1
|
Bhavnagari HM, Shah FD. Decoding gene expression profiles of Hippo signaling pathway components in breast cancer. Mol Biol Rep 2025; 52:216. [PMID: 39928181 DOI: 10.1007/s11033-025-10299-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/23/2025] [Indexed: 02/11/2025]
Abstract
INTRODUCTION The Hippo signaling pathway is an evolutionarily conserved, tumor suppressor, stem cell pathway. This is the very less explored pathway in Breast Cancer. It is a crucial regulator of several biological processes, such as organ size, differentiation, tissue homeostasis, cellular proliferation, and stemness. Interestingly, deregulation of this pathway leads to tumorigenesis. Hence, the present study aims to identify the role of the Hippo signaling pathway in Breast Cancer. MATERIALS AND METHODS The mRNA expression of the Hippo signaling pathway molecules was evaluated in 120 pre-therapeutic patients by quantitative real-time PCR. Statistical analysis was carried out using SPSS 23. The association between the gene expression and clinicopathological parameters was analyzed by the paired sample t-test, and Pearson chi-square test. ROC curve analysis was carried out using Med Cal. A p-value of ≤ 0.05 was considered statistically significant. RESULTS The hippo signaling pathway contains 10 core components i.e.SAV1, MOB1A, MOB1B, MST1, MST2, LATS1, LATS2, YAP, TAZ, and TEAD1 which were downregulated in malignant tissues as compared to adjacent normal tissue in breast cancer. In the correlation of hippo signaling pathway molecules with clinico pathological parameters, only LATS1, MST1, and SAV1 were found to be significantly negatively associated with stages of Breast Cancer. MOB1B was found to be significantly positively correlated with stages of Breast Cancer. ROC curve analysis of YAP, TAZ, LATS2, and TEAD showed significant discrimination between adjacent normal and malignant tissue. CONCLUSION In the current study, all the molecules of the hippo signaling pathway i.e. YAP, TAZ, LATS1, LATS2, MST1, MST2, SAV1, MOB1, MOB1B, TEAD1 were downregulated in BC suggesting the activation of hippo pathway which played a significant role in tumor suppression.
Collapse
Affiliation(s)
- Hunayna M Bhavnagari
- Life Science Department, Gujarat University, Ahmedabad, Gujarat, India
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Franky D Shah
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India.
| |
Collapse
|
2
|
Brylak J, Nowak JK, Dybska E, Glapa-Nowak A, Kierkuś J, Osiecki M, Banaszkiewicz A, Radzikowski A, Szaflarska-Popławska A, Kwiecień J, Buczyńska A, Walkowiak J. Macrophage-Stimulating 1 Polymorphism rs3197999 in Pediatric Patients with Inflammatory Bowel Disease. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1243. [PMID: 39202524 PMCID: PMC11356727 DOI: 10.3390/medicina60081243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), often necessitates long-term treatment and hospitalizations and also may require surgery. The macrophage-stimulating 1 (MST1) rs3197999 polymorphism is strongly associated with the risk of IBD but its exact clinical correlates remain under investigation. We aimed to characterize the relationships between the MST1 rs3197999 genotype and the clinical characteristics in children and adolescents with IBD within a multi-center cross-sectional study. Materials and Methods: Clinical data included serum C-reactive protein (CRP), albumin, activity indices (PUCAI, PCDAI), anthropometric data, pharmacotherapy details, surgery, and disease severity. Genotyping for rs3197999 was carried out using TaqMan hydrolysis probes. Results: The study included 367 pediatric patients, 197 with Crohn's disease (CD) (40.6% female; a median age of 15.2 years [interquartile range 13.2-17.0]) and 170 with ulcerative colitis (UC) (45.8% female; a median age of 15.1 years [11.6-16.8]). No significant relationships were found between MST1 genotypes and age upon first biologic use, time from diagnosis to biological therapy introduction, PUCAI, PCDAI, or hospitalizations for IBD flares. However, in IBD, the height Z-score at the worst flare was negatively associated with the CC genotype (p = 0.016; CC: -0.4 [-1.2-0.4], CT: -0.1 [-0.7-0.8], TT: 0.0 [-1.2-0.7)]). The TT genotype was associated with higher C-reactive protein upon diagnosis (p = 0.023; CC: 4.3 mg/dL [0.7-21.8], CT 5.3 mg/dL [1.3-17.9], TT 12.2 mg/dL [3.0-32.9]). Conclusions: This study identified links between MST1 rs3197999 and the clinical characteristics of pediatric IBD: height Z-score and CRP. Further studies of the associations between genetics and the course of IBD are still warranted, with a focus on more extensive phenotyping.
Collapse
Affiliation(s)
- Jan Brylak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 60-572 Poznan, Poland (J.K.N.); (A.G.-N.)
| | - Jan K. Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 60-572 Poznan, Poland (J.K.N.); (A.G.-N.)
| | - Emilia Dybska
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 60-572 Poznan, Poland (J.K.N.); (A.G.-N.)
| | - Aleksandra Glapa-Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 60-572 Poznan, Poland (J.K.N.); (A.G.-N.)
| | - Jarosław Kierkuś
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
| | - Marcin Osiecki
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
| | - Aleksandra Banaszkiewicz
- Department of Pediatric Gastroenterology and Nutrition, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Andrzej Radzikowski
- Department of Pediatric Gastroenterology and Nutrition, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Anna Szaflarska-Popławska
- Department of Pediatric Endoscopy and Gastrointestinal Function Testing, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Jarosław Kwiecień
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Anna Buczyńska
- Department of Pediatrics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 60-572 Poznan, Poland (J.K.N.); (A.G.-N.)
| |
Collapse
|
3
|
Parambil ST, Antony GR, Littleflower AB, Subhadradevi L. The molecular crosstalk of the hippo cascade in breast cancer: A potential central susceptibility. Biochimie 2024; 222:132-150. [PMID: 38494109 DOI: 10.1016/j.biochi.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The incidence of breast cancer is perpetually growing globally, and it remains a major public health problem and the leading cause of mortality in women. Though the aberrant activities of the Hippo pathway have been reported to be associated with cancer, constructive knowledge of the pathway connecting the various elements of breast cancer remains to be elucidated. The Hippo transducers, yes-associated protein (YAP) and transcriptional co-activator with PDZ binding motif (TAZ), are reported to be either tumor suppressors, oncogenes, or independent prognostic markers in breast cancer. Thus, there is further need for an explicative evaluation of the dilemma with this molecular contribution of Hippo transducers in modulating breast malignancy. In this review, we summarize the intricate crosstalk of the Hippo pathway in different aspects of breast malignancy, including stem-likeness, cellular signaling, metabolic adaptations, tumor microenvironment, and immune responses. The collective data shows that Hippo transducers play an indispensable role in mammary tumor formation, progression, and dissemination. However, the cellular functions of YAP/TAZ in tumorigenesis might be largely dependent on the mechanical and biophysical cues they interact with, as well as on the cell phenotype. This review provides a glimpse into the plausible biological contributions of the cascade to the inward progression of breast carcinoma and suggests potential therapeutic prospects.
Collapse
Affiliation(s)
- Sulfath Thottungal Parambil
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India
| | - Gisha Rose Antony
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India
| | - Ajeesh Babu Littleflower
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India
| | - Lakshmi Subhadradevi
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India.
| |
Collapse
|
4
|
Xu D, Yin S, Shu Y. NF2: An underestimated player in cancer metabolic reprogramming and tumor immunity. NPJ Precis Oncol 2024; 8:133. [PMID: 38879686 PMCID: PMC11180135 DOI: 10.1038/s41698-024-00627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/02/2024] [Indexed: 06/19/2024] Open
Abstract
Neurofibromatosis type 2 (NF2) is a tumor suppressor gene implicated in various tumors, including mesothelioma, schwannomas, and meningioma. As a member of the ezrin, radixin, and moesin (ERM) family of proteins, merlin, which is encoded by NF2, regulates diverse cellular events and signalling pathways, such as the Hippo, mTOR, RAS, and cGAS-STING pathways. However, the biological role of NF2 in tumorigenesis has not been fully elucidated. Furthermore, cross-cancer mutations may exert distinct biological effects on tumorigenesis and treatment response. In addition to the functional inactivation of NF2, the codeficiency of other genes, such as cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B), BRCA1-associated protein-1 (BAP1), and large tumor suppressor 2 (LATS2), results in unique tumor characteristics that should be considered in clinical treatment decisions. Notably, several recent studies have explored the metabolic and immunological features associated with NF2, offering potential insights into tumor biology and the development of innovative therapeutic strategies. In this review, we consolidate the current knowledge on NF2 and examine the potential connection between cancer metabolism and tumor immunity in merlin-deficient malignancies. This review may provide a deeper understanding of the biological roles of NF2 and guide possible therapeutic avenues.
Collapse
Affiliation(s)
- Duo Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shiyuan Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
St. Louis BM, Quagliato SM, Su YT, Dyson G, Lee PC. The Hippo kinases control inflammatory Hippo signaling and restrict bacterial infection in phagocytes. mBio 2024; 15:e0342923. [PMID: 38624208 PMCID: PMC11078001 DOI: 10.1128/mbio.03429-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
The Hippo kinases MST1 and MST2 initiate a highly conserved signaling cascade called the Hippo pathway that limits organ size and tumor formation in animals. Intriguingly, pathogens hijack this host pathway during infection, but the role of MST1/2 in innate immune cells against pathogens is unclear. In this report, we generated Mst1/2 knockout macrophages to investigate the regulatory activities of the Hippo kinases in immunity. Transcriptomic analyses identified differentially expressed genes (DEGs) regulated by MST1/2 that are enriched in biological pathways, such as systemic lupus erythematosus, tuberculosis, and apoptosis. Surprisingly, pharmacological inhibition of the downstream components LATS1/2 in the canonical Hippo pathway did not affect the expression of a set of immune DEGs, suggesting that MST1/2 control these genes via alternative inflammatory Hippo signaling. Moreover, MST1/2 may affect immune communication by influencing the release of cytokines, including TNFα, CXCL10, and IL-1ra. Comparative analyses of the single- and double-knockout macrophages revealed that MST1 and MST2 differentially regulate TNFα release and expression of the immune transcription factor MAF, indicating that the two homologous Hippo kinases individually play a unique role in innate immunity. Notably, both MST1 and MST2 can promote apoptotic cell death in macrophages upon stimulation. Lastly, we demonstrate that the Hippo kinases are critical factors in mammalian macrophages and single-cell amoebae to restrict infection by Legionella pneumophila, Escherichia coli, and Pseudomonas aeruginosa. Together, these results uncover non-canonical inflammatory Hippo signaling in macrophages and the evolutionarily conserved role of the Hippo kinases in the anti-microbial defense of eukaryotic hosts. IMPORTANCE Identifying host factors involved in susceptibility to infection is fundamental for understanding host-pathogen interactions. Clinically, individuals with mutations in the MST1 gene which encodes one of the Hippo kinases experience recurrent infection. However, the impact of the Hippo kinases on innate immunity remains largely undetermined. This study uses mammalian macrophages and free-living amoebae with single- and double-knockout in the Hippo kinase genes and reveals that the Hippo kinases are the evolutionarily conserved determinants of host defense against microbes. In macrophages, the Hippo kinases MST1 and MST2 control immune activities at multiple levels, including gene expression, immune cell communication, and programmed cell death. Importantly, these activities controlled by MST1 and MST2 in macrophages are independent of the canonical Hippo cascade that is known to limit tissue growth and tumor formation. Together, these findings unveil a unique inflammatory Hippo signaling pathway that plays an essential role in innate immunity.
Collapse
Affiliation(s)
- Brendyn M. St. Louis
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, Michigan, USA
| | - Sydney M. Quagliato
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, Michigan, USA
| | - Yu-Ting Su
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, Michigan, USA
| | - Gregory Dyson
- Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Pei-Chung Lee
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
6
|
Zhou J, Li L, Wu B, Feng Z, Lu Y, Wang Z. MST1/2: Important regulators of Hippo pathway in immune system associated diseases. Cancer Lett 2024; 587:216736. [PMID: 38369002 DOI: 10.1016/j.canlet.2024.216736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
The Hippo signaling pathway is first found in Drosophila and is highly conserved in evolution. Previous studies on this pathway in mammals have revealed its key role in cell proliferation and differentiation, organ size control, and carcinogenesis. Apart from these, recent findings indicate that mammalian Ste20-like kinases 1 and 2 (MST1/2) have significant effects on immune regulation. In this review, we summarize the updated understanding of how MST1/2 affect the regulation of the immune system and the specific mechanism. The effect of MST1/2 on immune cells and its role in the tumor immune microenvironment can alter the body's response to tumor cells. The relationship between MST1/2 and the immune system suggests new directions in the manipulation of immune responses for clinical immunotherapy, especially for tumor treatment.
Collapse
Affiliation(s)
- Jingjing Zhou
- Department of Gastroenterology, Shanghai Xuhui Central Hospital and Department of Anatomy and Histoembrvology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Lanfang Li
- Department of Gastroenterology, Shanghai Xuhui Central Hospital and Department of Anatomy and Histoembrvology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Baojin Wu
- Department of Plastic Surgery, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Jing'an District, Shanghai, 200040, China
| | - Zhen Feng
- Department of Gastroenterology, Shanghai Xuhui Central Hospital and Department of Anatomy and Histoembrvology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| | - Zuoyun Wang
- Department of Gastroenterology, Shanghai Xuhui Central Hospital and Department of Anatomy and Histoembrvology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Al-Saud B, Alajlan H, Alruwaili H, Almoaibed L, Al-Mazrou A, Ghebeh H, Al-Alwan M, Alazami AM. A unique STK4 mutation truncating only the C-terminal SARAH domain results in a mild clinical phenotype despite severe T cell lymphopenia: Case report. Front Immunol 2024; 15:1329610. [PMID: 38361950 PMCID: PMC10867200 DOI: 10.3389/fimmu.2024.1329610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Mutations in STK4 (MST1) are implicated in a form of autosomal recessive combined immunodeficiency, resulting in recurrent infections (especially Epstein-Barr virus viremia), autoimmunity, and cardiac malformations. Here we report a patient with an atypically mild presentation of this disease, initially presenting with severe T cell lymphopenia (< 500 per mm3) and intermittent neutropenia, but now surviving well on immunoglobulins and prophylactic antibacterial treatment. She harbors a unique STK4 mutation that lies further downstream than all others reported to date. Unlike other published cases, her mRNA transcript is not vulnerable to nonsense mediated decay (NMD) and yields a truncated protein that is expected to lose only the C-terminal SARAH domain. This domain is critical for autodimerization and autophosphorylation. While exhibiting significant differences from controls, this patient's T cell proliferation defects and susceptibility to apoptosis are not as severe as reported elsewhere. Expression of PD-1 is in line with healthy controls. Similarly, the dysregulation seen in immunophenotyping is not as pronounced as in other published cases. The nature of this mutation, enabling its evasion from NMD, provides a rare glimpse into the clinical and cellular features associated with the absence of a "null" phenotype of this protein.
Collapse
Affiliation(s)
- Bandar Al-Saud
- Section of Pediatric Allergy/Immunology, Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Huda Alajlan
- Translational Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hibah Alruwaili
- Translational Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Latifa Almoaibed
- Section of Pediatric Allergy/Immunology, Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amer Al-Mazrou
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hazem Ghebeh
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Monther Al-Alwan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Anas M. Alazami
- Translational Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Poirier A, Ormonde JVS, Aubry I, Abidin BM, Feng CH, Martinez-Cordova Z, Hincapie AM, Wu C, Pérez-Quintero LA, Wang CL, Gingras AC, Madrenas J, Tremblay ML. The induction of SHP-1 degradation by TAOK3 ensures the responsiveness of T cells to TCR stimulation. Sci Signal 2024; 17:eadg4422. [PMID: 38166031 DOI: 10.1126/scisignal.adg4422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/01/2023] [Indexed: 01/04/2024]
Abstract
Thousand-and-one-amino acid kinase 3 (TAOK3) is a serine and threonine kinase that belongs to the STE-20 family of kinases. Its absence reduces T cell receptor (TCR) signaling and increases the interaction of the tyrosine phosphatase SHP-1, a major negative regulator of proximal TCR signaling, with the kinase LCK, a component of the core TCR signaling complex. Here, we used mouse models and human cell lines to investigate the mechanism by which TAOK3 limits the interaction of SHP-1 with LCK. The loss of TAOK3 decreased the survival of naïve CD4+ T cells by dampening the transmission of tonic and ligand-dependent TCR signaling. In mouse T cells, Taok3 promoted the secretion of interleukin-2 (IL-2) in response to TCR activation in a manner that depended on Taok3 gene dosage and on Taok3 kinase activity. TCR desensitization in Taok3-/- T cells was caused by an increased abundance of Shp-1, and pharmacological inhibition of Shp-1 rescued the activation potential of these T cells. TAOK3 phosphorylated threonine-394 in the phosphatase domain of SHP-1, which promoted its ubiquitylation and proteasomal degradation. The loss of TAOK3 had no effect on the abundance of SHP-2, which lacks a residue corresponding to SHP-1 threonine-394. Modulation of SHP-1 abundance by TAOK3 thus serves as a rheostat for TCR signaling and determines the activation threshold of T lymphocytes.
Collapse
Affiliation(s)
- Alexandre Poirier
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Faculty of Medicine and Health Sciences, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - João Vitor Silva Ormonde
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials (LNBio - CNPEM), Campinas, São Paulo, Brazil
| | - Isabelle Aubry
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Belma Melda Abidin
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
| | - Chu-Han Feng
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Zuzet Martinez-Cordova
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Ana Maria Hincapie
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Chenyue Wu
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | | | - Chia-Lin Wang
- NYU Langone Medical Center, 660 1st Ave, Fl 5, New York City, NY 10016, USA
| | - Anne Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Joaquín Madrenas
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 40095, USA
| | - Michel L Tremblay
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
- Faculty of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
9
|
Li T, Wen Y, Lu Q, Hua S, Hou Y, Du X, Zheng Y, Sun S. MST1/2 in inflammation and immunity. Cell Adh Migr 2023; 17:1-15. [PMID: 37909712 PMCID: PMC10761064 DOI: 10.1080/19336918.2023.2276616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
The mammalian Sterile 20-like kinase 1/2 (MST1/2) belongs to the serine/threonine (GC) protein kinase superfamily. Collective studies confirm the vital role MST1/2 in inflammation and immunity. MST1/2 is closely related to the progress of inflammation. Generally, MST1/2 aggravates the inflammatory injury through MST1-JNK, MST1-mROS, MST1-Foxo3, and NF-κB pathways, as well as several regulatory factors such as tumor necrosis factor-α (TNF-α), mitochondrial extension factor 1 (MIEF1), and lipopolysaccharide (LPS). Moreover, MST1/2 is also involved in the regulation of immunity to balance immune activation and tolerance by regulating MST1/2-Rac, MST1-Akt1/c-myc, MST1-Foxos, MST1-STAT, Btk pathways, and lymphocyte function-related antigen 1 (LFA-1), which subsequently prevents immunodeficiency syndrome and autoimmune diseases. This article reviews the effects of MST1/2 on inflammation and immunity.
Collapse
Affiliation(s)
- Tongfen Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yiqiong Wen
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Qiongfen Lu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shu Hua
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yunjiao Hou
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiaohua Du
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yuanyuan Zheng
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
10
|
Tang D, Xu H, Du X. The role of non-canonical Hippo pathway in regulating immune homeostasis. Eur J Med Res 2023; 28:498. [PMID: 37941053 PMCID: PMC10631157 DOI: 10.1186/s40001-023-01484-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
The Hippo pathway is a crucial signaling pathway that is highly conserved throughout evolution for the regulation of organ size and maintenance of tissue homeostasis. Initial studies have primarily focused on the canonical Hippo pathway, which governs organ development, tissue regeneration, and tumorigenesis. In recent years, extensive research has revealed that the non-canonical Hippo pathway, centered around Mst1/2 as its core molecule, plays a pivotal role in immune response and function by synergistically interacting with other signal transduction pathways. Consequently, the non-canonical Hippo pathway assumes significant importance in maintaining immune system homeostasis. This review concentrates on the research progress of the non-canonical Hippo pathway in regulating innate immune cell anti-infection responses, maintaining redox homeostasis, responding to microenvironmental stiffness, and T-cell differentiation.
Collapse
Affiliation(s)
- Dagang Tang
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Huan Xu
- Department of Ophtalmology, Daping Hospital, Army Medical University, Chongqing, 400012, China
| | - Xing Du
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, No.1 YouYi Road, Yuanjiagang, Yu Zhong District, Chongqing, 400016, China.
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
11
|
Yin Y, Tan M, Han L, Zhang L, Zhang Y, Zhang J, Pan W, Bai J, Jiang T, Li H. The hippo kinases MST1/2 in cardiovascular and metabolic diseases: A promising therapeutic target option for pharmacotherapy. Acta Pharm Sin B 2023; 13:1956-1975. [PMID: 37250161 PMCID: PMC10213817 DOI: 10.1016/j.apsb.2023.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/09/2022] [Accepted: 11/18/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) and metabolic disorders are major components of noncommunicable diseases, causing an enormous health and economic burden worldwide. There are common risk factors and developmental mechanisms among them, indicating the far-reaching significance in exploring the corresponding therapeutic targets. MST1/2 kinases are well-established proapoptotic effectors that also bidirectionally regulate autophagic activity. Recent studies have demonstrated that MST1/2 influence the outcome of cardiovascular and metabolic diseases by regulating immune inflammation. In addition, drug development against them is in full swing. In this review, we mainly describe the roles and mechanisms of MST1/2 in apoptosis and autophagy in cardiovascular and metabolic events as well as emphasis on the existing evidence for their involvement in immune inflammation. Moreover, we summarize the latest progress of pharmacotherapy targeting MST1/2 and propose a new mode of drug combination therapy, which may be beneficial to seek more effective strategies to prevent and treat CVDs and metabolic disorders.
Collapse
Affiliation(s)
- Yunfei Yin
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Mingyue Tan
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lianhua Han
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lei Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yue Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jun Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wanqian Pan
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiaxiang Bai
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Orthopedics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Tingbo Jiang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Hongxia Li
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
12
|
Zhang C, Dan Q, Lai S, Zhang Y, Gao E, Luo H, Yang L, Gao X, Lu C. Rab10 protects against DOX-induced cardiotoxicity by alleviating the oxidative stress and apoptosis of cardiomyocytes. Toxicol Lett 2023; 373:84-93. [PMID: 36309171 DOI: 10.1016/j.toxlet.2022.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Doxorubicin (DOX) is a widely used anticancer drug, but its clinical application is limited by cardiotoxicity. As a member of the Rab family, Rab10 has multiple subcellular localizations and carries out a wide variety of functions. Here, we explored the role of Rab10 on DOX-induced cardiotoxicity. Cardiac-specific Rab10 transgenic mice were constructed and treated with DOX or saline. We found that cardiac-specific overexpression of Rab10 alleviated cardiac dysfunction and attenuated cytoplasmic vacuolization and mitochondrial damage in DOX-treated mouse heart tissues. Immunofluorescence staining and Western blot analysis showed that Rab10 alleviated DOX-induced apoptosis and oxidative stress in cardiomyocytes in mouse heart tissues. We demonstrated that DOX mediated apoptosis, oxidative stress and depolarization of the mitochondrial membrane potential in H9c2 cells, while overexpression and knockdown of Rab10 attenuated and aggravated these effects, respectively. Furthermore, we found that Mst1, a serine-threonine kinase, was cleaved and translocated into the nucleus in H9c2 cells after DOX treatment, and knockdown of Mst1 alleviated DOX-induced cardiomyocyte apoptosis. Overexpression of Rab10 inhibited the cleavage of Mst1 mediated by DOX treatment in vivo and in vitro. Together, our findings demonstrated that cardiac-specific overexpression of Rab10 alleviated DOX-induced cardiac dysfunction and injury via inhibiting oxidative stress and apoptosis of cardiomyocytes, which may be partially ascribed to the inhibition of Mst1 activity.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Qinghua Dan
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Song Lai
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yutong Zhang
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Erer Gao
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Haiyan Luo
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Liping Yang
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, China
| | - Xiaobo Gao
- Department of Genetics, National Research Institute for Family Planning, Beijing, China.
| | - Cailing Lu
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China.
| |
Collapse
|
13
|
Wang T, Wang Z, Qi W, Jiang G, Wang G. Possible Future Avenues for Rheumatoid Arthritis Therapeutics: Hippo Pathway. J Inflamm Res 2023; 16:1283-1296. [PMID: 36998323 PMCID: PMC10045326 DOI: 10.2147/jir.s403925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/14/2023] [Indexed: 04/01/2023] Open
Abstract
Rheumatoid arthritis (RA) is a persistent systemic autoimmune disease with the hallmarks of swelling of the joint, joint tenderness, and progressive joint destruction, which may cause synovial inflammation and pannus as a basic pathological change, resulting in joint malformations and serious disorders. At present, the precise etiology and mechanism of pathogenesis of RA are unknown. The imbalance of immune homeostasis is the origin of RA. Hippo pathway is widely expressed in a range of cell lineages and plays a fundamental role in maintaining the immune steady state and may be involved in the pathogenic mechanism of RA. This study reviews the progress of Hippo pathway and its main members in the pathogenesis of RA from three aspects: regulating the maintenance of autoimmune homeostasis, promoting the pathogenicity of synovial fibroblasts and regulating the differentiation of osteoclasts. The study also presents a new way to recognize the pathogenesis of rheumatoid arthritis, which is favorable for finding a new way for treating the rheumatoid arthritis.
Collapse
Affiliation(s)
- Tao Wang
- Gansu University of Chinese Medicine, Lanzhou, 730020, People’s Republic of China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730020, People’s Republic of China
| | - Zhandong Wang
- Gansu University of Chinese Medicine, Lanzhou, 730020, People’s Republic of China
| | - Wenxia Qi
- Gansu University of Chinese Medicine, Lanzhou, 730020, People’s Republic of China
| | - Ganggang Jiang
- Gansu University of Chinese Medicine, Lanzhou, 730020, People’s Republic of China
| | - Gang Wang
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730020, People’s Republic of China
- Correspondence: Gang Wang, Email
| |
Collapse
|
14
|
Qiao C, Jiang P, Yuan X, Su N, Sun P, Lin F. Mammalian STE20-like kinase-1/2 are activated in human platelets stimulated by collagen or thrombin and play a vital role in collagen-activated platelets. Thromb Res 2023; 221:83-91. [PMID: 36495715 DOI: 10.1016/j.thromres.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Mammalian ste20-like kinases-1/2 (MST1/2), the core kinases of the Hippo pathway, play critical roles in the biology of hematopoietic cells via noncanonical mechanisms and contributes to megakaryocyte differentiation, polyploidization, and maturation to produce platelets. However, the role of MST1/2 in platelet functions remains unclear. MATERIALS AND METHODS In this study, we investigated this topic by determining platelet aggregation and through flow cytometry, ATP release assay, clot retraction assay, and immunoblotting analysis. RESULTS We found that MST1/2 were rapidly phosphorylated and activated upon platelet stimulation by thrombin and collagen. XMU-MP-1, a specific inhibitor of MST1/2, blocks the activation of MST1/2 in platelets. Inhibitor-pretreated platelets showed impaired platelet aggregation and dense-granule secretion mediated by collagen, thrombin, and U46619, whereas ristocetin or ADP mediated platelet aggregation was unaffected by XMU-MP-1. Although platelet-mediated clot retraction was not affected by MST1/2 inhibitors, integrin αIIbβ3 activation was significantly attenuated in XMU-MP-1-treated platelets. Moreover, MST1/2 inhibition significantly attenuated the mobilization of platelet calcium ions and the secretion of α-granules induced by convulxin. CONCLUSIONS This study is the first to demonstrate that MST1/2 play vital roles in human platelets and contributes to collagen-induced platelet activation and aggregation.
Collapse
Affiliation(s)
- Congchao Qiao
- Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Peng Jiang
- Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Xin Yuan
- Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Na Su
- Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Pan Sun
- Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Fangzhao Lin
- Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College, Chengdu, Sichuan 610052, PR China.
| |
Collapse
|
15
|
Wang Y, Liu X, Jing H, Ren H, Xu S, Guo M. Trimethyltin induces apoptosis and necroptosis of mouse liver by oxidative stress through YAP phosphorylation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114327. [PMID: 36434999 DOI: 10.1016/j.ecoenv.2022.114327] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Trimethyltin (TMT) is widely used as a major component of plastic stabilizers in agriculture and industry, and can accumulate in large quantities in the liver. To investigate the relationship between liver tissue damage induced by TMT exposure and YAP phosphorylation in mice, we gave the mice drinking water containing 0.01 mg/mL TMT for 14 days to establish an in vivo experimental model, and continuously treated AML12 cells with 20 μM TMT for 24 h to establish an in vitro experimental model. Transcriptomics revealed that TMT exposure altered 62,466 apparently diversely expressed genes, including 1197 upregulated and 899 downregulated genes, and that enrichment of the Hippo pathway occurred. Moreover, western blotting (WB) and quantitative real-time PCR (qRTPCR) results showed that TMT exposure triggered an increase in the expression of P-YAP, apoptosis and necroptosis-interrelated genes, and a decrease in Bcl-2 expression in mouse livers tissues and AML12 cells. The expression of P-YAP was significantly suppressed in the TRULI-treated TMT-exposed AML12 cells, while oxidative stress levels and damage were also significantly attenuated. In conclusion, TMT triggers YAP phosphorylation to induce oxidative stress inducing apoptosis and necroptosis in mouse livers tissues. Our results confirm the liver toxic effect and specific mechanism of TMT.
Collapse
Affiliation(s)
- Yuqi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaojing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongyuan Jing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Haoran Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Mengyao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
16
|
Fu M, Hu Y, Lan T, Guan KL, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther 2022; 7:376. [PMID: 36347846 PMCID: PMC9643504 DOI: 10.1038/s41392-022-01191-9] [Citation(s) in RCA: 231] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022] Open
Abstract
As an evolutionarily conserved signalling network, the Hippo pathway plays a crucial role in the regulation of numerous biological processes. Thus, substantial efforts have been made to understand the upstream signals that influence the activity of the Hippo pathway, as well as its physiological functions, such as cell proliferation and differentiation, organ growth, embryogenesis, and tissue regeneration/wound healing. However, dysregulation of the Hippo pathway can cause a variety of diseases, including cancer, eye diseases, cardiac diseases, pulmonary diseases, renal diseases, hepatic diseases, and immune dysfunction. Therefore, therapeutic strategies that target dysregulated Hippo components might be promising approaches for the treatment of a wide spectrum of diseases. Here, we review the key components and upstream signals of the Hippo pathway, as well as the critical physiological functions controlled by the Hippo pathway. Additionally, diseases associated with alterations in the Hippo pathway and potential therapies targeting Hippo components will be discussed.
Collapse
Affiliation(s)
- Minyang Fu
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Tianxia Lan
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Ting Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| | - Min Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| |
Collapse
|
17
|
Zheng A, Chen Q, Zhang L. The Hippo-YAP pathway in various cardiovascular diseases: Focusing on the inflammatory response. Front Immunol 2022; 13:971416. [PMID: 36059522 PMCID: PMC9433876 DOI: 10.3389/fimmu.2022.971416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
The Hippo pathway was initially discovered in Drosophila melanogaster and mammals as a key regulator of tissue growth both in physiological and pathological states. Numerous studies depict the vital role of the Hippo pathway in cardiovascular development, heart regeneration, organ size and vascular remodeling through the regulation of YAP (yes-associated protein) translocation. Recently, an increasing number of studies have focused on the Hippo-YAP pathway in inflammation and immunology. Although the Hippo-YAP pathway has been revealed to play controversial roles in different contexts and cell types in the cardiovascular system, the mechanisms regulating tissue inflammation and the immune response remain to be clarified. In this review, we summarize findings from the past decade on the function and mechanism of the Hippo-YAP pathway in CVDs (cardiovascular diseases) such as myocardial infarction, cardiomyopathy and atherosclerosis. In particular, we emphasize the role of the Hippo-YAP pathway in regulating inflammatory cell infiltration and inflammatory cytokine activation.
Collapse
Affiliation(s)
| | | | - Li Zhang
- *Correspondence: Li Zhang, ; Qishan Chen,
| |
Collapse
|
18
|
Ramaccini D, Pedriali G, Perrone M, Bouhamida E, Modesti L, Wieckowski MR, Giorgi C, Pinton P, Morciano G. Some Insights into the Regulation of Cardiac Physiology and Pathology by the Hippo Pathway. Biomedicines 2022; 10:biomedicines10030726. [PMID: 35327528 PMCID: PMC8945338 DOI: 10.3390/biomedicines10030726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/16/2022] Open
Abstract
The heart is one of the most fascinating organs in living beings. It beats up to 100,000 times a day throughout the lifespan, without resting. The heart undergoes profound anatomical, biochemical, and functional changes during life, from hypoxemic fetal stages to a completely differentiated four-chambered cardiac muscle. In the middle, many biological events occur after and intersect with each other to regulate development, organ size, and, in some cases, regeneration. Several studies have defined the essential roles of the Hippo pathway in heart physiology through the regulation of apoptosis, autophagy, cell proliferation, and differentiation. This molecular route is composed of multiple components, some of which were recently discovered, and is highly interconnected with multiple known prosurvival pathways. The Hippo cascade is evolutionarily conserved among species, and in addition to its regulatory roles, it is involved in disease by drastically changing the heart phenotype and its function when its components are mutated, absent, or constitutively activated. In this review, we report some insights into the regulation of cardiac physiology and pathology by the Hippo pathway.
Collapse
Affiliation(s)
- Daniela Ramaccini
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
| | - Gaia Pedriali
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
| | - Mariasole Perrone
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
| | - Esmaa Bouhamida
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
| | - Lorenzo Modesti
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
- Correspondence: (P.P.); (G.M.); Tel.: +39-0532-455-802 (P.P.); +39-0532-455-804 (G.M.)
| | - Giampaolo Morciano
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
- Correspondence: (P.P.); (G.M.); Tel.: +39-0532-455-802 (P.P.); +39-0532-455-804 (G.M.)
| |
Collapse
|
19
|
Al-Mathkour MM, Dwead AM, Alp E, Boston AM, Cinar B. The Hippo effector YAP1/TEAD1 regulates EPHA3 expression to control cell contact and motility. Sci Rep 2022; 12:3840. [PMID: 35264657 PMCID: PMC8907295 DOI: 10.1038/s41598-022-07790-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/24/2022] [Indexed: 11/09/2022] Open
Abstract
The EPHA3 protein tyrosine kinase, a member of the ephrin receptor family, regulates cell fate, cell motility, and cell-cell interaction. These cellular events are critical for tissue development, immunological responses, and the processes of tumorigenesis. Earlier studies revealed that signaling via the STK4-encoded MST1 serine-threonine protein kinase, a core component of the Hippo pathway, attenuated EPHA3 expression. Here, we investigated the mechanism by which MST1 regulates EPHA3. Our findings have revealed that the transcriptional regulators YAP1 and TEAD1 are crucial activators of EPHA3 transcription. Silencing YAP1 and TEAD1 suppressed the EPHA3 protein and mRNA levels. In addition, we identified putative TEAD enhancers in the distal EPHA3 promoter, where YAP1 and TEAD1 bind and promote EPHA3 expression. Furthermore, EPHA3 knockout by CRISPR/Cas9 technology reduced cell-cell interaction and cell motility. These findings demonstrate that EPHA3 is transcriptionally regulated by YAP1/TEAD1 of the Hippo pathway, suggesting that it is sensitive to cell contact-dependent interactions.
Collapse
Affiliation(s)
- Marwah M Al-Mathkour
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA
| | - Abdulrahman M Dwead
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA
| | - Esma Alp
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA
| | - Ava M Boston
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA
| | - Bekir Cinar
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA. .,Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
20
|
The Hippo signaling component LATS2 enhances innate immunity to inhibit HIV-1 infection through PQBP1-cGAS pathway. Cell Death Differ 2022; 29:192-205. [PMID: 34385679 PMCID: PMC8738759 DOI: 10.1038/s41418-021-00849-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 01/03/2023] Open
Abstract
As the most primordial signaling pathway in animal physiology, the Hippo pathway and innate immunity play crucial roles not only in sensing cellular conditions or infections, but also in various metabolite homeostasis and tumorigenesis. However, the correlation between cellular homeostasis and antiviral defense is not well understood. The core kinase LATS1/2, could either enhance or inhibit the anti-tumor immunity in different cellular contexts. In this study, we found that LATS2 can interact with PQBP1, the co-factor of cGAS, thus enhanced the cGAS-STING mediated innate immune response to HIV-1 challenge. LATS2 was observed to upregulate type-I interferon (IFN-I) and cytokines in response to HIV-1 reverse-transcribed DNA and inhibited HIV-1 infection. Due to the involvement of PQBP1, the function of LATS2 in regulating cGAS activity is not relying on the downstream YAP/TAZ as that in the canonical Hippo pathway. The related kinase activity of LATS2 was verified, and the potential phosphorylation site of PQBP1 was identified. Our study established a novel connection between Hippo signaling and innate immunity, thus may provide new potential intervention target on antiviral therapeutics.
Collapse
|
21
|
Saglam A, Cagdas D, Aydin B, Keles S, Reisli I, Arslankoz S, Katipoglu K, Uner A. STK4 deficiency and EBV-associated lymphoproliferative disorders, emphasis on histomorphology, and review of literature. Virchows Arch 2021; 480:393-401. [PMID: 34604912 DOI: 10.1007/s00428-021-03147-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 01/03/2023]
Abstract
Aberrations of the STK4 gene in humans result in an autosomal recessively inherited primary immunodeficiency. We identified three patients with STK4 deficiency who had presented to our hospital and reviewed their biopsy samples with the goal of detailing the characteristics of STK4 deficiency from a pathology perspective. Case 1 was a 20-year-old male who presented with cervical and supraclavicular lymphadenopathy which showed plasmacytic hyperplasia and a concurrent bronchial mass, with AA amyloidosis and EBV-associated "polymorphic lymphoproliferative disorder (LPD) resembling polymorphic post-transplant LPD." The second case was an 8-year-old girl with abdominal lymphadenopathy; biopsy revealed a complex lymphoproliferation which consisted of EBV-associated "polymorphic LPD resembling polymorphic post-transplant LPD," plasmacytic hyperplasia, granulomatous reaction, and a CD4- and PD-1-positive clonal T cell proliferation. The third was a 15-year-old girl with a laryngeal mass, representing a high-grade B cell lymphoma with prominent plasmacytic differentiation. Our cases emphasize the complex and challenging histopathology of lymphoid proliferations in patients with STK4 deficiency.
Collapse
Affiliation(s)
- Arzu Saglam
- Department of Pathology, Hacettepe University Faculty of Medicine, 06100, Ankara, Turkey
| | - Deniz Cagdas
- Department of Pediatric Immunology, Hacettepe University Faculty of Medicine, 06100, Ankara, Turkey
| | - Burca Aydin
- Department of Pediatric Oncology, Hacettepe University Faculty of Medicine, 06100, Ankara, Turkey
| | - Sevgi Keles
- Department of Pediatric Immunology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ismail Reisli
- Department of Pediatric Immunology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Sehbal Arslankoz
- Department of Pathology, Hacettepe University Faculty of Medicine, 06100, Ankara, Turkey
| | - Kubra Katipoglu
- Department of Pathology, Hacettepe University Faculty of Medicine, 06100, Ankara, Turkey
| | - Aysegul Uner
- Department of Pathology, Hacettepe University Faculty of Medicine, 06100, Ankara, Turkey.
| |
Collapse
|
22
|
Dadwal N, Mix C, Reinhold A, Witte A, Freund C, Schraven B, Kliche S. The Multiple Roles of the Cytosolic Adapter Proteins ADAP, SKAP1 and SKAP2 for TCR/CD3 -Mediated Signaling Events. Front Immunol 2021; 12:703534. [PMID: 34295339 PMCID: PMC8290198 DOI: 10.3389/fimmu.2021.703534] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
T cells are the key players of the adaptive immune response. They coordinate the activation of other immune cells and kill malignant and virus-infected cells. For full activation T cells require at least two signals. Signal 1 is induced after recognition of MHC/peptide complexes presented on antigen presenting cells (APCs) by the clonotypic TCR (T-cell receptor)/CD3 complex whereas Signal 2 is mediated via the co-stimulatory receptor CD28, which binds to CD80/CD86 molecules that are present on APCs. These signaling events control the activation, proliferation and differentiation of T cells. In addition, triggering of the TCR/CD3 complex induces the activation of the integrin LFA-1 (leukocyte function associated antigen 1) leading to increased ligand binding (affinity regulation) and LFA-1 clustering (avidity regulation). This process is termed "inside-out signaling". Subsequently, ligand bound LFA-1 transmits a signal into the T cells ("outside-in signaling") which enhances T-cell interaction with APCs (adhesion), T-cell activation and T-cell proliferation. After triggering of signal transducing receptors, adapter proteins organize the proper processing of membrane proximal and intracellular signals as well as the activation of downstream effector molecules. Adapter proteins are molecules that lack enzymatic or transcriptional activity and are composed of protein-protein and protein-lipid interacting domains/motifs. They organize and assemble macromolecular complexes (signalosomes) in space and time. Here, we review recent findings regarding three cytosolic adapter proteins, ADAP (Adhesion and Degranulation-promoting Adapter Protein), SKAP1 and SKAP2 (Src Kinase Associated Protein 1 and 2) with respect to their role in TCR/CD3-mediated activation, proliferation and integrin regulation.
Collapse
Affiliation(s)
- Nirdosh Dadwal
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Charlie Mix
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty of the Otto-von-Guericke University, Magdeburg, Germany
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty of the Otto-von-Guericke University, Magdeburg, Germany
| | - Amelie Witte
- Coordination Center of Clinical Trials, University Medicine Greifswald, Greifswald, Germany
| | - Christian Freund
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty of the Otto-von-Guericke University, Magdeburg, Germany
| | - Stefanie Kliche
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty of the Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
23
|
Panizzutti B, Bortolasci CC, Spolding B, Kidnapillai S, Connor T, Richardson MF, Truong TTT, Liu ZSJ, Morris G, Gray L, Hyun Kim J, Dean OM, Berk M, Walder K. Transcriptional Modulation of the Hippo Signaling Pathway by Drugs Used to Treat Bipolar Disorder and Schizophrenia. Int J Mol Sci 2021; 22:7164. [PMID: 34281223 PMCID: PMC8268913 DOI: 10.3390/ijms22137164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Recent reports suggest a link between positive regulation of the Hippo pathway with bipolar disorder (BD), and the Hippo pathway is known to interact with multiple other signaling pathways previously associated with BD and other psychiatric disorders. In this study, neuronal-like NT2 cells were treated with amisulpride (10 µM), aripiprazole (0.1 µM), clozapine (10 µM), lamotrigine (50 µM), lithium (2.5 mM), quetiapine (50 µM), risperidone (0.1 µM), valproate (0.5 mM), or vehicle control for 24 h. Genome-wide mRNA expression was quantified and analyzed using gene set enrichment analysis (GSEA), with genes belonging to Hippo, Wnt, Notch, TGF- β, and Hedgehog retrieved from the KEGG database. Five of the eight drugs downregulated the genes of the Hippo pathway and modulated several genes involved in the interacting pathways. We speculate that the regulation of these genes, especially by aripiprazole, clozapine, and quetiapine, results in a reduction of MAPK and NFκB pro-inflammatory signaling through modulation of Hippo, Wnt, and TGF-β pathways. We also employed connectivity map analysis to identify compounds that act on these pathways in a similar manner to the known psychiatric drugs. Thirty-six compounds were identified. The presence of antidepressants and antipsychotics validates our approach and reveals possible new targets for drug repurposing.
Collapse
Affiliation(s)
- Bruna Panizzutti
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Chiara C. Bortolasci
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Briana Spolding
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Srisaiyini Kidnapillai
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Timothy Connor
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Mark F. Richardson
- Genomics Centre, School of Life and Environmental Sciences, Deakin University, Burwood 3125, Australia;
| | - Trang T. T. Truong
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Zoe S. J. Liu
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Gerwyn Morris
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Laura Gray
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia
| | - Jee Hyun Kim
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| | - Olivia M. Dean
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia
| | - Michael Berk
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville 3052, Australia
- Centre of Youth Mental Health, University of Melbourne, Parkville 3052, Australia
- Orygen Youth Health Research Centre, Parkville 3052, Australia
| | - Ken Walder
- Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, IMPACT, Geelong 3220, Australia; (B.P.); (C.C.B.); (B.S.); (S.K.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (G.M.); (L.G.); (J.H.K.); (O.M.D.); (M.B.)
| |
Collapse
|
24
|
Geng J, Shi Y, Zhang J, Yang B, Wang P, Yuan W, Zhao H, Li J, Qin F, Hong L, Xie C, Deng X, Sun Y, Wu C, Chen L, Zhou D. TLR4 signalling via Piezo1 engages and enhances the macrophage mediated host response during bacterial infection. Nat Commun 2021; 12:3519. [PMID: 34112781 PMCID: PMC8192512 DOI: 10.1038/s41467-021-23683-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 05/01/2021] [Indexed: 01/20/2023] Open
Abstract
TLR4 signaling plays key roles in the innate immune response to microbial infection. Innate immune cells encounter different mechanical cues in both health and disease to adapt their behaviors. However, the impact of mechanical sensing signals on TLR4 signal-mediated innate immune response remains unclear. Here we show that TLR4 signalling augments macrophage bactericidal activity through the mechanical sensor Piezo1. Bacterial infection or LPS stimulation triggers assembly of the complex of Piezo1 and TLR4 to remodel F-actin organization and augment phagocytosis, mitochondrion-phagosomal ROS production and bacterial clearance and genetic deficiency of Piezo1 results in abrogation of these responses. Mechanistically, LPS stimulates TLR4 to induce Piezo1-mediated calcium influx and consequently activates CaMKII-Mst1/2-Rac axis for pathogen ingestion and killing. Inhibition of CaMKII or knockout of either Mst1/2 or Rac1 results in reduced macrophage bactericidal activity, phenocopying the Piezo1 deficiency. Thus, we conclude that TLR4 drives the innate immune response via Piezo1 providing critical insight for understanding macrophage mechanophysiology and the host response.
Collapse
Affiliation(s)
- Jing Geng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yiran Shi
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jinjia Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Bingying Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ping Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Weihong Yuan
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hao Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Junhong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Funiu Qin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lixin Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yujie Sun
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Congying Wu
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Lanfen Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
25
|
Cho YK, Son Y, Saha A, Kim D, Choi C, Kim M, Park JH, Im H, Han J, Kim K, Jung YS, Yun J, Bae EJ, Seong JK, Lee MO, Lee S, Granneman JG, Lee YH. STK3/STK4 signalling in adipocytes regulates mitophagy and energy expenditure. Nat Metab 2021; 3:428-441. [PMID: 33758424 DOI: 10.1038/s42255-021-00362-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/12/2021] [Indexed: 11/08/2022]
Abstract
Obesity reduces adipocyte mitochondrial function, and expanding adipocyte oxidative capacity is an emerging strategy to improve systemic metabolism. Here, we report that serine/threonine-protein kinase 3 (STK3) and STK4 are key physiological suppressors of mitochondrial capacity in brown, beige and white adipose tissues. Levels of STK3 and STK4, kinases in the Hippo signalling pathway, are greater in white than brown adipose tissues, and levels in brown adipose tissue are suppressed by cold exposure and greatly elevated by surgical denervation. Genetic inactivation of Stk3 and Stk4 increases mitochondrial mass and function, stabilizes uncoupling protein 1 in beige adipose tissue and confers resistance to metabolic dysfunction induced by high-fat diet feeding. Mechanistically, STK3 and STK4 increase adipocyte mitophagy in part by regulating the phosphorylation and dimerization status of the mitophagy receptor BNIP3. STK3 and STK4 expression levels are elevated in human obesity, and pharmacological inhibition improves metabolic profiles in a mouse model of obesity, suggesting STK3 and STK4 as potential targets for treating obesity-related diseases.
Collapse
Affiliation(s)
- Yoon Keun Cho
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yeonho Son
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Abhirup Saha
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Doeun Kim
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Cheoljun Choi
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Minsu Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji-Hyun Park
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyeonyeong Im
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Juhyeong Han
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyungmin Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jeanho Yun
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Eun Ju Bae
- College of Pharmacy, Chonbuk National University, Jeonju, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 Plus Program for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, and Korea Mouse Phenotyping Center, Seoul National University, Seoul, Republic of Korea
| | - Mi-Ock Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yun-Hee Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
- Bio-Max Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Hu ZG, Chen YB, Huang M, Tu JB, Tu SJ, Pan YJ, Chen XL, He SQ. PLG inhibits Hippo signaling pathway through SRC in the hepatitis B virus-induced hepatocellular-carcinoma progression. Am J Transl Res 2021; 13:515-531. [PMID: 33594307 PMCID: PMC7868837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
PURPOSE Hepatitis B virus (HBV) infection is one main cause of hepatocellular carcinoma (HCC), but the mechanisms of pathogenesis still remain unclear. METHODS We screened the 1351 differentially expressed genes related to HBV-induced HCC by bioinformatics analysis from databases and found that Plasminogen (PLG) may be a key gene in HBV-induced HCC progression. Then, we used a series of experiments in vivo and in vitro to explore the roles of PLG in HBV-HCC progression, such as qRT-PCR, western blot, ELISA, flow cytometry and TUNEL assay, subcutaneous xenografts and histopathological analysis to reveal the underlying mechanisms. RESULTS PLG was over-expressed in HBV positive hepatocellular carcinoma tissues and cells. PLG silencing promoted HBV-HCC cell apoptosis in vitro and suppressed the growth of HBV-induced HCC xenografts in vivo both through inhibiting HBV replication. Then, GO and KEGG analysis of these differentially expressed genes revealed that the Hippo pathway was the key pathway involved in HBV-induced HCC, and SRC, a downstream target gene of PLG, was highly expressed in HBV-induced HCC and related to the Hippo pathway. Thus, we speculated that PLG promoted HBV-induced HCC progression through up-regulating and activating the expression of SRC and promoting Hippo signaling pathway function on HBV-HCC cell survival. CONCLUSION Our study suggests PLG may be an activator of HBV-infected hepatocellular carcinoma development, as a novel prognostic biomarker and therapeutic target for HBV-HCC.
Collapse
Affiliation(s)
- Zhi-Gao Hu
- Department of General Surgery, The First Affiliated Hospital of Nanchang UniversityJiangxi, P. R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityGuangxi, P. R. China
| | - Yu-Bing Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityGuangxi, P. R. China
| | - Mei Huang
- Department of General Surgery, The First Affiliated Hospital of Nanchang UniversityJiangxi, P. R. China
| | - Jiang-Bo Tu
- Department of General Surgery, The First Affiliated Hospital of Nanchang UniversityJiangxi, P. R. China
| | - Shu-Ju Tu
- Department of General Surgery, The First Affiliated Hospital of Nanchang UniversityJiangxi, P. R. China
| | - Yu-Juan Pan
- Department of General Surgery, The First Affiliated Hospital of Nanchang UniversityJiangxi, P. R. China
| | - Xue-Li Chen
- Department of General Surgery, The First Affiliated Hospital of Nanchang UniversityJiangxi, P. R. China
| | - Song-Qing He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical UniversityGuangxi, P. R. China
| |
Collapse
|
27
|
Hills LB, Abdullah L, Lust HE, Degefu H, Huang YH. Foxo1 Serine 209 Is a Critical Regulatory Site of CD8 T Cell Differentiation and Survival. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:89-100. [PMID: 33229443 PMCID: PMC7855204 DOI: 10.4049/jimmunol.2000216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/26/2020] [Indexed: 11/19/2022]
Abstract
Foxo1 is an essential transcription factor required for the survival and differentiation of memory CD8 T cells, yet it is unclear whether these Foxo1-dependent functions are inherently coupled. To address this question, we examined the effects of different Foxo1 posttranslational modifications. Phosphorylation of Foxo1 by Akt kinases at three distinct residues is well characterized to inhibit Foxo1 transcriptional activity. However, the effect of Foxo1 phosphorylation within its DNA-binding domain at serine 209 by Mst1 kinase is not fully understood. In this study, we show that an S209A phospho-null Foxo1 exhibited Akt-dependent nuclear trafficking in mouse CD8 T cells and augmented the expression of canonical Foxo1 target genes such as Il7r and Sell In contrast, an S209D phosphomimetic Foxo1 (SD-Foxo1) was largely excluded from the nucleus of CD8 T cells and failed to transactivate these genes. RNA sequencing analysis revealed that SD-Foxo1 was associated with a distinct Foxo1-dependent transcriptional profile, including genes mediating CD8 effector function and cell survival. Despite defective transactivation of canonical target genes, SD-Foxo1 promoted IL-15-mediated CD8 T cell survival in vitro and survival of short-lived effector cells in vivo in response to Listeria monocytogenes infection. However, SD-Foxo1 actively repressed CD127 expression and failed to generate memory precursors and long-lived memory T cells. Together, these data indicate that S209 is a critical residue for the regulation of Foxo1 subcellular localization and for balancing CD8 T cell differentiation and survival.
Collapse
Affiliation(s)
- Leonard Benjamin Hills
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
| | - Leena Abdullah
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
| | - Hannah E Lust
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
| | - Hanna Degefu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
| | - Yina H Huang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| |
Collapse
|
28
|
Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat Rev Drug Discov 2020; 19:480-494. [PMID: 32555376 DOI: 10.1038/s41573-020-0070-z] [Citation(s) in RCA: 518] [Impact Index Per Article: 103.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
The Hippo pathway is an evolutionarily conserved signalling pathway with key roles in organ development, epithelial homeostasis, tissue regeneration, wound healing and immune modulation. Many of these roles are mediated by the transcriptional effectors YAP and TAZ, which direct gene expression via control of the TEAD family of transcription factors. Dysregulated Hippo pathway and YAP/TAZ-TEAD activity is associated with various diseases, most notably cancer, making this pathway an attractive target for therapeutic intervention. This Review highlights the key findings from studies of Hippo pathway signalling across biological processes and diseases, and discusses new strategies and therapeutic implications of targeting this pathway.
Collapse
|
29
|
Raynor JL, Liu C, Dhungana Y, Guy C, Chapman NM, Shi H, Neale G, Sesaki H, Chi H. Hippo/Mst signaling coordinates cellular quiescence with terminal maturation in iNKT cell development and fate decisions. J Exp Med 2020; 217:e20191157. [PMID: 32289155 PMCID: PMC7971129 DOI: 10.1084/jem.20191157] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 02/02/2020] [Accepted: 03/13/2020] [Indexed: 12/18/2022] Open
Abstract
Invariant natural killer T (iNKT) cells acquire effector functions during development by mechanisms that remain poorly understood. Here, we show that the Hippo kinases Mst1 and Mst2 act as molecular rheostats for the terminal maturation and effector differentiation programs of iNKT cells. Loss of Mst1 alone or together with Mst2 impedes iNKT cell development, associated with defective IL-15-dependent cell survival. Mechanistically, Mst1 enforces iNKT cellular and transcriptional quiescence associated with maturation and commitment to iNKT1 cells by suppressing proliferation and Opa1-related mitochondrial metabolism that are dynamically regulated during iNKT cell development. Furthermore, Mst1 shapes the reciprocal fate decisions between iNKT1 and iNKT17 effector cells, which respectively depend upon mitochondrial dynamics and ICOS-mTORC2 signaling. Collectively, these findings establish Mst1 as a crucial regulator of mitochondrial homeostasis and quiescence in iNKT cell development and effector lineage differentiation and highlight that establishment of quiescence programs underlies iNKT cell development and effector maturation.
Collapse
Affiliation(s)
- Jana L. Raynor
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Chaohong Liu
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yogesh Dhungana
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Cliff Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Nicole M. Chapman
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Hao Shi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Hongbo Chi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
30
|
Ueda Y, Kondo N, Kinashi T. MST1/2 Balance Immune Activation and Tolerance by Orchestrating Adhesion, Transcription, and Organelle Dynamics in Lymphocytes. Front Immunol 2020; 11:733. [PMID: 32435241 PMCID: PMC7218056 DOI: 10.3389/fimmu.2020.00733] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/31/2020] [Indexed: 01/15/2023] Open
Abstract
The STE20-like serine/threonine kinases MST1 and MST2 (MST1/2) are mammalian homologs of Hippo in flies. MST1/2 regulate organ size by suppressing the transcription factor YAP, which promotes proliferation. MST1 is predominantly expressed in immune cells, where it plays distinct roles. Here, we review the functions of MST1/2 in immune cells, uncovered by a series of recent studies, and discuss the connection between MST1/2 function and immune responses. MST1/2 regulate lymphocyte development, trafficking, survival, and antigen recognition by naive T cells. MST1/2 also regulate the function of regulatory T cells and effector T cell differentiation, thus acting to balance immune activation and tolerance. Interestingly, MST1/2 elicit these functions not by the “canonical” Hippo pathway, but by the non-canonical Hippo pathway or alternative pathways. In these pathways, MST1/2 regulates cellular processes relating to immune response, such as chemotaxis, cell adhesion, immunological synapse, gene transcriptions. Recent advances in our understanding of the molecular mechanisms of these processes have revealed important roles of MST1/2 in regulating cytoskeleton remodeling, integrin activation, and vesicular transport in lymphocytes. We discuss the significance of the MST1/2 signaling in lymphocytes in the regulation of organelle dynamics.
Collapse
Affiliation(s)
- Yoshihiro Ueda
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Naoyuki Kondo
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Tatsuo Kinashi
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
31
|
Adalsteinsson JA, Kaushik S, Muzumdar S, Guttman-Yassky E, Ungar J. An update on the microbiology, immunology and genetics of seborrheic dermatitis. Exp Dermatol 2020; 29:481-489. [PMID: 32125725 DOI: 10.1111/exd.14091] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 02/07/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
The underlying mechanism of seborrheic dermatitis (SD) is poorly understood but major scientific progress has been made in recent years related to microbiology, immunology and genetics. In light of this, the major goal of this article was to summarize the most recent articles on SD, specifically related to underlying pathophysiology. SD results from Malassezia hydrolysation of free fatty acids with activation of the immune system by the way of pattern recognition receptors, inflammasome, IL-1β and NF-kB. M. restricta and M. globosa are likely the most virulent subspecies, producing large quantities of irritating oleic acids, leading to IL-8 and IL-17 activation. IL-17 and IL-4 might play a big role in pathogenesis, but this needs to be further studied using novel biologics. No clear genetic predisposition has been established; however, recent studies implicated certain increased-risk human leucocyte antigen (HLA) alleles, such as A*32, DQB1*05 and DRB1*01 as well as possible associations with psoriasis and atopic dermatitis (AD) through the LCE3 gene cluster while SD, and SD-like syndromes, shares genetic mutations that appear to impair the ability of the immune system to restrict Malassezia growth, partially due to complement system dysfunction. A paucity of studies exists looking at the relationship between SD and systemic disease. In HIV, SD is thought to be secondary to a combination of immune dysregulation and disruption in skin microbiota with unhindered Malassezia proliferation. In Parkinson's disease, SD is most likely secondary to parasympathetic hyperactivity with increased sebum production as well as facial immobility which leads to sebum accumulation.
Collapse
Affiliation(s)
| | - Shivani Kaushik
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sonal Muzumdar
- Department of Dermatology, University of Connecticut, Farmington, Connecticut
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jonathan Ungar
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
32
|
Hippo kinases MST1 and MST2 control the differentiation of the epididymal initial segment via the MEK-ERK pathway. Cell Death Differ 2020; 27:2797-2809. [PMID: 32332916 DOI: 10.1038/s41418-020-0544-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 11/08/2022] Open
Abstract
Although the roles of the Hippo pathway in organogenesis and tumorigenesis have been well studied in multiple organs, its role in sperm maturation and male fertility has not been investigated. The initial segment (IS) of the epididymis plays a critical role in sperm maturation. IS differentiation is governed by ERK1/2, but the mechanisms of ERK1/2 activation in IS are not fully understood. Here we show that double knockout (dKO) of mammalian sterile 20-like kinases 1 and 2 (Mst1 and Mst2), homologs of Hippo in Drosophila, in the epididymal epithelium led to male infertility in mice. Sperm in the cauda epididymides of mutant mice were immotile with flagellar angulation and severely disorganized structures. Loss of Mst1/2 activated YAP and increased proliferation and cell death in all the segments of epididymis. The mutant mice showed substantially suppressed MEK/ERK signaling in the IS and failed IS differentiation. Deletion of Yap restored the reduced MEK/ERK signaling, and partially rescued the defective IS differentiation and fertility in Mst1/2 dKO mice. Our results demonstrate that YAP inhibits the MEK/ERK pathway in IS epithelial cells, and MST1/2 control IS differentiation and fertility at least partially by repressing YAP. Taken together, the Hippo pathway is essential for sperm maturation and male fertility.
Collapse
|
33
|
Xu C, Wang L, Zhang Y, Li W, Li J, Wang Y, Meng C, Qin J, Zheng ZH, Lan HY, Mak KKL, Huang Y, Xia Y. Tubule-Specific Mst1/2 Deficiency Induces CKD via YAP and Non-YAP Mechanisms. J Am Soc Nephrol 2020; 31:946-961. [PMID: 32253273 DOI: 10.1681/asn.2019101052] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The serine/threonine kinases MST1 and MST2 are core components of the Hippo pathway, which has been found to be critically involved in embryonic kidney development. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are the pathway's main effectors. However, the biologic functions of the Hippo/YAP pathway in adult kidneys are not well understood, and the functional role of MST1 and MST2 in the kidney has not been studied. METHODS We used immunohistochemistry to examine expression in mouse kidneys of MST1 and MST2, homologs of Hippo in Drosophila. We generated mice with tubule-specific double knockout of Mst1 and Mst2 or triple knockout of Mst1, Mst2, and Yap. PCR array and mouse inner medullary collecting duct cells were used to identify the primary target of Mst1/Mst2 deficiency. RESULTS MST1 and MST2 were predominantly expressed in the tubular epithelial cells of adult kidneys. Deletion of Mst1/Mst2 in renal tubules increased activity of YAP but not TAZ. The kidneys of mutant mice showed progressive inflammation, tubular and glomerular damage, fibrosis, and functional impairment; these phenotypes were largely rescued by deletion of Yap in renal tubules. TNF-α expression was induced via both YAP-dependent and YAP-independent mechanisms, and TNF-α and YAP amplified the signaling activities of each other in the tubules of kidneys with double knockout of Mst1/Mst2. CONCLUSIONS Our findings show that tubular Mst1/Mst2 deficiency leads to CKD through both the YAP and non-YAP pathways and that tubular YAP activation induces renal fibrosis. The pathogenesis seems to involve the reciprocal stimulation of TNF-α and YAP signaling activities.
Collapse
Affiliation(s)
- Chunhua Xu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenling Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jinhong Li
- Department of Nephrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yang Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chenling Meng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jinzhong Qin
- The Key Laboratory of Model Animal for Disease Study, Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Zhi-Hua Zheng
- Department of Nephrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Yu Huang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China .,Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
34
|
Cheng J, Wang S, Dong Y, Yuan Z. The Role and Regulatory Mechanism of Hippo Signaling Components in the Neuronal System. Front Immunol 2020; 11:281. [PMID: 32140159 PMCID: PMC7042394 DOI: 10.3389/fimmu.2020.00281] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/04/2020] [Indexed: 01/07/2023] Open
Abstract
The Hippo signaling pathway, an evolutionarily conserved protein kinase cascade, plays a critical role in controlling organ size, cancer development, and tissue regeneration. Recently, mounting evidence has suggested that Hippo signaling also has an important role in regulating immunity, including innate and adaptive immune activation. In the neuronal system, Our laboratory results, together with those from other studies, demonstrate that the Hippo signaling pathway is involved in neuroinflammation, neuronal cell differentiation, and neuronal death. In the present review, we summarize the recent findings pertaining to the function and regulatory mechanism of Hippo signaling components in the neuronal system, implicating the potential of Hippo signaling as a therapeutic target for the treatment of neuronal system diseases.
Collapse
Affiliation(s)
- Jinbo Cheng
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, China.,The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Shukun Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yuan Dong
- Department of Biochemistry, Medical College, Qingdao University, Qingdao, China
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
35
|
Wang Z, Lu W, Zhang Y, Zou F, Jin Z, Zhao T. The Hippo Pathway and Viral Infections. Front Microbiol 2020; 10:3033. [PMID: 32038526 PMCID: PMC6990114 DOI: 10.3389/fmicb.2019.03033] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
The Hippo signaling pathway is a novel tumor suppressor pathway, initially found in Drosophila. Recent studies have discovered that the Hippo signaling pathway plays a critical role in a wide range of biological processes, including organ size control, cell proliferation, cancer development, and virus-induced diseases. In this review, we summarize the current understanding of the biological feature and pathological role of the Hippo pathway, focusing particularly on current findings in the function of the Hippo pathway in virus infection and pathogenesis.
Collapse
Affiliation(s)
- Zhilong Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Wanhang Lu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Yiling Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Feng Zou
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Zhigang Jin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Tiejun Zhao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
36
|
Stampouloglou E, Cheng N, Federico A, Slaby E, Monti S, Szeto GL, Varelas X. Yap suppresses T-cell function and infiltration in the tumor microenvironment. PLoS Biol 2020; 18:e3000591. [PMID: 31929526 PMCID: PMC6980695 DOI: 10.1371/journal.pbio.3000591] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 01/24/2020] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
A major challenge for cancer immunotherapy is sustaining T-cell activation and recruitment in immunosuppressive solid tumors. Here, we report that the levels of the Hippo pathway effector Yes-associated protein (Yap) are sharply induced upon the activation of cluster of differentiation 4 (CD4)-positive and cluster of differentiation 8 (CD8)-positive T cells and that Yap functions as an immunosuppressive factor and inhibitor of effector differentiation. Loss of Yap in T cells results in enhanced T-cell activation, differentiation, and function, which translates in vivo to an improved ability for T cells to infiltrate and repress tumors. Gene expression analyses of tumor-infiltrating T cells following Yap deletion implicates Yap as a mediator of global T-cell responses in the tumor microenvironment and as a negative regulator of T-cell tumor infiltration and patient survival in diverse human cancers. Collectively, our results indicate that Yap plays critical roles in T-cell biology and suggest that Yap inhibition improves T-cell responses in cancer.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/physiology
- Cell Proliferation/genetics
- Cells, Cultured
- Chemotaxis, Leukocyte/genetics
- Down-Regulation/genetics
- Down-Regulation/immunology
- Immunotherapy, Adoptive
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Skin Neoplasms/therapy
- T-Lymphocytes/physiology
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Eleni Stampouloglou
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Nan Cheng
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Anthony Federico
- Division of Computational Biology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Emily Slaby
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Stefano Monti
- Division of Computational Biology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Gregory L. Szeto
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, United States of America
- Translational Center for Age-Related Disease and Disparities, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
37
|
Stoner SA, Yan M, Liu KTH, Arimoto KI, Shima T, Wang HY, Johnson DT, Bejar R, Jamieson C, Guan KL, Zhang DE. Hippo kinase loss contributes to del(20q) hematologic malignancies through chronic innate immune activation. Blood 2019; 134:1730-1744. [PMID: 31434702 PMCID: PMC6856986 DOI: 10.1182/blood.2019000170] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022] Open
Abstract
Heterozygous deletions within chromosome 20q, or del(20q), are frequent cytogenetic abnormalities detected in hematologic malignancies. To date, identification of genes in the del(20q) common deleted region that contribute to disease development have remained elusive. Through assessment of patient gene expression, we have identified STK4 (encoding Hippo kinase MST1) as a 20q gene that is downregulated below haploinsufficient amounts in myelodysplastic syndrome (MDS) and myeloproliferative neoplasm (MPN). Hematopoietic-specific gene inactivation in mice revealed Hippo kinase loss to induce splenomegaly, thrombocytopenia, megakaryocytic dysplasia, and a propensity for chronic granulocytosis; phenotypes that closely resemble those observed in patients harboring del(20q). In a JAK2-V617F model, heterozygous Hippo kinase inactivation led to accelerated development of lethal myelofibrosis, recapitulating adverse MPN disease progression and revealing a novel genetic interaction between these 2 molecular events. Quantitative serum protein profiling showed that myelofibrotic transformation in mice was associated with cooperative effects of JAK2-V617F and Hippo kinase inactivation on innate immune-associated proinflammatory cytokine production, including IL-1β and IL-6. Mechanistically, MST1 interacted with IRAK1, and shRNA-mediated knockdown was sufficient to increase IRAK1-dependent innate immune activation of NF-κB in human myeloid cells. Consistent with this, treatment with a small molecule IRAK1/4 inhibitor rescued the aberrantly elevated IL-1β production in the JAK2-V617F MPN model. This study identified Hippo kinase MST1 (STK4) as having a central role in the biology of del(20q)-associated hematologic malignancies and revealed a novel molecular basis of adverse MPN progression that may be therapeutically exploitable via IRAK1 inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rafael Bejar
- Moores Cancer Center
- Biomedical Sciences Graduate Program
- Division of Hematology and Oncology, Department of Medicine
| | - Catriona Jamieson
- Moores Cancer Center
- Biomedical Sciences Graduate Program
- Division of Regenerative Medicine, Department of Medicine, and
| | - Kun-Liang Guan
- Moores Cancer Center
- Biomedical Sciences Graduate Program
- Department of Pharmacology, University of California San Diego, La Jolla, CA
| | - Dong-Er Zhang
- Moores Cancer Center
- Biomedical Sciences Graduate Program
- Division of Biological Sciences
- Department of Pathology
| |
Collapse
|
38
|
Affiliation(s)
- Dominic P Del Re
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark.
| |
Collapse
|
39
|
Cho KM, Kim MS, Jung HJ, Choi EJ, Kim TS. Mst1-Deficiency Induces Hyperactivation of Monocyte-Derived Dendritic Cells via Akt1/c-myc Pathway. Front Immunol 2019; 10:2142. [PMID: 31572367 PMCID: PMC6749027 DOI: 10.3389/fimmu.2019.02142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022] Open
Abstract
Mst1 is a multifunctional serine/threonine kinase that is highly expressed in several immune organs. The role of Mst1 in the activation of dendritic cells (DCs), a key player of adaptive immunity, is poorly understood. In this study, we investigated the role of Mst1 in GM-CSF-induced bone marrow-derived DCs and the underlying mechanisms. Mst1−/− DCs in response to GM-CSF expressed higher levels of activation/maturation-related cell surface molecules, such as B7 and MHC class II than Mst1+/+ DCs. Furthermore, the expression of proinflammatory cytokines, such as IL-23, TNF-α, and IL-12p40, was increased in Mst1−/− DCs, indicating that Mst1-deficiency may induce the hyperactivation of DCs. Additionally, Mst1−/− DCs exhibited a stronger capacity to activate allogeneic T cells than Mst1+/+ DCs. Silencing of Mst1 in DCs promoted their hyperactivation, similar to the phenotypes of Mst1−/− DCs. Mst1−/− DCs exhibited an increase in Akt1 phosphorylation and c-myc protein levels. In addition, treatment with an Akt1 inhibitor downregulated the protein level of c-myc increased in Mst1-deficient DCs, indicating that Akt1 acts as an upstream inducer of the de novo synthesis of c-myc. Finally, Akt1 and c-myc inhibitors downregulated the increased expression of IL-23p19 observed in Mst1-knockdown DCs. Taken together, these data demonstrate that Mst1 negatively regulates the hyperactivation of DCs through downregulation of the Akt1/c-myc axis in response to GM-CSF, and suggest that Mst1 is one of the endogenous factors that determine the activation status of GM-CSF-stimulated inflammatory DCs.
Collapse
Affiliation(s)
- Kyung-Min Cho
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Myun Soo Kim
- Institute of Convergence Science, Korea University, Seoul, South Korea
| | - Hak-Jun Jung
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Eui-Ju Choi
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Tae Sung Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
40
|
Abstract
The Hippo signaling pathway has been shown to play a pivotal role in controlling organ size and maintaining tissue homeostasis in multiple organisms ranging from Drosophila to mammals. Recently, we and others have demonstrated that Hippo signaling is also essential for maintaining the immune system homeostasis. Unlike the canonical Mst-Lats-Yap signal pathway, which controls tissue growth during development and regeneration, most studies regarding Hippo signaling in immune regulation is focusing in Mst1/2, the core kinases of Hippo signaling, cross-talking with other signaling pathways in various immune cells. In particular, patients bearing a loss-of-function mutation of Mst1 develop a complex immunodeficiency syndrome. Regarding the Hippo signaling in innate immunity, we have reported that Mst1/2 kinases are required for phagocytosis and efficient clearance of bacteria in phagocytes by regulating reactive oxygen species (ROS) production; and at the same time, by sensing the excessive ROS, Mst1/2 kinases maintain cellular redox homeostasis and prevent phagocytes aging and death through modulating the stability of the key antioxidant transcription factor Nrf2. In addition, we have revealed that the Mst1/2 kinases are critical in regulating T cells activation and Mst1/2-TAZ axis regulates the reciprocal differentiation of Treg cells and Th17 cells to modulate autoimmune inflammation by altering interactions between the transcription factors Foxp3 and RORγt. These results indicate that Hippo signaling maintains the balance between tolerance and inflammation of adaptive immunity.
Collapse
Affiliation(s)
- Lanfen Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China..
| |
Collapse
|
41
|
Zinatizadeh MR, Momeni SA, Zarandi PK, Chalbatani GM, Dana H, Mirzaei HR, Akbari ME, Miri SR. The Role and Function of Ras-association domain family in Cancer: A Review. Genes Dis 2019; 6:378-384. [PMID: 31832517 PMCID: PMC6889020 DOI: 10.1016/j.gendis.2019.07.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 02/08/2023] Open
Abstract
Ras gene mutation has been observed in more than 30% of cancers, and 90% of pancreatic, lung and colon cancers. Ras proteins (K-Ras, H-Ras, N-Ras) act as molecular switches which are activated by binding to GTP. They play a role in the cascade of cell process control (proliferation and cell division). In the inactive state, transforming GTP to GDP leads to the activation of GTpase in Ras gene. However, the mutation in Ras leads to the loss of internal GTPase activity and permanent activation of the protein. The activated Ras can promote the cell death or stop cell growth, which are facilitated by Ras-association domain family. Various studies have been conducted to determine the importance of losing RASSF proteins in Ras-induced tumors. This paper examines the role of Ras and RASSF proteins. In general, RASSF proteins can be used as a suitable means for targeting a large group of Ras-induced tumors.
Collapse
Affiliation(s)
- Mohammad Reza Zinatizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Seyed Ali Momeni
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, IR, Iran
| | - Peyman Kheirandish Zarandi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | | | - Hassan Dana
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Hamid Reza Mirzaei
- Cancer Research Center, Shohadae Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Seyed Rouhollah Miri
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
42
|
Pan Z, Tian Y, Cao C, Niu G. The Emerging Role of YAP/TAZ in Tumor Immunity. Mol Cancer Res 2019; 17:1777-1786. [PMID: 31308148 DOI: 10.1158/1541-7786.mcr-19-0375] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/03/2019] [Accepted: 07/10/2019] [Indexed: 11/16/2022]
Abstract
Yes-associated protein (YAP)/WW domain-containing transcription regulator 1 (TAZ) is an important transcriptional regulator and effector of the Hippo signaling pathway that has emerged as a critical determinant of malignancy in many human tumors. YAP/TAZ expression regulates the cross-talk between immune cells and tumor cells in the tumor microenvironment through its influence on T cells, myeloid-derived suppressor cells, and macrophages. However, the mechanisms underlying these effects are poorly understood. An improved understanding of the role of YAP/TAZ in tumor immunity is essential for exploring innovative tumor treatments and making further breakthroughs in antitumor immunotherapy. This review primarily focuses on the role of YAP/TAZ in immune cells, their interactions with tumor cells, and how this impacts on tumorigenesis, progression, and therapy resistance.
Collapse
Affiliation(s)
- Zhaoji Pan
- Xuzhou Central Hospital, The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu, P.R. China
| | - Yiqing Tian
- Xinyi People's Hospital, Xinyi, Xuzhou, Jiangsu, P.R. China.
| | - Chengsong Cao
- Xuzhou Central Hospital, The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu, P.R. China
| | - Guoping Niu
- Xuzhou Central Hospital, The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu, P.R. China
| |
Collapse
|
43
|
Kato W, Nishio M, To Y, Togashi H, Mak TW, Takada H, Ohga S, Maehama T, Suzuki A. MOB1 regulates thymocyte egress and T-cell survival in mice in a YAP1-independent manner. Genes Cells 2019; 24:485-495. [PMID: 31125466 DOI: 10.1111/gtc.12704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/05/2019] [Accepted: 05/14/2019] [Indexed: 01/31/2023]
Abstract
Mammalian STE20-like protein kinase 1/2 (MST1/2) and nuclear Dbf2-related kinase 1/2 (NDR1/2) are core components of Hippo signaling that are also known to be important regulators of lymphocyte trafficking. However, little is understood about the roles of other Hippo pathway molecules in these cells. Here, we present the first analysis of the function of Mps one binder kinase activator-1 (MOB1) in T lymphocytes in vivo. T-cell-specific double knockout (DKO) of MOB1A/B in mice [tMob1 DKO mice] reduces the number of naïve T cells in both the circulation and secondary lymphoid organs, but leads to an accumulation of CD4+ CD8- and CD4- CD8+ single-positive (SP) cells in the thymus. In vitro, naïve MOB1A/B-deficient T cells show increased apoptosis and display impaired trafficking capacity in response to the chemokine CCL19. These defects are linked to suppression of the activation of MST and NDR kinases, but are independent of the downstream transcriptional co-activator Yes-associated protein 1 (YAP1). Thus, MOB1 proteins play an important role in thymic egress and T-cell survival that is mediated by a pathway other than conventional Hippo-YAP1 signaling.
Collapse
Affiliation(s)
- Wakako Kato
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Hyogo, Japan.,Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Miki Nishio
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Hyogo, Japan.,Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoko To
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hideru Togashi
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Tak Wah Mak
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada
| | - Hidetoshi Takada
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Akira Suzuki
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Hyogo, Japan.,Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
44
|
Yamauchi T, Moroishi T. Hippo Pathway in Mammalian Adaptive Immune System. Cells 2019; 8:cells8050398. [PMID: 31052239 PMCID: PMC6563119 DOI: 10.3390/cells8050398] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/11/2022] Open
Abstract
The Hippo pathway was originally identified as an evolutionarily-conserved signaling mechanism that contributes to the control of organ size. It was then rapidly expanded as a key pathway in the regulation of tissue development, regeneration, and cancer pathogenesis. The increasing amount of evidence in recent years has also connected this pathway to the regulation of innate and adaptive immune responses. Notably, the Hippo pathway has been revealed to play a pivotal role in adaptive immune cell lineages, as represented by the patients with T- and B-cell lymphopenia exhibiting defective expressions of the pathway component. The complex regulatory mechanisms of and by the Hippo pathway have also been evident as alternative signal transductions are employed in some immune cell types. In this review article, we summarize the current understanding of the emerging roles of the Hippo pathway in adaptive immune cell development and differentiation. We also highlight the recent findings concerning the dual functions of the Hippo pathway in autoimmunity and anti-cancer immune responses and discuss the key open questions in the interplay between the Hippo pathway and the mammalian immune system.
Collapse
Affiliation(s)
- Takayoshi Yamauchi
- Department of Molecular Enzymology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Toshiro Moroishi
- Department of Molecular Enzymology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan.
| |
Collapse
|
45
|
White SM, Murakami S, Yi C. The complex entanglement of Hippo-Yap/Taz signaling in tumor immunity. Oncogene 2019; 38:2899-2909. [PMID: 30617303 PMCID: PMC7567008 DOI: 10.1038/s41388-018-0649-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022]
Abstract
The Hippo-Yap/Taz pathway, originally identified as a central developmental regulator of organ size, has been found perturbed in many types of human tumors, and linked to tumor growth, survival, evasion, metastasis, stemness, and drug resistance. Beside these tumor-cell-intrinsic functions, Hippo signaling also plays important immune-regulatory roles. In this review, we will summarize and discuss recent breakthroughs in our understanding of how various components of the Hippo-Yap/Taz pathway influence the tumor immune microenvironment, including their effects on the tumor secretome and immune infiltrates, their roles in regulating crosstalk between tumor cells and T cells, and finally their intrinsic functions in various types of innate and adaptive immune cells. While further research is needed to integrate and reconcile existing findings and to discern the overall effects of Hippo signaling on tumor immunity, it is clear that Hippo signaling functions as a key bridge connecting tumor cells with both the adaptive and innate immune systems. Thus, all future therapeutic development against the Hippo-Yap/Taz pathway should take into account their multi-faceted roles in regulating tumor immunity in addition to their growth-regulatory functions. Given that immune therapies have become the mainstay of cancer treatment, it is also important to pursue how to manipulate Hippo signaling to boost response or overcome resistance to existing immune therapies.
Collapse
Affiliation(s)
- Shannon M White
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Shigekazu Murakami
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Chunling Yi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
46
|
Macrophage achieves self-protection against oxidative stress-induced ageing through the Mst-Nrf2 axis. Nat Commun 2019; 10:755. [PMID: 30765703 PMCID: PMC6376064 DOI: 10.1038/s41467-019-08680-6] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/22/2019] [Indexed: 12/24/2022] Open
Abstract
Reactive oxygen species (ROS) production in phagocytes is a major defense mechanism against pathogens. However, the cellular self-protective mechanism against such potential damage from oxidative stress remains unclear. Here we show that the kinases Mst1 and Mst2 (Mst1/2) sense ROS and maintain cellular redox balance by modulating the stability of antioxidant transcription factor Nrf2. Site-specific ROS release recruits Mst1/2 from the cytosol to the phagosomal or mitochondrial membrane, with ROS subsequently activating Mst1/2 to phosphorylate kelch like ECH associated protein 1 (Keap1) and prevent Keap1 polymerization, thereby blocking Nrf2 ubiquitination and degradation to protect cells against oxidative damage. Treatment with the antioxidant N-acetylcysteine disrupts ROS-induced interaction of Mst1/2 with phagosomes or mitochondria, and thereby diminishes the Mst-Nrf2 signal. Consistently, loss of Mst1/2 results in increased oxidative injury, phagocyte ageing and death. Thus, our results identify the Mst-Nrf2 axis as an important ROS-sensing and antioxidant mechanism during an antimicrobial response. Immune cells produce reactive oxygen species (ROS) to eliminate pathogens, but cell-spontaneous death and ageing may also be induced. Here the authors show that, upon sensing ROS, Mst1/2 kinases modulate the activity of Nrf2 transcription factor and downstream genetic programs to protect mouse macrophages from death and ageing.
Collapse
|
47
|
Waldt N, Seifert A, Demiray YE, Devroe E, Turk BE, Reichardt P, Mix C, Reinhold A, Freund C, Müller AJ, Schraven B, Stork O, Kliche S. Filamin A Phosphorylation at Serine 2152 by the Serine/Threonine Kinase Ndr2 Controls TCR-Induced LFA-1 Activation in T Cells. Front Immunol 2018; 9:2852. [PMID: 30568657 PMCID: PMC6290345 DOI: 10.3389/fimmu.2018.02852] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/19/2018] [Indexed: 01/10/2023] Open
Abstract
The integrin LFA-1 (CD11a/CD18) plays a critical role in the interaction of T cells with antigen presenting cells (APCs) to promote lymphocyte differentiation and proliferation. This integrin can be present either in a closed or in an open active conformation and its activation upon T-cell receptor (TCR) stimulation is a critical step to allow interaction with APCs. In this study we demonstrate that the serine/threonine kinase Ndr2 is critically involved in the initiation of TCR-mediated LFA-1 activation (open conformation) in T cells. Ndr2 itself becomes activated upon TCR stimulation and phosphorylates the intracellular integrin binding partner Filamin A (FLNa) at serine 2152. This phosphorylation promotes the dissociation of FLNa from LFA-1, allowing for a subsequent association of Talin and Kindlin-3 which both stabilize the open conformation of LFA-1. Our data suggest that Ndr2 activation is a crucial step to initiate TCR-mediated LFA-1 activation in T cells.
Collapse
Affiliation(s)
- Natalie Waldt
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| | - Anke Seifert
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| | - Yunus Emre Demiray
- Institute of Biology, Department of Genetics and Molecular Neurobiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Eric Devroe
- MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, United States
| | - Peter Reichardt
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| | - Charlie Mix
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| | - Christian Freund
- Protein Biochemistry Group, Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Andreas J Müller
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany.,Intravital Microscopy of Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany.,Department of Immune Control Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Oliver Stork
- Institute of Biology, Department of Genetics and Molecular Neurobiology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Stefanie Kliche
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
48
|
Bagherzadeh Yazdchi S, Witalis M, Meli AP, Leung J, Li X, Panneton V, Chang J, Li J, Nutt SL, Johnson RL, Lim DS, Gu H, King IL, Suh WK. Hippo Pathway Kinase Mst1 Is Required for Long-Lived Humoral Immunity. THE JOURNAL OF IMMUNOLOGY 2018; 202:69-78. [PMID: 30478091 DOI: 10.4049/jimmunol.1701407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/24/2018] [Indexed: 12/31/2022]
Abstract
The protein kinase Mst1 is a key component of the evolutionarily conserved Hippo pathway that regulates cell survival, proliferation, differentiation, and migration. In humans, Mst1 deficiency causes primary immunodeficiency. Patients with MST1-null mutations show progressive loss of naive T cells but, paradoxically, mildly elevated serum Ab titers. Nonetheless, the role of Mst1 in humoral immunity remains poorly understood. In this study, we found that early T cell-dependent IgG1 responses in young adult Mst1-deficient mice were largely intact with signs of impaired affinity maturation. However, the established Ag-specific IgG1 titers in Mst1-deficient mice decayed more readily because of a loss of Ag-specific but not the overall bone marrow plasma cells. Despite the impaired affinity and longevity of Ag-specific Abs, Mst1-deficient mice produced plasma cells displaying apparently normal maturation markers with intact migratory and secretory capacities. Intriguingly, in immunized Mst1-deficient mice, T follicular helper cells were hyperactive, expressing higher levels of IL-21, IL-4, and surface CD40L. Accordingly, germinal center B cells progressed more rapidly into the plasma cell lineage, presumably forgoing rigorous affinity maturation processes. Importantly, Mst1-deficient mice had elevated levels of CD138+Blimp1+ splenic plasma cell populations, yet the size of the bone marrow plasma cell population remained normal. Thus, overproduced low-affinity plasma cells from dysregulated germinal centers seem to underlie humoral immune defects in Mst1-deficiency. Our findings imply that vaccination of Mst1-deficient human patients, even at the early stage of life, may fail to establish long-lived high-affinity humoral immunity and that prophylactic Ab replacement therapy can be beneficial to the patients.
Collapse
Affiliation(s)
- Sahar Bagherzadeh Yazdchi
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Mariko Witalis
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada.,Molecular Biology Program, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Alexandre P Meli
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Joanne Leung
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Xin Li
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Vincent Panneton
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada.,Department of Microbiology, Infectiology, and Immunology, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Jinsam Chang
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada.,Molecular Biology Program, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Joanna Li
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Randy L Johnson
- Department of Cancer Biology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030; and
| | - Dae-Sik Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Hua Gu
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Irah L King
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Woong-Kyung Suh
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada; .,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada.,Molecular Biology Program, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
49
|
Karchugina S, Chernoff J. Detection of Heterodimerization of Protein Isoforms Using an in Situ Proximity Ligation Assay. J Vis Exp 2018. [PMID: 30394375 DOI: 10.3791/57755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Regulated protein-protein interactions are a guiding principle for many signaling events, and the detection of such events is an important element in understanding how such pathways are organized and how they function. There are many methods to detect protein-protein interactions in cells, but relatively few can be used to detect interactions between endogenous proteins. One such method, the proximity ligation assay (PLA), has several advantages to recommend its use. Compared to other common methods of protein-protein interaction analysis, PLA has relatively high sensitivity and specificity, can be performed with minimal cell manipulation, and, in the protocol described herein, requires only two target-specific antibodies derived from different species (e.g., from mouse and rabbit) and one specialized reagent: a set of secondary antibodies that are covalently linked to specific oligonucleotides that, when brought in close proximity of one another, create an amplifiable platform for in situ PCR or rolling circle amplification. In this presentation, we show how to apply the PLA technique to visualize changes in MST1 and MST2 proximity in fixed cells. The technique described in this manuscript is particularly applicable for the analysis of cell signaling studies.
Collapse
|
50
|
Abstract
Ras oncoproteins can promote or suppress cellular apoptosis, but the mechanisms underlying these varied responses remain incompletely understood. Ras is linked to the Hippo tumor suppressor pathway, a highly conserved signaling cassette that regulates organ size in animals ranging from flies to humans. The proximal members of this pathway, Mammalian Ste20-like kinases (Msts) -1 and -2, self-associate in homodimers and also form heterodimers with other proteins. Formation of such complexes is known to regulate Mst kinase activity and thus, the Hippo pathway. In a manuscript that recently appeared in Current Biology, we showed that activated Hras promotes the formation of Mst1/Mst2 heterodimers, that activation of Erk was required for this event, and that these heterodimers were much less active than Mst1/Mst1 or Mst2/Mst2 homodimers. Interestingly, the formation of such heterodimers was required to deactivate the Hippo pathway and to enable transformation by Hras. In this Commentary, we discuss the background for this study and surprising implications thereof.
Collapse
|