1
|
Tarabini RF, Fioravanti Vieira G, Rigo MM, de Souza APD. Mutations in glioblastoma proteins do not disrupt epitope presentation and recognition, maintaining a specific CD8 T cell immune response potential. Sci Rep 2024; 14:16721. [PMID: 39030304 PMCID: PMC11271619 DOI: 10.1038/s41598-024-67099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
Antigen-specific cytotoxic CD8 T cells are extremely effective in controlling tumor growth and have been the focus of immunotherapy approaches. We leverage in silico tools to investigate whether the occurrence of mutations in proteins previously described as immunogenic and highly expressed by glioblastoma multiforme (GBM), such as Epidermal Growth Factor Receptor (EGFR), Isocitrate Dehydrogenase 1 (IDH1), Phosphatase and Tensin homolog (PTEN) and Tumor Protein 53 (TP53), may be contributing to the differential presentation of immunogenic epitopes. We recovered Class I MHC binding information from wild-type and mutated proteins using the Immune Epitope Database (IEDB). After that, we built peptide-MHC (pMHC-I) models in HLA-arena, followed by hierarchical clustering analysis based on electrostatic surface features from each complex. We identified point mutations that are determinants for the presentation of a set of peptides from TP53 protein. We point to structural features in the pMHC-I complexes of wild-type and mutated peptides, which may play a role in the recognition of CD8 T cells. To further explore these features, we performed 100 ns molecular dynamics simulations for the peptide pairs (wt/mut) selected. In pursuit of novel therapeutic targets for GBM treatment, we selected peptides where our predictive results indicated that mutations would not disrupt epitope presentation, thereby maintaining a specific CD8 T cell immune response. These peptides hold potential for future GBM interventions, including peptide-based or mRNA vaccine development applications.
Collapse
Affiliation(s)
- Renata Fioravanti Tarabini
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Health Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Gustavo Fioravanti Vieira
- Post-Graduation Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Post-Graduation Program in Health and Human Development, Universidade La Salle, Canoas, Brazil
| | - Maurício Menegatti Rigo
- Kavraki Lab, Department of Computer Science, Rice University, Houston, TX, USA.
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.
| | - Ana Paula Duarte de Souza
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Health Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
| |
Collapse
|
2
|
Kazemi Shariat Panahi H, Dehhaghi M, Guillemin GJ, Peng W, Aghbashlo M, Tabatabaei M. Targeting microRNAs as a promising anti-cancer therapeutic strategy against traffic-related air pollution-mediated lung cancer. Cancer Metastasis Rev 2024; 43:657-672. [PMID: 37910296 DOI: 10.1007/s10555-023-10142-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
Air pollutants are increasingly emitted into the atmosphere because of the high dependency of humans on fossil-derived fuels. Wind speed and direction assisted high dispersibility and uncontrolled nature of air pollution across geo-/demographical borders, making it one of the major global concerns. Besides climate change, air pollution has been found to be associated with various diseases, such as cancer. Lung cancer, which is the world's most common type of cancer, has been found to be associated with traffic-related air pollution. Research and political efforts have been taken to explore green/renewable energy sources. However, these efforts at the current intensity cannot cope with the increasing need for fossil fuels. More specifically, political tensions such as the Russian-Ukraine war, economic tension (e.g., China-USA economic tensions), and other issues (e.g., pandemic, higher inflation rate, and poverty) significantly hindered phasing out fossil fuels. In this context, an increasing global population will be exposed to traffic-related air pollution, which justifies the current uptrend in the number of lung cancer patients. To combat this health burden, novel treatments with higher efficiency and specificity must be designed. One of the potential "life changer" options is microRNA (miRNA)-based therapy to target the expression of oncogenic genes. That said, this review discusses the association of traffic-related air pollution with lung cancer, the changes in indigenous miRNAs in the body during lung cancer, and the current status of miRNA therapeutics for lung cancer treatment. We believe that the article will significantly appeal to a broad readership of oncologists, environmentalists, and those who work in the field of (bio)energy. It may also gain the policymakers' attention to establish better health policies and regulations about air pollution, for example, by promoting (bio)fuel exploration, production, and consumption.
Collapse
Affiliation(s)
- Hamed Kazemi Shariat Panahi
- Henan Province Engineering Research Center for Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Biofuel Research Team (BRTeam), Kuala Terengganu, Terengganu, Malaysia
| | - Mona Dehhaghi
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Biofuel Research Team (BRTeam), Kuala Terengganu, Terengganu, Malaysia
| | | | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Henan Province Engineering Research Center for Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
- Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| |
Collapse
|
3
|
Jeelani M. miRNAs in epilepsy: A review from molecular signatures to therapeutic intervention. Int J Biol Macromol 2024; 263:130468. [PMID: 38417757 DOI: 10.1016/j.ijbiomac.2024.130468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/17/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Epilepsy is a medical disorder marked by sporadic seizures accompanied by alterations in consciousness. The molecular mechanisms responsible for epilepsy and the factors contributing to alterations in neuronal structure compromised apoptotic responses in neurons, and disturbances in regeneration pathways in glial cells remain unidentified. MicroRNAs (miRNAs) are short noncoding RNA that consist of a single strand. They typically contain 21 to 23 nucleotides. miRNAs participate in the process of RNA silencing and the regulation of gene expression after transcription by selectively binding to mRNA molecules that possess complementary sequences. The disruption of miRNA regulation has been associated with the development of epilepsy, and manipulating a single miRNA can impact various cellular processes, hence serving as a potent intervention approach. Despite existing obstacles in the delivery and safety of miRNA-based treatments, researchers are actively investigating the potential of miRNAs to operate as regulators of brain activity and as targets for treating and preventing epilepsy. Hence, the utilization of miRNA-based therapeutic intervention shows potential for future epilepsy management. The objective of our present investigation was to ascertain the involvement of miRNAs in the causation and advancement of epilepsy. Moreover, they have undergone scrutiny for their potential utilization in therapeutic intervention.
Collapse
Affiliation(s)
- Mohammed Jeelani
- Department of Physiology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| |
Collapse
|
4
|
Eitler J, Rackwitz W, Wotschel N, Gudipati V, Murali Shankar N, Sidorenkova A, Huppa JB, Ortiz-Montero P, Opitz C, Künzel SR, Michen S, Temme A, Loureiro LR, Feldmann A, Bachmann M, Boissel L, Klingemann H, Wels WS, Tonn T. CAR-mediated targeting of NK cells overcomes tumor immune escape caused by ICAM-1 downregulation. J Immunother Cancer 2024; 12:e008155. [PMID: 38417916 PMCID: PMC10900364 DOI: 10.1136/jitc-2023-008155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2023] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND The antitumor activity of natural killer (NK) cells can be enhanced by specific targeting with therapeutic antibodies that trigger antibody-dependent cell-mediated cytotoxicity (ADCC) or by genetic engineering to express chimeric antigen receptors (CARs). Despite antibody or CAR targeting, some tumors remain resistant towards NK cell attack. While the importance of ICAM-1/LFA-1 interaction for natural cytotoxicity of NK cells is known, its impact on ADCC induced by the ErbB2 (HER2)-specific antibody trastuzumab and ErbB2-CAR-mediated NK cell cytotoxicity against breast cancer cells has not been investigated. METHODS Here we used NK-92 cells expressing high-affinity Fc receptor FcγRIIIa in combination with trastuzumab or ErbB2-CAR engineered NK-92 cells (NK-92/5.28.z) as well as primary human NK cells combined with trastuzumab or modified with the ErbB2-CAR and tested cytotoxicity against cancer cells varying in ICAM-1 expression or alternatively blocked LFA-1 on NK cells. Furthermore, we specifically stimulated Fc receptor, CAR and/or LFA-1 to study their crosstalk at the immunological synapse and their contribution to degranulation and intracellular signaling in antibody-targeted or CAR-targeted NK cells. RESULTS Blockade of LFA-1 or absence of ICAM-1 significantly reduced cell killing and cytokine release during trastuzumab-mediated ADCC against ErbB2-positive breast cancer cells, but not so in CAR-targeted NK cells. Pretreatment with 5-aza-2'-deoxycytidine induced ICAM-1 upregulation and reversed NK cell resistance in ADCC. Trastuzumab alone did not sufficiently activate NK cells and required additional LFA-1 co-stimulation, while activation of the ErbB2-CAR in CAR-NK cells induced efficient degranulation independent of LFA-1. Total internal reflection fluorescence single molecule imaging revealed that CAR-NK cells formed an irregular immunological synapse with tumor cells that excluded ICAM-1, while trastuzumab formed typical peripheral supramolecular activation cluster (pSMAC) structures. Mechanistically, the absence of ICAM-1 did not affect cell-cell adhesion during ADCC, but rather resulted in decreased signaling via Pyk2 and ERK1/2, which was intrinsically provided by CAR-mediated targeting. Furthermore, while stimulation of the inhibitory NK cell checkpoint molecule NKG2A markedly reduced FcγRIIIa/LFA-1-mediated degranulation, retargeting by CAR was only marginally affected. CONCLUSIONS Downregulation of ICAM-1 on breast cancer cells is a critical escape mechanism from trastuzumab-triggered ADCC. In contrast, CAR-NK cells are able to overcome cancer cell resistance caused by ICAM-1 reduction, highlighting the potential of CAR-NK cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Jiri Eitler
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Wiebke Rackwitz
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Natalie Wotschel
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Venugopal Gudipati
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Nivedha Murali Shankar
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Anastasia Sidorenkova
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Johannes B Huppa
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Paola Ortiz-Montero
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Corinna Opitz
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Stephan R Künzel
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Susanne Michen
- TU Dresden, Medical Faculty and University Hospital Carl Gustav Carus, Department of Neurosurgery, Division of Experimental Neurosurgery and Tumor Immunology, Dresden, Germany
| | - Achim Temme
- TU Dresden, Medical Faculty and University Hospital Carl Gustav Carus, Department of Neurosurgery, Division of Experimental Neurosurgery and Tumor Immunology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany, National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Liliana Rodrigues Loureiro
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anja Feldmann
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), Dresden, Germany
| | - Michael Bachmann
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), Dresden, Germany
| | | | | | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Torsten Tonn
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| |
Collapse
|
5
|
Xie G, Chen H, He C, Hu S, Xiao X, Luo Q. The dysregulation of miRNAs in epilepsy and their regulatory role in inflammation and apoptosis. Funct Integr Genomics 2023; 23:287. [PMID: 37653173 PMCID: PMC10471759 DOI: 10.1007/s10142-023-01220-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Epilepsy is a neurological disorder that impacts millions of people worldwide, and it is characterized by the occurrence of recurrent seizures. The pathogenesis of epilepsy is complex, involving dysregulation of various genes and signaling pathways. MicroRNAs (miRNAs) are a group of small non-coding RNAs that play a vital role in the regulation of gene expression. They have been found to be involved in the pathogenesis of epilepsy, acting as key regulators of neuronal excitability and synaptic plasticity. In recent years, there has been a growing interest in exploring the miRNA regulatory network in epilepsy. This review summarizes the current knowledge of the regulatory miRNAs involved in inflammation and apoptosis in epilepsy and discusses its potential as a new avenue for developing targeted therapies for the treatment of epilepsy.
Collapse
Affiliation(s)
- Guoping Xie
- Department of Clinical Laboratory, The Second Staff Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, Hubei, China
| | - Huan Chen
- Department of Clinical Laboratory, Wuhan Institute of Technology Hospital, Wuhan Institute of Technology, Wuhan, China
| | - Chan He
- Department of Clinical Laboratory, Maternal and Child Health Hospital in Wuchang District, Wuhan, Hubei, China
| | - Siheng Hu
- Department of Clinical Laboratory, Honggangcheng Street Community Health Service Center, Qingshan District, Wuhan, Hubei, China
| | - Xue Xiao
- Department of Clinical Laboratory, Gongrencun Street Community Health Service Center, Wuhan, China
| | - Qunying Luo
- Department of Neurology, Huarun Wuhan Iron and Steel General Hospital, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Jiang Y, Zhang J, Shi C, Li X, Jiang Y, Mao R. NF- κB: a mediator that promotes or inhibits angiogenesis in human diseases? Expert Rev Mol Med 2023; 25:e25. [PMID: 37503730 DOI: 10.1017/erm.2023.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) signaling pathway, which is conserved in invertebrates, plays a significant role in human diseases such as inflammation-related diseases and carcinogenesis. Angiogenesis refers to the growth of new capillary vessels derived from already existing capillaries and postcapillary venules. Maintaining normal angiogenesis and effective vascular function is a prerequisite for the stability of organ tissue function, and abnormal angiogenesis often leads to a variety of diseases. It has been suggested that NK-κB signalling molecules under pathological conditions play an important role in vascular differentiation, proliferation, apoptosis and tumourigenesis by regulating the transcription of multiple target genes. Many NF-κB inhibitors are being tested in clinical trials for cancer treatment and their effect on angiogenesis is summarised. In this review, we will summarise the role of NF-κB signalling in various neovascular diseases, especially in tumours, and explore whether NF-κB can be used as an attack target or activation medium to inhibit tumour angiogenesis.
Collapse
Affiliation(s)
- Yijing Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Jie Zhang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, 30Tongyang North Road, Pingchao Town, Nantong 226361, Jiangsu, People's Republic of China
| | - Conglin Shi
- Department of Pathogenic Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Xingjuan Li
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Yongying Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| |
Collapse
|
7
|
Li T, Jiao J, Ke H, Ouyang W, Wang L, Pan J, Li X. Role of exosomes in the development of the immune microenvironment in hepatocellular carcinoma. Front Immunol 2023; 14:1200201. [PMID: 37457718 PMCID: PMC10339802 DOI: 10.3389/fimmu.2023.1200201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Despite numerous improved treatment methods used in recent years, hepatocellular carcinoma (HCC) is still a disease with a high mortality rate. Many recent studies have shown that immunotherapy has great potential for cancer treatment. Exosomes play a significant role in negatively regulating the immune system in HCC. Understanding how these exosomes play a role in innate and adaptive immunity in HCC can significantly improve the immunotherapeutic effects on HCC. Further, engineered exosomes can deliver different drugs and RNA molecules to regulate the immune microenvironment of HCC by regulating the aforementioned immune pathway, thereby significantly improving the mortality rate of HCC. This study aimed to declare the role of exosomes in the development of the immune microenvironment in HCC and list engineered exosomes that could be used for clinical transformation therapy. These findings might be beneficial for clinical patients.
Collapse
Affiliation(s)
- Tanghua Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiapeng Jiao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haoteng Ke
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wenshan Ouyang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Luobin Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jin Pan
- The Department of Electronic Engineering, The Chinese University of Hong Kong, Hongkong, Hongkong SAR, China
| | - Xin Li
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
9
|
Avgoulas DI, Tasioulis KS, Papi RM, Pantazaki AA. Therapeutic and Diagnostic Potential of Exosomes as Drug Delivery Systems in Brain Cancer. Pharmaceutics 2023; 15:pharmaceutics15051439. [PMID: 37242681 DOI: 10.3390/pharmaceutics15051439] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer is designated as one of the principal causes of mortality universally. Among different types of cancer, brain cancer remains the most challenging one due to its aggressiveness, the ineffective permeation ability of drugs through the blood-brain barrier (BBB), and drug resistance. To overcome the aforementioned issues in fighting brain cancer, there is an imperative need for designing novel therapeutic approaches. Exosomes have been proposed as prospective "Trojan horse" nanocarriers of anticancer theranostics owing to their biocompatibility, increased stability, permeability, negligible immunogenicity, prolonged circulation time, and high loading capacity. This review provides a comprehensive discussion on the biological properties, physicochemical characteristics, isolation methods, biogenesis and internalization of exosomes, while it emphasizes their therapeutic and diagnostic potential as drug vehicle systems in brain cancer, highlighting recent advances in the research field. A comparison of the biological activity and therapeutic effectiveness of several exosome-encapsulated cargo including drugs and biomacromolecules underlines their great supremacy over the non-exosomal encapsulated cargo in the delivery, accumulation, and biological potency. Various studies on cell lines and animals give prominence to exosome-based nanoparticles (NPs) as a promising and alternative approach in the management of brain cancer.
Collapse
Affiliation(s)
- Dimitrios I Avgoulas
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos S Tasioulis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Rigini M Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
10
|
Pane AA, Kordaß T, Hotz‐Wagenblatt A, Dickes E, Kopp‐Schneider A, Will R, Seliger B, Osen W, Eichmüller SB. MicroRNAs affecting the susceptibility of melanoma cells to CD8 + T cell-mediated cytolysis. Clin Transl Med 2023; 13:e1186. [PMID: 36718025 PMCID: PMC9887093 DOI: 10.1002/ctm2.1186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The regulatory functions of microRNAs (miRNAs) in anti-tumour immunity have been mainly described in immune effector cells. Since little is known about miRNA effects on the susceptibility of target cells during T cell-target cell interaction, this study focused on the identification of miRNAs expressed in tumour cells controlling their susceptibility to CD8+ T cell-mediated cytotoxicity. METHODS Luciferase expressing B16F10 melanoma (B16F10 Luci+ ) cells transfected with individual miRNAs covering a comprehensive murine miRNA library were screened for their susceptibility to lysis by an established cytotoxic T lymphocyte (CTL) line (5a, clone Nβ) specific for the melanoma-associated antigen tyrosinase-related protein 2. miRNAs with the most pronounced effects on T cell-mediated lysis were validated and stably expressed in B16F10 cells. In silico analyses identified common targets of miRNA sets determined by the screen, which were further confirmed by small interfering RNA (siRNA)-mediated silencing experiments modulating immune surveillance. The Ingenuity Pathway Analysis (IPA) software and RNA sequencing (RNA-seq) data from miRNA-overexpressing cell lines were applied to investigate the underlying mechanisms. The Cancer Genome Atlas (TCGA)-derived miRNA sequencing data were used to assess the correlation of miRNA expression with melanoma patients' survival. RESULTS The miRNA screen resulted in the selection of seven miRNAs enhancing CTL-mediated melanoma cell killing in vitro. Upon stable overexpression of selected miRNAs, hsa-miR-320a-3p, mmu-miR-7037-5p and mmu-miR-666-3p were determined as most effective in enhancing susceptibility to CTL lysis. In silico analyses and subsequent siRNA-mediated silencing experiments identified Psmc3 and Ndufa1 as common miRNA targets possibly involved in the functional effects observed. The analyses of RNA-seq data with IPA showed pathways, networks, biological functions and key molecules potentially involved in the miRNA-mediated functional effects. Finally, based on TCGA data analysis, a positive correlation of the conserved miRNAs among the panel of the seven identified miRNAs with overall survival of melanoma patients was determined. CONCLUSIONS For the first time, this study uncovered miRNA species that affect the susceptibility of melanoma cells to T cell-mediated killing. These miRNAs might represent attractive candidates for novel therapy approaches against melanoma and other tumour entities.
Collapse
Affiliation(s)
- Antonino A. Pane
- Research Group GMP & T Cell TherapyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Faculty of BiosciencesUniversity of HeidelbergHeidelbergGermany
- Present address:
Immatics Biotechnologies GmbHTübingenGermany
| | - Theresa Kordaß
- Research Group GMP & T Cell TherapyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Faculty of BiosciencesUniversity of HeidelbergHeidelbergGermany
- Present address:
Section Multiple MyelomaInternal Medicine V, University Clinic HeidelbergHeidelbergGermany
| | - Agnes Hotz‐Wagenblatt
- Omics IT and Data Management Core FacilityGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Elke Dickes
- Research Group GMP & T Cell TherapyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | | | - Rainer Will
- Core Facility Cellular ToolsGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Barbara Seliger
- Institute of Medical ImmunologyMartin‐Luther‐University Halle‐WittenbergHalle/SaaleGermany
| | - Wolfram Osen
- Research Group GMP & T Cell TherapyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Stefan B. Eichmüller
- Research Group GMP & T Cell TherapyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
11
|
Qiu Z, Wang Y, Zhang Z, Qin R, Peng Y, Tang W, Xi Y, Tian G, Zhang Y. Roles of intercellular cell adhesion molecule-1 (ICAM-1) in colorectal cancer: expression, functions, prognosis, tumorigenesis, polymorphisms and therapeutic implications. Front Oncol 2022; 12:1052672. [PMID: 36505809 PMCID: PMC9728583 DOI: 10.3389/fonc.2022.1052672] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
Colorectal cancer (CRC) is a major global health problem and one of the major causes of cancer-related death worldwide. It is very important to understand the pathogenesis of CRC for early diagnosis, prevention strategies and identification of new therapeutic targets. Intercellular adhesion molecule-1 (ICAM-1, CD54) displays an important role in the the pathogenesis of CRC. It is a cell surface glycoprotein of the immunoglobulin (Ig) superfamily and plays an essential role in cell-cell, cell-extracellular matrix interaction, cell signaling and immune process. It is also expressed by tumor cells and modulates their functions, including apoptosis, cell motility, invasion and angiogenesis. The interaction between ICAM-1 and its ligand may facilitate adhesion of tumor cells to the vascular endothelium and subsequently in the promotion of metastasis. ICAM-1 expression determines malignant potential of cancer. In this review, we will discuss the expression, function, prognosis, tumorigenesis, polymorphisms and therapeutic implications of ICAM-1 in CRC.
Collapse
Affiliation(s)
- Zhiyuan Qiu
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yan Wang
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhao Zhang
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Rong Qin
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yong Peng
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Weifeng Tang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Yan Xi
- Department of Geriatrics, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guangyu Tian
- Department of Oncology, Jiangdu People’s Hospital Affiliated to Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Yeqing Zhang
- Department of Vascular Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
12
|
Leone S, Rubino V, Palatucci AT, Giovazzino A, Carriero F, Cerciello G, Pane F, Ruggiero G, Terrazzano G. Bone Marrow CD3 + CD56 + Regulatory T lymphocytes (T R3-56 cells) are inversely associated with activation and expansion of Bone Marrow cytotoxic T cells in IPSS-R very-low/low risk MDS patients. Eur J Haematol 2022; 109:398-405. [PMID: 35775392 PMCID: PMC9543123 DOI: 10.1111/ejh.13822] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/04/2022]
Abstract
Background Emergence of dysplastic haematopoietic precursor/s, cytopenia and variable leukaemia risk characterise myelodysplastic syndromes (MDS). Impaired immune‐regulation, preferentially affecting cytotoxic T cells (CTL), has been largely observed in MDS. Recently, we described the TR3−56 T cell subset, characterised by the co‐expression of CD3 and CD56, as a novel immune‐regulatory population, able to modulate cytotoxic functions. Here, we address the involvement of TR3−56 cells in MDS pathogenesis/progression. Objectives To analyse the relationship between TR3−56 and CTL activation/expansion in bone marrow (BM) of very‐low/low‐risk MDS subjects. Methods Peripheral blood and BM specimens, obtained at disease onset in a cohort of 58 subjects, were analysed by immune‐fluorescence and flow cytometry, to preserve the complexity of the biological sample. Results We observed that a trend‐increase of BM TR3−56 in high/very‐high MDS stage, as compared with very‐low/low group, associates with a decreased activation of BM resident CTL; significant correlation of TR3−56 with BM blasts has been also revealed. In addition, in very‐low/low‐risk subjects the TR3−56 amount in BM inversely correlates with the presence of activated BM CTL showing a skewed Vβ T‐cell repertoire. Conclusions These data add TR3−56 to the immune‐regulatory network involved in MDS pathogenesis/progression. Better knowledge of the immune‐mediated processes associated with the disease might improve MDS clinical management.
Collapse
Affiliation(s)
- Stefania Leone
- Divisione di Ematologia, Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II"
| | - Valentina Rubino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli "Federico II", Napoli, Italy
| | | | - Angela Giovazzino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli "Federico II", Napoli, Italy
| | - Flavia Carriero
- Ph.D course in Science, Università della Basilicata, Via dell'Ateneo Lucano, Potenza, Italy
| | - Giuseppe Cerciello
- Divisione di Ematologia, Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II"
| | - Fabrizio Pane
- Divisione di Ematologia, Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II"
| | - Giuseppina Ruggiero
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli "Federico II", Napoli, Italy
| | - Giuseppe Terrazzano
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli "Federico II", Napoli, Italy.,Dipartimento di Scienze, Università della Basilicata, Potenza, Italy
| |
Collapse
|
13
|
MicroRNAs and drug resistance in colorectal cancer with special focus on 5-fluorouracil. Mol Biol Rep 2022; 49:5165-5178. [PMID: 35212928 DOI: 10.1007/s11033-022-07227-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023]
Abstract
Colorectal cancer is globally one of the most common cancers in all age groups. The current chemotherapy combinations for colorectal cancer treatment include 5-fluorouracil-based regimens; however, drug resistance remains one of the main reasons for chemotherapy failure and disease recurrence. Many studies have determined colorectal cancer chemoresistance mechanisms such as drug efflux, cell cycle arrest, DNA damage repair, apoptosis, autophagy, vital enzymes, epigenetic, epithelial-mesenchymal transition, stem cells, and immune system suppression. Several microRNAs affect drug resistance by regulating the drug resistance-related target genes in colorectal cancer. These drug resistance-related miRNAs may be used as promising biomarkers for predicting drug response or as potential therapeutic targets for treating patients with colorectal cancer. This work reviews and discuss the role of selected microRNAs in 5-fluorouracil resistance and their molecular mechanisms in colorectal cancer.
Collapse
|
14
|
Puleo J, Polyak K. A Darwinian perspective on tumor immune evasion. Biochim Biophys Acta Rev Cancer 2022; 1877:188671. [PMID: 34933050 PMCID: PMC8818030 DOI: 10.1016/j.bbcan.2021.188671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 01/03/2023]
Abstract
Evading immune-mediated destruction is a critical step of tumor evolution and the immune system is one of the strongest selective pressures during tumorigenesis. Analyzing tumor immune evasion from a Darwinian perspective may provide critical insight into the mechanisms of primary immune escape and acquired resistance to immunotherapy. Here, we review the steps required to mount an anti-tumor immune response, describe how each of these steps is disrupted during tumorigenesis, list therapeutic strategies to restore anti-tumor immunity, and discuss each mechanism of immune and therapeutic evasion from a Darwinian perspective.
Collapse
Affiliation(s)
- Julieann Puleo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Singh M, Thakur M, Mishra M, Yadav M, Vibhuti R, Menon AM, Nagda G, Dwivedi VP, Dakal TC, Yadav V. Gene regulation of intracellular adhesion molecule-1 (ICAM-1): A molecule with multiple functions. Immunol Lett 2021; 240:123-136. [PMID: 34715236 DOI: 10.1016/j.imlet.2021.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 01/04/2023]
Abstract
Intracellular adhesion molecule 1 (ICAM-1) is one of the most extensively studied inducible cell adhesion molecules which is responsible for several immune functions like T cell activation, extravasation, inflammation, etc. The molecule is constitutively expressed over the cell surface and is regulated up / down in response to inflammatory mediators like cellular stress, proinflammatory cytokines, viral infection. These stimuli modulate the expression of ICAM-1 primarily through regulating the ICAM-1 gene transcription. On account of the presence of various binding sites for NF-κB, AP-1, SP-1, and many other transcription factors, the architecture of the ICAM-1 promoter become complex. Transcription factors in union with other transcription factors, coactivators, and suppressors promote their assembly in a stereospecific manner on ICAM-1 promoter which mediates ICAM-1 regulation in response to different stimuli. Along with transcriptional regulation, epigenetic modifications also play a pivotal role in controlling ICAM-1 expression on different cell types. In this review, we summarize the regulation of ICAM-1 expression both at the transcriptional as well as post-transcriptional level with an emphasis on transcription factors and signaling pathways involved.
Collapse
Affiliation(s)
- Mona Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067 India
| | - Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| | - Manish Mishra
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research- Institute of Microbial Technology, Chandigarh-160036 India
| | - Manisha Yadav
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research- Institute of Microbial Technology, Chandigarh-160036 India
| | - Rajkamal Vibhuti
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| | - Athira M Menon
- Genome and computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001 India
| | - Girima Nagda
- Department of Zoology, Mohanlal Sukhadia University, Udaipur, Rajasthan-313001 India
| | - Ved Prakash Dwivedi
- International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi-110067 India
| | - Tikam Chand Dakal
- Genome and computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001 India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| |
Collapse
|
16
|
Pourmohammad P, Maroufi NF, Rashidi M, Vahedian V, Pouremamali F, Faridvand Y, Ghaffari-Novin M, Isazadeh A, Hajazimian S, Nejabati HR, Nouri M. Potential Therapeutic Effects of Melatonin Mediate via miRNAs in Cancer. Biochem Genet 2021; 60:1-23. [PMID: 34181134 DOI: 10.1007/s10528-021-10104-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
miRNAs are evolutionarily conserved non-coding ribonucleic acids with a length of between 19 and 25 nucleotides. Because of their ability to regulate gene expression, miRNAs have an important function in the controlling of various biological processes, such as cell cycle, differentiation, proliferation, and apoptosis. Owing to the long-standing regulative potential of miRNAs in tumor-suppressive pathways, scholars have recently paid closer attention to the expression profile of miRNAs in various types of cancer. Melatonin, an indolic compound secreted from pineal gland and some peripheral tissues, has been considered as an effective anti-tumor hormone in a wide spectrum of cancers. Furthermore, it induces apoptosis, inhibits tumor metastasis and invasion, and also angiogenesis. A growing body of evidence indicates the effects of melatonin on miRNAs expression in broad spectrum of diseases, including cancer. Due to the long-term effects of the regulation of miRNAs expression, melatonin could be a promising therapeutic factor in the treatment of cancers via the regulation of miRNAs. Therefore, in this review, we will discuss the effects of melatonin on miRNAs expression in various types of cancers.
Collapse
Affiliation(s)
- Pirouz Pourmohammad
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Science, Ardabil, Islamic Republic of Iran
| | - Nazila Fathi Maroufi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Vahid Vahedian
- Researchers Club of Tums Preclinical Core Facility (TPCF), Tehran University of Medical Science (TUMS), Tehran, Iran.,Department of Medical Laboratory Sciences, Faculty of Medicine, Islamic Azad University (IAU), Sari, Iran
| | - Farhad Pouremamali
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Faridvand
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Ghaffari-Novin
- Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Hajazimian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Cao QG, Guo Q, Bai J, Dong Y, Zhang XH, Hong WL. The apoptosis mechanisms of HepG2 cells induced by bitter melon seed. J Food Biochem 2021; 45:e13683. [PMID: 33844303 DOI: 10.1111/jfbc.13683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 11/30/2022]
Abstract
Liver cancer is one of the leading causes of cancer-related deaths in the world. Bitter melon seed (BMS) is well known for anti-inflammatory and anticancer properties. MicroRNA-421 (miR-421) is considered as a regulator of cancer initiation, tumor metastasis, and progression, interfering with transcription of the mRNAs responsible for the cancer pathogenesis. HepG2 cells were treated with BMS water extract (BMSW) for 24 hr, and the IC50 was 586.27 ± 0.07 µg/ml. The ROS, mitochondrial membrane potential, the protein expression, and the nuclear fragmentation after the treatment of BMSW were respectively detected. The increase of ROS resulted in the decrease of mitochondrial membrane potential, which induced the apoptosis of cells subsequently. BMSW inhibited the proliferation of HepG2 cells by blocking cell cycle in the S phase and influenced the nuclei and the expression of protein, leading to cellular laxity and apoptosis. The expression level of miR-421 in HepG2 was distinctly down-regulated by 13.74 fold with 600 µg/ml of BMSW. Comprehensive microarray and RT-PCR analysis identified six putative target genes of miR-421 (GADD45B, DUSP6, DUSP3, DUSP10, CASP3, and CAPN2). The relationships of DUSP6, CASP3, and miR-421 were further confirmed by miR-421 mimics/inhibitor transfection by RT-PCR and western blot. The CASP3 was identified as target gene of miR-421. BMSW induced the apoptosis of HepG2 cell by regulating miR-421 and CASP3. PRACTICAL APPLICATIONS: Hepatocellular carcinoma (HCC) is a malignant tumour with the fourth highest mortality rate in the world. Bitter melon seed (BMS) as edible and medical food has significant anticancer activity. Our study indicated the anticancer mechanisms of BMS and provided the scientific basis for the application of BMS in healthy or novel functional foods. BMS can be used as dietary supplements or nutritional fortifiers to improve the survival status of patients with liver cancer due to safety and effectiveness.
Collapse
Affiliation(s)
- Qing-Guo Cao
- Department of College of Tea and Food Science and Technology, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| | - Qin Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jie Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ying Dong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiao-Hua Zhang
- Department of College of Tea and Food Science and Technology, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| | - Wen-Long Hong
- Department of College of Tea and Food Science and Technology, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| |
Collapse
|
18
|
da Costa LT, dos Anjos LG, Kagohara LT, Torrezan GT, De Paula CAA, Baracat EC, Carraro DM, Carvalho KC. The mutational repertoire of uterine sarcomas and carcinosarcomas in a Brazilian cohort: A preliminary study. Clinics (Sao Paulo) 2021; 76:e2324. [PMID: 33503190 PMCID: PMC7798418 DOI: 10.6061/clinics/2021/e2324] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/15/2020] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVES The present study aimed to contribute to the catalog of genetic mutations involved in the carcinogenic processes of uterine sarcomas (USs) and carcinosarcomas (UCSs), which may assist in the accurate diagnosis of, and selection of treatment regimens for, these conditions. METHODS We performed gene-targeted next-generation sequencing (NGS) of 409 cancer-related genes in 15 US (7 uterine leiomyosarcoma [ULMS], 7 endometrial stromal sarcoma [ESS], 1 adenosarcoma [ADS]), 5 UCS, and 3 uterine leiomyoma (ULM) samples. Quality, frequency, and functional filters were applied to select putative somatic variants. RESULTS Among the 23 samples evaluated in this study, 42 loss-of-function (LOF) mutations and 111 missense mutations were detected, with a total of 153 mutations. Among them, 66 mutations were observed in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. TP53 (48%), ATM (22%), and PIK3CA (17%) were the most frequently mutated genes. With respect to specific tumor subtypes, ESS showed mutations in the PDE4DIP, IGTA10, and DST genes, UCS exhibited mutations in ERBB4, and ULMS showed exclusive alterations in NOTCH2 and HER2. Mutations in the KMT2A gene were observed exclusively in ULM and ULMS. In silico pathway analyses demonstrated that many genes mutated in ULMS and ESS have functions associated with the cellular response to hypoxia and cellular response to peptide hormone stimulus. In UCS and ADS, genes with most alterations have functions associated with phosphatidylinositol kinase activity and glycerophospholipid metabolic process. CONCLUSION This preliminary study observed pathogenic mutations in US and UCS samples. Further studies with a larger cohort and functional analyses will foster the development of a precision medicine-based approach for the treatment of US and UCS.
Collapse
Affiliation(s)
- Leonardo Tomiatti da Costa
- Laboratorio de Ginecologia Estrutural e Molecular, Disciplina de Ginecologia, Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Laura Gonzalez dos Anjos
- Laboratorio de Ginecologia Estrutural e Molecular, Disciplina de Ginecologia, Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Luciane Tsukamoto Kagohara
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | | | | | - Edmund Chada Baracat
- Laboratorio de Ginecologia Estrutural e Molecular, Disciplina de Ginecologia, Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Dirce Maria Carraro
- Grupo de Biologia Molecular e Genomica, Centro A.C.Camargo, Sao Paulo, SP, BR
| | - Katia Candido Carvalho
- Laboratorio de Ginecologia Estrutural e Molecular, Disciplina de Ginecologia, Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
19
|
Grzywa TM, Klicka K, Włodarski PK. Regulators at Every Step-How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers (Basel) 2020; 12:E3709. [PMID: 33321819 PMCID: PMC7763175 DOI: 10.3390/cancers12123709] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial-mesenchymal transition (EMT), hence modulating cell migration and invasiveness. Moreover, miRNAs regulate angiogenesis, the formation of a pre-metastatic niche, and metastasis. Thus, miRNAs are biomarkers of metastases as well as promising targets of therapy. In this review, we comprehensively describe the role of various miRNAs in tumor cell migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Paweł K. Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
| |
Collapse
|
20
|
Regulators at Every Step—How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers (Basel) 2020. [DOI: 10.3390/cancers12123709
expr 991289423 + 939431153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial–mesenchymal transition (EMT), hence modulating cell migration and invasiveness. Moreover, miRNAs regulate angiogenesis, the formation of a pre-metastatic niche, and metastasis. Thus, miRNAs are biomarkers of metastases as well as promising targets of therapy. In this review, we comprehensively describe the role of various miRNAs in tumor cell migration, invasion, and metastasis.
Collapse
|
21
|
Different T-cell subsets in glioblastoma multiforme and targeted immunotherapy. Cancer Lett 2020; 496:134-143. [PMID: 33022290 DOI: 10.1016/j.canlet.2020.09.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme (GBM) is a brain tumor with a high mortality rate. Surgical resection combined with radiotherapy and chemotherapy is the standard treatment for GBM patients, but the 5-year survival rate of patients despite this treatment is low. Immunotherapy has attracted increasing attention in recent years. As the pioneer and the main effector cells of immunotherapy, T cells play a key role in tumor immunotherapy. However, the T cells in GBM microenvironment are inhibited by the highly immunosuppressive environment of GBM, posing huge challenges to T cell-based GBM immunotherapy. This review summarizes the effects of the GBM microenvironment on the infiltration and function of different T-cell subsets and the possible strategies to overcome immunosuppression, and thus enhance the effectiveness of GBM immunotherapy.
Collapse
|
22
|
Duan L, Yang W, Feng W, Cao L, Wang X, Niu L, Li Y, Zhou W, Zhang Y, Liu J, Zhang H, Zhao Q, Hong L, Fan D. Molecular mechanisms and clinical implications of miRNAs in drug resistance of colorectal cancer. Ther Adv Med Oncol 2020; 12:1758835920947342. [PMID: 32922521 PMCID: PMC7450467 DOI: 10.1177/1758835920947342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Systemic chemotherapy is identified as a curative approach to prolong the survival time of patients with colorectal cancer (CRC). Although great progress in therapeutic approaches has been achieved during the last decades, drug resistance still extensively persists and serves as a major hurdle to effective anticancer therapy for CRC. The mechanism of multidrug resistance remains unclear. Recently, mounting evidence suggests that a great number of microRNAs (miRNAs) may contribute to drug resistance in CRC. Certain of these miRNAs may thus be used as promising biomarkers for predicting drug response to chemotherapy or serve as potential targets to develop personalized therapy for patients with CRC. This review mainly summarizes recent advances in miRNAs and the molecular mechanisms underlying miRNA-mediated chemoresistance in CRC. We also discuss the potential role of drug resistance-related miRNAs as potential biomarkers (diagnostic and prognostic value) and envisage the future orientation and challenges in translating the findings on miRNA-mediated chemoresistance of CRC into clinical applications.
Collapse
Affiliation(s)
- Lili Duan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Wanli Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Weibo Feng
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Lu Cao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Xiaoqian Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Liaoran Niu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yiding Li
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yujie Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Jinqiang Liu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Hongwei Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
23
|
Dynamic changes in DICER levels in adipose tissue control metabolic adaptations to exercise. Proc Natl Acad Sci U S A 2020; 117:23932-23941. [PMID: 32900951 DOI: 10.1073/pnas.2011243117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
DICER is a key enzyme in microRNA (miRNA) biogenesis. Here we show that aerobic exercise training up-regulates DICER in adipose tissue of mice and humans. This can be mimicked by infusion of serum from exercised mice into sedentary mice and depends on AMPK-mediated signaling in both muscle and adipocytes. Adipocyte DICER is required for whole-body metabolic adaptations to aerobic exercise training, in part, by allowing controlled substrate utilization in adipose tissue, which, in turn, supports skeletal muscle function. Exercise training increases overall miRNA expression in adipose tissue, and up-regulation of miR-203-3p limits glycolysis in adipose under conditions of metabolic stress. We propose that exercise training-induced DICER-miR-203-3p up-regulation in adipocytes is a key adaptive response that coordinates signals from working muscle to promote whole-body metabolic adaptations.
Collapse
|
24
|
MicroRNAs as Key Players in Melanoma Cell Resistance to MAPK and Immune Checkpoint Inhibitors. Int J Mol Sci 2020; 21:ijms21124544. [PMID: 32604720 PMCID: PMC7352536 DOI: 10.3390/ijms21124544] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Advances in the use of targeted and immune therapies have revolutionized the clinical management of melanoma patients, prolonging significantly their overall and progression-free survival. However, both targeted and immune therapies suffer limitations due to genetic mutations and epigenetic modifications, which determine a great heterogeneity and phenotypic plasticity of melanoma cells. Acquired resistance of melanoma patients to inhibitors of BRAF (BRAFi) and MEK (MEKi), which block the mitogen-activated protein kinase (MAPK) pathway, limits their prolonged use. On the other hand, immune checkpoint inhibitors improve the outcomes of patients in only a subset of them and the molecular mechanisms underlying lack of responses are under investigation. There is growing evidence that altered expression levels of microRNAs (miRNA)s induce drug-resistance in tumor cells and that restoring normal expression of dysregulated miRNAs may re-establish drug sensitivity. However, the relationship between specific miRNA signatures and acquired resistance of melanoma to MAPK and immune checkpoint inhibitors is still limited and not fully elucidated. In this review, we provide an updated overview of how miRNAs induce resistance or restore melanoma cell sensitivity to mitogen-activated protein kinase inhibitors (MAPKi) as well as on the relationship existing between miRNAs and immune evasion by melanoma cell resistant to MAPKi.
Collapse
|
25
|
Gordon E, Schimmel L, Frye M. The Importance of Mechanical Forces for in vitro Endothelial Cell Biology. Front Physiol 2020; 11:684. [PMID: 32625119 PMCID: PMC7314997 DOI: 10.3389/fphys.2020.00684] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Blood and lymphatic vessels are lined by endothelial cells which constantly interact with their luminal and abluminal extracellular environments. These interactions confer physical forces on the endothelium, such as shear stress, stretch and stiffness, to mediate biological responses. These physical forces are often altered during disease, driving abnormal endothelial cell behavior and pathology. Therefore, it is critical that we understand the mechanisms by which endothelial cells respond to physical forces. Traditionally, endothelial cells in culture are grown in the absence of flow on stiff substrates such as plastic or glass. These cells are not subjected to the physical forces that endothelial cells endure in vivo, thus the results of these experiments often do not mimic those observed in the body. The field of vascular biology now realize that an intricate analysis of endothelial signaling mechanisms requires complex in vitro systems to mimic in vivo conditions. Here, we will review what is known about the mechanical forces that guide endothelial cell behavior and then discuss the advancements in endothelial cell culture models designed to better mimic the in vivo vascular microenvironment. A wider application of these technologies will provide more biologically relevant information from cultured cells which will be reproducible to conditions found in the body.
Collapse
Affiliation(s)
- Emma Gordon
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Lilian Schimmel
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
26
|
Huang E, Fu J, Yu Q, Xie P, Yang Z, Ji H, Wang L, Luo G, Zhang Y, Li K. CircRNA hsa_circ_0004771 promotes esophageal squamous cell cancer progression via miR-339-5p/CDC25A axis. Epigenomics 2020; 12:587-603. [PMID: 32050790 DOI: 10.2217/epi-2019-0404] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim: The role of circRNAs in esophageal squamous cell cancer (ESCC) remains unclear. Materials & methods: Here we profiled six pair plasma circRNA in ESCC based on RNA sequencing, and then verified the elevation of hsa_circ_0004771 in 20 cancer tissues and 105 pair case-control plasma samples by quantitative reverse transcriptase PCR. Results: The upregulation of hsa_circ_0004771 was correlated with heavier tumor burden and poor prognosis, knockdown of it inhibited the ESCC cells proliferation both in vitro and in vivo. Mechanistically, hsa_circ_0004771 positively regulated CDC25A by acting as a molecular sponge of miR-339-5p and rescue assay confirmed this regulatory relationship. Conclusion: These results suggested that hsa_circ_0004771 can serve as a general less-invasive biomarker and may provide diagnostic and prognostic value in carcinoma.
Collapse
Affiliation(s)
- Enmin Huang
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, PR China
| | - Junhui Fu
- Department of Surgical Oncology, Shantou Central Hospital, Shantou, Guangdong, PR China
| | - Qiuyan Yu
- Department of Public Health, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Peixin Xie
- Department of Surgical Oncology, Shantou Central Hospital, Shantou, Guangdong, PR China
| | - Zhongxian Yang
- Department of Medical Imaging, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, PR China
| | - Huanlin Ji
- Department of Public Health, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Li Wang
- Department of Public Health, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Ganfeng Luo
- Department of Public Health, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Yanting Zhang
- Department of Public Health, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Ke Li
- Department of Public Health, Shantou University Medical College, Shantou, Guangdong, PR China
| |
Collapse
|
27
|
Chandan K, Gupta M, Sarwat M. Role of Host and Pathogen-Derived MicroRNAs in Immune Regulation During Infectious and Inflammatory Diseases. Front Immunol 2020; 10:3081. [PMID: 32038627 PMCID: PMC6992578 DOI: 10.3389/fimmu.2019.03081] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs, miRs) are short, endogenously initiated, non-coding RNAs that bind to target mRNAs, leading to the degradation or translational suppression of respective mRNAs. They have been reported as key players in physiological processes like differentiation, cellular proliferation, development, and apoptosis. They have gained importance as gene expression regulators in the immune system. They control antibody production and release various inflammatory mediators. Abnormal expression and functioning of miRNA in the immune system is linked to various diseases like inflammatory disorders, allergic diseases, cancers etc. As compared to the average human genome, miRNA targets the genes of immune system quite differently. miRNA appeared to regulate the responses related to both acquired and innate immunity of the humans. Several miRNAs importantly regulate the transcription and even, dysregulation of inflammation-related mediators. Many miRNAs are either upregulated or downregulated in various inflammatory and infectious diseases. Hence, modifying or targeting the expression of miRNAs might serve as a novel strategy for the diagnosis, prevention, and treatment of various inflammatory and infectious conditions.
Collapse
Affiliation(s)
| | | | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida, India
| |
Collapse
|
28
|
Role of miR-221/222 in Tumor Development and the Underlying Mechanism. JOURNAL OF ONCOLOGY 2019; 2019:7252013. [PMID: 31929798 PMCID: PMC6942871 DOI: 10.1155/2019/7252013] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/22/2019] [Accepted: 11/01/2019] [Indexed: 12/24/2022]
Abstract
MicroRNA-221/222 (miRNA-221/222, miR-221/222) is a noncoding microRNA which is widely distributed in eukaryotic organisms and deeply involved in the posttranscriptional regulation of gene expressions. According to recent studies, abnormal expressions of miR-221/222 are closely related to the occurrence and development of various kinds of malignant tumors. The role of miR-221/222 in tumor development and their potential molecular mechanism in various cancers, including liver cancer, colorectal cancer, cervical cancer, ovarian cancer, and endometrial carcinoma, are summarized and reviewed in this paper. Moreover, the potential translational biomarker role of abnormal miR-221/222 level in tumor or blood circulation for tumor diagnosis is also discussed.
Collapse
|
29
|
Wang C, Tang X, Wang J, Xu Y. Patterns of immune infiltration in lung adenocarcinoma revealed a prognosis-associated microRNA-mast cells network. Hum Cell 2019; 33:205-219. [PMID: 31863291 DOI: 10.1007/s13577-019-00300-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022]
Abstract
Immune infiltration of tumor microenvironment is an important determinant for immune response and outcomes. To investigate the diversity and clinical relevance of immune infiltration in lung adenocarcinoma (LUAD), we performed a comprehensive analysis using the bulk tumor transcriptomes. The prognosis significance for immune infiltration was systematically evaluated and sufficient immune infiltration was associated with better outcomes. Resting mast cells emerged as the most strongly associated with better overall survival (OS) and disease-free survival (DFS), whereas the activated mast cells were correlated with adverse survival. Immune infiltration-based classification exhibited clinical relevance and provided a close link between cancer cell-intrinsic genetic events and immune landscape. The immune infiltration-miRNA functional network analysis showed that the resting mast cell-associated miRNAs are mainly involved in the enrichment of development, mRNA metabolic process, myeloid cell differentiation, Wnt, calcium modulating, interferon, p53 pathways. Additionally, we found one promoter (miR-30a) and one suppressor (miR-550a) of resting mast cells. Coupling the detailed analyses of the cellular immune infiltration and the implicated modulation role of miRNAs provides novel type of candidates for LUAD immunotherapy.
Collapse
Affiliation(s)
- Chunlin Wang
- Department of Medical Oncology, Jingzhou Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jingzhou, 434000, People's Republic of China
| | - Xi Tang
- Department of Medical Oncology, Jingzhou Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jingzhou, 434000, People's Republic of China
| | - Jiaojian Wang
- Department of Medical Oncology, Jingzhou Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jingzhou, 434000, People's Republic of China
| | - Yanhua Xu
- Department of Medical Oncology, Jingzhou Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jingzhou, 434000, People's Republic of China.
| |
Collapse
|
30
|
Exosomes in Cancer: Circulating Immune-Related Biomarkers. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1628029. [PMID: 31915681 PMCID: PMC6935444 DOI: 10.1155/2019/1628029] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022]
Abstract
Exosomes, the smallest vesicles (30–100 nm) among multivesicular bodies, are released by all body cells including tumor cells. The cargo they transfer plays an important role in intercellular communication. Tumor-derived exosomes (TEXs) maintain interactions between cancer cells and the microenvironment. Emerging evidence suggests that tumor cells release a large number of exosomes, which may not only influence proximal tumor cells and stromal cells in the local microenvironment but can also exert systemic effects as they are circulating in the blood. TEXs have been shown to boost tumor growth promote progression and metastatic spread via suppression or modification of the immune response towards cancer cells, regulation of tumor neo-angiogenesis, pre-metastatic niche formation, and therapy resistance. In addition, recent studies in patients with cancer suggest that TEXs could serve as tumor biomarker reflecting partially the genetic and molecular content of the parent cancer cell (i.e., as a so-called “liquid biopsy”). Furthermore, recent studies have demonstrated that exosomes may have immunotherapeutic applications, or can act as a drug delivery system for targeted therapies with drugs and biomolecules.
Collapse
|
31
|
Chen W, Tian B, Liang J, Yu S, Zhou Y, Li S. Matrix stiffness regulates the interactions between endothelial cells and monocytes. Biomaterials 2019; 221:119362. [PMID: 31442696 DOI: 10.1016/j.biomaterials.2019.119362] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 07/03/2019] [Accepted: 07/14/2019] [Indexed: 01/08/2023]
Abstract
Endothelial cells (ECs) serve as a barrier between circulating blood and the blood vessel wall. The recruitment and adhesion of monocytes to ECs play a critical role in the initiation of vascular diseases such as atherosclerosis. The functions of ECs are not only regulated by biochemical factors but also hemodynamic forces and matrix stiffness. The deposition of lipids and cholesterol in intima and the aging process may result in the change of stiffness in blood vessels. However, how matrix stiffness influences EC-monocyte interactions is not well understood. Here we investigated the effects of matrix stiffness on the chemotactic migration and adhesion of monocytes to ECs. ECs cultured on either soft (8 kPa) matrix or stiff (40 kPa) matrix had more chemotactic effect on monocytes compared to those on 20 kPa matrix. Moreover, monocyte adhesion exhibited a similar pattern, which was correlated with the expression levels of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1). Interestingly, miR-126 and miR-222 showed a reverse expression pattern of VCAM-1 and ICAM-1 respectively. By inhibiting miR-126 and miR-222, the effect of matrix stiffness on monocyte adhesion was abolished, suggesting that the expression of miR-126 (targeting VCAM-1) and miR-222 (targeting ICAM-1) mediated the stiffness effect on the expression of VCAM-1 and ICAM-1. These findings shed lights on how matrix stiffness regulates the interactions of ECs and monocytes and advance our understanding on the pathogenesis of atherosclerosis and aging. This work provides a rational basis for vascular tissue engineering, disease modeling and therapeutic development.
Collapse
Affiliation(s)
- Weicong Chen
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Baoxiang Tian
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqi Liang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Suyue Yu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhou
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Song Li
- Department of Bioengineering and Department of Medicine, University of California, Los Angeles, CA90095, China
| |
Collapse
|
32
|
Balci-Peynircioglu B, Akkaya-Ulum YZ, Akbaba TH, Tavukcuoglu Z. Potential of miRNAs to predict and treat inflammation from the perspective of Familial Mediterranean Fever. Inflamm Res 2019; 68:905-913. [PMID: 31342094 DOI: 10.1007/s00011-019-01272-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
AIM microRNAs (miRNAs) are small noncoding RNAs that play critical roles in physiological networks by regulating host genome expression at the post-transcriptional level. miRNAs are known to be key regulators of various biological processes in different types of immune cells, and they are known to regulate immunological functions. Differential expression of miRNAs has been documented in several diseases, including autoinflammatory and autoimmune diseases. This review aimed to focus on miRNAs and their association with autoimmune and autoinflammatory diseases. METHODS All related literature was screened from PubMed, and we discussed the possible role of miRNAs in disease prediction and usage as therapeutic agents from the perspective of Familial Mediterranean Fever (FMF). CONCLUSIONS FMF is an inherited autosomal recessive autoinflammatory disease caused by mutations in the MEditerranean FeVer (MEFV) gene, which encodes the protein pyrin. Recent studies have demonstrated that miRNAs may be effective in the pathogenesis of FMF and offer a potential explanation for phenotypic heterogeneity. Further understanding of the role of miRNAs in the pathogenesis of these diseases may help to identify molecular diagnostic markers, which may be important for the differential diagnosis of autoinflammatory diseases. Studies have shown that in the near future, traditional therapies in autoinflammatory diseases may be replaced with novel effective, miRNA-based therapies, such as the delivery of miRNA mimics or antagonists. These approaches may be important for predictive, preventive, and personalized medicine.
Collapse
|
33
|
Krichevsky AM, Uhlmann EJ. Oligonucleotide Therapeutics as a New Class of Drugs for Malignant Brain Tumors: Targeting mRNAs, Regulatory RNAs, Mutations, Combinations, and Beyond. Neurotherapeutics 2019; 16:319-347. [PMID: 30644073 PMCID: PMC6554258 DOI: 10.1007/s13311-018-00702-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Malignant brain tumors are rapidly progressive and often fatal owing to resistance to therapies and based on their complex biology, heterogeneity, and isolation from systemic circulation. Glioblastoma is the most common and most aggressive primary brain tumor, has high mortality, and affects both children and adults. Despite significant advances in understanding the pathology, multiple clinical trials employing various treatment strategies have failed. With much expanded knowledge of the GBM genome, epigenome, and transcriptome, the field of neuro-oncology is getting closer to achieve breakthrough-targeted molecular therapies. Current developments of oligonucleotide chemistries for CNS applications make this new class of drugs very attractive for targeting molecular pathways dysregulated in brain tumors and are anticipated to vastly expand the spectrum of currently targetable molecules. In this chapter, we will overview the molecular landscape of malignant gliomas and explore the most prominent molecular targets (mRNAs, miRNAs, lncRNAs, and genomic mutations) that provide opportunities for the development of oligonucleotide therapeutics for this class of neurologic diseases. Because malignant brain tumors focally disrupt the blood-brain barrier, this class of diseases might be also more susceptible to systemic treatments with oligonucleotides than other neurologic disorders and, thus, present an entry point for the oligonucleotide therapeutics to the CNS. Nevertheless, delivery of oligonucleotides remains a crucial part of the treatment strategy. Finally, synthetic gRNAs guiding CRISPR-Cas9 editing technologies have a tremendous potential to further expand the applications of oligonucleotide therapeutics and take them beyond RNA targeting.
Collapse
Affiliation(s)
- Anna M Krichevsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Initiative for RNA Medicine, Boston, Massachusetts, 02115, USA.
| | - Erik J Uhlmann
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Initiative for RNA Medicine, Boston, Massachusetts, 02115, USA
| |
Collapse
|
34
|
Exosome-derived miR-339-5p mediates radiosensitivity by targeting Cdc25A in locally advanced esophageal squamous cell carcinoma. Oncogene 2019; 38:4990-5006. [PMID: 30858545 DOI: 10.1038/s41388-019-0771-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 01/27/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
Abstract
Cancer cells associated with radioresistance are likely to give rise to local recurrence and distant metastatic relapse. However, it remains unclear whether specific miRNAs have direct roles in radioresistance and/or prognosis. In this study, we find that miR-339-5p promotes radiosensitivity, and is downregulated in radioresistant subpopulations of esophageal cancer cells. Notably, miR-339-5p was selectively secreted into blood via exosomes, and that higher serum miR-339-5p levels were positively associated with radiotherapy sensitivity and good survival. Moreover, miR-339-5p expression was downregulated in the T3/T4 stage compared with T1/T2 stage in esophageal squamous cell carcinoma (ESCC) patients (P = 0.04), and low miR-339-5p expression in tissue was significantly associated with poor overall survival (P = 0.036) and disease-free survival (P = 0.037). Overexpression of miR-339-5p enhanced radiosensitivity in vitro and in vivo. Mechanistically, miR-339-5p enhances radiosensitivity by targeting Cdc25A, and is transcriptionally regulated by Runx3. Correlations were observed between miR-339-5p levels and Cdc25A/Runx3 levels in tissue samples. Intriguingly, combined analysis of miR-339-5p expression with Runx3 increased the separation of the survival curves obtained for either gene alone in the TCGA datasets (P = 0.009). Overall, exosome-derived miR-339-5p mediates radiosensitivity through downregulation of Cdc25A, and predicts pathological response to preoperative radiotherapy in locally advanced ESCC, suggesting it could be a promising non-invasive biomarker for facilitating personalized treatments.
Collapse
|
35
|
Ebrahimkhani S, Vafaee F, Hallal S, Wei H, Lee MYT, Young PE, Satgunaseelan L, Beadnall H, Barnett MH, Shivalingam B, Suter CM, Buckland ME, Kaufman KL. Deep sequencing of circulating exosomal microRNA allows non-invasive glioblastoma diagnosis. NPJ Precis Oncol 2018; 2:28. [PMID: 30564636 PMCID: PMC6290767 DOI: 10.1038/s41698-018-0071-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/19/2018] [Indexed: 01/01/2023] Open
Abstract
Exosomes are nano-sized extracellular vesicles released by many cells that contain molecules characteristic of their cell of origin, including microRNA. Exosomes released by glioblastoma cross the blood–brain barrier into the peripheral circulation and carry molecular cargo distinct to that of “free-circulating” miRNA. In this pilot study, serum exosomal microRNAs were isolated from glioblastoma (n = 12) patients and analyzed using unbiased deep sequencing. Results were compared to sera from age- and gender-matched healthy controls and to grade II–III (n = 10) glioma patients. Significant differentially expressed microRNAs were identified, and the predictive power of individual and subsets of microRNAs were tested using univariate and multivariate analyses. Additional sera from glioblastoma patients (n = 4) and independent sets of healthy (n = 9) and non-glioma (n = 10) controls were used to further test the specificity and predictive power of this unique exosomal microRNA signature. Twenty-six microRNAs were differentially expressed in serum exosomes from glioblastoma patients relative to healthy controls. Random forest modeling and data partitioning selected seven miRNAs (miR-182-5p, miR-328-3p, miR-339-5p, miR-340-5p, miR-485-3p, miR-486-5p, and miR-543) as the most stable for classifying glioblastoma. Strikingly, within this model, six iterations of these miRNA classifiers could distinguish glioblastoma patients from controls with perfect accuracy. The seven miRNA panel was able to correctly classify all specimens in validation cohorts (n = 23). Also identified were 23 dysregulated miRNAs in IDHMUT gliomas, a partially overlapping yet distinct signature of lower-grade glioma. Serum exosomal miRNA signatures can accurately diagnose glioblastoma preoperatively. miRNA signatures identified are distinct from previously reported “free-circulating” miRNA studies in GBM patients and appear to be superior. A diagnostic test for short regulatory RNA molecules contained within tiny secreted vesicles in the bloodstream can accurately pick up signs of glioblastoma brain cancer. Researchers in Australia led by Michael Buckland and Kim Kaufman from the Royal Prince Alfred Hospital and the University of Sydney isolated circulating vesicles, called exosomes, from patients with glioblastoma or lower-grade brain cancers known as gliomas as well as healthy controls. Next-generation sequencing revealed a panel of 26 microRNAs contained within the exosomes that were differentially expressed in glioblastoma samples relative to healthy controls. (A different but partially overlapping set of 23 microRNAs also helped distinguish patients with a mutant subtype of glioma.) The researchers narrowed down the list to the seven microRNAs with the most predictive power. Testing for just these microRNAs reliably diagnosed glioblastoma with greater precision than previously reported panels of “free-circulating” microRNAs.
Collapse
Affiliation(s)
- Saeideh Ebrahimkhani
- 1Department of Neuropathology, Brainstorm Brain Cancer Research, Royal Prince Alfred Hospital, Camperdown, NSW Australia.,2Sydney Medical School, University of Sydney, Sydney, NSW Australia
| | - Fatemeh Vafaee
- 3School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW Australia
| | - Susannah Hallal
- 2Sydney Medical School, University of Sydney, Sydney, NSW Australia
| | - Heng Wei
- 1Department of Neuropathology, Brainstorm Brain Cancer Research, Royal Prince Alfred Hospital, Camperdown, NSW Australia
| | - Maggie Yuk T Lee
- 1Department of Neuropathology, Brainstorm Brain Cancer Research, Royal Prince Alfred Hospital, Camperdown, NSW Australia
| | - Paul E Young
- 4Division of Molecular Structural and Computational Biology, Victor Chang Cardiac Research Institute, Sydney, NSW Australia
| | - Laveniya Satgunaseelan
- 1Department of Neuropathology, Brainstorm Brain Cancer Research, Royal Prince Alfred Hospital, Camperdown, NSW Australia.,5Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, NSW Australia
| | - Heidi Beadnall
- 6Department of Neurology, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW Australia
| | - Michael H Barnett
- 6Department of Neurology, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW Australia
| | - Brindha Shivalingam
- 7Department of Neurosurgery, Chris O'Brien Lifehouse, Sydney, NSW Australia.,8Department of Neurosurgery, Royal Prince Alfred Hospital, Sydney, NSW Australia
| | - Catherine M Suter
- 4Division of Molecular Structural and Computational Biology, Victor Chang Cardiac Research Institute, Sydney, NSW Australia.,9Faculty of Medicine, University of New South Wales, Sydney, NSW Australia
| | - Michael E Buckland
- 1Department of Neuropathology, Brainstorm Brain Cancer Research, Royal Prince Alfred Hospital, Camperdown, NSW Australia.,2Sydney Medical School, University of Sydney, Sydney, NSW Australia
| | - Kimberley L Kaufman
- 1Department of Neuropathology, Brainstorm Brain Cancer Research, Royal Prince Alfred Hospital, Camperdown, NSW Australia.,10School of Life and Environmental Sciences, University of Sydney, Sydney, NSW Australia
| |
Collapse
|
36
|
Gulluoglu S, Tuysuz EC, Sahin M, Kuskucu A, Kaan Yaltirik C, Ture U, Kucukkaraduman B, Akbar MW, Gure AO, Bayrak OF, Dalan AB. Simultaneous miRNA and mRNA transcriptome profiling of glioblastoma samples reveals a novel set of OncomiR candidates and their target genes. Brain Res 2018; 1700:199-210. [PMID: 30176243 DOI: 10.1016/j.brainres.2018.08.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/07/2018] [Accepted: 08/31/2018] [Indexed: 12/21/2022]
Abstract
Although glioblastomas are common, there remains a need to elucidate the underlying mechanisms behind their initiation and progression and identify molecular pathways for improving treatment. In this study, sixteen fresh-frozen glioblastoma samples and seven samples of healthy brain tissues were analyzed with miRNA and whole transcriptome microarray chips. Candidate miRNAs and mRNAs were selected to validate expression in fifty patient samples in total with the criteria of abundance, relevance and prediction scores. miRNA and target mRNA relationships were assessed by inhibiting selected miRNAs in glioblastoma cells. Functional tests have been conducted in order to see the effects of miRNAs on invasion, migration and apoptosis of GBM cells. Analyses were carried out to determine correlations between selected molecules and clinicopathological features. 1332 genes and 319 miRNAs were found to be dysregulated by the microarrays. The results were combined and analyzed with Transcriptome Analysis Console 3 software and the DAVID online database. Primary differential pathways included Ras, HIF-1, MAPK signaling and cell adhesion. OncomiR candidates 21-5p, 92b-3p, 182-5p and 339-5p for glioblastoma negatively correlated with notable mRNA targets both in tissues and in in vitro experiments. miR-21-5p and miR-339-5p significantly affected migration, invasion and apoptosis of GBM cells in vitro. Significant correlations with overall survival, tumor volume, recurrence and age at diagnosis were discovered. In this article we present valuable integrated microarray analysis of glioblastoma samples regarding miRNA and gene-expression levels. Notable biomarkers and miRNA-mRNA interactions have been identified, some of which correlated with clinicopathological features in our cohort.
Collapse
Affiliation(s)
- Sukru Gulluoglu
- Department of Medical Genetics, Yeditepe University Medical School, Istanbul, Turkey; Department of Biotechnology, Institute of Science, Yeditepe University, Istanbul, Turkey
| | - Emre Can Tuysuz
- Department of Medical Genetics, Yeditepe University Medical School, Istanbul, Turkey; Department of Biotechnology, Institute of Science, Yeditepe University, Istanbul, Turkey
| | - Mesut Sahin
- Department of Nanoscience and Nanoengineering, Institute of Science Ataturk University, Erzurum, Turkey
| | - Aysegul Kuskucu
- Department of Medical Genetics, Yeditepe University Medical School, Istanbul, Turkey.
| | - Cumhur Kaan Yaltirik
- Department of Neurosurgery, Yeditepe University Medical School, Yeditepe University, Istanbul, Turkey
| | - Ugur Ture
- Department of Neurosurgery, Yeditepe University Medical School, Yeditepe University, Istanbul, Turkey
| | - Baris Kucukkaraduman
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.
| | - Muhammad Waqas Akbar
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.
| | - Ali Osmay Gure
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.
| | - Omer Faruk Bayrak
- Department of Medical Genetics, Yeditepe University Medical School, Istanbul, Turkey.
| | - Altay Burak Dalan
- Department of Biochemistry, Yeditepe University Medical School, Istanbul, Turkey.
| |
Collapse
|
37
|
Iqbal MA, Arora S, Prakasam G, Calin GA, Syed MA. MicroRNA in lung cancer: role, mechanisms, pathways and therapeutic relevance. Mol Aspects Med 2018; 70:3-20. [PMID: 30102929 DOI: 10.1016/j.mam.2018.07.003] [Citation(s) in RCA: 288] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 12/29/2022]
Abstract
Lung cancer is the cardinal cause of cancer-related deaths with restricted recourse of therapy throughout the world. Clinical success of therapies is not very promising due to - late diagnosis, limited therapeutic tools, relapse and the development of drug resistance. Recently, small ∼20-24 nucleotides molecules called microRNAs (miRNAs) have come into the limelight as they play outstanding role in the process of tumorigenesis by regulating cell cycle, metastasis, angiogenesis, metabolism and apoptosis. miRNAs essentially regulate gene expression via post-transcriptional regulation of mRNA. Nevertheless, few studies have conceded the role of miRNAs in activation of gene expression. A large body of data generated by numerous studies is suggestive of their tumor-suppressing, oncogenic, diagnostic and prognostic biomarker roles in lung cancer. They have also been implicated in regulating cancer cell metabolism and resistance or sensitivity towards chemotherapy and radiotherapy. Further, miRNAs have also been convoluted in regulation of immune checkpoints - Programmed death 1 (PD-1) and its ligand (PD-L1). These molecules play a significant role in tumor immune escape leading to the generation of a microenvironment favouring tumor growth and progression. Therefore, it is imperative to explore the expression of miRNA and understand its relevance in lung cancer and development of anti-cancer strategies (anti - miRs, miR mimics and micro RNA sponges). In view of the above, the role of miRNA in lung cancer has been dissected and the associated mechanisms and pathways are discussed in this review.
Collapse
Affiliation(s)
- Mohammad Askandar Iqbal
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi-110025, India.
| | - Shweta Arora
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi-110025, India.
| | - Gopinath Prakasam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - George A Calin
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX-77030, USA.
| | - Mansoor Ali Syed
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi-110025, India.
| |
Collapse
|
38
|
Yang Y, Alderman C, Sehlaoui A, Xiao Y, Wang W. MicroRNAs as Immunotherapy Targets for Treating Gastroenterological Cancers. Can J Gastroenterol Hepatol 2018; 2018:9740357. [PMID: 30046565 PMCID: PMC6038585 DOI: 10.1155/2018/9740357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/02/2018] [Indexed: 01/17/2023] Open
Abstract
Gastroenterological cancers are the most common cancers categorized by systems and are estimated to comprise 18.4% of all cancers in the United States in 2017. Gastroenterological cancers are estimated to contribute 26.2% of cancer-related death in 2017. Gastroenterological cancers are characterized by late diagnosis, metastasis, high recurrence, and being refractory to current therapies. Since the current targeted therapies provide limited benefit to the overall response and survival, there is an urgent need for developing novel therapeutic strategy to improve the outcome of gastroenterological cancers. Immunotherapy has been developed and underwent clinical trials, but displayed limited therapeutic benefit. Since aberrant expressions of miRNAs are found in gastroenterological cancers and miRNAs have been shown to regulate antitumor immunity, the combination therapy combining the traditional antibody-based immunotherapy and novel miRNA-based immunotherapy is promising for achieving clinical success. This review summarizes the current knowledge about the miRNAs and long noncoding RNAs that exhibit immunoregulatory roles in gastroenterological cancers and precancerous diseases of digestive system, as well as the miRNA-based clinical trials for gastroenterological cancers. This review also analyzes the ongoing challenge of identifying appropriate therapy candidates for complex and dynamic tumor microenvironment, ensuring efficient and targeted delivery to specific cancer tissues, and developing strategy for avoiding off-target effect.
Collapse
Affiliation(s)
- Yixin Yang
- College of Natural, Applied and Health Sciences, Kean University, 100 Morris Avenue, Union, NJ 07083, USA
| | - Christopher Alderman
- School of Medicine, University of Colorado, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Ayoub Sehlaoui
- Department of Biological Sciences, Emporia State University, 1 Kellogg Circle, Emporia, KS 66801, USA
| | - Yuan Xiao
- Department of Biological Sciences, Emporia State University, 1 Kellogg Circle, Emporia, KS 66801, USA
| | - Wei Wang
- Department of Thoracic Surgery III, Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning 110042, China
| |
Collapse
|
39
|
Gang W, Wang JJ, Guan R, Yan S, Shi F, Zhang JY, Li ZM, Gao J, Fu XL. Strategy to targeting the immune resistance and novel therapy in colorectal cancer. Cancer Med 2018; 7:1578-1603. [PMID: 29658188 PMCID: PMC5943429 DOI: 10.1002/cam4.1386] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/11/2022] Open
Abstract
Assessing the CRC subtypes that can predict the outcome of colorectal cancer (CRC) in patients with immunogenicity seems to be a promising strategy to develop new drugs that target the antitumoral immune response. In particular, the disinhibition of the antitumoral T‐cell response by immune checkpoint blockade has shown remarkable therapeutic promise for patients with mismatch repair (MMR) deficient CRC. In this review, the authors provide the update of the molecular features and immunogenicity of CRC, discuss the role of possible predictive biomarkers, illustrate the modern immunotherapeutic approaches, and introduce the most relevant ongoing preclinical study and clinical trials such as the use of the combination therapy with immunotherapy. Furthermore, this work is further to understand the complex interactions between the immune surveillance and develop resistance in tumor cells. As expected, if the promise of these developments is fulfilled, it could develop the effective therapeutic strategies and novel combinations to overcome immune resistance and enhance effector responses, which guide clinicians toward a more “personalized” treatment for advanced CRC patients.
Collapse
Affiliation(s)
- Wang Gang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Rui Guan
- Hubei University of Medicine, NO. 30 People South Road, Shiyan City, Hubei Province, 442000, China
| | - Sun Yan
- Hubei University of Medicine, NO. 30 People South Road, Shiyan City, Hubei Province, 442000, China
| | - Feng Shi
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, 212001, China
| | - Jia-Yan Zhang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Zi-Meng Li
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Jing Gao
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, 212001, China
| | - Xing-Li Fu
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, 212001, China
| |
Collapse
|
40
|
Abstract
Majority of the human genome is transcribed into RNAs with absent or limited protein-coding potential. microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are two major families of the non-protein-coding transcripts. miRNAs and lncRNAs can regulate fundamental cellular processes via diverse mechanisms. The expression and function of miRNAs and lncRNAs are tightly regulated in development and physiological homeostasis. Dysregulation of miRNAs and lncRNAs is critical to pathogenesis of human disease. Moreover, recent evidence indicates a cross talk between miRNAs and lncRNAs. Herein we review recent advances in the biology of miRNAs and lncRNAs with respect to the above aspects. We focus on their roles in cancer, respiratory disease, and neurodegenerative disease. The complexity, flexibility, and versatility of the structures and functions of miRNAs and lncRNAs demand integration of experimental and bioinformatics tools to acquire sufficient knowledge for applications of these noncoding RNAs in clinical care.
Collapse
Affiliation(s)
- Min Xue
- Xuzhou College of Medicine, Xuzhou, Jiangsu, China
| | - Ying Zhuo
- Kadlec Regional Medical Center, 888 Swift Boulevard, Richland, WA, USA
| | - Bin Shan
- Elson S. Floyd College of Medicine, Washington State University Spokane, 1495, Spokane, WA, 99210-1495, USA.
| |
Collapse
|
41
|
Identification of a three-miRNA signature as a blood-borne diagnostic marker for early diagnosis of lung adenocarcinoma. Oncotarget 2018; 7:26070-86. [PMID: 27036025 PMCID: PMC5041965 DOI: 10.18632/oncotarget.8429] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/14/2016] [Indexed: 01/08/2023] Open
Abstract
Background The subtypes of NSCLC have unique characteristics of pathogenic mechanism and responses to targeted therapies. Thus, non-invasive markers for diagnosis of different subtypes of NSCLC at early stage are needed. Results Based on the results from the screening and validation process, 3 miRNAs (miR-532, miR-628-3p and miR-425-3p) were found to display significantly different expression levels in early-stage lung adenocarcinoma, as compared to those in healthy controls. ROC analysis showed that the miRNA–based biomarker could distinguish lung adenocarcinoma from healthy controls with high AUC (0.974), sensitivity (91.5%), and specificity (97.8%). Importantly, these three miRNAs could also distinguish lung adenocarcinoma from lung benigh diseases and other subtypes of lung cancer. Methods Two hundreds and one early-stage lung adenocarcinoma cases and one hundreds seventy eight age- and sex-matched healthy controls were recruited to this study. We screened the differentially expressed plasma miRNAs using TaqMan Low Density Arrays (TLDA) followed by three-phase qRT-PCR validation. A risk score model was established to evaluate the diagnostic value of the plasma miRNA profiling system. Conclusions Taken together, these findings suggest that the 3 miRNA–based biomarker might serve as a novel non-invasive approach for diagnosis of early-stage lung adenocarcinoma.
Collapse
|
42
|
Pucci M, Reclusa Asiáin P, Duréndez Sáez E, Jantus-Lewintre E, Malarani M, Khan S, Fontana S, Naing A, Passiglia F, Raez LE, Rolfo C, Taverna S. Extracellular Vesicles As miRNA Nano-Shuttles: Dual Role in Tumor Progression. Target Oncol 2018; 13:175-187. [DOI: 10.1007/s11523-018-0551-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Abstract
Lung cancer is the leading cause of cancer-related deaths in the world. Despite significant advances in the early detection and treatment of the disease, the prognosis remains poor, with an overall 5-year survival rate ranging from 15% to 20%. This poor prognosis results largely from early micrometastatic spread of cancer cells to nearby lymph nodes or tissues and partially from early recurrence after curative surgical resection. Recently, precision medicines that target potential oncogenic driver mutations have been approved to treat lung cancer. However, some lung cancer patients do not have targetable mutations, and many patients develop resistance to targeted therapy. Tumor heterogeneity and mutational density are also challenges in treating lung cancer, which underscores the need for developing alternative therapeutic strategies for treating lung cancer. Epigenetic therapy may circumvent the problems of tumor heterogeneity and drug resistance by affecting the expression of several hundred target genes. This review highlights precision medicine using an innovative approach of epigenetic priming prior to conventional standard therapy or targeted cancer therapy in lung cancer.
Collapse
Affiliation(s)
- Dongho Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea. .,Samsung Medical Center, Research Institute for Future Medicine, Seoul, South Korea.
| |
Collapse
|
44
|
Strubberg AM, Madison BB. MicroRNAs in the etiology of colorectal cancer: pathways and clinical implications. Dis Model Mech 2017; 10:197-214. [PMID: 28250048 PMCID: PMC5374322 DOI: 10.1242/dmm.027441] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small single-stranded RNAs that repress mRNA translation
and trigger mRNA degradation. Of the ∼1900 miRNA-encoding genes present
in the human genome, ∼250 miRNAs are reported to have changes in
abundance or altered functions in colorectal cancer. Thousands of studies have
documented aberrant miRNA levels in colorectal cancer, with some miRNAs reported
to actively regulate tumorigenesis. A recurrent phenomenon with miRNAs is their
frequent participation in feedback loops, which probably serve to reinforce or
magnify biological outcomes to manifest a particular cellular phenotype. Here,
we review the roles of oncogenic miRNAs (oncomiRs), tumor suppressive miRNAs
(anti-oncomiRs) and miRNA regulators in colorectal cancer. Given their stability
in patient-derived samples and ease of detection with standard and novel
techniques, we also discuss the potential use of miRNAs as biomarkers in the
diagnosis of colorectal cancer and as prognostic indicators of this disease.
MiRNAs also represent attractive candidates for targeted therapies because their
function can be manipulated through the use of synthetic antagonists and miRNA
mimics. Summary: This Review provides an overview of some important
microRNAs and their roles in colorectal cancer.
Collapse
Affiliation(s)
- Ashlee M Strubberg
- Division of Gastroenterology, Washington University School of Medicine, Washington University, Saint Louis, MO 63110, USA
| | - Blair B Madison
- Division of Gastroenterology, Washington University School of Medicine, Washington University, Saint Louis, MO 63110, USA
| |
Collapse
|
45
|
Abstract
Approximately 50% of all cutaneous melanomas harbor activating BRAF V600 mutations; among, these 10-30% carry the V600K mutation. Clinically, patients with V600K tumors experience distant metastases sooner and have an increased risk of relapse and shorter survival than patients with V600E tumors. Despite the clinical and other histopathological differences between these BRAF tumor subtypes, little is known about them at the genomic level. Herein, we systematically compared BRAF V600E and V600K skin cutaneous melanoma (SKCM) samples from the Cancer Genome Atlas (TCGA) for differential protein, gene, and microRNA expression genome-wide using the Mann-Whitney U-test. Our analyses showed that elements of energy-metabolism and protein-translation pathways were upregulated and that proapoptotic pathways were downregulated in V600K tumors compared with V600E tumors. We found that c-Kit protein and KIT gene expressions were significantly higher in V600K tumors than in V600E tumors, concurrent with significant downregulation of several KIT-targeting microRNAs (mir) including mir-222 in V600K tumors, suggesting KIT and mir-222 might be key genomic contributors toward the clinical differences observed. The relationship that we uncovered among KIT/c-Kit expression, mir-222 expression, and growth and prosurvival signals in V600 tumors is intriguing. We believe that the observed clinical aggressiveness of V600K tumors compared to V600E tumors may be attributable to the increased energy metabolism, protein translation and prosurvival signals compared with V600E tumors. If confirmed using larger numbers of V600K tumors, our results may prove useful for designing clinical management and targeted chemotherapeutical interventions for BRAF V600K-positive melanomas. Finally, the small sample size in V600K tumors is a major limitation of our study.
Collapse
Affiliation(s)
- Yuanyuan Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina, USA
| | | | | |
Collapse
|
46
|
Vannini I, Wise PM, Challagundla KB, Plousiou M, Raffini M, Bandini E, Fanini F, Paliaga G, Crawford M, Ferracin M, Ivan C, Fabris L, Davuluri RV, Guo Z, Cortez MA, Zhang X, Chen L, Zhang S, Fernandez-Cymering C, Han L, Carloni S, Salvi S, Ling H, Murtadha M, Neviani P, Gitlitz BJ, Laird-Offringa IA, Nana-Sinkam P, Negrini M, Liang H, Amadori D, Cimmino A, Calin GA, Fabbri M. Transcribed ultraconserved region 339 promotes carcinogenesis by modulating tumor suppressor microRNAs. Nat Commun 2017; 8:1801. [PMID: 29180617 PMCID: PMC5703849 DOI: 10.1038/s41467-017-01562-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/27/2017] [Indexed: 01/05/2023] Open
Abstract
The transcribed ultraconserved regions (T-UCRs) encode long non-coding RNAs implicated in human carcinogenesis. Their mechanisms of action and the factors regulating their expression in cancers are poorly understood. Here we show that high expression of uc.339 correlates with lower survival in 210 non-small cell lung cancer (NSCLC) patients. We provide evidence from cell lines and primary samples that TP53 directly regulates uc.339. We find that transcribed uc.339 is upregulated in archival NSCLC samples, functioning as a decoy RNA for miR-339-3p, -663b-3p, and -95-5p. As a result, Cyclin E2, a direct target of all these microRNAs is upregulated, promoting cancer growth and migration. Finally, we find that modulation of uc.339 affects microRNA expression. However, overexpression or downregulation of these microRNAs causes no significant variations in uc.339 levels, suggesting a type of interaction for uc.339 that we call "entrapping". Our results support a key role for uc.339 in lung cancer.
Collapse
Affiliation(s)
- Ivan Vannini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, Gene Therapy Unit, 47014, Meldola (FC), Italy
| | - Petra M Wise
- Departments of Pediatrics and Molecular Microbiology & Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Children's Center for Cancer and Blood Diseases and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Meropi Plousiou
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, Gene Therapy Unit, 47014, Meldola (FC), Italy
| | - Mirco Raffini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, Gene Therapy Unit, 47014, Meldola (FC), Italy
| | - Erika Bandini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, Gene Therapy Unit, 47014, Meldola (FC), Italy
| | - Francesca Fanini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, Gene Therapy Unit, 47014, Meldola (FC), Italy
| | - Giorgia Paliaga
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, Gene Therapy Unit, 47014, Meldola (FC), Italy
| | - Melissa Crawford
- Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, 40126, Bologna, Italy
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA
| | - Linda Fabris
- The Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA
| | - Ramana V Davuluri
- Departments of Preventive Medicine and Neurological Surgery, Northwestern University-Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Zhiyi Guo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Maria Angelica Cortez
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xinna Zhang
- The Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA.,Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lu Chen
- Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shuxing Zhang
- Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Cecilia Fernandez-Cymering
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University, Columbus, OH, 43210, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Silvia Carloni
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, Biosciences Laboratory Unit, 47014, Meldola (FC), Italy
| | - Samanta Salvi
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, Biosciences Laboratory Unit, 47014, Meldola (FC), Italy
| | - Hui Ling
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mariam Murtadha
- Departments of Pediatrics and Molecular Microbiology & Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Children's Center for Cancer and Blood Diseases and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Paolo Neviani
- Departments of Pediatrics and Molecular Microbiology & Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Children's Center for Cancer and Blood Diseases and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Barbara J Gitlitz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ite A Laird-Offringa
- Departments of Surgery and Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Patrick Nana-Sinkam
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121, Ferrara, Italy
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dino Amadori
- Department of Oncology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, 47014, Meldola (FC), Italy
| | - Amelia Cimmino
- Institute of Genetics and Biophysics, National Research Council, 80131, Naples, Italy
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,The Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA.
| | - Muller Fabbri
- Departments of Pediatrics and Molecular Microbiology & Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Children's Center for Cancer and Blood Diseases and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA.
| |
Collapse
|
47
|
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) occurs in both adults and children but the response to chemotherapy and survival is significantly worse in the adults. We aimed to study whether the expression of immune system-associated miRNAs would differ between adult and pediatric patients with ALL at the time of diagnosis. MATERIALS AND METHODS Inflammation-associated miRNA analysis was performed in 19 adults and 79 pediatric patients with ALL and involved miR-10, miR-15, miR-16, miR-17-92 cluster, miR-33, miR-146a, miR-150, miR-155, miR-181a, miR-222, miR-223, and miR-339. MiRNAs were first analyzed by miRNA microarray and thereafter validated by qRT-PCR. Sufficient RNA for qRT-PCR was available for 42 pediatric and 19 adult patients. RESULTS Of the studied miRNAs, only miR-18a differed significantly in microarray analysis between adult and pediatric ALL, being lower in children (FC, -3.74; P, 0.0037). Results were confirmed by qRT-PCR (down-regulated in pediatric patients, P 0.003161). The other members of the miR-17-92 cluster did not differ significantly. CONCLUSIONS Pediatric and adult patients with ALL have remarkably similar patterns of immune-cell-associated miRNAs in their bone marrow at diagnosis. However, the low expression of miR-18a in pediatric ALL is interesting and demands further study.
Collapse
|
48
|
Liu F, Cheng Z, Li X, Li Y, Zhang H, Li J, Liu F, Xu H, Li F. A Novel Pak1/ATF2/miR-132 Signaling Axis Is Involved in the Hematogenous Metastasis of Gastric Cancer Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:370-382. [PMID: 28918037 PMCID: PMC5537170 DOI: 10.1016/j.omtn.2017.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/21/2022]
Abstract
We, along with others, have shown previously that P21-activated kinase 1 (Pak1) plays a pivotal role in gastric cancer progression and metastasis. However, whether Pak1 controls gastric cancer metastasis by regulating microRNAs (miRNAs) has never been explored. Here, we report a novel mechanism of Pak1 in tumor metastasis. A detailed examination revealed that Pak1 interacts with and phosphorylates the serine 62 residue of ATF2 and then blocks its translocation into the nucleus. We also confirmed that ATF2 binds to the promoter of miR-132 and tightly regulates its transcription, thus explaining the regulatory mechanism of miR-132 by Pak1. miR-132 also significantly reduced cell adhesion, migration, and invasion of gastric cancer cells in vitro and significantly prevented tumor metastasis in vivo. miR-132 specifically inhibited hematogenous metastasis, but not lymph node or implantation metastases. In order to further delineate the effects of the Pak1/ATF2/miR-132 cascade on gastric cancer progression, we identified several targets of miR-132 using a bioinformatics TargetScan algorithm. Notably, miR-132 reduced the expression of CD44 and fibronectin1 (FN1), and such inhibition enabled lymphocytes to home in on gastric cancer cells and induce tumor apoptosis. Taken together, our studies establish a novel cell-signaling pathway and open new possibilities for therapeutic intervention of gastric cancer.
Collapse
Affiliation(s)
- Funan Liu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China; Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110122, China
| | - Zhenguo Cheng
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Xiaodong Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Yanshu Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Hongyan Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Jiabin Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Furong Liu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Huimian Xu
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110122, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China.
| |
Collapse
|
49
|
Korsunsky I, Parameswaran J, Shapira I, Lovecchio J, Menzin A, Whyte J, Dos Santos L, Liang S, Bhuiya T, Keogh M, Khalili H, Pond C, Liew A, Shih A, Gregersen PK, Lee AT. Two microRNA signatures for malignancy and immune infiltration predict overall survival in advanced epithelial ovarian cancer. J Investig Med 2017; 65:1068-1076. [PMID: 28716985 PMCID: PMC5847100 DOI: 10.1136/jim-2017-000457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2017] [Indexed: 11/17/2022]
Abstract
MicroRNAs have been established as key regulators of tumor gene expression and as prime biomarker candidates for clinical phenotypes in epithelial ovarian cancer (EOC). We analyzed the coexpression and regulatory structure of microRNAs and their co-localized gene targets in primary tumor tissue of 20 patients with advanced EOC in order to construct a regulatory signature for clinical prognosis. We performed an integrative analysis to identify two prognostic microRNA/mRNA coexpression modules, each enriched for consistent biological functions. One module, enriched for malignancy-related functions, was found to be upregulated in malignant versus benign samples. The second module, enriched for immune-related functions, was strongly correlated with imputed intratumoral immune infiltrates of T cells, natural killer cells, cytotoxic lymphocytes, and macrophages. We validated the prognostic relevance of the immunological module microRNAs in the publicly available The Cancer Genome Atlas data set. These findings provide novel functional roles for microRNAs in the progression of advanced EOC and possible prognostic signatures for survival.
Collapse
Affiliation(s)
- Ilya Korsunsky
- Genomics and Human Genetics, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | | | - Iuliana Shapira
- SUNY Downstate Medical Center College of Medicine, Hematology/Oncology, Brooklyn, New York, USA
| | - John Lovecchio
- Northwell Health, Great Neck, New York, USA.,Hofstra-Northwell School of Medicine, Hempstead, New York, USA
| | - Andrew Menzin
- Northwell Health, Great Neck, New York, USA.,Hofstra-Northwell School of Medicine, Hempstead, New York, USA
| | - Jill Whyte
- Northwell Health, Great Neck, New York, USA.,Hofstra-Northwell School of Medicine, Hempstead, New York, USA
| | - Lisa Dos Santos
- Northwell Health, Great Neck, New York, USA.,Hofstra-Northwell School of Medicine, Hempstead, New York, USA
| | - Sharon Liang
- Northwell Health, Great Neck, New York, USA.,Hofstra-Northwell School of Medicine, Hempstead, New York, USA
| | - Tawfiqul Bhuiya
- Northwell Health, Great Neck, New York, USA.,Hofstra-Northwell School of Medicine, Hempstead, New York, USA
| | - Mary Keogh
- Genomics and Human Genetics, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Houman Khalili
- Genomics and Human Genetics, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Cassandra Pond
- Genomics and Human Genetics, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Anthony Liew
- Genomics and Human Genetics, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Andrew Shih
- Genomics and Human Genetics, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Peter K Gregersen
- Genomics and Human Genetics, Feinstein Institute for Medical Research, Manhasset, New York, USA.,Hofstra-Northwell School of Medicine, Hempstead, New York, USA
| | - Annette T Lee
- Genomics and Human Genetics, Feinstein Institute for Medical Research, Manhasset, New York, USA.,Hofstra-Northwell School of Medicine, Hempstead, New York, USA
| |
Collapse
|
50
|
Cole MB, Quach H, Quach D, Baker A, Taylor KE, Barcellos LF, Criswell LA. Epigenetic Signatures of Salivary Gland Inflammation in Sjögren's Syndrome. Arthritis Rheumatol 2017; 68:2936-2944. [PMID: 27332624 PMCID: PMC5132022 DOI: 10.1002/art.39792] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 06/14/2016] [Indexed: 01/26/2023]
Abstract
Objective Sjögren's syndrome (SS) is a complex multisystem autoimmune disease that results in progressive destruction of the exocrine glands. The purpose of this study was to characterize epigenetic changes in affected gland tissue and describe the relationship of these changes to known inflammatory processes. Methods A genome‐wide DNA methylation study was performed on human labial salivary gland (LSG) biopsy samples obtained from 28 female members of the Sjögren's International Collaborative Clinical Alliance (SICCA) Registry. Gland tissue was methylotyped using the Illumina HumanMethylation450 BeadChip platform, followed by rigorous probe‐filtering and data‐normalization procedures. Results A genome‐wide case–control study of 26 of the 28 subjects revealed 7,820 differentially methylated positions (DMPs) associated with disease status, including 5,699 hypomethylated and 2,121 hypermethylated DMPs. Further analysis identified 57 genes that were enriched for DMPs in their respective promoters; many are involved in immune response, including 2 previously established SS genetic risk loci. Bioinformatics analysis highlighted an extended region of hypomethylation surrounding PSMB8 and TAP1, consistent with an increased frequency of antigen‐presenting cells in LSG tissue from the SS cases. Transcription factor motif enrichment analysis revealed the specific nature of the genome‐wide methylation differences, demonstrating colocalization of SS‐associated DMPs with stress‐ and immune response–related motifs. Conclusion Our findings underscore the utility of CpG methylotyping as an independent probe of active disease processes in SS, offering unique insights into the composition of disease‐relevant tissue. Methylation profiling implicated several genes and pathways previously thought to be involved in disease‐related processes, as well as a number of new candidates.
Collapse
Affiliation(s)
| | | | | | | | - Kimberly E Taylor
- Russell/Engleman Rheumatology Research Center, University of California, San Francisco
| | | | - Lindsey A Criswell
- Russell/Engleman Rheumatology Research Center, University of California, San Francisco
| |
Collapse
|