macromolecular machine.
Collapse
Affiliation(s)
- Itai Sharon
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada, H3G 0B1.
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | - T Martin Schmeing
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada, H3G 0B1.
| |
Collapse
|
6
|
Luo W, Luo YW. Diurnally dynamic iron allocation promotes N 2 fixation in marine dominant diazotroph Trichodesmium. Comput Struct Biotechnol J 2023; 21:3503-3512. [PMID: 37484493 PMCID: PMC10362294 DOI: 10.1016/j.csbj.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 07/25/2023] Open
Abstract
Trichodesmium is the dominant photoautotrophic dinitrogen (N2) fixer (diazotroph) in the ocean. Iron is an important factor limiting growth of marine diazotrophs including Trichodesmium mainly because of high iron content of its N2-fixing enzyme, nitrogenase. However, it still lacks a quantitative understanding of how dynamic iron allocation among physiological processes acts to regulate growth and N2 fixation in Trichodesmium. Here, we constructed a model of Trichodesmium trichome in which intracellular iron could be dynamically re-allocated in photosystems and nitrogenase during the daytime. The results demonstrate that the dynamic iron allocation enhances modeled N2 fixation and growth rates of Trichodesmium, especially in iron-limited conditions, albeit having a marginal impact under high iron concentrations. Although the reuse of iron during a day is an apparent cause that dynamic iron allocation can benefit Trichodesmium under iron limitation, our model reveals two important mechanisms. First, the release of iron from photosystems downregulates the intracellular oxygen (O2) production and reduces the demand of respiratory protection, a process that Trichodesmium wastefully respires carbohydrates to create a lower O2 window for N2 fixation. Hence, more carbohydrates can be used in growth. Second, lower allocation of iron to nitrogenase during early daytime, a period when photosynthesis is active and intracellular O2 is high, reduces the amount of iron that is trapped in the inactivated nitrogenase induced by O2. This mechanism further increases the iron use efficiency in Trichodesmium. Overall, our study provides mechanistic and quantitative insight into the diurnal iron allocation that can alleviate iron limitation to Trichodesmium.
Collapse
|
7
|
Hania A, López-Adams R, PrášIl O, Eichner M. Protection of nitrogenase from photosynthetic O 2 evolution in Trichodesmium: methodological pitfalls and advances over 30 years of research. PHOTOSYNTHETICA 2023; 61:58-72. [PMID: 39650126 PMCID: PMC11515819 DOI: 10.32615/ps.2023.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/06/2023] [Indexed: 12/11/2024]
Abstract
The Trichodesmium genus comprises some of the most abundant N2-fixing organisms in oligotrophic marine ecosystems. Since nitrogenase, the key enzyme for N2 fixation, is irreversibly inhibited upon O2 exposure, these organisms have to coordinate their N2-fixing ability with simultaneous photosynthetic O2 production. Although being the principal object of many laboratory and field studies, the overall process of how Trichodesmium reconciles these two mutually exclusive processes remains unresolved. This is in part due to contradictory results that fuel the Trichodesmium enigma. In this review, we sift through methodological details that could potentially explain the discrepancy between findings related to Trichodesmium's physiology. In doing so, we exhaustively contrast studies concerning both spatial and temporal nitrogenase protective strategies, with particular attention to more recent insights. Finally, we suggest new experimental approaches for solving the complex orchestration of N2 fixation and photosynthesis in Trichodesmium.
Collapse
Affiliation(s)
- A. Hania
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Novohradská 237 – Opatovický Mlýn, 37901 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - R. López-Adams
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Novohradská 237 – Opatovický Mlýn, 37901 Třeboň, Czech Republic
| | - O. PrášIl
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Novohradská 237 – Opatovický Mlýn, 37901 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - M. Eichner
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Novohradská 237 – Opatovický Mlýn, 37901 Třeboň, Czech Republic
| |
Collapse
|
8
|
Cui L, Xin Y, Yang K, Li H, Tan F, Zhang Y, Li X, Zhu Z, Yang J, Kao SJ, Ren B, Zhu YG, Musat F, Musat N. Live tracking metabolic networks and physiological responses within microbial assemblages at single-cell level. PNAS NEXUS 2023; 2:pgad006. [PMID: 36896131 PMCID: PMC9991459 DOI: 10.1093/pnasnexus/pgad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023]
Abstract
Microbial interactions impact the functioning of both natural and engineered systems, yet our ability to directly monitor these highly dynamic and spatially resolved interactions in living cells is very limited. Here, we developed a synergistic approach coupling single-cell Raman microspectroscopy with 15N2 and 13CO2 stable isotope probing in a microfluidic culture system (RMCS-SIP) for live tracking of the occurrence, rate, and physiological shift of metabolic interactions in active microbial assemblages. Quantitative and robust Raman biomarkers specific for N2 and CO2 fixation in both model and bloom-forming diazotrophic cyanobacteria were established and cross-validated. By designing a prototype microfluidic chip allowing simultaneous microbial cultivation and single-cell Raman acquisition, we achieved temporal tracking of both intercellular (between heterocyst and vegetative cells of cyanobacteria) and interspecies N and C metabolite exchange (from diazotroph to heterotroph). Moreover, single-cell N and C fixation and bidirectional transfer rate in living cells were quantified via SIP-induced characteristic Raman shifts. Remarkably, RMCS captured physiological responses of metabolically active cells to nutrient stimuli through comprehensive metabolic profiling, providing multimodal information on the evolution of microbial interactions and functions under fluctuating conditions. This noninvasive RMCS-SIP is an advantageous approach for live-cell imaging and represents an important advancement in the single-cell microbiology field. This platform can be extended for real-time tracking of a wide range of microbial interactions with single-cell resolution and advances the understanding and manipulation of microbial interactions for societal benefit.
Collapse
Affiliation(s)
- Li Cui
- Key Lab of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuhan Xin
- Key Lab of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kai Yang
- Key Lab of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hongzhe Li
- Key Lab of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Fengjiao Tan
- Key Lab of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yulong Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Xingrui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Yang
- Key Lab of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Shuh-Ji Kao
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Florin Musat
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca 400084, Romania
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany
| |
Collapse
|
9
|
Sharon I, McKay GA, Nguyen D, Schmeing TM. Discovery of cyanophycin dipeptide hydrolase enzymes suggests widespread utility of the natural biopolymer cyanophycin. Proc Natl Acad Sci U S A 2023; 120:e2216547120. [PMID: 36800389 PMCID: PMC9974463 DOI: 10.1073/pnas.2216547120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/19/2023] [Indexed: 02/18/2023] Open
Abstract
Cyanophycin is a bacterial polymer mainly used for nitrogen storage. It is composed of a peptide backbone of L-aspartate residues with L-arginines attached to their side chains through isopeptide bonds. Cyanophycin is degraded in two steps: Cyanophycinase cleaves the polymer into β-Asp-Arg dipeptides, which are hydrolyzed into free Asp and Arg by enzymes possessing isoaspartyl dipeptide hydrolase activity. Two unrelated enzymes with this activity, isoaspartyl dipeptidase (IadA) and isoaspartyl aminopeptidase (IaaA) have been shown to degrade β-Asp-Arg dipeptides, but bacteria which encode cyanophycin-metabolizing genes can lack iaaA and iadA genes. In this study, we investigate a previously uncharacterized enzyme whose gene can cluster with cyanophycin-metabolizing genes. This enzyme, which we name cyanophycin dipeptide hydrolase (CphZ), is specific for dipeptides derived from cyanophycin degradation. Accordingly, a co-complex structure of CphZ and β-Asp-Arg shows that CphZ, unlike IadA or IaaA, recognizes all portions of its β-Asp-Arg substrate. Bioinformatic analyses showed that CphZ is found in very many proteobacteria and is homologous to an uncharacterized protein encoded in the "arginine/ornithine transport" (aot) operon of many pseudomonas species, including Pseudomonas aeruginosa. In vitro assays show that AotO is indeed a CphZ, and in cellulo growth experiments show that this enzyme and the aot operon allow P. aeruginosa to take up and use β-Asp-Arg as a sole carbon and nitrogen source. Together the results establish the novel, highly specific enzyme subfamily of CphZs, suggesting that cyanophycin is potentially used by a much wider range of bacteria than previously appreciated.
Collapse
Affiliation(s)
- Itai Sharon
- Department of Biochemistry, McGill University, Montréal, QCH3G 0B1, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, QCH3G 0B1, Canada
| | - Geoffrey A. McKay
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montréal, QCH4A 3J1, Canada
| | - Dao Nguyen
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montréal, QCH4A 3J1, Canada
| | - T. Martin Schmeing
- Department of Biochemistry, McGill University, Montréal, QCH3G 0B1, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, QCH3G 0B1, Canada
| |
Collapse
|
10
|
Quantitative Analysis of the Trade-Offs of Colony Formation for Trichodesmium. Microbiol Spectr 2022; 10:e0202522. [PMID: 36374046 PMCID: PMC9769814 DOI: 10.1128/spectrum.02025-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
There is considerable debate about the benefits and trade-offs for colony formation in a major marine nitrogen fixer, Trichodesmium. To quantitatively analyze the trade-offs, we developed a metabolic model based on carbon fluxes to compare the performance of Trichodesmium colonies and free trichomes under different scenarios. Despite reported reductions in carbon fixation and nitrogen fixation rates for colonies relative to free trichomes, we found that model colonies can outperform individual cells in several cases. The formation of colonies can be advantageous when respiration rates account for a high proportion of the carbon fixation rate. Negative external influence on vital rates, such as mortality due to predation or micronutrient limitations, can also create a net benefit for colony formation relative to individual cells. In contrast, free trichomes also outcompete colonies in many scenarios, such as when respiration rates are equal for both colonies and individual cells or when there is a net positive external influence on rate processes (i.e., optimal environmental conditions regarding light and temperature or high nutrient availability). For both colonies and free trichomes, an increase in carbon fixation relative to nitrogen fixation rates would increase their relative competitiveness. These findings suggest that the formation of colonies in Trichodesmium might be linked to specific environmental and ecological circumstances. Our results provide a road map for empirical studies and models to evaluate the conditions under which colony formation in marine phytoplankton can be sustained in the natural environment. IMPORTANCE Trichodesmium is a marine filamentous cyanobacterium that fixes nitrogen and is an important contributor to the global nitrogen cycle. In the natural environment, Trichodesmium can exist as individual cells (trichomes) or as colonies (puffs and tufts). In this paper, we try to answer a longstanding question in marine microbial ecology: how does colony formation benefit the survival of Trichodesmium? To answer this question, we developed a carbon flux model that utilizes existing published rates to evaluate whether and when colony formation can be sustained. Enhanced respiration rates, influential external factors such as environmental conditions and ecological interactions, and variable carbon and nitrogen fixation rates can all create scenarios for colony formation to be a viable strategy. Our results show that colony formation is an ecologically beneficial strategy under specific conditions, enabling Trichodesmium to be a globally significant organism.
Collapse
|
11
|
Yang N, Lin YA, Merkel CA, DeMers MA, Qu PP, Webb EA, Fu FX, Hutchins DA. Molecular mechanisms underlying iron and phosphorus co-limitation responses in the nitrogen-fixing cyanobacterium Crocosphaera. THE ISME JOURNAL 2022; 16:2702-2711. [PMID: 36008474 PMCID: PMC9666452 DOI: 10.1038/s41396-022-01307-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022]
Abstract
In the nitrogen-limited subtropical gyres, diazotrophic cyanobacteria, including Crocosphaera, provide an essential ecosystem service by converting dinitrogen (N2) gas into ammonia to support primary production in these oligotrophic regimes. Natural gradients of phosphorus (P) and iron (Fe) availability in the low-latitude oceans constrain the biogeography and activity of diazotrophs with important implications for marine biogeochemical cycling. Much remains unknown regarding Crocosphaera's physiological and molecular responses to multiple nutrient limitations. We cultured C. watsonii under Fe, P, and Fe/P (co)-limiting scenarios to link cellular physiology with diel gene expression and observed unique physiological and transcriptional profiles for each treatment. Counterintuitively, reduced growth and N2 fixation resource use efficiencies (RUEs) for Fe or P under P limitation were alleviated under Fe/P co-limitation. Differential gene expression analyses show that Fe/P co-limited cells employ the same responses as single-nutrient limited cells that reduce cellular nutrient requirements and increase responsiveness to environmental change including smaller cell size, protein turnover (Fe-limited), and upregulation of environmental sense-and-respond systems (P-limited). Combined, these mechanisms enhance growth and RUEs in Fe/P co-limited cells. These findings are important to our understanding of nutrient controls on N2 fixation and the implications for primary productivity and microbial dynamics in a changing ocean.
Collapse
Affiliation(s)
- Nina Yang
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yu-An Lin
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Carlin A Merkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Michelle A DeMers
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ping-Ping Qu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Eric A Webb
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Fei-Xue Fu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - David A Hutchins
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Abstract
The dominant marine filamentous N2 fixer, Trichodesmium, conducts photosynthesis and N2 fixation during the daytime. Because N2 fixation is sensitive to O2, some previous studies suggested that spatial segregation of N2 fixation and photosynthesis is essential in Trichodesmium. However, this hypothesis conflicts with some observations where all the cells contain both photosystems and the N2-fixing enzyme nitrogenase. Here, we construct a systematic model simulating Trichodesmium metabolism, showing that the hypothetical spatial segregation is probably useless in increasing the Trichodesmium growth and N2 fixation, unless substances can efficiently transfer among cells with low loss to the environment. The model suggests that Trichodesmium accumulates fixed carbon in the morning and uses that in respiratory protection to reduce intracellular O2 during the mid-daytime, when photosynthesis is downregulated, allowing the occurrence of N2 fixation. A cell membrane barrier against O2 and alternative non-O2 evolving electron transfer also contribute to maintaining low intracellular O2. Our study provides a mechanism enabling N2 fixation despite the presence of photosynthesis across Trichodesmium. IMPORTANCE The filamentous Trichodesmium is a globally prominent marine nitrogen fixer. A long-standing paradox is that the nitrogen-fixing enzyme nitrogenase is sensitive to oxygen, but Trichodesmium conducts both nitrogen fixation and oxygen-evolving photosynthesis during the daytime. Previous studies using immunoassays reported that nitrogenase was limited in some specialized Trichodesmium cells (termed diazocytes), suggesting the necessity of spatial segregation of nitrogen fixation and photosynthesis. However, attempts using other methods failed to find diazocytes in Trichodesmium, causing controversy on the existence of the spatial segregation. Here, our physiological model shows that Trichodesmium can maintain low intracellular O2 in mid-daytime and achieve feasible nitrogen fixation and growth rates even without the spatial segregation, while the hypothetical spatial segregation might not be useful if substantial loss of substances to the environment occurs when they transfer among the Trichodesmium cells. Our study then suggests a possible mechanism by which Trichodesmium can survive without the spatial segregation.
Collapse
|
13
|
Structural bases for aspartate recognition and polymerization efficiency of cyanobacterial cyanophycin synthetase. Nat Commun 2022; 13:5097. [PMID: 36042318 PMCID: PMC9427784 DOI: 10.1038/s41467-022-32834-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Cyanophycin is a natural biopolymer consisting of equimolar amounts of aspartate and arginine as the backbone and branched sidechain, respectively. It is produced by a single enzyme, cyanophycin synthetase (CphA1), and accumulates as a nitrogen reservoir during N2 fixation by most cyanobacteria. A recent structural study showed that three constituent domains of CphA1 function as two distinct catalytic sites and an oligomerization interface in cyanophycin synthesis. However, it remains unclear how the ATP-dependent addition of aspartate to cyanophycin is initiated at the catalytic site of the glutathione synthetase-like domain. Here, we report the cryogenic electron microscopy structures of CphA1, including a complex with aspartate, cyanophycin primer peptide, and ATP analog. These structures reveal the aspartate binding mode and phosphate-binding loop movement to the active site required for the reaction. Furthermore, structural and mutational data show a potential role of protein dynamics in the catalytic efficiency of the arginine condensation reaction. CphA1 catalyzes the synthesis of cyanophycin polypeptide consisting of equimolar amounts of aspartate and arginine as a fixed nitrogen reservoir in cyanobacteria. Here, the authors solve the cryo-EM structures of CphA1, revealing the aspartate binding mode and protein dynamics required for cyanophycin elongation.
Collapse
|
14
|
Wang S, Yang Y, Jing J. A Synthesis of Viral Contribution to Marine Nitrogen Cycling. Front Microbiol 2022; 13:834581. [PMID: 35547115 PMCID: PMC9083009 DOI: 10.3389/fmicb.2022.834581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
Nitrogen is an essential component of major cellular macromolecules, such as DNA and proteins. Its bioavailability has a fundamental influence on the primary production of both terrestrial and oceanic ecosystems. Diverse marine microbes consume nitrogen, while only a limited taxon could replenish it, leaving nitrogen one of the most deficient nutrients in the ocean. A variety of microbes are involved in complex biogeochemical transformations of nitrogen compounds, and their ecological functions might be regulated by viruses in different manners. First and foremost, viruses drive marine nitrogen flow via host cell lysis, releasing abundant organic nitrogen into the surrounding environment. Secondly, viruses can also participate in the marine nitrogen cycle by expressing auxiliary metabolic genes (AMGs) to modulate host nitrogen metabolic pathways, such as nitrification, denitrification, anammox, and nitrogen transmembrane transport. Additionally, viruses also serve as a considerable reservoir of nitrogen element. The efficient turnover of viruses fundamentally promotes nitrogen flow in the oceans. In this review, we summarize viral contributions in the marine nitrogen cycling in different aspects and discuss challenges and issues based on recent discoveries of novel viruses involved in different processes of nitrogen biotransformation.
Collapse
Affiliation(s)
- Shuai Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
| | - Yu Yang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
| | - Jiaojiao Jing
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
15
|
Lu Z, Ye J, Chen Z, Xiao L, Lei L, Han BP, Paerl HW. Cyanophycin accumulated under nitrogen-fluctuating and high-nitrogen conditions facilitates the persistent dominance and blooms of Raphidiopsis raciborskii in tropical waters. WATER RESEARCH 2022; 214:118215. [PMID: 35228039 DOI: 10.1016/j.watres.2022.118215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Nutrient storage is considered a critical strategy for algal species to adapt to a fluctuating nutrient supply. Luxury phosphorus (P) uptake into storage of polyphosphate extends the duration of cyanobacterial dominance and their blooms under P deficiency. However, it is unclear whether nitrogen (N) storage in the form of cyanophycin supports persistent cyanobacterial dominance or blooms in the tropics where N deficiency commonly occurs in summer. In this study, we examined genes for cyanophycin synthesis and degradation in Raphidiopsis raciborskii, a widespread and dominant cyanobacterium in tropical waters; and detected the cyanophycin accumulation under fluctuating N concentrations and its ecological role in the population dynamics of the species. The genes for cyanophycin synthesis (cphA) and degradation (cphB) were highly conserved in 21 out of 23 Raphidiopsis strains. This suggested that the synthesis and degradation of cyanophycin are evolutionarily conserved to support the proliferation of R. raciborskii in N-fluctuating and/or deficient conditions. Isotope 15N-NaNO3 labeling experiments showed that R. raciborskii QDH7 always commenced to synthesize and accumulate cyanophycin under fluctuating N conditions, regardless of whether exogenous N was deficient. When the NO3--N concentration exceeded 1.2 mg L-1, R. raciborskii synthesized cyanophycin primarily through uptake of 15N-NaNO3. However, when the NO3--N concentration was below 1.0 mg L-1, cyanophycin-based N was derived from unlabeled N2, as evidenced by increased dinitrogenase activity. Cells grown under NO3--N < 1.0 mg L-1 had lower cyanophycin accumulation rates than cells grown under NO3--N > 1.2 mg L-1. Our field investigation in a large tropical reservoir underscored the association between cyanophycin content and the population dynamics of R. raciborskii. The cyanophycin content was high in N-sufficient (NO3--N > 0.45 mg L-1) periods, and decreased in N-deficient summer. In summer, R. raciborskii sustained a relatively high biomass and produced few heterocysts (< 1%). These findings indicated that cyanophycin-released N, rather than fixed N, supported persistent R. raciborskii blooms in N-deficient seasons. Our study suggests that the highly adaptive strategy in a N2-fixing cyanobacterial species makes mitigating its bloom more difficult than previously assumed.
Collapse
Affiliation(s)
- Zhe Lu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Jinmei Ye
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Zhijiang Chen
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Lijuan Xiao
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Lamei Lei
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China.
| | - Bo-Ping Han
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Hans W Paerl
- Institute of Marine Sciences, The University of North Carolina at Chapel Hill, Morehead City, United States of America
| |
Collapse
|
16
|
Lory C, Van Wambeke F, Fourquez M, Barani A, Guieu C, Tilliette C, Marie D, Nunige S, Berman-Frank I, Bonnet S. Assessing the contribution of diazotrophs to microbial Fe uptake using a group specific approach in the Western Tropical South Pacific Ocean. ISME COMMUNICATIONS 2022; 2:41. [PMID: 37938297 PMCID: PMC9723570 DOI: 10.1038/s43705-022-00122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/26/2022] [Accepted: 04/07/2022] [Indexed: 04/27/2023]
Abstract
Diazotrophs are often limited by iron (Fe) availability in the oligotrophic ocean. The Western Tropical South Pacific (WTSP) ocean has been suggested as an intense N2 fixation area due to Fe fertilizations through shallow hydrothermal activity. Yet, the Fe demand of diazotrophs in their natural habitat, where they cohabit with other microbial organisms also requiring Fe, remains unknown. Here we develop and apply a method consisting of coupling 55Fe uptake experiments with cell-sorting by flow cytometry, and provide group-specific rates of in situ Fe uptake by the microbial community in the WTSP, in addition to bulk and size fractionation rates. We reveal that the diazotrophs Crocosphaera watsonii and Trichodesmium contribute substantially to the bulk in situ Fe uptake (~33% on average over the studied area), despite being numerically less abundant compared to the rest of the planktonic community. Trichodesmium had the highest cell-specific Fe uptake rates, followed by C. watsonii, picoeukaryotes, Prochlorococcus, Synechococcus and finally heterotrophic bacteria. Calculated Fe:C quotas were higher (by 2 to 52-fold) for both studied diazotrophs compared to those of the non-diazotrophic plankton, reflecting their high intrinsic Fe demand. This translates into a diazotroph biogeographical distribution that appears to be influenced by ambient dissolved Fe concentrations in the WTSP. Despite having low cell-specific uptake rates, Prochlorococcus and heterotrophic bacteria were largely the main contributors to the bulk Fe uptake (~23% and ~12%, respectively). Overall, this group-specific approach increases our ability to examine the ecophysiological role of functional groups, including those of less abundant and/or less active microbes.
Collapse
Affiliation(s)
- C Lory
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Marseille, France.
| | - F Van Wambeke
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - M Fourquez
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - A Barani
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - C Guieu
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230, Villefranche-sur-Mer, France
| | - C Tilliette
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230, Villefranche-sur-Mer, France
| | - D Marie
- Sorbonne Université, CNRS, Station Biologique de Roscoff, Roscoff, France
| | - S Nunige
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - I Berman-Frank
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - S Bonnet
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Marseille, France.
| |
Collapse
|
17
|
Abstract
High-resolution imaging with secondary ion mass spectrometry (nanoSIMS) has become a standard method in systems biology and environmental biogeochemistry and is broadly used to decipher ecophysiological traits of environmental microorganisms, metabolic processes in plant and animal tissues, and cross-kingdom symbioses. When combined with stable isotope-labeling-an approach we refer to as nanoSIP-nanoSIMS imaging offers a distinctive means to quantify net assimilation rates and stoichiometry of individual cell-sized particles in both low- and high-complexity environments. While the majority of nanoSIP studies in environmental and microbial biology have focused on nitrogen and carbon metabolism (using 15N and 13C tracers), multiple advances have pushed the capabilities of this approach in the past decade. The development of a high-brightness oxygen ion source has enabled high-resolution metal analyses that are easier to perform, allowing quantification of metal distribution in cells and environmental particles. New preparation methods, tools for automated data extraction from large data sets, and analytical approaches that push the limits of sensitivity and spatial resolution have allowed for more robust characterization of populations ranging from marine archaea to fungi and viruses. NanoSIMS studies continue to be enhanced by correlation with orthogonal imaging and 'omics approaches; when linked to molecular visualization methods, such as in situ hybridization and antibody labeling, these techniques enable in situ function to be linked to microbial identity and gene expression. Here we present an updated description of the primary materials, methods, and calculations used for nanoSIP, with an emphasis on recent advances in nanoSIMS applications, key methodological steps, and potential pitfalls.
Collapse
Affiliation(s)
- Jennifer Pett-Ridge
- Lawrence Livermore National Lab, Physical and Life Science Directorate, Livermore, CA, USA.
| | - Peter K Weber
- Lawrence Livermore National Lab, Physical and Life Science Directorate, Livermore, CA, USA.
| |
Collapse
|
18
|
Polerecky L, Eichner M, Masuda T, Zavřel T, Rabouille S, Campbell DA, Halsey K. Calculation and Interpretation of Substrate Assimilation Rates in Microbial Cells Based on Isotopic Composition Data Obtained by nanoSIMS. Front Microbiol 2021; 12:621634. [PMID: 34917040 PMCID: PMC8670600 DOI: 10.3389/fmicb.2021.621634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Stable isotope probing (SIP) combined with nano-scale secondary ion mass spectrometry (nanoSIMS) is a powerful approach to quantify assimilation rates of elements such as C and N into individual microbial cells. Here, we use mathematical modeling to investigate how the derived rate estimates depend on the model used to describe substrate assimilation by a cell during a SIP incubation. We show that the most commonly used model, which is based on the simplifying assumptions of linearly increasing biomass of individual cells over time and no cell division, can yield underestimated assimilation rates when compared to rates derived from a model that accounts for cell division. This difference occurs because the isotopic labeling of a dividing cell increases more rapidly over time compared to a non-dividing cell and becomes more pronounced as the labeling increases above a threshold value that depends on the cell cycle stage of the measured cell. Based on the modeling results, we present formulae for estimating assimilation rates in cells and discuss their underlying assumptions, conditions of applicability, and implications for the interpretation of intercellular variability in assimilation rates derived from nanoSIMS data, including the impacts of storage inclusion metabolism. We offer the formulae as a Matlab script to facilitate rapid data evaluation by nanoSIMS users.
Collapse
Affiliation(s)
- Lubos Polerecky
- Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| | - Meri Eichner
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
| | - Takako Masuda
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
| | - Tomáš Zavřel
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| | - Sophie Rabouille
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-mer, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne, LOMIC, Banyuls-sur-mer, France
| | | | - Kimberly Halsey
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
19
|
Ataeian M, Vadlamani A, Haines M, Mosier D, Dong X, Kleiner M, Strous M, Hawley AK. Proteome and strain analysis of cyanobacterium Candidatus "Phormidium alkaliphilum" reveals traits for success in biotechnology. iScience 2021; 24:103405. [PMID: 34877483 PMCID: PMC8633866 DOI: 10.1016/j.isci.2021.103405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/27/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022] Open
Abstract
Cyanobacteria encompass a diverse group of photoautotrophic bacteria with important roles in nature and biotechnology. Here we characterized Candidatus “Phormidium alkaliphilum,” an abundant member in alkaline soda lake microbial communities globally. The complete, circular whole-genome sequence of Ca. “P. alkaliphilum” was obtained using combined Nanopore and Illumina sequencing of a Ca. “P. alkaliphilum” consortium. Strain-level diversity of Ca. “P. alkaliphilum” was shown to contribute to photobioreactor robustness under different operational conditions. Comparative genomics of closely related species showed that adaptation to high pH was not attributed to specific genes. Proteomics at high and low pH showed only minimal changes in gene expression, but higher productivity in high pH. Diverse photosystem antennae proteins, and high-affinity terminal oxidase, compared with other soda lake cyanobacteria, appear to contribute to the success of Ca. “P. alkaliphilum” in photobioreactors and biotechnology applications. Closed genome of the cyanobacteria Ca. P. alkaliphilum from high-pH photobioreactor Genetic factors lead this Phormidium to outcompete other cyanobacteria in photobioreactor Adaptation to high pH and alkalinity is not linked to specific genes Strain-level diversity contributes Ca. P. alkaliphilum success in changing conditions
Collapse
Affiliation(s)
- Maryam Ataeian
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | | | - Marianne Haines
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Damon Mosier
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Xiaoli Dong
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Alyse K. Hawley
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
- School of Engineering, University of British Columbia Okanagan, Kelowna, BC, Canada
- Corresponding author
| |
Collapse
|
20
|
McMahon G, Lechene C. High-Resolution Multi-Isotope Imaging Mass Spectrometry (MIMS) Imaging Applications in Stem Cell Biology. Curr Protoc 2021; 1:e290. [PMID: 34787964 PMCID: PMC8654063 DOI: 10.1002/cpz1.290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Multi-isotope imaging mass spectrometry (MIMS) allows the measurement of turnover of molecules within intracellular compartments with a spatial resolution down to 30 nm. We use molecules enriched in stable isotopes administered to animals by diet or injection, or to cells through the culture medium. The stable isotopes used are, in general, 15 N, 13 C, 18 O, and 2 H. For stem cell studies, we essentially use 15 N-thymidine, 13 C-thymidine, and 81 Br from BrdU. This protocol describes the practical use of MIMS with specific reference to applications in stem cell research. This includes choice and administration of stable isotope label(s), sample preparation, best practice for high-resolution imaging, secondary ion mass spectrometry using the Cameca NanoSIMS 50L, and methods for robust statistical analysis of label incorporation in regions of interest (ROI). © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Stable isotope labeling of DNA in cultured cells Basic Protocol 2: Stable isotope labeling of DNA in animals Basic Protocol 3: Preparation of Si chips, the general sample support for NanoSIMS analysis Basic Protocol 4: Stable isotope analysis of DNA replication in single nuclei in a population of cells with NanoSIMS Basic Protocol 5: Data reduction and processing.
Collapse
Affiliation(s)
- G. McMahon
- National Physical Laboratory, Teddington UK
| | - C.P. Lechene
- Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston MA USA
| |
Collapse
|
21
|
Combining SIMS and mechanistic modelling to reveal nutrient kinetics in an algal-bacterial mutualism. PLoS One 2021; 16:e0251643. [PMID: 34014955 PMCID: PMC8136852 DOI: 10.1371/journal.pone.0251643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/29/2021] [Indexed: 11/21/2022] Open
Abstract
Microbial communities are of considerable significance for biogeochemical processes, for the health of both animals and plants, and for biotechnological purposes. A key feature of microbial interactions is the exchange of nutrients between cells. Isotope labelling followed by analysis with secondary ion mass spectrometry (SIMS) can identify nutrient fluxes and heterogeneity of substrate utilisation on a single cell level. Here we present a novel approach that combines SIMS experiments with mechanistic modelling to reveal otherwise inaccessible nutrient kinetics. The method is applied to study the onset of a synthetic mutualistic partnership between a vitamin B12-dependent mutant of the alga Chlamydomonas reinhardtii and the B12-producing, heterotrophic bacterium Mesorhizobium japonicum, which is supported by algal photosynthesis. Results suggest that an initial pool of fixed carbon delays the onset of mutualistic cross-feeding; significantly, our approach allows the first quantification of this expected delay. Our method is widely applicable to other microbial systems, and will contribute to furthering a mechanistic understanding of microbial interactions.
Collapse
|
22
|
Schwendner P, Nguyen AN, Schuerger AC. Use of NanoSIMS to Identify the Lower Limits of Metabolic Activity and Growth by Serratia liquefaciens Exposed to Sub-Zero Temperatures. Life (Basel) 2021; 11:life11050459. [PMID: 34065549 PMCID: PMC8161314 DOI: 10.3390/life11050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Serratia liquefaciens is a cold-adapted facultative anaerobic astrobiology model organism with the ability to grow at a Martian atmospheric pressure of 7 hPa. Currently there is a lack of data on its limits of growth and metabolic activity at sub-zero temperatures found in potential habitable regions on Mars. Growth curves and nano-scale secondary ion mass spectrometry (NanoSIMS) were used to characterize the growth and metabolic threshold for S. liquefaciens ATCC 27,592 grown at and below 0 °C. Cells were incubated in Spizizen medium containing three stable isotopes substituting their unlabeled counterparts; i.e., 13C-glucose, (15NH4)2SO4, and H218O; at 0, −1.5, −3, −5, −10, or −15 °C. The isotopic ratios of 13C/12C, 15N/14N, and 18O/16O and their corresponding fractions were determined for 240 cells. NanoSIMS results revealed that with decreasing temperature the cellular amounts of labeled ions decreased indicating slower metabolic rates for isotope uptake and incorporation. Metabolism was significantly reduced at −1.5 and −3 °C, almost halted at −5 °C, and shut-down completely at or below −10 °C. While growth was observed at 0 °C after 5 days, samples incubated at −1.5 and −3 °C exhibited significantly slower growth rates until growth was detected at 70 days. In contrast, cell densities decreased by at least half an order of magnitude over 70 days in cultures incubated at ≤ −5 °C. Results suggest that S. liquefaciens, if transported to Mars, might be able to metabolize and grow in shallow sub-surface niches at temperatures above −5 °C and might survive—but not grow—at temperatures below −5 °C.
Collapse
Affiliation(s)
- Petra Schwendner
- Space Life Sciences Lab, Department of Plant Pathology, University of Florida, 505 Odyssey Way, Exploration Park, Merritt Island, FL 32953, USA;
- Correspondence:
| | - Ann N. Nguyen
- Jacobs, NASA Johnson Space Center, Houston, TX 77058, USA;
| | - Andrew C. Schuerger
- Space Life Sciences Lab, Department of Plant Pathology, University of Florida, 505 Odyssey Way, Exploration Park, Merritt Island, FL 32953, USA;
| |
Collapse
|
23
|
Legin AA, Schintlmeister A, Sommerfeld NS, Eckhard M, Theiner S, Reipert S, Strohhofer D, Jakupec MA, Galanski MS, Wagner M, Keppler BK. Nano-scale imaging of dual stable isotope labeled oxaliplatin in human colon cancer cells reveals the nucleolus as a putative node for therapeutic effect. NANOSCALE ADVANCES 2021; 3:249-262. [PMID: 36131874 PMCID: PMC9419577 DOI: 10.1039/d0na00685h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/11/2020] [Indexed: 05/04/2023]
Abstract
Oxaliplatin shows a superior clinical activity in colorectal cancer compared to cisplatin. Nevertheless, the knowledge about its cellular distribution and the mechanisms responsible for the different range of oxaliplatin-responsive tumors is far from complete. In this study, we combined highly sensitive element specific and isotope selective imaging by nanometer-scale secondary ion mass spectrometry (NanoSIMS) with transmission electron microscopy to investigate the subcellular accumulation of oxaliplatin in three human colon cancer cell lines (SW480, HCT116 wt, HCT116 OxR). Oxaliplatin bearing dual stable isotope labeled moieties, i.e. 2H-labeled diaminocyclohexane (DACH) and 13C-labeled oxalate, were applied for comparative analysis of the subcellular distribution patterns of the central metal and the ligands. In all the investigated cell lines, oxaliplatin was found to have a pronounced tendency for cytoplasmic aggregation in single membrane bound organelles, presumably related to various stages of the endocytic pathway. Moreover, nuclear structures, heterochromatin and in particular nucleoli, were affected by platinum-drug exposure. In order to explore the consequences of oxaliplatin resistance, subcellular drug distribution patterns were investigated in a pair of isogenic malignant cell lines with distinct levels of drug sensitivity (HCT116 wt and HCT116 OxR, the latter with acquired resistance to oxaliplatin). The subcellular platinum distribution was found to be similar in both cell lines, with only slightly higher accumulation in the sensitive HCT116 wt cells which is inconsistent with the resistance factor of more than 20-fold. Instead, the isotopic analysis revealed a disproportionally high accumulation of the oxalate ligand in the resistant cell line.
Collapse
Affiliation(s)
- Anton A Legin
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna A-1090 Vienna Austria +43 1 4277 852601 +43 1 4277 52610
- Research Cluster "Translational Cancer Therapy Research", University of Vienna A-1090 Vienna Austria
- Research Network "Chemistry Meets Microbiology and Environmental Systems Science", University of Vienna A-1090 Vienna Austria
| | - Arno Schintlmeister
- Research Network "Chemistry Meets Microbiology and Environmental Systems Science", University of Vienna A-1090 Vienna Austria
- Division of Microbial Ecology, Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems Science, University of Vienna A-1090 Vienna Austria
| | - Nadine S Sommerfeld
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna A-1090 Vienna Austria +43 1 4277 852601 +43 1 4277 52610
| | - Margret Eckhard
- Core Facility Cell Imaging and Ultrastructural Research, University of Vienna A-1090 Vienna Austria
| | - Sarah Theiner
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna A-1090 Vienna Austria +43 1 4277 852601 +43 1 4277 52610
- Research Cluster "Translational Cancer Therapy Research", University of Vienna A-1090 Vienna Austria
| | - Siegfried Reipert
- Core Facility Cell Imaging and Ultrastructural Research, University of Vienna A-1090 Vienna Austria
| | - Daniel Strohhofer
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna A-1090 Vienna Austria +43 1 4277 852601 +43 1 4277 52610
| | - Michael A Jakupec
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna A-1090 Vienna Austria +43 1 4277 852601 +43 1 4277 52610
- Research Cluster "Translational Cancer Therapy Research", University of Vienna A-1090 Vienna Austria
- Research Network "Chemistry Meets Microbiology and Environmental Systems Science", University of Vienna A-1090 Vienna Austria
| | - Mathea S Galanski
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna A-1090 Vienna Austria +43 1 4277 852601 +43 1 4277 52610
| | - Michael Wagner
- Research Network "Chemistry Meets Microbiology and Environmental Systems Science", University of Vienna A-1090 Vienna Austria
- Division of Microbial Ecology, Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems Science, University of Vienna A-1090 Vienna Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna A-1090 Vienna Austria +43 1 4277 852601 +43 1 4277 52610
- Research Cluster "Translational Cancer Therapy Research", University of Vienna A-1090 Vienna Austria
- Research Network "Chemistry Meets Microbiology and Environmental Systems Science", University of Vienna A-1090 Vienna Austria
| |
Collapse
|
24
|
Saito J, Deng X, Okamoto A. Single-Cell Mass Spectroscopic Analysis for Quantifying Active Metabolic Pathway Heterogeneity in a Bacterial Population on an Electrode. Anal Chem 2020; 92:15616-15623. [PMID: 33205944 DOI: 10.1021/acs.analchem.0c03869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microbial electrochemical catalysis based on respiratory reactions coupled with extracellular electron transport (EET), which is critical for bioenergy applications, strongly depends on the biocompatibility of the electrode material. However, the comparison of materials for such physiological responses has been difficult because of the lack of a quantitative assay for characterizing cellular metabolism at the electrode surface. Here, we developed a single-cell analysis method specific for the cells attached to the electrode to quantify active metabolic pathway heterogeneity as an index of physiological cell/electrode interaction, which generally increases with metabolic robustness in the microbial population. Nanoscale secondary ion mass spectrometry followed by microbial current production with model EET-capable bacteria, Shewanella oneidensis MR-1 and its mutant strains lacking carbon assimilation pathways, showed that different active metabolic pathways resulted in nearly identical 13C/15N assimilation ratios for individual cells in the presence of isotopically labeled nutrients, demonstrating a correlation between the 13C/15N ratio and the active metabolic pathway. Compared to the nonelectrode conditions, the heterogeneity of the assimilated 13C/15N ratio was highly enhanced on the electrode surface, suggesting that the metabolic robustness of the microbial population increased through the electrochemical interaction with the electrode. The present methodology enables us to quantitatively compare and screen electrode materials that increase the robustness of microbial electrocatalysis.
Collapse
Affiliation(s)
- Junki Saito
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xiao Deng
- Land and Water, Commonwealth Scientific and Industrial Research Organization, 147 Underwood Avenue, Floreat, Western Australia 6014, Australia
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
25
|
Inomura K, Deutsch C, Masuda T, Prášil O, Follows MJ. Quantitative models of nitrogen-fixing organisms. Comput Struct Biotechnol J 2020; 18:3905-3924. [PMID: 33335688 PMCID: PMC7733014 DOI: 10.1016/j.csbj.2020.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 10/26/2022] Open
Abstract
Nitrogen-fixing organisms are of importance to the environment, providing bioavailable nitrogen to the biosphere. Quantitative models have been used to complement the laboratory experiments and in situ measurements, where such evaluations are difficult or costly. Here, we review the current state of the quantitative modeling of nitrogen-fixing organisms and ways to enhance the bridge between theoretical and empirical studies.
Collapse
Affiliation(s)
- Keisuke Inomura
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Curtis Deutsch
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Takako Masuda
- Institute of Microbiology, The Czech Academy of Sciences, Opatovický mlýn, Třeboň, Czech Republic
| | - Ondřej Prášil
- Institute of Microbiology, The Czech Academy of Sciences, Opatovický mlýn, Třeboň, Czech Republic
| | - Michael J. Follows
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
26
|
Nieves-Morión M, Flores E, Foster RA. Predicting substrate exchange in marine diatom-heterocystous cyanobacteria symbioses. Environ Microbiol 2020; 22:2027-2052. [PMID: 32281201 DOI: 10.1111/1462-2920.15013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 11/27/2022]
Abstract
In the open ocean, some phytoplankton establish symbiosis with cyanobacteria. Some partnerships involve diatoms as hosts and heterocystous cyanobacteria as symbionts. Heterocysts are specialized cells for nitrogen fixation, and a function of the symbiotic cyanobacteria is to provide the host with nitrogen. However, both partners are photosynthetic and capable of carbon fixation, and the possible metabolites exchanged and mechanisms of transfer are poorly understood. The symbiont cellular location varies from internal to partial to fully external, and this is reflected in the symbiont genome size and content. In order to identify the membrane transporters potentially involved in metabolite exchange, we compare the draft genomes of three differently located symbionts with known transporters mainly from model free-living heterocystous cyanobacteria. The types and numbers of transporters are directly related to the symbiont cellular location: restricted in the endosymbionts and wider in the external symbiont. Three proposed models of metabolite exchange are suggested which take into account the type of transporters in the symbionts and the influence of their cellular location on the available nutrient pools. These models provide a basis for several hypotheses that given the importance of these symbioses in global N and C budgets, warrant future testing.
Collapse
Affiliation(s)
- Mercedes Nieves-Morión
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, Seville, E-41092, Spain
| | - Rachel A Foster
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
| |
Collapse
|
27
|
Heterogeneous nitrogen fixation rates confer energetic advantage and expanded ecological niche of unicellular diazotroph populations. Commun Biol 2020; 3:172. [PMID: 32286494 PMCID: PMC7156374 DOI: 10.1038/s42003-020-0894-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/13/2020] [Indexed: 11/23/2022] Open
Abstract
Nitrogen fixing plankton provide nitrogen to fuel marine ecosystems and biogeochemical cycles but the factors that constrain their growth and habitat remain poorly understood. Here we investigate the importance of metabolic specialization in unicellular diazotroph populations, using laboratory experiments and model simulations. In clonal cultures of Crocosphaera watsonii and Cyanothece sp. spiked with 15N2, cellular 15N enrichment developed a bimodal distribution within colonies, indicating that N2 fixation was confined to a subpopulation. In a model of population metabolism, heterogeneous nitrogen (N2) fixation rates substantially reduce the respiration rate required to protect nitrogenase from O2. The energy savings from metabolic specialization is highest at slow growth rates, allowing populations to survive in deeper waters where light is low but nutrients are high. Our results suggest that heterogeneous N2 fixation in colonies of unicellular diazotrophs confers an energetic advantage that expands the ecological niche and may have facilitated the evolution of multicellular diazotrophs. Takako Masuda et al. show that individual cells in clonal populations of Crocosphaera watsonii and Cyanothece sp exhibit varied nitrogen fixation rates. This heterogeneity within the population decreases the energetic cost of respiration and expands the viable habitats for these unicellular diazotrophs.
Collapse
|
28
|
Division of labor and growth during electrical cooperation in multicellular cable bacteria. Proc Natl Acad Sci U S A 2020; 117:5478-5485. [PMID: 32094191 PMCID: PMC7071850 DOI: 10.1073/pnas.1916244117] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cable bacteria form centimeter-long, multicellular filaments whose energy metabolism involves cooperation among cells that separately perform oxidation of the electron donor and reduction of the electron acceptor. This cooperative division of labor is facilitated via long-range electrical currents that run from cell to cell along a network of conductive fibers. Here we show that biomass synthesis shows a surprising asymmetry along the filament: only the cells oxidizing the electron donor conserve energy for growth, while the other cells reduce electron acceptors without biosynthesis. Our study hence provides insights into the physiology of an unconventional chemolithotroph, which forms a multicellular electrically connected system with unique functional differentiation, integration, and coordination. Multicellularity is a key evolutionary innovation, leading to coordinated activity and resource sharing among cells, which generally occurs via the physical exchange of chemical compounds. However, filamentous cable bacteria display a unique metabolism in which redox transformations in distant cells are coupled via long-distance electron transport rather than an exchange of chemicals. This challenges our understanding of organismal functioning, as the link among electron transfer, metabolism, energy conservation, and filament growth in cable bacteria remains enigmatic. Here, we show that cells within individual filaments of cable bacteria display a remarkable dichotomy in biosynthesis that coincides with redox zonation. Nanoscale secondary ion mass spectrometry combined with 13C (bicarbonate and propionate) and 15N-ammonia isotope labeling reveals that cells performing sulfide oxidation in deeper anoxic horizons have a high assimilation rate, whereas cells performing oxygen reduction in the oxic zone show very little or no label uptake. Accordingly, oxygen reduction appears to merely function as a mechanism to quickly dispense of electrons with little to no energy conservation, while biosynthesis and growth are restricted to sulfide-respiring cells. Still, cells can immediately switch roles when redox conditions change, and show no differentiation, which suggests that the “community service” performed by the cells in the oxic zone is only temporary. Overall, our data reveal a division of labor and electrical cooperation among cells that has not been seen previously in multicellular organisms.
Collapse
|
29
|
Advances in monitoring soil microbial community dynamic and function. J Appl Genet 2020; 61:249-263. [PMID: 32062778 DOI: 10.1007/s13353-020-00549-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/22/2022]
Abstract
Microorganisms are vital to the overall ecosystem functioning, stability, and sustainability. Soil fertility and health depend on chemical composition and also on the qualitative and quantitative nature of microorganisms inhabiting it. Historically, denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE), single-strand conformation polymorphism, DNA amplification fingerprinting, amplified ribosomal DNA restriction analysis, terminal restriction fragment length polymorphism, length heterogeneity PCR, and ribosomal intergenic spacer analysis were used to assess soil microbial community structure (SMCS), abundance, and diversity. However, these methods had significant shortcomings and limitations for application in land reclamation monitoring. SMCS has been primarily determined by phospholipid fatty acid (PLFA) analysis. This method provides a direct measure of viable biomass in addition to a biochemical profile of the microbial community. PLFA has limitations such as overlap in the composition of microorganisms and the specificity of PLFAs signature. In recent years, high-throughput next-generation sequencing has dramatically increased the resolution and detectable spectrum of diverse microbial phylotypes from environmental samples and it plays a significant role in microbial ecology studies. Next-generation sequencings using 454, Illumina, SOLiD, and Ion Torrent platforms are rapid and flexible. The two methods, PLFA and next-generation sequencing, are useful in detecting changes in microbial community diversity and structure in different ecosystems. Single-molecule real-time (SMRT) and nanopore sequencing technologies represent third-generation sequencing (TGS) platforms that have been developed to address the shortcomings of second-generation sequencing (SGS). Enzymatic and soil respiration analyses are performed to further determine soil quality and microbial activities. Other valuable methods that are being recently applied to microbial function and structures include NanoSIM, GeoChip, and DNA stable staple isotope probing (DNA-SIP) technologies. They are powerful metagenomics tool for analyzing microbial communities, including their structure, metabolic potential, diversity, and their impact on ecosystem functions. This review is a critical analysis of current methods used in monitoring soil microbial community dynamic and functions.
Collapse
|
30
|
Mayali X. NanoSIMS: Microscale Quantification of Biogeochemical Activity with Large-Scale Impacts. ANNUAL REVIEW OF MARINE SCIENCE 2020; 12:449-467. [PMID: 31299167 DOI: 10.1146/annurev-marine-010419-010714] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
One major objective of aquatic microbial ecology is to understand the distribution of microbial populations over space and time and in response to environmental factors. Perhaps more importantly, it is crucial to quantify how those microbial cells affect biogeochemical processes of interest, such as primary production, nitrogen cycling, or the breakdown of pollutants. One valuable approach to link microbial identity to activity is to carry out incubations with stable-isotope-labeled substrates and then quantify the isotope incorporation by individual microbial cells using nanoscale secondary ion mass spectrometry (NanoSIMS). This review summarizes recent efforts in this field, highlights novel methods, describes studies investigating rare metabolisms as well as widespread microbial activity, and hopes to provide a framework to increase the use and capabilities of NanoSIMS for microbial biogeochemical studies in the future.
Collapse
Affiliation(s)
- Xavier Mayali
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA;
| |
Collapse
|
31
|
Dekas AE, Parada AE, Mayali X, Fuhrman JA, Wollard J, Weber PK, Pett-Ridge J. Characterizing Chemoautotrophy and Heterotrophy in Marine Archaea and Bacteria With Single-Cell Multi-isotope NanoSIP. Front Microbiol 2019; 10:2682. [PMID: 31920997 PMCID: PMC6927911 DOI: 10.3389/fmicb.2019.02682] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 11/05/2019] [Indexed: 11/28/2022] Open
Abstract
Characterizing and quantifying in situ metabolisms remains both a central goal and challenge for environmental microbiology. Here, we used a single-cell, multi-isotope approach to investigate the anabolic activity of marine microorganisms, with an emphasis on natural populations of Thaumarchaeota. After incubating coastal Pacific Ocean water with 13C-bicarbonate and 15N-amino acids, we used nanoscale secondary ion mass spectrometry (nanoSIMS) to isotopically screen 1,501 individual cells, and 16S rRNA amplicon sequencing to assess community composition. We established isotopic enrichment thresholds for activity and metabolic classification, and with these determined the percentage of anabolically active cells, the distribution of activity across the whole community, and the metabolic lifestyle—chemoautotrophic or heterotrophic—of each cell. Most cells (>90%) were anabolically active during the incubation, and 4–17% were chemoautotrophic. When we inhibited bacteria with antibiotics, the fraction of chemoautotrophic cells detected via nanoSIMS increased, suggesting archaea dominated chemoautotrophy. With fluorescence in situ hybridization coupled to nanoSIMS (FISH-nanoSIMS), we confirmed that most Thaumarchaeota were living chemoautotrophically, while bacteria were not. FISH-nanoSIMS analysis of cells incubated with dual-labeled (13C,15N-) amino acids revealed that most Thaumarchaeota cells assimilated amino-acid-derived nitrogen but not carbon, while bacteria assimilated both. This indicates that some Thaumarchaeota do not assimilate intact amino acids, suggesting intra-phylum heterogeneity in organic carbon utilization, and potentially their use of amino acids for nitrification. Together, our results demonstrate the utility of multi-isotope nanoSIMS analysis for high-throughput metabolic screening, and shed light on the activity and metabolism of uncultured marine archaea and bacteria.
Collapse
Affiliation(s)
- Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, CA, United States.,Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Alma E Parada
- Department of Earth System Science, Stanford University, Stanford, CA, United States.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Jessica Wollard
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
32
|
|
33
|
Mechanistic Model for the Coexistence of Nitrogen Fixation and Photosynthesis in Marine Trichodesmium. mSystems 2019; 4:4/4/e00210-19. [PMID: 31387928 PMCID: PMC6687940 DOI: 10.1128/msystems.00210-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trichodesmium is a major nitrogen-fixing cyanobacterium and exerts a significant influence on the oceanic nitrogen cycle. It is also a widely used model organism in laboratory studies. Since the nitrogen-fixing enzyme nitrogenase is extremely sensitive to oxygen, how these surface-dwelling plankton manage the two conflicting processes of nitrogen fixation and photosynthesis has been a long-standing question. In this study, we developed a simple model of metabolic fluxes of Trichodesmium capturing observed daily cycles of photosynthesis, nitrogen fixation, and boundary layer oxygen concentrations. The model suggests that forming a chain of cells for spatially segregating nitrogen fixation and photosynthesis is essential but not sufficient. It also requires a barrier against oxygen diffusion and high rates of oxygen scavenging by respiration. Finally, the model indicates that the life span of intracellular oxygen is extremely short, thus enabling cells to instantly create a low-oxygen environment upon deactivation of photosynthesis. The cyanobacterium Trichodesmium is an important contributor of new nitrogen (N) to the surface ocean, but its strategies for protecting the nitrogenase enzyme from inhibition by oxygen (O2) remain poorly understood. We present a dynamic physiological model to evaluate hypothesized conditions that would allow Trichodesmium to carry out its two conflicting metabolic processes of N2 fixation and photosynthesis. First, the model indicates that managing cellular O2 to permit N2 fixation requires high rates of respiratory O2 consumption. The energetic cost amounts to ∼80% of daily C fixation, comparable to the observed diminution of the growth rate of Trichodesmium relative to other phytoplankton. Second, by forming a trichome of connected cells, Trichodesmium can segregate N2 fixation from photosynthesis. The transfer of stored C to N-fixing cells fuels the respiratory O2 consumption that protects nitrogenase, while the reciprocal transfer of newly fixed N to C-fixing cells supports cellular growth. Third, despite Trichodesmium lacking the structural barrier found in heterocystous species, the model predicts low diffusivity of cell membranes, a function that may be explained by the presence of Gram-negative membrane, production of extracellular polysaccharide substances (EPS), and “buffer cells” that intervene between N2-fixing and photosynthetic cells. Our results suggest that all three factors—respiratory protection, trichome formation, and diffusion barriers—represent essential strategies that, despite their energetic costs, facilitate the growth of Trichodesmium in the oligotrophic aerobic ocean and permit it to be a major source of new reactive nitrogen. IMPORTANCETrichodesmium is a major nitrogen-fixing cyanobacterium and exerts a significant influence on the oceanic nitrogen cycle. It is also a widely used model organism in laboratory studies. Since the nitrogen-fixing enzyme nitrogenase is extremely sensitive to oxygen, how these surface-dwelling plankton manage the two conflicting processes of nitrogen fixation and photosynthesis has been a long-standing question. In this study, we developed a simple model of metabolic fluxes of Trichodesmium capturing observed daily cycles of photosynthesis, nitrogen fixation, and boundary layer oxygen concentrations. The model suggests that forming a chain of cells for spatially segregating nitrogen fixation and photosynthesis is essential but not sufficient. It also requires a barrier against oxygen diffusion and high rates of oxygen scavenging by respiration. Finally, the model indicates that the life span of intracellular oxygen is extremely short, thus enabling cells to instantly create a low-oxygen environment upon deactivation of photosynthesis.
Collapse
|
34
|
Eichner M, Thoms S, Rost B, Mohr W, Ahmerkamp S, Ploug H, Kuypers MMM, de Beer D. N 2 fixation in free-floating filaments of Trichodesmium is higher than in transiently suboxic colony microenvironments. THE NEW PHYTOLOGIST 2019; 222:852-863. [PMID: 30507001 PMCID: PMC6590460 DOI: 10.1111/nph.15621] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/22/2018] [Indexed: 05/31/2023]
Abstract
To understand the role of micrometer-scale oxygen (O2 ) gradients in facilitating dinitrogen (N2 ) fixation, we characterized O2 dynamics in the microenvironment around free-floating trichomes and colonies of Trichodesmium erythraeum IMS101. Diurnal and spatial variability in O2 concentrations in the bulk medium, within colonies, along trichomes and within single cells were determined using O2 optodes, microsensors and model calculations. Carbon (C) and N2 fixation as well as O2 evolution and uptake under different O2 concentrations were analyzed by stable isotope incubations and membrane inlet mass spectrometry. We observed a pronounced diel rhythm in O2 fluxes, with net O2 evolution restricted to short periods in the morning and evening, and net O2 uptake driven by dark respiration and light-dependent O2 uptake during the major part of the light period. Remarkably, colonies showed lower N2 fixation and C fixation rates than free-floating trichomes despite the long period of O2 undersaturation in the colony microenvironment. Model calculations demonstrate that low permeability of the cell wall in combination with metabolic heterogeneity between single cells allows for anoxic intracellular conditions in colonies but also free-floating trichomes of Trichodesmium. Therefore, whereas colony formation must have benefits for Trichodesmium, it does not favor N2 fixation.
Collapse
Affiliation(s)
- Meri Eichner
- Max Planck Institute for Marine MicrobiologyCelsiusstr. 1Bremen28359Germany
| | - Silke Thoms
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine ResearchAm Handelshafen 12Bremerhaven27570Germany
| | - Björn Rost
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine ResearchAm Handelshafen 12Bremerhaven27570Germany
| | - Wiebke Mohr
- Max Planck Institute for Marine MicrobiologyCelsiusstr. 1Bremen28359Germany
| | - Soeren Ahmerkamp
- Max Planck Institute for Marine MicrobiologyCelsiusstr. 1Bremen28359Germany
| | - Helle Ploug
- Department of Marine SciencesUniversity of GothenburgCarl Skottbergsgata 22 BGöteborg41319Sweden
| | | | - Dirk de Beer
- Max Planck Institute for Marine MicrobiologyCelsiusstr. 1Bremen28359Germany
| |
Collapse
|
35
|
Zhang H, Yang C. Arginine and nitrogen mobilization in cyanobacteria. Mol Microbiol 2019; 111:863-867. [DOI: 10.1111/mmi.14204] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Hao Zhang
- CAS‐Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences Shanghai 200032China
| | - Chen Yang
- CAS‐Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences Shanghai 200032China
| |
Collapse
|
36
|
Boatman TG, Davey PA, Lawson T, Geider RJ. CO2 modulation of the rates of photosynthesis and light-dependent O2 consumption in Trichodesmium. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:589-597. [PMID: 30380078 PMCID: PMC6322564 DOI: 10.1093/jxb/ery368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/15/2018] [Indexed: 05/28/2023]
Abstract
As atmospheric CO2 concentrations increase, so too does the dissolved CO2 and HCO3- concentrations in the world's oceans. There are still many uncertainties regarding the biological response of key groups of organisms to these changing conditions, which is crucial for predicting future species distributions, primary productivity rates, and biogeochemical cycling. In this study, we established the relationship between gross photosynthetic O2 evolution and light-dependent O2 consumption in Trichodesmium erythraeum IMS101 acclimated to three targeted pCO2 concentrations (180 µmol mol-1=low-CO2, 380 µmol mol-1=mid-CO2, and 720 µmol mol-1=high-CO2). We found that biomass- (carbon) specific, light-saturated maximum net O2 evolution rates (PnC,max) and acclimated growth rates increased from low- to mid-CO2, but did not differ significantly between mid- and high-CO2. Dark respiration rates were five times higher than required to maintain cellular metabolism, suggesting that respiration provides a substantial proportion of the ATP and reductant for N2 fixation. Oxygen uptake increased linearly with gross O2 evolution across light intensities ranging from darkness to 1100 µmol photons m-2 s-1. The slope of this relationship decreased with increasing CO2, which we attribute to the increased energetic cost of operating the carbon-concentrating mechanism at lower CO2 concentrations. Our results indicate that net photosynthesis and growth of T. erythraeum IMS101 would have been severely CO2 limited at the last glacial maximum, but that the direct effect of future increases of CO2 may only cause marginal increases in growth.
Collapse
Affiliation(s)
- Tobias G Boatman
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
- Department of Chemical Engineering, Imperial College London, South Kensington, London, UK
| | - Phillip A Davey
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | - Richard J Geider
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| |
Collapse
|
37
|
Taylor GT. Windows into Microbial Seascapes: Advances in Nanoscale Imaging and Application to Marine Sciences. ANNUAL REVIEW OF MARINE SCIENCE 2019; 11:465-490. [PMID: 30134123 DOI: 10.1146/annurev-marine-121916-063612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Geochemical cycles of all nonconservative elements are mediated by microorganisms over nanometer spatial scales. The pelagic seascape is known to possess microstructure imposed by heterogeneous distributions of particles, polymeric gels, biologically important chemicals, and microbes. While indispensable, most traditional oceanographic observational approaches overlook this heterogeneity and ignore subtleties, such as activity hot spots, symbioses, niche partitioning, and intrapopulation phenotypic variations, that can provide a deeper mechanistic understanding of planktonic ecosystem function. As part of the movement toward cultivation-independent tools in microbial oceanography, techniques to examine the ecophysiology of individual populations and their role in chemical transformations at spatial scales relevant to microorganisms have been developed. This review presents technologies that enable geochemical and microbiological interrogations at spatial scales ranging from 0.02 to a few hundred micrometers, particularly focusing on atomic force microscopy, nanoscale secondary ion mass spectrometry, and confocal Raman microspectroscopy and introducing promising approaches for future applications in marine sciences.
Collapse
Affiliation(s)
- Gordon T Taylor
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794, USA;
| |
Collapse
|
38
|
Giardina M, Cheong S, Marjo CE, Clode PL, Guagliardo P, Pickford R, Pernice M, Seymour JR, Raina JB. Quantifying Inorganic Nitrogen Assimilation by Synechococcus Using Bulk and Single-Cell Mass Spectrometry: A Comparative Study. Front Microbiol 2018; 9:2847. [PMID: 30538685 PMCID: PMC6277480 DOI: 10.3389/fmicb.2018.02847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 11/05/2018] [Indexed: 12/03/2022] Open
Abstract
Microorganisms drive most of the major biogeochemical cycles in the ocean, but the rates at which individual species assimilate and transform key elements is generally poorly quantified. One of these important elements is nitrogen, with its availability limiting primary production across a large proportion of the ocean. Nitrogen uptake by marine microbes is typically quantified using bulk-scale approaches, such as Elemental Analyzer-Isotope Ratio Mass Spectrometry (EA-IRMS), which averages uptake over entire communities, masking microbial heterogeneity. However, more recent techniques, such as secondary ion mass spectrometry (SIMS), allow for elucidation of assimilation rates at the scale at which they occur: the single-cell level. Here, we combine and compare the application of bulk (EA-IRMS) and single-cell approaches (NanoSIMS and Time-of-Flight-SIMS) for quantifying the assimilation of inorganic nitrogen by the ubiquitous marine primary producer Synechococcus. We aimed to contrast the advantages and disadvantages of these techniques and showcase their complementarity. Our results show that the average assimilation of 15N by Synechococcus differed based on the technique used: values derived from EA-IRMS were consistently higher than those derived from SIMS, likely due to a combination of previously reported systematic depletion as well as differences in sample preparation. However, single-cell approaches offered additional layers of information, whereby NanoSIMS allowed for the quantification of the metabolic heterogeneity among individual cells and ToF-SIMS enabled identification of nitrogen assimilation into peptides. We suggest that this coupling of stable isotope-based approaches has great potential to elucidate the metabolic capacity and heterogeneity of microbial cells in natural environments.
Collapse
Affiliation(s)
- Marco Giardina
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Soshan Cheong
- Mark Wainwright Analytical Centre, University of New South Wales, Kensington, NSW, Australia
| | - Christopher E. Marjo
- Mark Wainwright Analytical Centre, University of New South Wales, Kensington, NSW, Australia
| | - Peta L. Clode
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
- UWA School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- UWA Oceans Institute, The University of Western Australia, Perth, WA, Australia
| | - Paul Guagliardo
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Mathieu Pernice
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Justin R. Seymour
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
39
|
Jauffrais T, LeKieffre C, Schweizer M, Geslin E, Metzger E, Bernhard JM, Jesus B, Filipsson HL, Maire O, Meibom A. Kleptoplastidic benthic foraminifera from aphotic habitats: insights into assimilation of inorganic C, N and S studied with sub-cellular resolution. Environ Microbiol 2018; 21:125-141. [PMID: 30277305 DOI: 10.1111/1462-2920.14433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/31/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
Abstract
The assimilation of inorganic compounds in foraminiferal metabolism compared to predation or organic matter assimilation is unknown. Here, we investigate possible inorganic-compound assimilation in Nonionellina labradorica, a common kleptoplastidic benthic foraminifer from Arctic and North Atlantic sublittoral regions. The objectives were to identify the source of the foraminiferal kleptoplasts, assess their photosynthetic functionality in light and darkness and investigate inorganic nitrogen and sulfate assimilation. We used DNA barcoding of a ~ 830 bp fragment from the SSU rDNA to identify the kleptoplasts and correlated transmission electron microscopy and nanometre-scale secondary ion mass spectrometry (TEM-NanoSIMS) isotopic imaging to study 13 C-bicarbonate, 15 N-ammonium and 34 S-sulfate uptake. In addition, respiration rate measurements were determined to assess the response of N. labradorica to light. The DNA sequences established that over 80% of the kleptoplasts belonged to Thalassiosira (with 96%-99% identity), a cosmopolitan planktonic diatom. TEM-NanoSIMS imaging revealed degraded cytoplasm and an absence of 13 C assimilation in foraminifera exposed to light. Oxygen measurements showed higher respiration rates under light than dark conditions, and no O2 production was detected. These results indicate that the photosynthetic pathways in N. labradorica are not functional. Furthermore, N. labradorica assimilated both 15 N-ammonium and 34 S-sulfate into its cytoplasm, which suggests that foraminifera might have several ammonium or sulfate assimilation pathways, involving either the kleptoplasts or bona fide foraminiferal pathway(s) not yet identified.
Collapse
Affiliation(s)
- Thierry Jauffrais
- UMR CNRS 6112 LPG-BIAF, Université d'Angers, 2 Boulevard Lavoisier, 49045, Angers Cedex 1, France.,Ifremer, RBE/LEAD, 101 Promenade Roger Laroque, 98897, Nouméa, New Caledonia
| | - Charlotte LeKieffre
- UMR CNRS 6112 LPG-BIAF, Université d'Angers, 2 Boulevard Lavoisier, 49045, Angers Cedex 1, France.,Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Magali Schweizer
- UMR CNRS 6112 LPG-BIAF, Université d'Angers, 2 Boulevard Lavoisier, 49045, Angers Cedex 1, France
| | - Emmanuelle Geslin
- UMR CNRS 6112 LPG-BIAF, Université d'Angers, 2 Boulevard Lavoisier, 49045, Angers Cedex 1, France
| | - Edouard Metzger
- UMR CNRS 6112 LPG-BIAF, Université d'Angers, 2 Boulevard Lavoisier, 49045, Angers Cedex 1, France
| | - Joan M Bernhard
- Woods Hole Oceanographic Institution, Geology & Geophysics Department, Woods Hole, MA, USA
| | - Bruno Jesus
- EA2160, Laboratoire Mer Molécules Santé, Université de Nantes, Nantes, France.,BioISI - Biosystems & Integrative Sciences Institute, Campo Grande University of Lisboa, Faculty of Sciences, Lisbon, Portugal
| | - Helena L Filipsson
- Department of Geology, Lund University, Sölvegatan 12, 223 62, Lund, Sweden
| | - Olivier Maire
- Univ. Bordeaux, EPOC, UMR 5805, 33400, Talence, France.,CNRS, EPOC, UMR 5805, 33400, Talence, France
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.,Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
40
|
Berthelot H, Duhamel S, L'Helguen S, Maguer JF, Wang S, Cetinić I, Cassar N. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME JOURNAL 2018; 13:651-662. [PMID: 30323264 DOI: 10.1038/s41396-018-0285-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/09/2018] [Accepted: 09/08/2018] [Indexed: 12/16/2022]
Abstract
Nitrogen (N) is a limiting nutrient in vast regions of the world's oceans, yet the sources of N available to various phytoplankton groups remain poorly understood. In this study, we investigated inorganic carbon (C) fixation rates and nitrate (NO3-), ammonium (NH4+) and urea uptake rates at the single cell level in photosynthetic pico-eukaryotes (PPE) and the cyanobacteria Prochlorococcus and Synechococcus. To that end, we used dual 15N and 13C-labeled incubation assays coupled to flow cytometry cell sorting and nanoSIMS analysis on samples collected in the North Pacific Subtropical Gyre (NPSG) and in the California Current System (CCS). Based on these analyses, we found that photosynthetic growth rates (based on C fixation) of PPE were higher in the CCS than in the NSPG, while the opposite was observed for Prochlorococcus. Reduced forms of N (NH4+ and urea) accounted for the majority of N acquisition for all the groups studied. NO3- represented a reduced fraction of total N uptake in all groups but was higher in PPE (17.4 ± 11.2% on average) than in Prochlorococcus and Synechococcus (4.5 ± 6.5 and 2.9 ± 2.1% on average, respectively). This may in part explain the contrasting biogeography of these picoplankton groups. Moreover, single cell analyses reveal that cell-to-cell heterogeneity within picoplankton groups was significantly greater for NO3- uptake than for C fixation and NH4+ uptake. We hypothesize that cellular heterogeneity in NO3- uptake within groups facilitates adaptation to the fluctuating availability of NO3- in the environment.
Collapse
Affiliation(s)
- Hugo Berthelot
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer (IUEM), Brest, France.
| | - Solange Duhamel
- Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory, PO Box 1000, 61 Route 9W, Palisades, NY, 10964, USA
| | - Stéphane L'Helguen
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer (IUEM), Brest, France
| | - Jean-Francois Maguer
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer (IUEM), Brest, France
| | - Seaver Wang
- Division of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Ivona Cetinić
- NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Code 616, Greenbelt, MD, USA.,GESTAR/Universities Space Research Association, Columbia, MD, USA
| | - Nicolas Cassar
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer (IUEM), Brest, France. .,Division of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
41
|
Cyanophycin Synthesis Optimizes Nitrogen Utilization in the Unicellular Cyanobacterium Synechocystis sp. Strain PCC 6803. Appl Environ Microbiol 2018; 84:AEM.01298-18. [PMID: 30120117 DOI: 10.1128/aem.01298-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/09/2018] [Indexed: 11/20/2022] Open
Abstract
Cyanophycin is a carbon/nitrogen storage polymer widely distributed in most cyanobacterial strains and in a few heterotrophic bacteria. It is a nonribosomal polypeptide consisting of equimolar amounts of aspartate and arginine. Here, we focused on the physiological function and cell biology of cyanophycin in the unicellular nondiazotrophic cyanobacterium Synechocystis sp. strain PCC 6803. To study the cellular localization of the cyanophycin-synthesizing enzyme CphA during cyanophycin synthesis and degradation, we fused it to green fluorescent protein. When CphA was inactive, it localized diffusely in the cytoplasm. When cyanophycin synthesis was triggered, CphA first aggregated into foci and later localized on the surface of cyanophycin granules. In the corresponding cell extracts, localization of CphA on the cyanophycin granule surface required Mg2+ During cyanophycin degradation, CphA dissociated from the granule surface and returned to its inactive form in the cytoplasm. To investigate the physiological role of cyanophycin, we compared wild-type cells with a CphA-deficient mutant. Under standard laboratory conditions, the ability to synthesize cyanophycin did not confer a growth advantage. To mimic the situation in natural habitats, cells were cultured with a fluctuating and limiting nitrogen supplementation and/or day/night cycles. Under all of these conditions, cyanophycin provided a fitness advantage to the wild type over the mutant lacking cyanophycin. During resuscitation from nitrogen starvation, wild-type cells accumulated cyanophycin during the night and used it as an internal nitrogen source during the day. This demonstrates that cyanophycin can be used as a temporary nitrogen storage to uncouple nitrogen assimilation from photosynthesis.IMPORTANCE We clarified the elusive biological function of cyanophycin in the nondiazotrophic cyanobacterium Synechocystis sp. PCC 6803. Cyanophycin is a dynamic carbon/nitrogen storage polymer (multi-arginyl-l-polyaspartate) that is conditionally present in most cyanobacteria and a few heterotrophic bacteria as cellular inclusion granules. Here, we show that the cyanophycin-synthesizing enzyme CphA in the nonactive state localizes diffusely in the cytoplasm. When cyanophycin synthesis is triggered, active CphA first aggregates into foci and then covers the surface of mature cyanophycin granules, which in vitro requires Mg2+ as a cofactor. Cyanophycin accumulation enables Synechocystis sp. to optimize nitrogen assimilation under nitrogen-poor conditions, in particular when the nitrogen supply fluctuates and during day/night cycles, by allowing continuous nitrogen assimilation and storage. Therefore, cyanophycin provides the wild-type cyanobacterium with a clear fitness advantage over non-cyanophycin-producing cells in natural environments with fluctuating nitrogen supply.
Collapse
|
42
|
Inorganic carbon and nitrogen assimilation in cellular compartments of a benthic kleptoplastic foraminifer. Sci Rep 2018; 8:10140. [PMID: 29973634 PMCID: PMC6031614 DOI: 10.1038/s41598-018-28455-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/20/2018] [Indexed: 11/08/2022] Open
Abstract
Haynesina germanica, an ubiquitous benthic foraminifer in intertidal mudflats, has the remarkable ability to isolate, sequester, and use chloroplasts from microalgae. The photosynthetic functionality of these kleptoplasts has been demonstrated by measuring photosystem II quantum efficiency and O2 production rates, but the precise role of the kleptoplasts in foraminiferal metabolism is poorly understood. Thus, the mechanism and dynamics of C and N assimilation and translocation from the kleptoplasts to the foraminiferal host requires study. The objective of this study was to investigate, using correlated TEM and NanoSIMS imaging, the assimilation of inorganic C and N (here ammonium, NH4+) in individuals of a kleptoplastic benthic foraminiferal species. H. germanica specimens were incubated for 20 h in artificial seawater enriched with H13CO3- and 15NH4+ during a light/dark cycle. All specimens (n = 12) incorporated 13C into their endoplasm stored primarily in the form of lipid droplets. A control incubation in darkness resulted in no 13C-uptake, strongly suggesting that photosynthesis is the process dominating inorganic C assimilation. Ammonium assimilation was observed both with and without light, with diffuse 15N-enrichment throughout the cytoplasm and distinct 15N-hotspots in fibrillar vesicles, electron-opaque bodies, tubulin paracrystals, bacterial associates, and, rarely and at moderate levels, in kleptoplasts. The latter observation might indicate that the kleptoplasts are involved in N assimilation. However, the higher N assimilation observed in the foraminiferal endoplasm incubated without light suggests that another cytoplasmic pathway is dominant, at least in darkness. This study clearly shows the advantage provided by the kleptoplasts as an additional source of carbon and provides observations of ammonium uptake by the foraminiferal cell.
Collapse
|
43
|
SHAO CF, ZHAO Y, WU K, JIA FF, LUO Q, LIU Z, WANG FY. Correlated Secondary Ion Mass Spectrometry-Laser Scanning Confocal Microscopy Imaging for Single Cell-Principles and Applications. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61095-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Hörnlein C, Confurius-Guns V, Stal LJ, Bolhuis H. Daily rhythmicity in coastal microbial mats. NPJ Biofilms Microbiomes 2018; 4:11. [PMID: 29796291 PMCID: PMC5953948 DOI: 10.1038/s41522-018-0054-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/26/2018] [Accepted: 04/17/2018] [Indexed: 12/31/2022] Open
Abstract
Cyanobacteria are major primary producers in coastal microbial mats and provide biochemical energy, organic carbon, and bound nitrogen to the mat community through oxygenic photosynthesis and dinitrogen fixation. In order to anticipate the specific requirements to optimize their metabolism and growth during a day-and-night cycle, Cyanobacteria possess a unique molecular timing mechanism known as the circadian clock that is well-studied under laboratory conditions but little is known about its function in a natural complex community. Here, we investigated daily rhythmicity of gene expression in a coastal microbial mat community sampled at 6 time points during a 24-h period. In order to identify diel expressed genes, meta-transcriptome data was fitted to periodic functions. Out of 24,035 conserved gene transcript clusters, approximately 7% revealed a significant rhythmic expression pattern. These rhythmic genes were assigned to phototrophic micro-eukaryotes, Cyanobacteria but also to Proteobacteria and Bacteroidetes. Analysis of MG-RAST annotated genes and mRNA recruitment analysis of two cyanobacterial and three proteobacterial microbial mat members confirmed that homologs of the cyanobacterial circadian clock genes were also found in other bacterial members of the microbial mat community. These results suggest that various microbial mat members other than Cyanobacteria have their own molecular clock, which can be entrained by a cocktail of Zeitgebers such as light, temperature or metabolites from neighboring species. Hence, microbial mats can be compared to a complex organism consisting of multiple sub-systems that have to be entrained in a cooperative way such that the corpus functions optimally.
Collapse
Affiliation(s)
- Christine Hörnlein
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, The Netherlands
| | - Veronique Confurius-Guns
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, The Netherlands
| | - Lucas J Stal
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, The Netherlands.,2Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Henk Bolhuis
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, The Netherlands
| |
Collapse
|
45
|
Ioannides AA. Neurofeedback and the Neural Representation of Self: Lessons From Awake State and Sleep. Front Hum Neurosci 2018; 12:142. [PMID: 29755332 PMCID: PMC5932408 DOI: 10.3389/fnhum.2018.00142] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/29/2018] [Indexed: 01/12/2023] Open
Abstract
Neurofeedback has been around for half a century, but despite some promising results it is not yet widely appreciated. Recently, some of the concerns about neurofeedback have been addressed with functional magnetic resonance imaging and magnetoencephalography adding their contributions to the long history of neurofeedback with electroencephalography. Attempts to address other concerns related to methodological issues with new experiments and meta-analysis of earlier studies, have opened up new questions about its efficacy. A key concern about neurofeedback is the missing framework to explain how improvements in very different and apparently unrelated conditions are achieved. Recent advances in neuroscience begin to address this concern. A particularly promising approach is the analysis of resting state of fMRI data, which has revealed robust covariations in brain networks that maintain their integrity in sleep and even anesthesia. Aberrant activity in three brain wide networks (i.e., the default mode, central executive and salience networks) has been associated with a number of psychiatric disorders. Recent publications have also suggested that neurofeedback guides the restoration of “normal” activity in these three networks. Using very recent results from our analysis of whole night MEG sleep data together with key concepts from developmental psychology, cloaked in modern neuroscience terms, a theoretical framework is proposed for a neural representation of the self, located at the core of a double onion-like structure of the default mode network. This framework fits a number of old and recent neuroscientific findings, and unites the way attention and memory operate in awake state and during sleep. In the process, safeguards are uncovered, put in place by evolution, before any interference with the core representation of self can proceed. Within this framework, neurofeedback is seen as set of methods for restoration of aberrant activity in large scale networks. The framework also admits quantitative measures of improvements to be made by personalized neurofeedback protocols. Finally, viewed through the framework developed, neurofeedback’s safe nature is revealed while raising some concerns for interventions that attempt to alter the neural self-representation bypassing the safeguards evolution has put in place.
Collapse
Affiliation(s)
- Andreas A Ioannides
- Laboratory for Human Brain Dynamics, AAI Scientific Cultural Services Ltd., Nicosia, Cyprus
| |
Collapse
|
46
|
Boatman TG, Davey PA, Lawson T, Geider RJ. The physiological cost of diazotrophy for Trichodesmium erythraeum IMS101. PLoS One 2018; 13:e0195638. [PMID: 29641568 PMCID: PMC5895029 DOI: 10.1371/journal.pone.0195638] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/26/2018] [Indexed: 11/24/2022] Open
Abstract
Trichodesmium plays a significant role in the oligotrophic oceans, fixing nitrogen in an area corresponding to half of the Earth's surface, representing up to 50% of new production in some oligotrophic tropical and subtropical oceans. Whilst Trichodesmium blooms at the surface exhibit a strong dependence on diazotrophy, colonies at depth or at the surface after a mixing event could be utilising additional N-sources. We conducted experiments to establish how acclimation to varying N-sources affects the growth, elemental composition, light absorption coefficient, N2 fixation, PSII electron transport rate and the relationship between net and gross photosynthetic O2 exchange in T. erythraeum IMS101. To do this, cultures were acclimated to growth medium containing NH4+ and NO3- (replete concentrations) or N2 only (diazotrophic control). The light dependencies of O2 evolution and O2 uptake were measured using membrane inlet mass spectrometry (MIMS), while PSII electron transport rates were measured from fluorescence light curves (FLCs). We found that at a saturating light intensity, Trichodesmium growth was ~ 10% and 13% lower when grown on N2 than with NH4+ and NO3-, respectively. Oxygen uptake increased linearly with net photosynthesis across all light intensities ranging from darkness to 1100 μmol photons m-2 s-1. The maximum rates and initial slopes of light response curves for C-specific gross and net photosynthesis and the slope of the relationship between gross and net photosynthesis increased significantly under non-diazotrophic conditions. We attribute these observations to a reduced expenditure of reductant and ATP for nitrogenase activity under non-diazotrophic conditions which allows NADPH and ATP to be re-directed to CO2 fixation and/or biosynthesis. The energy and reductant conserved through utilising additional N-sources could enhance Trichodesmium's productivity and growth and have major implications for its role in ocean C and N cycles.
Collapse
Affiliation(s)
- Tobias G. Boatman
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Phillip A. Davey
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Richard J. Geider
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
47
|
The cyanobacterial ornithine-ammonia cycle involves an arginine dihydrolase. Nat Chem Biol 2018; 14:575-581. [PMID: 29632414 DOI: 10.1038/s41589-018-0038-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/23/2018] [Indexed: 11/09/2022]
Abstract
Living organisms have evolved mechanisms for adjusting their metabolism to adapt to environmental nutrient availability. Terrestrial animals utilize the ornithine-urea cycle to dispose of excess nitrogen derived from dietary protein. Here, we identified an active ornithine-ammonia cycle (OAC) in cyanobacteria through an approach combining dynamic 15N and 13C tracers, metabolomics, and mathematical modeling. The pathway starts with carbamoyl phosphate synthesis by the bacterial- and plant-type glutamine-dependent enzyme and ends with conversion of arginine to ornithine and ammonia by a novel arginine dihydrolase. An arginine dihydrolase-deficient mutant showed disruption of OAC and severely impaired cell growth when nitrogen availability oscillated. We demonstrated that the OAC allows for rapid remobilization of nitrogen reserves under starvation and a high rate of nitrogen assimilation and storage after the nutrient becomes available. Thus, the OAC serves as a conduit in the nitrogen storage-and-remobilization machinery in cyanobacteria and enables cellular adaptation to nitrogen fluctuations.
Collapse
|
48
|
Chu KJ, Chen PC, You YW, Chang HY, Kao WL, Chu YH, Wu CY, Shyue JJ. Integration of paper-based microarray and time-of-flight secondary ion mass spectrometry (ToF-SIMS) for parallel detection and quantification of molecules in multiple samples automatically. Anal Chim Acta 2018; 1005:61-69. [DOI: 10.1016/j.aca.2017.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/27/2017] [Accepted: 12/03/2017] [Indexed: 11/25/2022]
|
49
|
Esteves-Ferreira AA, Inaba M, Fort A, Araújo WL, Sulpice R. Nitrogen metabolism in cyanobacteria: metabolic and molecular control, growth consequences and biotechnological applications. Crit Rev Microbiol 2018. [DOI: 10.1080/1040841x.2018.1446902] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Alberto A. Esteves-Ferreira
- National University of Ireland – Galway, Plant Systems Biology Lab, School of Natural Sciences, Plant and AgriBiosciences Research Centre, Galway, Ireland
- CAPES Foundation, Ministry of Education of Brazil, Brasilia, Brazil
| | - Masami Inaba
- National University of Ireland – Galway, Plant Systems Biology Lab, School of Natural Sciences, Plant and AgriBiosciences Research Centre, Galway, Ireland
| | - Antoine Fort
- National University of Ireland – Galway, Plant Systems Biology Lab, School of Natural Sciences, Plant and AgriBiosciences Research Centre, Galway, Ireland
| | - Wagner L. Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ronan Sulpice
- National University of Ireland – Galway, Plant Systems Biology Lab, School of Natural Sciences, Plant and AgriBiosciences Research Centre, Galway, Ireland
| |
Collapse
|
50
|
Abstract
Secondary ion mass spectrometry (SIMS) has become an increasingly utilized tool in biologically relevant studies. Of these, high lateral resolution methodologies using the NanoSIMS 50/50L have been especially powerful within many biological fields over the past decade. Here, the authors provide a review of this technology, sample preparation and analysis considerations, examples of recent biological studies, data analyses, and current outlooks. Specifically, the authors offer an overview of SIMS and development of the NanoSIMS. The authors describe the major experimental factors that should be considered prior to NanoSIMS analysis and then provide information on best practices for data analysis and image generation, which includes an in-depth discussion of appropriate colormaps. Additionally, the authors provide an open-source method for data representation that allows simultaneous visualization of secondary electron and ion information within a single image. Finally, the authors present a perspective on the future of this technology and where they think it will have the greatest impact in near future.
Collapse
|