1
|
Lu D, Fan X. Insights into the prospects of nanobiomaterials in the treatment of cardiac arrhythmia. J Nanobiotechnology 2024; 22:523. [PMID: 39215361 PMCID: PMC11363662 DOI: 10.1186/s12951-024-02805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiac arrhythmia, a disorder of abnormal electrical activity of the heart that disturbs the rhythm of the heart, thereby affecting its normal function, is one of the leading causes of death from heart disease worldwide and causes millions of deaths each year. Currently, treatments for arrhythmia include drug therapy, radiofrequency ablation, cardiovascular implantable electronic devices (CIEDs), including pacemakers, defibrillators, and cardiac resynchronization therapy (CRT). However, these traditional treatments have several limitations, such as the side effects of medication, the risks of device implantation, and the complications of invasive surgery. Nanotechnology and nanomaterials provide safer, effective and crucial treatments to improve the quality of life of patients with cardiac arrhythmia. The large specific surface area, controlled physical and chemical properties, and good biocompatibility of nanobiomaterials make them promising for a wide range of applications, such as cardiovascular drug delivery, tissue engineering, and the diagnosis and therapeutic treatment of diseases. However, issues related to the genotoxicity, cytotoxicity and immunogenicity of nanomaterials remain and require careful consideration. In this review, we first provide a brief overview of cardiac electrophysiology, arrhythmia and current treatments for arrhythmia and discuss the potential applications of nanobiomaterials before focusing on the promising applications of nanobiomaterials in drug delivery and cardiac tissue repair. An in-depth study of the application of nanobiomaterials is expected to provide safer and more effective therapeutic options for patients with cardiac arrhythmia, thereby improving their quality of life.
Collapse
Affiliation(s)
- Dingkun Lu
- Cardiac Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohan Fan
- Cardiac Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Kieda J, Shakeri A, Landau S, Wang EY, Zhao Y, Lai BF, Okhovatian S, Wang Y, Jiang R, Radisic M. Advances in cardiac tissue engineering and heart-on-a-chip. J Biomed Mater Res A 2024; 112:492-511. [PMID: 37909362 PMCID: PMC11213712 DOI: 10.1002/jbm.a.37633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
Recent advances in both cardiac tissue engineering and hearts-on-a-chip are grounded in new biomaterial development as well as the employment of innovative fabrication techniques that enable precise control of the mechanical, electrical, and structural properties of the cardiac tissues being modelled. The elongated structure of cardiomyocytes requires tuning of substrate properties and application of biophysical stimuli to drive its mature phenotype. Landmark advances have already been achieved with induced pluripotent stem cell-derived cardiac patches that advanced to human testing. Heart-on-a-chip platforms are now commonly used by a number of pharmaceutical and biotechnology companies. Here, we provide an overview of cardiac physiology in order to better define the requirements for functional tissue recapitulation. We then discuss the biomaterials most commonly used in both cardiac tissue engineering and heart-on-a-chip, followed by the discussion of recent representative studies in both fields. We outline significant challenges common to both fields, specifically: scalable tissue fabrication and platform standardization, improving cellular fidelity through effective tissue vascularization, achieving adult tissue maturation, and ultimately developing cryopreservation protocols so that the tissues are available off the shelf.
Collapse
Affiliation(s)
- Jennifer Kieda
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Amid Shakeri
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Shira Landau
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Erika Yan Wang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Benjamin Fook Lai
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Sargol Okhovatian
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Ying Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Richard Jiang
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Cheng MH, Chang CW, Wang J, Bupphathong S, Huang W, Lin CH. 3D-Bioprinted GelMA Scaffold with ASCs and HUVECs for Engineering Vascularized Adipose Tissue. ACS APPLIED BIO MATERIALS 2024; 7:406-415. [PMID: 38148527 DOI: 10.1021/acsabm.3c00964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The purpose of tissue engineering is to reconstruct parts of injured tissues and to resolve the shortage of organ donations. However, the main concern is the limited size of engineered tissue due to insufficient oxygen and nutrition distribution in large three-dimensional (3D) tissue constructs. To provide better support for cells inside the scaffolds, the vascularization of blood vessels within the scaffold could be a solution. This study compared the effects of different culturing systems using human adipose tissue-derived stem/stromal cells (ASCs), human umbilical vein endothelial cells (HUVECs), and coculture of ASCs and HUVECs in 3D-bioprinted gelatin methacrylate (GelMA) hydrogel constructs. The in vitro results showed that the number of live cells was highest in the coculture of ASCs and HUVECs in the GelMA hydrogel after culturing for 21 days. Additionally, the tubular structure was the most abundant in the GelMA hydrogel, containing both ASCs and HUVECs. In the in vivo test, blood vessels were present in both the HUVECs and the coculture of ASCs and HUVECs hydrogels implanted in mice. However, the blood vessel density was the highest in the HUVEC and ASC coculture groups. These findings indicate that the 3D-bioprinted GelMA hydrogel coculture system could be a promising biomaterial for large tissue engineering applications.
Collapse
Affiliation(s)
- Ming-Huei Cheng
- Center of Lymphedema Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chien-Wen Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jerry Wang
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Sasinan Bupphathong
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Wei Huang
- Department of Orthodontics, Rutgers School of Dental Medicine, Newark, New Jersey 07103, United States
| | - Chih-Hsin Lin
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
4
|
Qian B, Shen A, Huang S, Shi H, Long Q, Zhong Y, Qi Z, He X, Zhang Y, Hai W, Wang X, Cui Y, Chen Z, Xuan H, Zhao Q, You Z, Ye X. An Intrinsically Magnetic Epicardial Patch for Rapid Vascular Reconstruction and Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303033. [PMID: 37964406 PMCID: PMC10754083 DOI: 10.1002/advs.202303033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/30/2023] [Indexed: 11/16/2023]
Abstract
Myocardial infarction (MI) is a major cause of mortality worldwide. The major limitation of regenerative therapy for MI is poor cardiac retention of therapeutics, which results from an inefficient vascular network and poor targeting ability. In this study, a two-layer intrinsically magnetic epicardial patch (MagPatch) prepared by 3D printing with biocompatible materials like poly (glycerol sebacate) (PGS) is designed, poly (ε-caprolactone) (PCL), and NdFeB. The two-layer structure ensured that the MagPatch multifariously utilized the magnetic force for rapid vascular reconstruction and targeted drug delivery. MagPatch accumulates superparamagnetic iron oxide (SPION)-labelled endothelial cells, instantly forming a ready-implanted organization, and rapidly reconstructs a vascular network anastomosed with the host. In addition, the prefabricated vascular network within the MagPatch allowed for the efficient accumulation of SPION-labelled therapeutics, amplifying the therapeutic effects of cardiac repair. This study defined an extendable therapeutic platform for vascularization-based targeted drug delivery that is expected to assist in the progress of regenerative therapies in clinical applications.
Collapse
Affiliation(s)
- Bei Qian
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Ao Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineDonghua UniversityShanghai201620China
| | - Shixing Huang
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Hongpeng Shi
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Qiang Long
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Yiming Zhong
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Zhaoxi Qi
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Xiaojun He
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Yecen Zhang
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Wangxi Hai
- Department of Nuclear Medicine, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Xinming Wang
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Yanna Cui
- Department of Pharmacology and Chemical BiologyShanghai Jiaotong University School of MedicineShanghai200000China
| | - Ziheng Chen
- School of Mechatronics Engineering and AutomationShanghai UniversityShanghai200000China
| | - Huixia Xuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineDonghua UniversityShanghai201620China
| | - Qiang Zhao
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative MedicineDonghua UniversityShanghai201620China
| | - Xiaofeng Ye
- Department of Cardiovascular Surgery, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghai200025China
| |
Collapse
|
5
|
Okhovatian S, Shakeri A, Huyer LD, Radisic M. Elastomeric Polyesters in Cardiovascular Tissue Engineering and Organs-on-a-Chip. Biomacromolecules 2023; 24:4511-4531. [PMID: 37639715 PMCID: PMC10915885 DOI: 10.1021/acs.biomac.3c00387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Cardiovascular tissue constructs provide unique design requirements due to their functional responses to substrate mechanical properties and cyclic stretching behavior of cardiac tissue that requires the use of durable elastic materials. Given the diversity of polyester synthesis approaches, an opportunity exists to develop a new class of biocompatible, elastic, and immunomodulatory cardiovascular polymers. Furthermore, elastomeric polyester materials have the capability to provide tailored biomechanical synergy with native tissue and hence reduce inflammatory response in vivo and better support tissue maturation in vitro. In this review, we highlight underlying chemistry and design strategies of polyester elastomers optimized for cardiac tissue scaffolds. The major advantages of these materials such as their tunable elasticity, desirable biodegradation, and potential for incorporation of bioactive compounds are further expanded. Unique fabrication methods using polyester materials such as micromolding, 3D stamping, electrospinning, laser ablation, and 3D printing are discussed. Moreover, applications of these biomaterials in cardiovascular organ-on-a-chip devices and patches are analyzed. Finally, we outline unaddressed challenges in the field that need further study to enable the impactful translation of soft polyesters to clinical applications.
Collapse
Affiliation(s)
- Sargol Okhovatian
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Amid Shakeri
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Locke Davenport Huyer
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Milica Radisic
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto; Ontario, M5S 3E5; Canada
| |
Collapse
|
6
|
Gkouti E, Czekanski A, AlAttar A. Simulating and Predicting the Mechanical Behavior of Electrospun Scaffolds for Cardiac Patches Fabrication. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7095. [PMID: 38005025 PMCID: PMC10672181 DOI: 10.3390/ma16227095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Fabricating helical scaffolds using electrospinning is a common approach for cardiac implantation, aiming to achieve properties similar to native tissue. However, this process requires multiple experimental attempts to select suitable electrospun properties and validate resulting mechanical responses. To overcome the time and cost constraints associated with this iterative procedure, Finite Element Analysis (FEA) can be applied using stable hyperelastic and viscoelastic models that describe the response of electrospun scaffolds under different conditions. In this study, we aim to create accurate simulations of the viscoelastic behavior of electrospun helical scaffolds. We fabricated helical fibers from Poly (3-caprolactone) (PCL) using the electrospinning process to achieve this. The electrospun samples were subjected to uniaxial deformation, and their response was modelled using existing hyperelastic and stress relaxation models. The simulations were built on experimental data for specific deformation speed and maximum strain conditions. The FEM results were evaluated by accounting for the stress-softening phenomenon, which significantly impacted the models. The electrospun scaffolds' predictions were performed in other than the initial experimental conditions to verify our simulations' accuracy and reliability.
Collapse
Affiliation(s)
- Elli Gkouti
- Department of Mechanical Engineering, Lassonde School of Engineering, York University, Toronto, ON M3J1P3, Canada;
| | - Aleksander Czekanski
- Department of Mechanical Engineering, Lassonde School of Engineering, York University, Toronto, ON M3J1P3, Canada;
| | | |
Collapse
|
7
|
Bernava G, Iop L. Advances in the design, generation, and application of tissue-engineered myocardial equivalents. Front Bioeng Biotechnol 2023; 11:1247572. [PMID: 37811368 PMCID: PMC10559975 DOI: 10.3389/fbioe.2023.1247572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Due to the limited regenerative ability of cardiomyocytes, the disabling irreversible condition of myocardial failure can only be treated with conservative and temporary therapeutic approaches, not able to repair the damage directly, or with organ transplantation. Among the regenerative strategies, intramyocardial cell injection or intravascular cell infusion should attenuate damage to the myocardium and reduce the risk of heart failure. However, these cell delivery-based therapies suffer from significant drawbacks and have a low success rate. Indeed, cardiac tissue engineering efforts are directed to repair, replace, and regenerate native myocardial tissue function. In a regenerative strategy, biomaterials and biomimetic stimuli play a key role in promoting cell adhesion, proliferation, differentiation, and neo-tissue formation. Thus, appropriate biochemical and biophysical cues should be combined with scaffolds emulating extracellular matrix in order to support cell growth and prompt favorable cardiac microenvironment and tissue regeneration. In this review, we provide an overview of recent developments that occurred in the biomimetic design and fabrication of cardiac scaffolds and patches. Furthermore, we sift in vitro and in situ strategies in several preclinical and clinical applications. Finally, we evaluate the possible use of bioengineered cardiac tissue equivalents as in vitro models for disease studies and drug tests.
Collapse
Affiliation(s)
| | - Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, Padua Medical School, University of Padua, Padua, Italy
| |
Collapse
|
8
|
Pezhouman A, Nguyen NB, Kay M, Kanjilal B, Noshadi I, Ardehali R. Cardiac regeneration - Past advancements, current challenges, and future directions. J Mol Cell Cardiol 2023; 182:75-85. [PMID: 37482238 DOI: 10.1016/j.yjmcc.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Cardiovascular disease is the leading cause of mortality and morbidity worldwide. Despite improvements in the standard of care for patients with heart diseases, including innovation in pharmacotherapy and surgical interventions, none have yet been proven effective to prevent the progression to heart failure. Cardiac transplantation is the last resort for patients with severe heart failure, but donor shortages remain a roadblock. Cardiac regenerative strategies include cell-based therapeutics, gene therapy, direct reprogramming of non-cardiac cells, acellular biologics, and tissue engineering methods to restore damaged hearts. Significant advancements have been made over the past several decades within each of these fields. This review focuses on the advancements of: 1) cell-based cardiac regenerative therapies, 2) the use of noncoding RNA to induce endogenous cell proliferation, and 3) application of bioengineering methods to promote retention and integration of engrafted cells. Different cell sources have been investigated, including adult stem cells derived from bone marrow and adipose cells, cardiosphere-derived cells, skeletal myoblasts, and pluripotent stem cells. In addition to cell-based transplantation approaches, there have been accumulating interest over the past decade in inducing endogenous CM proliferation for heart regeneration, particularly with the use of noncoding RNAs such as miRNAs and lncRNAs. Bioengineering applications have focused on combining cell-transplantation approaches with fabrication of a porous, vascularized scaffold using biomaterials and advanced bio-fabrication techniques that may offer enhanced retention of transplanted cells, with the hope that these cells would better engraft with host tissue to improve cardiac function. This review summarizes the present status and future challenges of cardiac regenerative therapies.
Collapse
Affiliation(s)
- Arash Pezhouman
- Baylor College of Medicine, Department of Medicine, Division of Cardiology, Houston, Texas 77030, United States; Texas Heart Institute, Houston, Texas 77030, United States
| | - Ngoc B Nguyen
- Baylor College of Medicine, Department of Internal Medicine, Houston, Texas 77030, United States
| | - Maryam Kay
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, CA 90095, United States
| | - Baishali Kanjilal
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, United States
| | - Iman Noshadi
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, United States
| | - Reza Ardehali
- Baylor College of Medicine, Department of Medicine, Division of Cardiology, Houston, Texas 77030, United States; Texas Heart Institute, Houston, Texas 77030, United States.
| |
Collapse
|
9
|
Dai Y, Qiao K, Li D, Isingizwe P, Liu H, Liu Y, Lim K, Woodfield T, Liu G, Hu J, Yuan J, Tang J, Cui X. Plant-Derived Biomaterials and Their Potential in Cardiac Tissue Repair. Adv Healthc Mater 2023; 12:e2202827. [PMID: 36977522 DOI: 10.1002/adhm.202202827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/19/2023] [Indexed: 03/30/2023]
Abstract
Cardiovascular disease remains the leading cause of mortality worldwide. The inability of cardiac tissue to regenerate after an infarction results in scar tissue formation, leading to cardiac dysfunction. Therefore, cardiac repair has always been a popular research topic. Recent advances in tissue engineering and regenerative medicine offer promising solutions combining stem cells and biomaterials to construct tissue substitutes that could have functions similar to healthy cardiac tissue. Among these biomaterials, plant-derived biomaterials show great promise in supporting cell growth due to their inherent biocompatibility, biodegradability, and mechanical stability. More importantly, plant-derived materials have reduced immunogenic properties compared to popular animal-derived materials (e.g., collagen and gelatin). In addition, they also offer improved wettability compared to synthetic materials. To date, limited literature is available to systemically summarize the progression of plant-derived biomaterials in cardiac tissue repair. Herein, this paper highlights the most common plant-derived biomaterials from both land and marine plants. The beneficial properties of these materials for tissue repair are further discussed. More importantly, the applications of plant-derived biomaterials in cardiac tissue engineering, including tissue-engineered scaffolds, bioink in 3D biofabrication, delivery vehicles, and bioactive molecules, are also summarized using the latest preclinical and clinical examples.
Collapse
Affiliation(s)
- Yichen Dai
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Kai Qiao
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Demin Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Phocas Isingizwe
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Haohao Liu
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Yu Liu
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Khoon Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery, University of Otago, Christchurch, 8011, New Zealand
- School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tim Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery, University of Otago, Christchurch, 8011, New Zealand
| | - Guozhen Liu
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230052, China
| | - Jie Yuan
- Department of Cardiology, Shenzhen People's Hospital, Shenzhen, Guangdong, 518001, China
| | - Junnan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiaolin Cui
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery, University of Otago, Christchurch, 8011, New Zealand
| |
Collapse
|
10
|
El-Husseiny HM, Mady EA, El-Dakroury WA, Doghish AS, Tanaka R. Stimuli-responsive hydrogels: smart state of-the-art platforms for cardiac tissue engineering. Front Bioeng Biotechnol 2023; 11:1174075. [PMID: 37449088 PMCID: PMC10337592 DOI: 10.3389/fbioe.2023.1174075] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Biomedicine and tissue regeneration have made significant advancements recently, positively affecting the whole healthcare spectrum. This opened the way for them to develop their applications for revitalizing damaged tissues. Thus, their functionality will be restored. Cardiac tissue engineering (CTE) using curative procedures that combine biomolecules, biomimetic scaffolds, and cells plays a critical part in this path. Stimuli-responsive hydrogels (SRHs) are excellent three-dimensional (3D) biomaterials for tissue engineering (TE) and various biomedical applications. They can mimic the intrinsic tissues' physicochemical, mechanical, and biological characteristics in a variety of ways. They also provide for 3D setup, adequate aqueous conditions, and the mechanical consistency required for cell development. Furthermore, they function as competent delivery platforms for various biomolecules. Many natural and synthetic polymers were used to fabricate these intelligent platforms with innovative enhanced features and specialized capabilities that are appropriate for CTE applications. In the present review, different strategies employed for CTE were outlined. The light was shed on the limitations of the use of conventional hydrogels in CTE. Moreover, diverse types of SRHs, their characteristics, assembly and exploitation for CTE were discussed. To summarize, recent development in the construction of SRHs increases their potential to operate as intelligent, sophisticated systems in the reconstruction of degenerated cardiac tissues.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Eman A. Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Walaa A. El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Egypt
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
11
|
Kant RJ, Dwyer KD, Lee JH, Polucha C, Kobayashi M, Pyon S, Soepriatna AH, Lee J, Coulombe KLK. Patterned Arteriole-Scale Vessels Enhance Engraftment, Perfusion, and Vessel Branching Hierarchy of Engineered Human Myocardium for Heart Regeneration. Cells 2023; 12:1698. [PMID: 37443731 PMCID: PMC10340601 DOI: 10.3390/cells12131698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Heart regeneration after myocardial infarction (MI) using human stem cell-derived cardiomyocytes (CMs) is rapidly accelerating with large animal and human clinical trials. However, vascularization methods to support the engraftment, survival, and development of implanted CMs in the ischemic environment of the infarcted heart remain a key and timely challenge. To this end, we developed a dual remuscularization-revascularization therapy that is evaluated in a rat model of ischemia-reperfusion MI. This study details the differentiation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for engineering cardiac tissue containing patterned engineered vessels 400 μm in diameter. Vascularized engineered human myocardial tissues (vEHMs) are cultured in static conditions or perfused in vitro prior to implantation and evaluated after two weeks. Immunohistochemical staining indicates improved engraftment of hiPSC-CMs in in vitro-perfused vEHMs with greater expression of SMA+ vessels and evidence of inosculation. Three-dimensional vascular reconstructions reveal less tortuous and larger intra-implant vessels, as well as an improved branching hierarchy in in vitro-perfused vEHMs relative to non-perfused controls. Exploratory RNA sequencing of explanted vEHMs supports the hypothesis that co-revascularization impacts hiPSC-CM development in vivo. Our approach provides a strong foundation to enhance vEHM integration, develop hierarchical vascular perfusion, and maximize hiPSC-CM engraftment for future regenerative therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kareen L. K. Coulombe
- School of Engineering, Brown University Center for Biomedical Engineering, Providence, RI 02912, USA; (R.J.K.)
| |
Collapse
|
12
|
Ascheid D, Baumann M, Funke C, Volz J, Pinnecker J, Friedrich M, Höhn M, Nandigama R, Ergün S, Nieswandt B, Heinze KG, Henke E. Image-based modeling of vascular organization to evaluate anti-angiogenic therapy. Biol Direct 2023; 18:10. [PMID: 36922848 PMCID: PMC10018970 DOI: 10.1186/s13062-023-00365-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
In tumor therapy anti-angiogenic approaches have the potential to increase the efficacy of a wide variety of subsequently or co-administered agents, possibly by improving or normalizing the defective tumor vasculature. Successful implementation of the concept of vascular normalization under anti-angiogenic therapy, however, mandates a detailed understanding of key characteristics and a respective scoring metric that defines an improved vasculature and thus a successful attempt. Here, we show that beyond commonly used parameters such as vessel patency and maturation, anti-angiogenic approaches largely benefit if the complex vascular network with its vessel interconnections is both qualitatively and quantitatively assessed. To gain such deeper insight the organization of vascular networks, we introduce a multi-parametric evaluation of high-resolution angiographic images based on light-sheet fluorescence microscopy images of tumors. We first could pinpoint key correlations between vessel length, straightness and diameter to describe the regular, functional and organized structure observed under physiological conditions. We found that vascular networks from experimental tumors diverted from those in healthy organs, demonstrating the dysfunctionality of the tumor vasculature not only on the level of the individual vessel but also in terms of inadequate organization into larger structures. These parameters proofed effective in scoring the degree of disorganization in different tumor entities, and more importantly in grading a potential reversal under treatment with therapeutic agents. The presented vascular network analysis will support vascular normalization assessment and future optimization of anti-angiogenic therapy.
Collapse
Affiliation(s)
- David Ascheid
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
| | - Magdalena Baumann
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
| | - Caroline Funke
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
| | - Julia Volz
- Institute of Experimental Biomedicine I, Universitätsklinikum Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Universität Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany
| | - Jürgen Pinnecker
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Universität Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany
| | - Mike Friedrich
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Universität Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany
| | - Marie Höhn
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
| | - Rajender Nandigama
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, Universitätsklinikum Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Universität Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Universität Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany.
| | - Erik Henke
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany.
- Graduate School for Life Sciences, Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
13
|
Zhao Y, Wang EY, Lai FBL, Cheung K, Radisic M. Organs-on-a-chip: a union of tissue engineering and microfabrication. Trends Biotechnol 2023; 41:410-424. [PMID: 36725464 PMCID: PMC9985977 DOI: 10.1016/j.tibtech.2022.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 02/03/2023]
Abstract
We review the emergence of the new field of organ-on-a-chip (OOAC) engineering, from the parent fields of tissue engineering and microfluidics. We place into perspective the tools and capabilities brought into the OOAC field by early tissue engineers and microfluidics experts. Liver-on-a-chip and heart-on-a-chip are used as two case studies of systems that heavily relied on tissue engineering techniques and that were amongst the first OOAC models to be implemented, motivated by the need to better assess toxicity to human tissues in preclinical drug development. We review current challenges in OOAC that often stem from the same challenges in the parent fields, such as stable vascularization and drug absorption.
Collapse
Affiliation(s)
- Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Erika Yan Wang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fook B L Lai
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Krisco Cheung
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.
| |
Collapse
|
14
|
Sigaroodi F, Rahmani M, Parandakh A, Boroumand S, Rabbani S, Khani MM. Designing cardiac patches for myocardial regeneration–a review. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2180510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Faraz Sigaroodi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahya Rahmani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azim Parandakh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safieh Boroumand
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Klabukov I, Balyasin M, Krasilnikova O, Tenchurin T, Titov A, Krasheninnikov M, Mudryak D, Sulina Y, Shepelev A, Chvalun S, Dyuzheva T, Yakimova A, Sosin D, Lyundup A, Baranovskii D, Shegay P, Kaprin A. Angiogenic Modification of Microfibrous Polycaprolactone by pCMV-VEGF165 Plasmid Promotes Local Vascular Growth after Implantation in Rats. Int J Mol Sci 2023; 24:ijms24021399. [PMID: 36674913 PMCID: PMC9865169 DOI: 10.3390/ijms24021399] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Insufficient vascular growth in the area of artificial-material implantation contributes to ischemia, fibrosis, the development of bacterial infections, and tissue necrosis around the graft. The purpose of this study was to evaluate angiogenesis after implantation of polycaprolactone microfiber scaffolds modified by a pCMV-VEGF165-plasmid in rats. Influence of vascularization on scaffold degradation was also examined. We investigated flat microfibrous scaffolds obtained by electrospinning polycaprolactone with incorporation of the pCMV-VEGF-165 plasmid into the microfibers at concentrations of 0.005 ng of plasmid per 1 mg of polycaprolactone (0.005 ng/mg) (LCGroup) and 0.05 ng/mg (HCGroup). The samples were subcutaneously implanted in the interscapular area of rats. On days 7, 16, 33, 46, and 64, the scaffolds were removed, and a histological study with a morphometric evaluation of the density and diameter of the vessels and microfiber diameter was performed. The number of vessels was increased in all groups, as well as the resorption of the scaffold. On day 33, the vascular density in the HCGroup was 42% higher compared to the control group (p = 0.0344). The dose-dependent effect of the pCMV-VEGF165-plasmid was confirmed by enhanced angiogenesis in the HCGroup compared to the LCGroup on day 33 (p-value = 0.0259). We did not find a statistically significant correlation between scaffold degradation rate and vessel growth (the Pearson correlation coefficient was ρ = 0.20, p-value = 0.6134). Functionalization of polycaprolactone by incorporation of the pCMV-VEGF165 plasmid provided improved vascularization within 33 days after implantation, however, vessel growth did not seem to correlate with scaffold degradation rate.
Collapse
Affiliation(s)
- Ilya Klabukov
- Department of Regenerative Medicine, National Medical Research Radiological Center, 249031 Obninsk, Russia
- Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University MEPhI, 115409 Obninsk, Russia
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- Correspondence:
| | - Maksim Balyasin
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Olga Krasilnikova
- Department of Regenerative Medicine, National Medical Research Radiological Center, 249031 Obninsk, Russia
| | - Timur Tenchurin
- National Research Centre “Kurchatov Institute”, 1, Akademika Kurchatova pl., 123182 Moscow, Russia
| | - Alexander Titov
- City Clinical Hospital No. 67 of Moscow Health Department, 2/44, Salyama Adilya St., 123423 Moscow, Russia
| | - Mikhail Krasheninnikov
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- Lomonosov Institute of Fine Chemical Technologies, Russian Technological University MIREA, 119454 Moscow, Russia
| | - Daniil Mudryak
- City Clinical Hospital No. 67 of Moscow Health Department, 2/44, Salyama Adilya St., 123423 Moscow, Russia
- Department of Hospital Surgery, Sklifosovsky Institute of Clinical Medicine, Sechenov University, 119435 Moscow, Russia
| | - Yana Sulina
- Department of Obstetrics and Gynecology, Sechenov University, 119435 Moscow, Russia
| | - Alexey Shepelev
- National Research Centre “Kurchatov Institute”, 1, Akademika Kurchatova pl., 123182 Moscow, Russia
| | - Sergei Chvalun
- National Research Centre “Kurchatov Institute”, 1, Akademika Kurchatova pl., 123182 Moscow, Russia
| | - Tatiana Dyuzheva
- Department of Hospital Surgery, Sklifosovsky Institute of Clinical Medicine, Sechenov University, 119435 Moscow, Russia
| | - Anna Yakimova
- A. Tsyb Medical Research Radiological Center—Branch of the National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
| | - Dmitry Sosin
- Center for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, 125371 Moscow, Russia
| | - Alexey Lyundup
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Denis Baranovskii
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- A. Tsyb Medical Research Radiological Center—Branch of the National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
| | - Peter Shegay
- Department of Regenerative Medicine, National Medical Research Radiological Center, 249031 Obninsk, Russia
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Andrey Kaprin
- Department of Regenerative Medicine, National Medical Research Radiological Center, 249031 Obninsk, Russia
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
16
|
Gregory DA, Fricker ATR, Mitrev P, Ray M, Asare E, Sim D, Larpnimitchai S, Zhang Z, Ma J, Tetali SSV, Roy I. Additive Manufacturing of Polyhydroxyalkanoate-Based Blends Using Fused Deposition Modelling for the Development of Biomedical Devices. J Funct Biomater 2023; 14:jfb14010040. [PMID: 36662087 PMCID: PMC9865795 DOI: 10.3390/jfb14010040] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
In the last few decades Additive Manufacturing has advanced and is becoming important for biomedical applications. In this study we look at a variety of biomedical devices including, bone implants, tooth implants, osteochondral tissue repair patches, general tissue repair patches, nerve guidance conduits (NGCs) and coronary artery stents to which fused deposition modelling (FDM) can be applied. We have proposed CAD designs for these devices and employed a cost-effective 3D printer to fabricate proof-of-concept prototypes. We highlight issues with current CAD design and slicing and suggest optimisations of more complex designs targeted towards biomedical applications. We demonstrate the ability to print patient specific implants from real CT scans and reconstruct missing structures by means of mirroring and mesh mixing. A blend of Polyhydroxyalkanoates (PHAs), a family of biocompatible and bioresorbable natural polymers and Poly(L-lactic acid) (PLLA), a known bioresorbable medical polymer is used. Our characterisation of the PLA/PHA filament suggest that its tensile properties might be useful to applications such as stents, NGCs, and bone scaffolds. In addition to this, the proof-of-concept work for other applications shows that FDM is very useful for a large variety of other soft tissue applications, however other more elastomeric MCL-PHAs need to be used.
Collapse
|
17
|
Panja N, Maji S, Choudhuri S, Ali KA, Hossain CM. 3D Bioprinting of Human Hollow Organs. AAPS PharmSciTech 2022; 23:139. [PMID: 35536418 PMCID: PMC9088731 DOI: 10.1208/s12249-022-02279-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/09/2022] [Indexed: 01/12/2023] Open
Abstract
3D bioprinting is a rapidly evolving technique that has been found to have extensive applications in disease research, tissue engineering, and regenerative medicine. 3D bioprinting might be a solution to global organ shortages and the growing aversion to testing cell patterning for novel tissue fabrication and building superior disease models. It has the unrivaled capability of layer-by-layer deposition using different types of biomaterials, stem cells, and biomolecules with a perfectly regulated spatial distribution. The tissue regeneration of hollow organs has always been a challenge for medical science because of the complexities of their cell structures. In this mini review, we will address the status of the science behind tissue engineering and 3D bioprinting of epithelialized tubular hollow organs. This review will also cover the current challenges and prospects, as well as the application of these complicated 3D-printed organs.
Collapse
|
18
|
Structural and Functional Support by Left Atrial Appendage Transplant to the Left Ventricle after a Myocardial Infarction. Int J Mol Sci 2022; 23:ijms23094661. [PMID: 35563050 PMCID: PMC9104858 DOI: 10.3390/ijms23094661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
The left atrial appendage (LAA) of the adult heart has been shown to contain cardiac and myeloid progenitor cells. The resident myeloid progenitor population expresses an array of pro-regenerative paracrine factors. Cardiac constructs have been shown to inhibit deleterious remodeling of the heart using physical support. Due to these aspects, LAA holds promise as a regenerative transplant. LAAs from adult mT/mG mice were transplanted to the recipient 129X1-SvJ mice simultaneously as myocardial infarction (MI) was performed. A decellularized LAA patch was implanted in the control group. Two weeks after MI, the LAA patch had integrated to the ventricular wall, and migrated cells were seen in the MI area. The cells had two main phenotypes: small F4/80+ cells and large troponin C+ cells. After follow-up at 8 weeks, the LAA patch remained viable, and the functional status of the heart improved. Cardiac echo demonstrated that, after 6 weeks, the mice in the LAA-patch-treated group showed an increasing and statistically significant improvement in cardiac performance when compared to the MI and MI + decellularized patch controls. Physical patch-support (LAA and decellularized LAA patch) had an equal effect on the inhibition of deleterious remodeling, but only the LAA patch inhibited the hypertrophic response. Our study demonstrates that the LAA transplantation has the potential for use as a treatment for myocardial infarction. This method can putatively combine cell therapy (regenerative effect) and physical support (inhibition of deleterious remodeling).
Collapse
|
19
|
Williams MAC, Mair DB, Lee W, Lee E, Kim DH. Engineering Three-Dimensional Vascularized Cardiac Tissues. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:336-350. [PMID: 33559514 PMCID: PMC9063162 DOI: 10.1089/ten.teb.2020.0343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/08/2021] [Indexed: 12/23/2022]
Abstract
Heart disease is one of the largest burdens to human health worldwide and has very limited therapeutic options. Engineered three-dimensional (3D) vascularized cardiac tissues have shown promise in rescuing cardiac function in diseased hearts and may serve as a whole organ replacement in the future. One of the major obstacles in reconstructing these thick myocardial tissues to a clinically applicable scale is the integration of functional vascular networks capable of providing oxygen and nutrients throughout whole engineered constructs. Without perfusion of oxygen and nutrient flow throughout the entire engineered tissue not only is tissue viability compromised, but also overall tissue functionality is lost. There are many supporting technologies and approaches that have been developed to create vascular networks such as 3D bioprinting, co-culturing hydrogels, and incorporation of soluble angiogenic factors. In this state-of-the-art review, we discuss some of the most current engineered vascular cardiac tissues reported in the literature and future directions in the field. Impact statement The field of cardiac tissue engineering is rapidly evolving and is now closer than ever to having engineered tissue models capable of predicting preclinical responses to therapeutics, modeling diseases, and being used as a means of rescuing cardiac function following injuries to the native myocardium. However, a major obstacle of engineering thick cardiac tissue remains to be the integration of functional vasculature. In this review, we highlight seminal and recently published works that have influenced and pushed the field of cardiac tissue engineering toward achieving vascularized functional tissues.
Collapse
Affiliation(s)
| | - Devin B. Mair
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Wonjae Lee
- Department of Neurosurgery, Stanford School of Medicine, Stanford, California, USA
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Polysaccharide hydrogels: Functionalization, construction and served as scaffold for tissue engineering. Carbohydr Polym 2022; 278:118952. [PMID: 34973769 DOI: 10.1016/j.carbpol.2021.118952] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/07/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023]
Abstract
Polysaccharide hydrogels have been widely utilized in tissue engineering. They interact with the organismal environments, modulating the cargos release and realizing of long-term survival and activations of living cells. In this review, the potential strategies for modification of polysaccharides were introduced firstly. It is not only used to functionalize the polysaccharides for the consequent formation of hydrogels, but also used to introduce versatile side groups for the regulation of cell behavior. Then, techniques and underlying mechanisms in inducing the formation of hydrogels by polysaccharides or their derivatives are briefly summarized. Finally, the applications of polysaccharide hydrogels in vivo, mainly focus on the performance for alleviation of foreign-body response (FBR) and as cell scaffolds for tissue regeneration, are exemplified. In addition, the perspectives and challenges for further research are addressed. It aims to provide a comprehensive framework about the potentials and challenges that the polysaccharide hydrogels confronting in tissue engineering.
Collapse
|
21
|
Bioengineering approaches to treat the failing heart: from cell biology to 3D printing. Nat Rev Cardiol 2022; 19:83-99. [PMID: 34453134 DOI: 10.1038/s41569-021-00603-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 02/08/2023]
Abstract
Successfully engineering a functional, human, myocardial pump would represent a therapeutic alternative for the millions of patients with end-stage heart disease and provide an alternative to animal-based preclinical models. Although the field of cardiac tissue engineering has made tremendous advances, major challenges remain, which, if properly resolved, might allow the clinical implementation of engineered, functional, complex 3D structures in the future. In this Review, we provide an overview of state-of-the-art studies, challenges that have not yet been overcome and perspectives on cardiac tissue engineering. We begin with the most clinically relevant cell sources used in this field and discuss the use of topological, biophysical and metabolic stimuli to obtain mature phenotypes of cardiomyocytes, particularly in relation to organized cytoskeletal and contractile intracellular structures. We then move from the cellular level to engineering planar cardiac patches and discuss the need for proper vascularization and the main strategies for obtaining it. Finally, we provide an overview of several different approaches for the engineering of volumetric organs and organ parts - from whole-heart decellularization and recellularization to advanced 3D printing technologies.
Collapse
|
22
|
Malki M, Shapira A, Dvir T. Chondroitin sulfate-AuNRs electroactive scaffolds for on-demand release of biofactors. J Nanobiotechnology 2022; 20:59. [PMID: 35101034 PMCID: PMC8805416 DOI: 10.1186/s12951-022-01261-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Controlled release systems are often integrated into polymeric scaffolds to supply essential biofactors to trigger physiological processes in engineered tissues. Here, we report the modification of chondroitin sulfate (CS) electroactive polymer with gold nanorods (AuNRs) to create hybrid macroporous scaffolds for enhanced on-demand release of growth factors and cytokines. The mechanical properties, porosity and degradation of the hybrid scaffolds were evaluated, and the viability and functionality of seeded cardiac cells were assessed. Following, the ability to control the release of the enzyme lysozyme, and the cytokine, stromal cell-derived factor 1 (SDF-1) by applying electrical stimulation, was demonstrated. The AuNRs were able to increase the current through the scaffolds, providing an efficient on–off release profile of SDF-1, which resulted in higher migration of cells expressing CXCR4 receptor. Finally, the engineered scaffolds were transplanted in rats and SDF-1 was released daily by electrical stimulation, promoting blood vessel-forming cell infiltration and vascularization. We envision that gold nanoparticles and other conducting nanomaterials can be incorporated into different electroactive materials to improve their capabilities not only for tissue engineering applications, but for a variety of biomedical applications, where enhanced electrical stimulation is needed.
Collapse
|
23
|
Redenski I, Guo S, Machour M, Szklanny A, Landau S, Egozi D, Gabet Y, Levenberg S. Microcomputed Tomography-Based Analysis of Neovascularization within Bioengineered Vascularized Tissues. ACS Biomater Sci Eng 2022; 8:232-241. [PMID: 34905338 DOI: 10.1021/acsbiomaterials.1c01401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the field of tissue engineering, evaluating newly formed vascular networks is considered a fundamental step in deciphering the processes underlying tissue development. Several common modalities exist to study vessel network formation and function. However, a proper methodology that allows through three-dimensional visualization of neovessels in a reproducible manner is required. Here, we describe in-depth exploration, visualization, and analysis of vessels within newly formed tissues by utilizing a contrast agent perfusion protocol and high-resolution microcomputed tomography. Bioengineered constructs consisting of porous, biocompatible, and biodegradable scaffolds are loaded with cocultures of adipose-derived microvascular endothelial cells (HAMECs) and dental pulp stem cells (DPSCs) and implanted in a rat femoral bundle model. After 14 days of in vivo maturation, we performed the optimized perfusion protocol to allow host penetrating vascular visualization and assessment within neotissues. Following high-resolution microCT scanning of DPSC:HAMEC explants, we performed the volumetric and spatial analysis of neovasculature. Eventually, the process was repeated with a previously published coculture system for prevascularization based on adipose-derived mesenchymal stromal cells (MSCs) and HAMECs. Overall, our approach allows a comprehensive understanding of vessel organization during engraftment and development of neotissues.
Collapse
Affiliation(s)
- Idan Redenski
- Department of Biomedical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Shaowei Guo
- Department of Biomedical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
- The First Affiliated Hospital, Shantou University Medical College, Shantou 515000, China
| | - Majd Machour
- Department of Biomedical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Ariel Szklanny
- Department of Biomedical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Shira Landau
- Department of Biomedical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Dana Egozi
- Department of Plastic and Reconstructive Surgery, Kaplan Hospital, Rehovot and the Hebrew University, Jerusalem 9190401, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
24
|
From genome editing to blastocyst complementation: a new horizon in heart transplantation? JTCVS Tech 2022; 12:177-184. [PMID: 35403039 PMCID: PMC8987386 DOI: 10.1016/j.xjtc.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/12/2022] [Indexed: 11/21/2022] Open
|
25
|
Silver SE, Barrs RW, Mei Y. Transplantation of Human Pluripotent Stem Cell-Derived Cardiomyocytes for Cardiac Regenerative Therapy. Front Cardiovasc Med 2021; 8:707890. [PMID: 34820426 PMCID: PMC8606657 DOI: 10.3389/fcvm.2021.707890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/20/2021] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide and bears an immense economic burden. Late-stage heart failure often requires total heart transplantation; however, due to donor shortages and lifelong immunosuppression, alternative cardiac regenerative therapies are in high demand. Human pluripotent stem cells (hPSCs), including human embryonic and induced pluripotent stem cells, have emerged as a viable source of human cardiomyocytes for transplantation. Recent developments in several mammalian models of cardiac injury have provided strong evidence of the therapeutic potential of hPSC-derived cardiomyocytes (hPSC-CM), showing their ability to electromechanically integrate with host cardiac tissue and promote functional recovery. In this review, we will discuss recent developments in hPSC-CM differentiation and transplantation strategies for delivery to the heart. We will highlight the mechanisms through which hPSC-CMs contribute to heart repair, review major challenges in successful transplantation of hPSC-CMs, and present solutions that are being explored to address these limitations. We end with a discussion of the clinical use of hPSC-CMs, including hurdles to clinical translation, current clinical trials, and future perspectives on hPSC-CM transplantation.
Collapse
Affiliation(s)
- Sophia E. Silver
- Bioengineering Department, Clemson University, Clemson, SC, United States
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Ryan W. Barrs
- Bioengineering Department, Clemson University, Clemson, SC, United States
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC, United States
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
26
|
Hauser PV, Chang HM, Nishikawa M, Kimura H, Yanagawa N, Hamon M. Bioprinting Scaffolds for Vascular Tissues and Tissue Vascularization. Bioengineering (Basel) 2021; 8:178. [PMID: 34821744 PMCID: PMC8615027 DOI: 10.3390/bioengineering8110178] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, tissue engineering has achieved significant advancements towards the repair of damaged tissues. Until this day, the vascularization of engineered tissues remains a challenge to the development of large-scale artificial tissue. Recent breakthroughs in biomaterials and three-dimensional (3D) printing have made it possible to manipulate two or more biomaterials with complementary mechanical and/or biological properties to create hybrid scaffolds that imitate natural tissues. Hydrogels have become essential biomaterials due to their tissue-like physical properties and their ability to include living cells and/or biological molecules. Furthermore, 3D printing, such as dispensing-based bioprinting, has progressed to the point where it can now be utilized to construct hybrid scaffolds with intricate structures. Current bioprinting approaches are still challenged by the need for the necessary biomimetic nano-resolution in combination with bioactive spatiotemporal signals. Moreover, the intricacies of multi-material bioprinting and hydrogel synthesis also pose a challenge to the construction of hybrid scaffolds. This manuscript presents a brief review of scaffold bioprinting to create vascularized tissues, covering the key features of vascular systems, scaffold-based bioprinting methods, and the materials and cell sources used. We will also present examples and discuss current limitations and potential future directions of the technology.
Collapse
Affiliation(s)
- Peter Viktor Hauser
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (P.V.H.); (H.-M.C.); (N.Y.)
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA 91343, USA
| | - Hsiao-Min Chang
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (P.V.H.); (H.-M.C.); (N.Y.)
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA 91343, USA
| | - Masaki Nishikawa
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8654, Japan;
| | - Hiroshi Kimura
- Department of Mechanical Engineering, School of Engineering, Tokai University, Isehara 259-1207, Japan;
| | - Norimoto Yanagawa
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (P.V.H.); (H.-M.C.); (N.Y.)
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA 91343, USA
| | - Morgan Hamon
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (P.V.H.); (H.-M.C.); (N.Y.)
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA 91343, USA
| |
Collapse
|
27
|
Isolating and characterizing lymphatic endothelial progenitor cells for potential therapeutic lymphangiogenic applications. Acta Biomater 2021; 135:191-202. [PMID: 34384911 DOI: 10.1016/j.actbio.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022]
Abstract
Lymphatic dysfunction is associated with the progression of several vascular disorders, though currently, there are limited strategies to promote new lymphatic vasculature (i.e., lymphangiogenesis) to restore lost lymphatic function. One promising approach to stimulate lymphangiogenesis involves delivering endothelial progenitor cells (EPCs), which are naturally involved in de novo blood vessel formation and have recently been identified to include a lymphatic subpopulation. However, the contribution of lymphatic EPCs in lymphangiogenesis is not clear and challenges with maintaining the activity of transplanted EPCs remain. Thus, the objective of this study was to isolate lymphatic EPCs from human umbilical cord blood and characterize their role in the initial stages of blood or lymphatic vasculature formation. Furthermore, this study also tested the applicability of alginate hydrogels to deliver lymphatic EPCs for a possible therapeutic application. We postulated and confirmed that blood and lymphatic EPC colonies could be isolated from human umbilical cord blood. Additionally, EPC populations responded to either angiogenic or lymphangiogenic growth factors and could stimulate their respective mature endothelial cells in vasculature models in vitro. Finally, lymphatic EPCs maintained their ability to promote lymphatic sprouts after prolonged interactions with the alginate hydrogel microenvironment. These results suggest EPCs have both a blood and a lymphatic population that have specific roles in promoting revascularization and highlight the potential of alginate hydrogels for the delivery of lymphatic EPCs. STATEMENT OF SIGNIFICANCE: Despite the potential therapeutic benefit of promoting lymphatic vasculature, lymphangiogenesis remains understudied. One appealing strategy for promoting lymphangiogenesis involves delivering lymphatic endothelial progenitor cells (EPCs), which are a subpopulation of EPCs involved in de novo vessel formation. Here, we investigate the role of isolated blood and lymphatic EPC subpopulations in promoting the early stages of vascularization and the utility of alginate hydrogels to deliver lymphatic EPCs. We determined that EPCs had two populations that expressed either blood or lymphatic markers, could stimulate their respective mature vasculature in tissue constructs and that alginate hydrogels maintained the therapeutic potential of lymphatic EPCs. We anticipate this work could support promising biomaterial applications of EPCs to promote revascularization, which could have many therapeutic applications.
Collapse
|
28
|
Stejskalová A, Vankelecom H, Sourouni M, Ho MY, Götte M, Almquist BD. In vitro modelling of the physiological and diseased female reproductive system. Acta Biomater 2021; 132:288-312. [PMID: 33915315 DOI: 10.1016/j.actbio.2021.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
The maladies affecting the female reproductive tract (FRT) range from infections to endometriosis to carcinomas. In vitro models of the FRT play an increasingly important role in both basic and translational research, since the anatomy and physiology of the FRT of humans and other primates differ significantly from most of the commonly used animal models, including rodents. Using organoid culture to study the FRT has overcome the longstanding hurdle of maintaining epithelial phenotype in culture. Both ECM-derived and engineered materials have proved critical for maintaining a physiological phenotype of FRT cells in vitro by providing the requisite 3D environment, ligands, and architecture. Advanced materials have also enabled the systematic study of factors contributing to the invasive metastatic processes. Meanwhile, microphysiological devices make it possible to incorporate physical signals such as flow and cyclic exposure to hormones. Going forward, advanced materials compatible with hormones and optimised to support FRT-derived cells' long-term growth, will play a key role in addressing the diverse array of FRT pathologies and lead to impactful new treatments that support the improvement of women's health. STATEMENT OF SIGNIFICANCE: The female reproductive system is a crucial component of the female anatomy. In addition to enabling reproduction, it has wide ranging influence on tissues throughout the body via endocrine signalling. This intrinsic role in regulating normal female biology makes it susceptible to a variety of female-specific diseases. However, the complexity and human-specific features of the reproductive system make it challenging to study. This has spurred the development of human-relevant in vitro models for helping to decipher the complex issues that can affect the reproductive system, including endometriosis, infection, and cancer. In this Review, we cover the current state of in vitro models for studying the female reproductive system, and the key role biomaterials play in enabling their development.
Collapse
|
29
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
30
|
Hemalatha T, Aarthy M, Pandurangan S, Kamini NR, Ayyadurai N. A deep dive into the darning effects of biomaterials in infarct myocardium: current advances and future perspectives. Heart Fail Rev 2021; 27:1443-1467. [PMID: 34342769 DOI: 10.1007/s10741-021-10144-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 12/21/2022]
Abstract
Myocardial infarction (MI) occurs due to the obstruction of coronary arteries, a major crux that restricts blood flow and thereby oxygen to the distal part of the myocardium, leading to loss of cardiomyocytes and eventually, if left untreated, leads to heart failure. MI, a potent cardiovascular disorder, requires intense therapeutic interventions and thereby presents towering challenges. Despite the concerted efforts, the treatment strategies for MI are still demanding, which has paved the way for the genesis of biomaterial applications. Biomaterials exhibit immense potentials for cardiac repair and regeneration, wherein they act as extracellular matrix replacing scaffolds or as delivery vehicles for stem cells, protein, plasmids, etc. This review concentrates on natural, synthetic, and hybrid biomaterials; their function; and interaction with the body, mechanisms of repair by which they are able to improve cardiac function in a MI milieu. We also provide focus on future perspectives that need attention. The cognizance provided by the research results certainly indicates that biomaterials could revolutionize the treatment paradigms for MI with a positive impact on clinical translation.
Collapse
Affiliation(s)
- Thiagarajan Hemalatha
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Mayilvahanan Aarthy
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Suryalakshmi Pandurangan
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Numbi Ramudu Kamini
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India.
| |
Collapse
|
31
|
Liang JP, Accolla RP, Soundirarajan M, Emerson A, Coronel MM, Stabler CL. Engineering a macroporous oxygen-generating scaffold for enhancing islet cell transplantation within an extrahepatic site. Acta Biomater 2021; 130:268-280. [PMID: 34087442 DOI: 10.1016/j.actbio.2021.05.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 01/04/2023]
Abstract
Insufficient oxygenation is a serious issue arising within cell-based implants, as the hypoxic period between implantation and vascularization of the graft is largely unavoidable. In situ oxygen supplementation at the implant site should significantly mitigate hypoxia-induced cell death and dysfunction, as well as improve transplant efficacy, particularly for highly metabolically active cells such as pancreatic islets. One promising approach is the use of an oxygen generating material created through the encapsulation of calcium peroxide within polydimethylsiloxane (PDMS), termed OxySite. In this study, OxySite microbeads were incorporated within a macroporous PDMS scaffold to create a single, streamlined, oxygen generating macroporous scaffold. The resulting OxySite scaffold generated sufficient local oxygenation for up to 20 days, with nontoxic levels of reaction intermediates or by-products. The benefit of local oxygen release on transplant efficacy was investigated in a diabetic Lewis rat syngeneic transplantation model using a clinically relevant islet dosage (10,000 IEQ/kg BW) with different isolation purities (80%, 90%, and 99%). Impure islet preparations containing pancreatic non-islet cells, which are common in the clinical setting, permit examination of the effect of increased overall oxygen demand. Our transplantation outcomes showed that elevating the oxygen demand of the graft with decreasing isolation purity resulted in decreased graft efficacy for control implants, while the integration of OxySite significantly mitigated this impact and resulted in improved graft outcomes. Results highlight the superior clinical translational potential of these off-the-shelf OxySite scaffolds, where islet purity and the overall oxygen demands of implants are increased and highly variable. The oxygen-generating porous scaffold further provides a broad platform for enhancing the survival and efficacy of cellular implants for numerous other applications. STATEMENT OF SIGNIFICANCE: Hypoxia is a serious issue within tissue engineered implants. To address this challenge, we developed a distinct macroporous scaffold platform containing oxygen-generating microbeads. This oxygen-generating scaffold showed the potential to support clinically relevant cell dosages for islet transplantation, leading to improved treatment efficacy. This platform can also be used to mitigate hypoxia for other biomedical applications.
Collapse
Affiliation(s)
- Jia-Pu Liang
- J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL, USA
| | - Robert P Accolla
- J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL, USA
| | | | - Amy Emerson
- J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL, USA
| | - Maria M Coronel
- J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL, USA
| | - Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL, USA; University of Florida Diabetes Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
32
|
Sun X, Wu J, Qiang B, Romagnuolo R, Gagliardi M, Keller G, Laflamme MA, Li RK, Nunes SS. Transplanted microvessels improve pluripotent stem cell-derived cardiomyocyte engraftment and cardiac function after infarction in rats. Sci Transl Med 2021; 12:12/562/eaax2992. [PMID: 32967972 DOI: 10.1126/scitranslmed.aax2992] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 05/06/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer an unprecedented opportunity to remuscularize infarcted human hearts. However, studies have shown that most hiPSC-CMs do not survive after transplantation into the ischemic myocardial environment, limiting their regenerative potential and clinical application. We established a method to improve hiPSC-CM survival by cotransplanting ready-made microvessels obtained from adipose tissue. Ready-made microvessels promoted a sixfold increase in hiPSC-CM survival and superior functional recovery when compared to hiPSC-CMs transplanted alone or cotransplanted with a suspension of dissociated endothelial cells in infarcted rat hearts. Microvessels showed unprecedented persistence and integration at both early (~80%, week 1) and late (~60%, week 4) time points, resulting in increased vessel density and graft perfusion, and improved hiPSC-CM maturation. These findings provide an approach to cell-based therapies for myocardial infarction, whereby incorporation of ready-made microvessels can improve functional outcomes in cell replacement therapies.
Collapse
Affiliation(s)
- Xuetao Sun
- Toronto General Hospital Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Jun Wu
- Division of Cardiovascular Surgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Beiping Qiang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Rocco Romagnuolo
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Mark Gagliardi
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Gordon Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Michael A Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada.,Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2N2, Canada.,Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Heart and Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada.,Division of Cardiovascular Surgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Sara S Nunes
- Toronto General Hospital Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada. .,Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Heart and Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON M5S 3H2, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
33
|
Wang H, Roche CD, Gentile C. Omentum support for cardiac regeneration in ischaemic cardiomyopathy models: a systematic scoping review. Eur J Cardiothorac Surg 2021; 58:1118-1129. [PMID: 32808023 PMCID: PMC7697859 DOI: 10.1093/ejcts/ezaa205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/06/2020] [Accepted: 05/09/2020] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES ![]()
Preclinical in vivo studies using omental tissue as a biomaterial for myocardial regeneration are promising and have not previously been collated. We aimed to evaluate the effects of the omentum as a support for bioengineered tissue therapy for cardiac regeneration in vivo. METHODS A systematic scoping review was performed. Only English-language studies that used bioengineered cardio-regenerative tissue, omentum and ischaemic cardiomyopathy in vivo models were included. RESULTS We initially screened 1926 studies of which 17 were included in the final qualitative analysis. Among these, 11 were methodologically comparable and 6 were non-comparable. The use of the omentum improved the engraftment of bioengineered tissue by improving cell retention and reducing infarct size. Vascularization was also improved by the induction of angiogenesis in the transplanted tissue. Omentum-supported bioengineered grafts were associated with enhanced host reverse remodelling and improved haemodynamic measurements. CONCLUSIONS The omentum is a promising support for myocardial regenerative bioengineering in vivo. Future studies would benefit from more homogenous methodologies and reporting of outcomes to allow for direct comparison.
Collapse
Affiliation(s)
- Hogan Wang
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia
| | - Christopher D Roche
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia.,Department of Cardiothoracic Surgery, Royal North Shore Hospital, St Leonards, Sydney, NSW, Australia.,Department of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney (UTS), Ultimo, Sydney, NSW, Australia.,Department of Cardiothoracic Surgery, University Hospital of Wales, Cardiff, UK
| | - Carmine Gentile
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia.,Department of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney (UTS), Ultimo, Sydney, NSW, Australia
| |
Collapse
|
34
|
Rafatian N, Vizely K, Al Asafen H, Korolj A, Radisic M. Drawing Inspiration from Developmental Biology for Cardiac Tissue Engineers. Adv Biol (Weinh) 2021; 5:e2000190. [PMID: 34008910 DOI: 10.1002/adbi.202000190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/21/2020] [Indexed: 12/17/2022]
Abstract
A sound understanding of developmental biology is part of the foundation of effective stem cell-derived tissue engineering. Here, the key concepts of cardiac development that are successfully applied in a bioinspired approach to growing engineered cardiac tissues, are reviewed. The native cardiac milieu is studied extensively from embryonic to adult phenotypes, as it provides a resource of factors, mechanisms, and protocols to consider when working toward establishing living tissues in vitro. It begins with the various cell types that constitute the cardiac tissue. It is discussed how myocytes interact with other cell types and their microenvironment and how they change over time from the embryonic to the adult states, with a view on how such changes affect the tissue function and may be used in engineered tissue models. Key embryonic signaling pathways that have been leveraged in the design of culture media and differentiation protocols are presented. The cellular microenvironment, from extracellular matrix chemical and physical properties, to the dynamic mechanical and electrical forces that are exerted on tissues is explored. It is shown that how such microenvironmental factors can inform the design of biomaterials, scaffolds, stimulation bioreactors, and maturation readouts, and suggest considerations for ongoing biomimetic advancement of engineered cardiac tissues and regeneration strategies for the future.
Collapse
Affiliation(s)
- Naimeh Rafatian
- Toronto General Research Institute, Toronto, Ontario, M5G 2C4, Canada
| | - Katrina Vizely
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Hadel Al Asafen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Anastasia Korolj
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.,Institute of Biomaterials Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | - Milica Radisic
- Toronto General Research Institute, Toronto, Ontario, M5G 2C4, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.,Institute of Biomaterials Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
35
|
Santos ARMP, Jang Y, Son I, Kim J, Park Y. Recapitulating Cardiac Structure and Function In Vitro from Simple to Complex Engineering. MICROMACHINES 2021; 12:mi12040386. [PMID: 33916254 PMCID: PMC8067203 DOI: 10.3390/mi12040386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Cardiac tissue engineering aims to generate in vivo-like functional tissue for the study of cardiac development, homeostasis, and regeneration. Since the heart is composed of various types of cells and extracellular matrix with a specific microenvironment, the fabrication of cardiac tissue in vitro requires integrating technologies of cardiac cells, biomaterials, fabrication, and computational modeling to model the complexity of heart tissue. Here, we review the recent progress of engineering techniques from simple to complex for fabricating matured cardiac tissue in vitro. Advancements in cardiomyocytes, extracellular matrix, geometry, and computational modeling will be discussed based on a technology perspective and their use for preparation of functional cardiac tissue. Since the heart is a very complex system at multiscale levels, an understanding of each technique and their interactions would be highly beneficial to the development of a fully functional heart in cardiac tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Jongseong Kim
- Correspondence: (J.K.); (Y.P.); Tel.: +82-10-8858-7260 (J.K.); +82-10-4260-6460 (Y.P.)
| | - Yongdoo Park
- Correspondence: (J.K.); (Y.P.); Tel.: +82-10-8858-7260 (J.K.); +82-10-4260-6460 (Y.P.)
| |
Collapse
|
36
|
Wang Y, Cui H, Wang Y, Xu C, Esworthy TJ, Hann SY, Boehm M, Shen YL, Mei D, Zhang LG. 4D Printed Cardiac Construct with Aligned Myofibers and Adjustable Curvature for Myocardial Regeneration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12746-12758. [PMID: 33405502 PMCID: PMC9554838 DOI: 10.1021/acsami.0c17610] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
As an innovative additive manufacturing process, 4D printing can be utilized to generate predesigned, self-assembly structures which can actuate time-dependent, and dynamic shape-changes. Compared to other manufacturing techniques used for tissue engineering purposes, 4D printing has the advantage of being able to fabricate reprogrammable dynamic tissue constructs that can promote uniform cellular growth and distribution. For this study, a digital light processing (DLP)-based printing technique was developed to fabricate 4D near-infrared (NIR) light-sensitive cardiac constructs with highly aligned microstructure and adjustable curvature. As the curvature of the heart is varied across its surface, the 4D cardiac constructs can change their shape on-demand to mimic and recreate the curved topology of myocardial tissue for seamless integration. To mimic the aligned structure of the human myocardium and to achieve the 4D shape change, a NIR light-sensitive 4D ink material, consisting of a shape memory polymer and graphene, was created to fabricate microgroove arrays with different widths. The results of our study illustrate that our innovative NIR-responsive 4D constructs exhibit the capacity to actuate a dynamic and remotely controllable spatiotemporal transformation. Furthermore, the optimal microgroove width was discovered via culturing human induced pluripotent stem cell-derived cardiomyocytes and mesenchymal stem cells onto the constructs' surface and analyzing both their cellular morphology and alignment. The cell proliferation profiles and differentiation of tricultured human-induced pluripotent stem cell-derived cardiomyocytes, mesenchymal stem cells, and endothelial cells, on the printed constructs, were also studied using a Cell Counting Kit-8 and immunostaining. Our results demonstrate a uniform distribution of aligned cells and excellent myocardial maturation on our 4D curved cardiac constructs. This study not only provides an efficient method for manufacturing curved tissue architectures with uniform cell distributions, but also extends the potential applications of 4D printing for tissue regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Manfred Boehm
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | | | | | | |
Collapse
|
37
|
Preparation and characterization of polyurethane/chitosan/CNT nanofibrous scaffold for cardiac tissue engineering. Int J Biol Macromol 2021; 180:590-598. [PMID: 33711373 DOI: 10.1016/j.ijbiomac.2021.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/07/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
Myocardial infarction of cardiomyocytes is a leading cause of heart failure (HF) worldwide. Since heart has very limited regeneration capacity, cardiac tissue engineering (TE) to produce a bioactive scaffold is considered. In this study, a series of polyurethane solutions (5-7%wt) in aqueous acetic acid were prepared using electrospinning. A variety of Polyurethane (PU)/Chitosan (Cs)/carbon nanotubes (CNT) composite nanofibrous scaffolds with random and aligned orientation were fabricated to structurally mimic the extracellular matrix (ECM). Electrospun nanofibers were then characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), water contact angle, degradation studies, tensile tests, electrical resistance measurement and cell viability assay. The biocompatibility of electrospun random and aligned nanofibrous scaffolds with H9C2 Cells was confirmed. The results revealed that fabricated PU/Cs/CNT composite nanofibrous scaffolds were electro-conductive and aligned nanofibers could be considered as promising scaffolds with nano-scale features for regeneration of infarcted myocardium.
Collapse
|
38
|
Portillo Esquivel LE, Zhang B. Application of Cell, Tissue, and Biomaterial Delivery in Cardiac Regenerative Therapy. ACS Biomater Sci Eng 2021; 7:1000-1021. [PMID: 33591735 DOI: 10.1021/acsbiomaterials.0c01805] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death around the world, being responsible for 31.8% of all deaths in 2017 (Roth, G. A. et al. The Lancet 2018, 392, 1736-1788). The leading cause of CVD is ischemic heart disease (IHD), which caused 8.1 million deaths in 2013 (Benjamin, E. J. et al. Circulation 2017, 135, e146-e603). IHD occurs when coronary arteries in the heart are narrowed or blocked, preventing the flow of oxygen and blood into the cardiac muscle, which could provoke acute myocardial infarction (AMI) and ultimately lead to heart failure and death. Cardiac regenerative therapy aims to repair and refunctionalize damaged heart tissue through the application of (1) intramyocardial cell delivery, (2) epicardial cardiac patch, and (3) acellular biomaterials. In this review, we aim to examine these current approaches and challenges in the cardiac regenerative therapy field.
Collapse
Affiliation(s)
| | - Boyang Zhang
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada.,School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontaria L8S 4L8, Canada
| |
Collapse
|
39
|
Fang Y, Meng L, Prominski A, Schaumann EN, Seebald M, Tian B. Recent advances in bioelectronics chemistry. Chem Soc Rev 2020. [PMID: 32672777 DOI: 10.1039/d1030cs00333f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Research in bioelectronics is highly interdisciplinary, with many new developments being based on techniques from across the physical and life sciences. Advances in our understanding of the fundamental chemistry underlying the materials used in bioelectronic applications have been a crucial component of many recent discoveries. In this review, we highlight ways in which a chemistry-oriented perspective may facilitate novel and deep insights into both the fundamental scientific understanding and the design of materials, which can in turn tune the functionality and biocompatibility of bioelectronic devices. We provide an in-depth examination of several developments in the field, organized by the chemical properties of the materials. We conclude by surveying how some of the latest major topics of chemical research may be further integrated with bioelectronics.
Collapse
Affiliation(s)
- Yin Fang
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Fang Y, Meng L, Prominski A, Schaumann E, Seebald M, Tian B. Recent advances in bioelectronics chemistry. Chem Soc Rev 2020; 49:7978-8035. [PMID: 32672777 PMCID: PMC7674226 DOI: 10.1039/d0cs00333f] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Research in bioelectronics is highly interdisciplinary, with many new developments being based on techniques from across the physical and life sciences. Advances in our understanding of the fundamental chemistry underlying the materials used in bioelectronic applications have been a crucial component of many recent discoveries. In this review, we highlight ways in which a chemistry-oriented perspective may facilitate novel and deep insights into both the fundamental scientific understanding and the design of materials, which can in turn tune the functionality and biocompatibility of bioelectronic devices. We provide an in-depth examination of several developments in the field, organized by the chemical properties of the materials. We conclude by surveying how some of the latest major topics of chemical research may be further integrated with bioelectronics.
Collapse
Affiliation(s)
- Yin Fang
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Lingyuan Meng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Erik Schaumann
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Seebald
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
41
|
Majid QA, Fricker ATR, Gregory DA, Davidenko N, Hernandez Cruz O, Jabbour RJ, Owen TJ, Basnett P, Lukasiewicz B, Stevens M, Best S, Cameron R, Sinha S, Harding SE, Roy I. Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution. Front Cardiovasc Med 2020; 7:554597. [PMID: 33195451 PMCID: PMC7644890 DOI: 10.3389/fcvm.2020.554597] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVD) constitute a major fraction of the current major global diseases and lead to about 30% of the deaths, i.e., 17.9 million deaths per year. CVD include coronary artery disease (CAD), myocardial infarction (MI), arrhythmias, heart failure, heart valve diseases, congenital heart disease, and cardiomyopathy. Cardiac Tissue Engineering (CTE) aims to address these conditions, the overall goal being the efficient regeneration of diseased cardiac tissue using an ideal combination of biomaterials and cells. Various cells have thus far been utilized in pre-clinical studies for CTE. These include adult stem cell populations (mesenchymal stem cells) and pluripotent stem cells (including autologous human induced pluripotent stem cells or allogenic human embryonic stem cells) with the latter undergoing differentiation to form functional cardiac cells. The ideal biomaterial for cardiac tissue engineering needs to have suitable material properties with the ability to support efficient attachment, growth, and differentiation of the cardiac cells, leading to the formation of functional cardiac tissue. In this review, we have focused on the use of biomaterials of natural origin for CTE. Natural biomaterials are generally known to be highly biocompatible and in addition are sustainable in nature. We have focused on those that have been widely explored in CTE and describe the original work and the current state of art. These include fibrinogen (in the context of Engineered Heart Tissue, EHT), collagen, alginate, silk, and Polyhydroxyalkanoates (PHAs). Amongst these, fibrinogen, collagen, alginate, and silk are isolated from natural sources whereas PHAs are produced via bacterial fermentation. Overall, these biomaterials have proven to be highly promising, displaying robust biocompatibility and, when combined with cells, an ability to enhance post-MI cardiac function in pre-clinical models. As such, CTE has great potential for future clinical solutions and hence can lead to a considerable reduction in mortality rates due to CVD.
Collapse
Affiliation(s)
- Qasim A. Majid
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Annabelle T. R. Fricker
- Department of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| | - David A. Gregory
- Department of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Natalia Davidenko
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | - Olivia Hernandez Cruz
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Bioengineering, Department of Materials, IBME, Faculty of Engineering, Imperial College London, United Kingdom
| | - Richard J. Jabbour
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Thomas J. Owen
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pooja Basnett
- Applied Biotechnology Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Barbara Lukasiewicz
- Applied Biotechnology Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Molly Stevens
- Department of Bioengineering, Department of Materials, IBME, Faculty of Engineering, Imperial College London, United Kingdom
| | - Serena Best
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | - Ruth Cameron
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Sian E. Harding
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ipsita Roy
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
42
|
Cardiac Stem Cell-Loaded Delivery Systems: A New Challenge for Myocardial Tissue Regeneration. Int J Mol Sci 2020; 21:ijms21207701. [PMID: 33080988 PMCID: PMC7589970 DOI: 10.3390/ijms21207701] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death in Western countries. Post-myocardial infarction heart failure can be considered a degenerative disease where myocyte loss outweighs any regenerative potential. In this scenario, regenerative biology and tissue engineering can provide effective solutions to repair the infarcted failing heart. The main strategies involve the use of stem and progenitor cells to regenerate/repair lost and dysfunctional tissue, administrated as a suspension or encapsulated in specific delivery systems. Several studies demonstrated that effectiveness of direct injection of cardiac stem cells (CSCs) is limited in humans by the hostile cardiac microenvironment and poor cell engraftment; therefore, the use of injectable hydrogel or pre-formed patches have been strongly advocated to obtain a better integration between delivered stem cells and host myocardial tissue. Several approaches were used to refine these types of constructs, trying to obtain an optimized functional scaffold. Despite the promising features of these stem cells’ delivery systems, few have reached the clinical practice. In this review, we summarize the advantages, and the novelty but also the current limitations of engineered patches and injectable hydrogels for tissue regenerative purposes, offering a perspective of how we believe tissue engineering should evolve to obtain the optimal delivery system applicable to the everyday clinical scenario.
Collapse
|
43
|
Yang Q, Fang J, Lei Z, Sluijter JPG, Schiffelers R. Repairing the heart: State-of the art delivery strategies for biological therapeutics. Adv Drug Deliv Rev 2020; 160:1-18. [PMID: 33039498 DOI: 10.1016/j.addr.2020.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/23/2022]
Abstract
Myocardial infarction (MI) is one of the leading causes of mortality worldwide. It is caused by an acute imbalance between oxygen supply and demand in the myocardium, usually caused by an obstruction in the coronary arteries. The conventional therapy is based on the application of (a combination of) anti-thrombotics, reperfusion strategies to open the occluded artery, stents and bypass surgery. However, numerous patients cannot fully recover after these interventions. In this context, new therapeutic methods are explored. Three decades ago, the first biologicals were tested to improve cardiac regeneration. Angiogenic proteins gained popularity as potential therapeutics. This is not straightforward as proteins are delicate molecules that in order to have a reasonably long time of activity need to be stabilized and released in a controlled fashion requiring advanced delivery systems. To ensure long-term expression, DNA vectors-encoding for therapeutic proteins have been developed. Here, the nuclear membrane proved to be a formidable barrier for efficient expression. Moreover, the development of delivery systems that can ensure entry in the target cell, and also correct intracellular trafficking towards the nucleus are essential. The recent introduction of mRNA as a therapeutic entity has provided an attractive intermediate: prolonged but transient expression from a cytoplasmic site of action. However, protection of the sensitive mRNA and correct delivery within the cell remains a challenge. This review focuses on the application of synthetic delivery systems that target the myocardium to stimulate cardiac repair using proteins, DNA or RNA.
Collapse
Affiliation(s)
- Qiangbing Yang
- Division LAB, CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Juntao Fang
- Division Heart & Lungs, Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Zhiyong Lei
- Division LAB, CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands; Division Heart & Lungs, Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joost P G Sluijter
- Division Heart & Lungs, Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Utrecht, Circulatory Health Laboratory, Utrecht University, Utrecht, the Netherlands
| | - Raymond Schiffelers
- Division LAB, CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
44
|
Kiaie N, Gorabi AM, Ahmadi Tafti SH, Rabbani S. Pre-vascularization Approaches for Heart Tissue Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00172-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
45
|
Guo S, Redenski I, Landau S, Szklanny A, Merdler U, Levenberg S. Prevascularized Scaffolds Bearing Human Dental Pulp Stem Cells for Treating Complete Spinal Cord Injury. Adv Healthc Mater 2020; 9:e2000974. [PMID: 32902147 DOI: 10.1002/adhm.202000974] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/08/2020] [Indexed: 02/05/2023]
Abstract
The regeneration of injured spinal cord is hampered by the lack of vascular supply and neurotrophic support. Transplanting tissue-engineered constructs with developed vascular networks and neurotrophic factors, and further understanding the pattern of vessel growth in the remodeled spinal cord tissue are greatly desired. To this end, highly vascularized scaffolds embedded with human dental pulp stem cells (DPSCs) are fabricated, which possess paracrine-mediated angiogenic and neuroregenerative potentials. The potent pro-angiogenic effect of the prevascularized scaffolds is first demonstrated in a rat femoral bundle model, showing robust vessel growth and blood perfusion induced within these scaffolds postimplantation, as evidenced by laser speckle contrast imaging and 3D microCT dual imaging modalities. More importantly, in a rat complete spinal cord transection model, the implantation of these scaffolds to the injured spinal cords can also promote revascularization, as well as axon regeneration, myelin deposition, and sensory recovery. Furthermore, 3D microCT imaging and novel morphometric analysis on the remodeled spinal cord tissue demonstrate substantial regenerated vessels, more significantly in the sensory tract regions, which correlates with behavioral recovery following prevascularization treatment. Taken together, prevascularized DPSC-embedded constructs bear angiogenic and neurotrophic potentials, capable of augmenting and modulating SCI repair.
Collapse
Affiliation(s)
- Shaowei Guo
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- The First Affiliated Hospital, Shantou University Medical College, Shantou, 515000, China
| | - Idan Redenski
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shira Landau
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ariel Szklanny
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Uri Merdler
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shulamit Levenberg
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
46
|
Fleischer S, Tavakol DN, Vunjak-Novakovic G. From arteries to capillaries: approaches to engineering human vasculature. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910811. [PMID: 33708027 PMCID: PMC7942836 DOI: 10.1002/adfm.201910811] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Indexed: 05/02/2023]
Abstract
From micro-scaled capillaries to millimeter-sized arteries and veins, human vasculature spans multiple scales and cell types. The convergence of bioengineering, materials science, and stem cell biology has enabled tissue engineers to recreate the structure and function of different hierarchical levels of the vascular tree. Engineering large-scale vessels has been pursued over the past thirty years to replace or bypass damaged arteries, arterioles, and venules, and their routine application in the clinic may become a reality in the near future. Strategies to engineer meso- and microvasculature have been extensively explored to generate models to study vascular biology, drug transport, and disease progression, as well as for vascularizing engineered tissues for regenerative medicine. However, bioengineering of large-scale tissues and whole organs for transplantation, have failed to result in clinical translation due to the lack of proper integrated vasculature for effective oxygen and nutrient delivery. The development of strategies to generate multi-scale vascular networks and their direct anastomosis to host vasculature would greatly benefit this formidable goal. In this review, we discuss design considerations and technologies for engineering millimeter-, meso-, and micro-scale vessels. We further provide examples of recent state-of-the-art strategies to engineer multi-scale vasculature. Finally, we identify key challenges limiting the translation of vascularized tissues and offer our perspective on future directions for exploration.
Collapse
Affiliation(s)
| | | | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University
- Department of Medicine, Columbia University
| |
Collapse
|
47
|
Roche CD, Brereton RJL, Ashton AW, Jackson C, Gentile C. Current challenges in three-dimensional bioprinting heart tissues for cardiac surgery. Eur J Cardiothorac Surg 2020; 58:500-510. [PMID: 32391914 PMCID: PMC8456486 DOI: 10.1093/ejcts/ezaa093] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/27/2020] [Accepted: 02/18/2020] [Indexed: 12/25/2022] Open
Abstract
SUMMARY Previous attempts in cardiac bioengineering have failed to provide tissues for cardiac regeneration. Recent advances in 3-dimensional bioprinting technology using prevascularized myocardial microtissues as 'bioink' have provided a promising way forward. This review guides the reader to understand why myocardial tissue engineering is difficult to achieve and how revascularization and contractile function could be restored in 3-dimensional bioprinted heart tissue using patient-derived stem cells.
Collapse
Affiliation(s)
- Christopher D Roche
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia
- Department of Cardiothoracic Surgery, Royal North Shore Hospital, St Leonards, Sydney, NSW, Australia
- Department of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney (UTS), Ultimo, Sydney, NSW, Australia
- Department of Cardiothoracic Surgery, University Hospital of Wales, Cardiff, UK
| | - Russell J L Brereton
- Department of Cardiothoracic Surgery, Royal North Shore Hospital, St Leonards, Sydney, NSW, Australia
| | - Anthony W Ashton
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia
| | - Christopher Jackson
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia
| | - Carmine Gentile
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia
- Department of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney (UTS), Ultimo, Sydney, NSW, Australia
| |
Collapse
|
48
|
Bloise N, Rountree I, Polucha C, Montagna G, Visai L, Coulombe KLK, Munarin F. Engineering Immunomodulatory Biomaterials for Regenerating the Infarcted Myocardium. Front Bioeng Biotechnol 2020; 8:292. [PMID: 32318563 PMCID: PMC7154131 DOI: 10.3389/fbioe.2020.00292] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Coronary artery disease is a severe ischemic condition characterized by the reduction of blood flow in the arteries of the heart that results in the dysfunction and death of cardiac tissue. Despite research over several decades on how to reduce long-term complications and promote angiogenesis in the infarct, the medical field has yet to define effective treatments for inducing revascularization in the ischemic tissue. With this work, we have developed functional biomaterials for the controlled release of immunomodulatory cytokines to direct immune cell fate for controlling wound healing in the ischemic myocardium. The reparative effects of colony-stimulating factor (CSF-1), and anti-inflammatory interleukins 4/6/13 (IL4/6/13) have been evaluated in vitro and in a predictive in vivo model of ischemia (the skin flap model) to optimize a new immunomodulatory biomaterial that we use for treating infarcted rat hearts. Alginate hydrogels have been produced by internal gelation with calcium carbonate (CaCO3) as carriers for the immunomodulatory cues, and their stability, degradation, rheological properties and release kinetics have been evaluated in vitro. CD14 positive human peripheral blood monocytes treated with the immunomodulatory biomaterials show polarization into pro-healing macrophage phenotypes. Unloaded and CSF-1/IL4 loaded alginate gel formulations have been implanted in skin flap ischemic wounds to test the safety and efficacy of the delivery system in vivo. Faster wound healing is observed with the new therapeutic treatment, compared to the wounds treated with the unloaded controls at day 14. The optimized therapy has been evaluated in a rat model of myocardial infarct (ischemia/reperfusion). Macrophage polarization toward healing phenotypes and global cardiac function measured with echocardiography and immunohistochemistry at 4 and 15 days demonstrate the therapeutic potential of the proposed immunomodulatory treatment in a clinically relevant infarct model.
Collapse
Affiliation(s)
- Nora Bloise
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Toxicology and Environmental Risks, ICS Maugeri, IRCCS, Pavia, Italy
| | - Isobel Rountree
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| | - Collin Polucha
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| | - Giulia Montagna
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy.,Department of Electrical, Computer and Biomedical Engineering, Centre for Health Technologies (CHT), University of Pavia, Pavia, Italy
| | - Livia Visai
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Toxicology and Environmental Risks, ICS Maugeri, IRCCS, Pavia, Italy
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| | - Fabiola Munarin
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| |
Collapse
|
49
|
Mesenchymal Stromal Cells from Patients with Cyanotic Congenital Heart Disease are Optimal Candidate for Cardiac Tissue Engineering. Biomaterials 2020; 230:119574. [DOI: 10.1016/j.biomaterials.2019.119574] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/12/2019] [Accepted: 10/18/2019] [Indexed: 12/22/2022]
|
50
|
Varshosaz J, Masoudi S, Mehdikhani M, Hashemi Beni B, Farsaei S. Atorvastatin lipid nanocapsules and gold nanoparticles embedded in injectable thermo-gelling hydrogel scaffold containing adipose tissue extracellular matrix for myocardial tissue regeneration. IET Nanobiotechnol 2019; 13:933-941. [PMID: 31811762 PMCID: PMC8676593 DOI: 10.1049/iet-nbt.2019.0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/05/2019] [Accepted: 07/22/2019] [Indexed: 01/05/2023] Open
Abstract
This study aimed to prepare, optimise, and characterise the novel hybrid hydrogel scaffold containing atorvastatin lipid nanocapsules (LNCs) and gold nanoparticles (NPs) to improve cardiomyoblasts proliferation and regeneration of myocardium. A thermo-responsive aminated guaran (AGG) hydrogel was prepared to encompass extracellular matrix (ECM) fetched from human adipose tissue. Emulsion phase-inversion technique was used to obtain LNCs. Biocompatibility, tensile strength, conductivity, and proliferation of human myocardial cells of the optimised formulation were studied. The LNCs have a spherical shape, and the optimised formulation showed a mean particle size of 18.79 nm, the zeta potential of - 11.4 mV, drug loading of 99.99%, and release efficiency percent over 72 h was 18.73%. The injectable thermo-sensitive hydrogel prepared using 1 w/v% of AGG, 35 w/w% of ECM, ∼0.5 mg/ml of gold NPs and atorvastatin loaded LNCs showed the best physical characteristics. The hybrid scaffold loaded with atorvastatin and gold NPs improved the proliferation of cardiomyoblasts more than sevenfold with enhanced cell attachment to the scaffold. The tensile strength and the conductivity of the scaffold were 300 kPa and 0.14 S/m, respectively. Injectable hybrid adipose tissue prepared by ECM and AGG hydrogel loaded with atorvastatin and gold NPs showed promising physical characteristics for myocardial tissue engineering.
Collapse
Affiliation(s)
- Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sepehr Masoudi
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Mehdikhani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Batool Hashemi Beni
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shadi Farsaei
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|