1
|
Yao Y, Zhou S, Yan Y, Fu K, Xiao S. The tripartite motif-containing 24 is a multifunctional player in human cancer. Cell Biosci 2024; 14:103. [PMID: 39160596 PMCID: PMC11334367 DOI: 10.1186/s13578-024-01289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024] Open
Abstract
Tripartite motif-containing 24 (TRIM24), also known as transcriptional intermediary factor 1α (TIF1α), is the founding member of TIF1 family. Recent evidence indicates that aberrant expression of TRIM24, functions as an oncogene, is associated with poor prognosis across various cancer types. TRIM24 exhibits a multifaceted structure comprising an N-terminal TRIM region with a RING domain, B-box type 1 and type 2 domains, and a coiled-coil region, as well as a C-terminal plant-homeodomain (PHD)-bromodomain. The bromodomain serves as a 'reader' of epigenetic histone marks, regulating chromatin structure and gene expression by linking associated proteins to acetylated nucleosomal targets, thereby controlling transcription of genes. Notably, bromodomains have emerged as compelling targets for cancer therapeutic development. In addition, TRIM24 plays specialized roles as a signal transduction molecule, orchestrating various cellular signaling cascades in cancer cells. Herein, we review the recent advancements in understanding the functions of TRIM24, and demonstrate the research progress in utilizing TRIM24 as a target for cancer therapy.
Collapse
Affiliation(s)
- Yuanbing Yao
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
| | - Sheng Zhou
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
- Department of Ultrasound, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yue Yan
- Yanbian University Medical School, Yanji, Jilin, China
| | - Kai Fu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- Center MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, 87# Xiangya Road, Changsha, 410008, Hunan, China.
| | - Shuai Xiao
- The First Affiliated Hospital, Department of Gastrointestinal Surgery, Hengyang Medical School, University of South China, 69# Chuanshan Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Xu C, Chen G, Yu B, Sun B, Zhang Y, Zhang M, Yang Y, Xiao Y, Cheng S, Li Y, Feng H. TRIM24 Cooperates with Ras Mutation to Drive Glioma Progression through snoRNA Recruitment of PHAX and DNA-PKcs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400023. [PMID: 38828688 PMCID: PMC11304257 DOI: 10.1002/advs.202400023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/16/2024] [Indexed: 06/05/2024]
Abstract
The factors driving glioma progression remain poorly understood. Here, the epigenetic regulator TRIM24 is identified as a driver of glioma progression, where TRIM24 overexpression promotes HRasV12 anaplastic astrocytoma (AA) progression into epithelioid GBM (Ep-GBM)-like tumors. Co-transfection of TRIM24 with HRasV12 also induces Ep-GBM-like transformation of human neural stem cells (hNSCs) with tumor protein p53 gene (TP53) knockdown. Furthermore, TRIM24 is highly expressed in clinical Ep-GBM specimens. Using single-cell RNA-sequencing (scRNA-Seq), the authors show that TRIM24 overexpression impacts both intratumoral heterogeneity and the tumor microenvironment. Mechanically, HRasV12 activates phosphorylated adaptor for RNA export (PHAX) and upregulates U3 small nucleolar RNAs (U3 snoRNAs) to recruit Ku-dependent DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Overexpressed TRIM24 is also recruited by PHAX to U3 snoRNAs, thereby facilitating DNA-PKcs phosphorylation of TRIM24 at S767/768 residues. Phosphorylated TRIM24 induces epigenome and transcription factor network reprogramming and promotes Ep-GBM-like transformation. Targeting DNA-PKcs with the small molecule inhibitor NU7441 synergizes with temozolomide to reduce Ep-GBM tumorigenicity and prolong animal survival. These findings provide new insights into the epigenetic regulation of Ep-GBM-like transformation and suggest a potential therapeutic strategy for patients with Ep-GBM.
Collapse
Affiliation(s)
- Chenxin Xu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Guoyu Chen
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Bo Yu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Bowen Sun
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Yingwen Zhang
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Mingda Zhang
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Yi Yang
- Pediatric Translational Medicine InstituteDepartment of Hematology & OncologyShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityNational Health Committee Key Laboratory of Pediatric Hematology & OncologyShanghai200127China
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Shi‐Yuan Cheng
- Department of NeurologyLou and Jean Malnati Brain Tumor InstituteThe Robert H. Lurie Comprehensive Cancer CenterSimpson Querrey Institute for EpigeneticsNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| | - Yanxin Li
- Pediatric Translational Medicine InstituteDepartment of Hematology & OncologyShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityNational Health Committee Key Laboratory of Pediatric Hematology & OncologyShanghai200127China
| | - Haizhong Feng
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|
3
|
Cao J, Yang M, Guo D, Tao Z, Hu X. Emerging roles of tripartite motif family proteins (TRIMs) in breast cancer. Cancer Med 2024; 13:e7472. [PMID: 39016065 PMCID: PMC11252664 DOI: 10.1002/cam4.7472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
Breast cancer (BC) is the most common malignant tumor worldwide. Despite enormous progress made in the past decades, the underlying mechanisms of BC remain further illustrated. Recently, TRIM family proteins proved to be engaged in BC progression through regulating various aspects. Here we reviewed the structures and basic functions of TRIM family members and first classified them into three groups according to canonical polyubiquitination forms that they could mediate: K48- only, K63- only, and both K48- and K63-linked ubiquitination. Afterwards, we focused on the specific biological functions and mechanisms of TRIMs in BCs, including tumorigenesis and invasiveness, drug sensitivity, tumor immune microenvironment (TIME), cell cycle, and metabolic reprogramming. We also explored the potential of TRIMs as novel biomarkers for predicting prognosis and future therapeutic targets in BC.
Collapse
Affiliation(s)
- Jianing Cao
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Mengdi Yang
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Duancheng Guo
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Zhonghua Tao
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Xichun Hu
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
4
|
Hirose Y, Sato S, Hashiya K, Ooga M, Bando T, Sugiyama H. Chb-M', an Inhibitor of the RUNX Family Binding to DNA, Induces Apoptosis in p53-Mutated Non-Small Cell Lung Cancer and Inhibits Tumor Growth and Repopulation In Vivo. J Med Chem 2024; 67:9165-9172. [PMID: 38803164 DOI: 10.1021/acs.jmedchem.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Runt-related transcription factor (RUNX) proteins are considered to play various roles in cancer. Here, we evaluated the anticancer activity of Chb-M', a compound that specifically and covalently binds to the consensus sequence for RUNX family proteins, in p53-mutated non-small cell lung cancer cells. Chb-M' killed the cancer cells by inducing apoptosis. The compound showed an anticancer effect comparable to that of the clinically used drugs alectinib and ceritinib in vivo. Notably, Chb-M' extended the cancer-free survival of mice after ending treatment more effectively than did the other two drugs. The results presented here suggest that Chb-M' is an attractive candidate as an anticancer drug applicable to the treatment of non-small cell lung cancer and various other types of cancers.
Collapse
Affiliation(s)
- Yuki Hirose
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Shinsuke Sato
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Mitsuharu Ooga
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
5
|
Basu B, Kal S, Karmakar S, Basu M, Ghosh MK. E3 ubiquitin ligases in lung cancer: Emerging insights and therapeutic opportunities. Life Sci 2024; 336:122333. [PMID: 38061537 DOI: 10.1016/j.lfs.2023.122333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023]
Abstract
Aim In this review, we have attempted to provide the readers with an updated account of the role of a family of proteins known as E3 ligases in different aspects of lung cancer progression, along with insights into the deregulation of expression of these proteins during lung cancer. A detailed account of the therapeutic strategies involving E3 ligases that have been developed or currently under development has also been provided in this review. MATERIALS AND METHODS: The review article employs extensive literature search, along with differential gene expression analysis of lung cancer associated E3 ligases using the DESeq2 package in R, and the Gene Expression Profiling Interactive Analysis (GEPIA) database (http://gepia.cancer-pku.cn/). Protein expression analysis of CPTAC lung cancer samples was carried out using the UALCAN webtool (https://ualcan.path.uab.edu/index.html). Assessment of patient overall survival (OS) in response to high and low expression of selected E3 ligases was performed using the online Kaplan-Meier plotter (https://kmplot.com/analysis/index.php?p=background). KEY FINDINGS: SIGNIFICANCE: The review provides an in-depth understanding of the role of E3 ligases in lung cancer progression and an up-to-date account of the different therapeutic strategies targeting oncogenic E3 ligases for improved lung cancer management.
Collapse
Affiliation(s)
- Bhaskar Basu
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Satadeepa Kal
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Parganas, PIN -743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
6
|
Shi Q, Yu B, Zhang Y, Yang Y, Xu C, Zhang M, Chen G, Luo F, Sun B, Yang R, Li Y, Feng H. Targeting TRIM24 promotes neuroblastoma differentiation and decreases tumorigenicity via LSD1/CoREST complex. Cell Oncol (Dordr) 2023; 46:1763-1775. [PMID: 37466744 DOI: 10.1007/s13402-023-00843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
PURPOSE High-risk neuroblastoma (NB) still has an unfavorable prognosis and inducing NB differentiation is a potential strategy in clinical treatment, yet underlying mechanisms are still elusive. Here we identify TRIM24 as an important regulator of NB differentiation. METHODS Multiple datasets and clinical specimens were analyzed to define the role of TRIM24 in NB. The effects of TRIM24 on differentiation and growth of NB were determined by cell morphology, spheres formation, soft agar assay, and subcutaneous xenograft in nude mice. RNA-Seq and qRT-PCR were used to identify genes and pathways involved. Mass spectrometry and co-immunoprecipitation were used to explore the interaction of proteins. RESULTS Trim24 is highly expressed in spontaneous NB in TH-MYCN transgenic mice and clinical NB specimens. It is associated with poor NB differentiation and unfavorable prognostic. Knockout of TRIM24 in neuroblastoma cells promotes cell differentiation, reduces cell stemness, and inhibits colony formation in soft agar and subcutaneous xenograft tumor growth in nude mice. Mechanistically, TRIM24 knockout alters genes and pathways related to neural differentiation and development by suppressing LSD1/CoREST complex formation. Besides, TRIM24 knockout activates the retinoic acid pathway. Targeting TRIM24 in combination with retinoic acid (RA) synergistically promotes NB cell differentiation and inhibits cell viability. CONCLUSION Our findings demonstrate that TRIM24 is critical for NB differentiation and suggest that TRIM24 is a promising therapeutic target in combination with RA in NB differentiation therapy.
Collapse
Affiliation(s)
- Qiqi Shi
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Bo Yu
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yingwen Zhang
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yi Yang
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chenxin Xu
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mingda Zhang
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Guoyu Chen
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fei Luo
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Bowen Sun
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ru Yang
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yanxin Li
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Haizhong Feng
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
7
|
Pichlak M, Sobierajski T, Błażewska KM, Gendaszewska-Darmach E. Targeting reversible post-translational modifications with PROTACs: a focus on enzymes modifying protein lysine and arginine residues. J Enzyme Inhib Med Chem 2023; 38:2254012. [PMID: 37667522 PMCID: PMC10481767 DOI: 10.1080/14756366.2023.2254012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/17/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023] Open
Abstract
PROTACs represent an emerging field in medicinal chemistry, which has already led to the development of compounds that reached clinical studies. Posttranslational modifications contribute to the complexity of proteomes, with 2846 disease-associated sites. PROTAC field is very advanced in targeting kinases, while its use for enzymes mediating posttranslational modifications of the basic amino acid residues, started to be developed recently. Therefore, we bring together this less popular class of PROTACs, targeting lysine acetyltransferases/deacetylases, lysine and arginine methyltransferases, ADP-ribosyltransferases, E3 ligases, and ubiquitin-specific proteases. We put special emphasis on structural aspects of PROTAC elements to facilitate the lengthy experimental endeavours directed towards developing PROTACs. We will cover the period from the inception of the field, 2017, to April 2023.
Collapse
Affiliation(s)
- Marta Pichlak
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Łódź, Poland
| | - Tomasz Sobierajski
- Institute of Organic Chemistry, Lodz University of Technology, Łódź, Poland
| | | | | |
Collapse
|
8
|
Gu J, Chen J, Xiang S, Zhou X, Li J. Intricate confrontation: Research progress and application potential of TRIM family proteins in tumor immune escape. J Adv Res 2023; 54:147-179. [PMID: 36736694 DOI: 10.1016/j.jare.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tripartite motif (TRIM) family proteins have more than 80 members and are widely found in various eukaryotic cells. Most TRIM family proteins participate in the ubiquitin-proteasome degradation system as E3-ubiquitin ligases; therefore, they play pivotal regulatory roles in the occurrence and development of tumors, including tumor immune escape. Due to the diversity of functional domains of TRIM family proteins, they can extensively participate in multiple signaling pathways of tumor immune escape through different substrates. In current research and clinical contexts, immune escape has become an urgent problem. The extensive participation of TRIM family proteins in curing tumors or preventing postoperative recurrence and metastasis makes them promising targets. AIM OF REVIEW The aim of the review is to make up for the gap in the current research on TRIM family proteins and tumor immune escape and propose future development directions according to the current progress and problems. KEY SCIENTIFIC CONCEPTS OF REVIEW This up-to-date review summarizes the characteristics and biological functions of TRIM family proteins, discusses the mechanisms of TRIM family proteins involved in tumor immune escape, and highlights the specific mechanism from the level of structure-function-molecule-pathway-phenotype, including mechanisms at the level of protein domains and functions, at the level of molecules and signaling pathways, and at the level of cells and microenvironments. We also discuss the application potential of TRIM family proteins in tumor immunotherapy, such as possible treatment strategies for combination targeting TRIM family protein drugs and checkpoint inhibitors for improving cancer treatment.
Collapse
Affiliation(s)
- Junjie Gu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingyi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
9
|
Li X, Bai Y, Feng K, Chu Z, Li H, Lin Z, Tian L. Therapeutic, diagnostic and prognostic values of TRIM proteins in prostate cancer. Pharmacol Rep 2023; 75:1445-1453. [PMID: 37921966 DOI: 10.1007/s43440-023-00534-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 11/05/2023]
Abstract
Prostate cancer is the second most prevalent cancer in men worldwide. The TRIM (tripartite motif) family of proteins is involved in the regulation of various cellular processes, including antiviral immunity, apoptosis, and cancer progression. In recent years, several TRIM proteins have been found to play important roles in prostate cancer initiation and progression. TRIM proteins have indicated oncogenic activity in prostate cancer by enhancing androgen or estrogen receptor signaling and promoting cancer cell growth. Inhibition of TRIM proteins has been raised as a potential therapeutic strategy for the treatment of prostate cancer. Overall, these studies suggest that TRIM family proteins exert tumor-promoting effects in prostate cancer, and targeting these proteins can provide a promising therapeutic strategy for prostate cancer treatment. On the other hand, some TRIM proteins can be differentially expressed in prostate cancer cells compared to normal cells, thus providing novel diagnostic/prognostic biomarkers for prostate cancer.
Collapse
Affiliation(s)
- Xiaojiang Li
- Department of Orthopedics, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Yuzhuo Bai
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Ke Feng
- Department of General Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Zhendong Chu
- Department of Orthopedics, Baishan Hospital of Traditional Chinese Medicine, Baishan, 134300, China
| | - Haijun Li
- Department of Orthopedics, Tonghua County Hospital of Traditional Chinese Medicine, Tonghua, 134100, China
| | - Zhicheng Lin
- Department of Internal Medicine, Baishan Hospital of Traditional Chinese Medicine, Baishan, 134300, China
| | - Lin Tian
- Department of Lung Oncology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China.
| |
Collapse
|
10
|
Godneeva B, Ninova M, Fejes-Toth K, Aravin A. SUMOylation of Bonus, the Drosophila homolog of Transcription Intermediary Factor 1, safeguards germline identity by recruiting repressive chromatin complexes to silence tissue-specific genes. eLife 2023; 12:RP89493. [PMID: 37999956 PMCID: PMC10672805 DOI: 10.7554/elife.89493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Abstract
The conserved family of Transcription Intermediary Factors (TIF1) proteins consists of key transcriptional regulators that control transcription of target genes by modulating chromatin state. Unlike mammals that have four TIF1 members, Drosophila only encodes one member of the family, Bonus. Bonus has been implicated in embryonic development and organogenesis and shown to regulate several signaling pathways, however, its targets and mechanism of action remained poorly understood. We found that knockdown of Bonus in early oogenesis results in severe defects in ovarian development and in ectopic expression of genes that are normally repressed in the germline, demonstrating its essential function in the ovary. Recruitment of Bonus to chromatin leads to silencing associated with accumulation of the repressive H3K9me3 mark. We show that Bonus associates with the histone methyltransferase SetDB1 and the chromatin remodeler NuRD and depletion of either component releases Bonus-induced repression. We further established that Bonus is SUMOylated at a single site at its N-terminus that is conserved among insects and this modification is indispensable for Bonus's repressive activity. SUMOylation influences Bonus's subnuclear localization, its association with chromatin and interaction with SetDB1. Finally, we showed that Bonus SUMOylation is mediated by the SUMO E3-ligase Su(var)2-10, revealing that although SUMOylation of TIF1 proteins is conserved between insects and mammals, both the mechanism and specific site of modification is different in the two taxa. Together, our work identified Bonus as a regulator of tissue-specific gene expression and revealed the importance of SUMOylation as a regulator of complex formation in the context of transcriptional repression.
Collapse
Affiliation(s)
- Baira Godneeva
- California Institute of Technology, Division of Biology and Biological EngineeringPasadenaUnited States
- Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| | - Maria Ninova
- University of California, RiversideRiversideUnited States
| | - Katalin Fejes-Toth
- California Institute of Technology, Division of Biology and Biological EngineeringPasadenaUnited States
| | - Alexei Aravin
- California Institute of Technology, Division of Biology and Biological EngineeringPasadenaUnited States
| |
Collapse
|
11
|
Godneeva B, Fejes Tóth K, Quan B, Chou TF, Aravin AA. Impact of Germline Depletion of Bonus on Chromatin State in Drosophila Ovaries. Cells 2023; 12:2629. [PMID: 37998364 PMCID: PMC10670193 DOI: 10.3390/cells12222629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Gene expression is controlled via complex regulatory mechanisms involving transcription factors, chromatin modifications, and chromatin regulatory factors. Histone modifications, such as H3K27me3, H3K9ac, and H3K27ac, play an important role in controlling chromatin accessibility and transcriptional output. In vertebrates, the Transcriptional Intermediary Factor 1 (TIF1) family of proteins play essential roles in transcription, cell differentiation, DNA repair, and mitosis. Our study focused on Bonus, the sole member of the TIF1 family in Drosophila, to investigate its role in organizing epigenetic modifications. Our findings demonstrated that depleting Bonus in ovaries leads to a mild reduction in the H3K27me3 level over transposon regions and alters the distribution of active H3K9ac marks on specific protein-coding genes. Additionally, through mass spectrometry analysis, we identified novel interacting partners of Bonus in ovaries, such as PolQ, providing a comprehensive understanding of the associated molecular pathways. Furthermore, our research revealed Bonus's interactions with the Polycomb Repressive Complex 2 and its co-purification with select histone acetyltransferases, shedding light on the underlying mechanisms behind these changes in chromatin modifications.
Collapse
Affiliation(s)
- Baira Godneeva
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Katalin Fejes Tóth
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Baiyi Quan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alexei A. Aravin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
12
|
Lai M, Liu M, Li D, Zhang R, Wang L, Li X, Chen S, Wu S, Xiao S, Wei L, Wang X, Nan A, Zeng X. circELMOD3 increases and stabilizes TRIM13 by sponging miR-6864-5p and direct binding to inhibit HCC progression. iScience 2023; 26:107818. [PMID: 37752955 PMCID: PMC10518715 DOI: 10.1016/j.isci.2023.107818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/17/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Many circular RNAs (circRNAs) have been identified to be associated with hepatocellular carcinoma (HCC) progression. We aim to explore the diagnostic potential, functions, and mechanism of circELMOD3 in HCC. Differentially expressed circRNAs in HCC and its paired adjacent tissues were identified by RNA sequencing. circELMOD3 was downregulated in HCC tissues and was related to clinicopathological characteristics of HCC patients. Additionally, plasma circELMOD3 was shown to be a highly sensitive and non-invasive biomarker to distinguish HCC from healthy controls. Functional assays showed that circELMOD3 inhibited proliferation and induced apoptosis of HCC cells both in vitro and in vivo. Mechanistically, RNA antisense purification (RAP) and luciferase reporter assays verified that circELMOD3 functioned as a sponge for miR-6864-5p leading to increased expression of its target gene TRIM13. Interestingly, RNA stability test demonstrated that circELMOD3 overexpression led to enhanced stability of its directly bound TRIM13 mRNA, which in turn co-activated the p53 signaling pathway.
Collapse
Affiliation(s)
- Mingshuang Lai
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Meiliang Liu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Deyuan Li
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Ruirui Zhang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Lijun Wang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiaofei Li
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Sixian Chen
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Siqian Wu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Suyang Xiao
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Liling Wei
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiaogang Wang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Aruo Nan
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiaoyun Zeng
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| |
Collapse
|
13
|
Liu Y, Yang J, Wang T, Luo M, Chen Y, Chen C, Ronai Z, Zhou Y, Ruppin E, Han L. Expanding PROTACtable genome universe of E3 ligases. Nat Commun 2023; 14:6509. [PMID: 37845222 PMCID: PMC10579327 DOI: 10.1038/s41467-023-42233-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023] Open
Abstract
Proteolysis-targeting chimera (PROTAC) and other targeted protein degradation (TPD) molecules that induce degradation by the ubiquitin-proteasome system (UPS) offer new opportunities to engage targets that remain challenging to be inhibited by conventional small molecules. One fundamental element in the degradation process is the E3 ligase. However, less than 2% amongst hundreds of E3 ligases in the human genome have been engaged in current studies in the TPD field, calling for the recruiting of additional ones to further enhance the therapeutic potential of TPD. To accelerate the development of PROTACs utilizing under-explored E3 ligases, we systematically characterize E3 ligases from seven different aspects, including chemical ligandability, expression patterns, protein-protein interactions (PPI), structure availability, functional essentiality, cellular location, and PPI interface by analyzing 30 large-scale data sets. Our analysis uncovers several E3 ligases as promising extant PROTACs. In total, combining confidence score, ligandability, expression pattern, and PPI, we identified 76 E3 ligases as PROTAC-interacting candidates. We develop a user-friendly and flexible web portal ( https://hanlaboratory.com/E3Atlas/ ) aimed at assisting researchers to rapidly identify E3 ligases with promising TPD activities against specifically desired targets, facilitating the development of these therapies in cancer and beyond.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, USA
- Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, IN, USA
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Jingwen Yang
- Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, USA
- Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, IN, USA
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Tianlu Wang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Mei Luo
- Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, USA
- Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Yamei Chen
- Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, USA
- Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, IN, USA
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Chengxuan Chen
- Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, USA
- Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, IN, USA
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Ze'ev Ronai
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, 20892, MD, USA.
| | - Leng Han
- Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, USA.
- Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, IN, USA.
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, USA.
| |
Collapse
|
14
|
Zhang J, Zhang Y, Ren Z, Yan D, Li G. The role of TRIM family in metabolic associated fatty liver disease. Front Endocrinol (Lausanne) 2023; 14:1210330. [PMID: 37867509 PMCID: PMC10585262 DOI: 10.3389/fendo.2023.1210330] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) ranks among the most prevalent chronic liver conditions globally. At present, the mechanism of MAFLD has not been fully elucidated. Tripartite motif (TRIM) protein is a kind of protein with E3 ubiquitin ligase activity, which participates in highly diversified cell activities and processes. It not only plays an important role in innate immunity, but also participates in liver steatosis, insulin resistance and other processes. In this review, we focused on the role of TRIM family in metabolic associated fatty liver disease. We also introduced the structure and functions of TRIM proteins. We summarized the TRIM family's regulation involved in the occurrence and development of metabolic associated fatty liver disease, as well as insulin resistance. We deeply discussed the potential of TRIM proteins as targets for the treatment of metabolic associated fatty liver disease.
Collapse
Affiliation(s)
- Jingyue Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yingming Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Ze Ren
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Guiying Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
15
|
Godneeva B, Ninova M, Fejes Tóth K, Aravin AA. SUMOylation of Bonus, the Drosophila homolog of Transcription Intermediary Factor 1, safeguards germline identity by recruiting repressive chromatin complexes to silence tissue-specific genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.14.536936. [PMID: 37645991 PMCID: PMC10461926 DOI: 10.1101/2023.04.14.536936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The conserved family of Transcription Intermediary Factors (TIF1) proteins consists of key transcriptional regulators that control transcription of target genes by modulating chromatin state. Unlike mammals that have four TIF1 members, Drosophila only encodes one member of the family, Bonus. Bonus has been implicated in embryonic development and organogenesis and shown to regulate several signaling pathways, however, its targets and mechanism of action remained poorly understood. We found that knockdown of Bonus in early oogenesis results in severe defects in ovarian development and in ectopic expression of genes that are normally repressed in the germline, demonstrating its essential function in the ovary. Recruitment of Bonus to chromatin leads to silencing associated with accumulation of the repressive H3K9me3 mark. We show that Bonus associates with the histone methyltransferase SetDB1 and the chromatin remodeler NuRD and depletion of either component releases Bonus-induced repression. We further established that Bonus is SUMOylated at a single site at its N-terminus that is conserved among insects and this modification is indispensable for Bonus's repressive activity. SUMOylation influences Bonus's subnuclear localization, its association with chromatin and interaction with SetDB1. Finally, we showed that Bonus SUMOylation is mediated by the SUMO E3-ligase Su(var)2-10, revealing that although SUMOylation of TIF1 proteins is conserved between insects and mammals, both the mechanism and specific site of modification is different in the two taxa. Together, our work identified Bonus as a regulator of tissue-specific gene expression and revealed the importance of SUMOylation as a regulator of complex formation in the context of transcriptional repression.
Collapse
Affiliation(s)
- Baira Godneeva
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA 91125, USA
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Maria Ninova
- University of California, Riverside, Riverside, CA 92521, USA
| | - Katalin Fejes Tóth
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA 91125, USA
| | - Alexei A. Aravin
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA 91125, USA
| |
Collapse
|
16
|
Hirose Y, Sato S, Hashiya K, Bando T, Sugiyama H. Anticancer Activities of DNA-Alkylating Pyrrole-Imidazole Polyamide Analogs Targeting RUNX Transcription Factors against p53-Mutated Pancreatic Cancer PANC-1 Cells. J Med Chem 2023; 66:12059-12068. [PMID: 37606185 DOI: 10.1021/acs.jmedchem.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The runt-related transcription factor (RUNX) family is known to play important roles in the progression of cancer. Conjugate 1, which covalently binds to the RUNX-binding sequences, was reported to inhibit the binding of RUNX proteins to their target sites and suppress cancer growth. Here, we evaluated the anticancer effects of 1 and its analogs 2-4 against p53-mutated PANC-1 pancreatic cancer cells. We found that they possessed different DNA-alkylating properties in vitro. And conjugates 1-3 were shown to have anticancer effects by inducing apoptosis in PANC-1 cells. Furthermore, conjugates 2 and 3 suppressed cancer growth in PANC-1 xenograft mice, with activity equivalent to a 50-fold dose of gemcitabine. Especially, 3 showed the highest alkylation efficiency, specificity, and better anticancer effects against pancreatic cancer than 1 in vivo without significant body weight loss. Our results revealed the potential of our compounds as new candidates for cancer therapy.
Collapse
Affiliation(s)
- Yuki Hirose
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Shinsuke Sato
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
17
|
Abstract
Proteolysis-targeting chimeras (PROTACs) are heterobifunctional small molecules that induce the ternary complex formation between a protein-of-interest (POI) and an E3 ligase, leading to targeted polyubiquitination and degradation of the POI. Particularly, PROTACs have the distinct advantage of targeting both canonical and noncanonical functions of epigenetic targets over traditional inhibitors, which typically target canonical functions only, resulting in greater therapeutic efficacy. In this review, we methodically analyze published PROTAC degraders of epigenetic writer, reader, and eraser proteins and their in vitro and in vivo effects. We highlight the mechanism of action of these degraders and their advantages in targeting both canonical and noncanonical functions of epigenetic targets in the context of cancer treatment. Furthermore, we present a future outlook for this exciting field. Overall, pharmacological degradation of epigenetic targets has emerged as an effective and attractive strategy to thwart cancer progression and growth.
Collapse
Affiliation(s)
- Md Kabir
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.
| | - Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.
| |
Collapse
|
18
|
Isbel L, Iskar M, Durdu S, Weiss J, Grand RS, Hietter-Pfeiffer E, Kozicka Z, Michael AK, Burger L, Thomä NH, Schübeler D. Readout of histone methylation by Trim24 locally restricts chromatin opening by p53. Nat Struct Mol Biol 2023:10.1038/s41594-023-01021-8. [PMID: 37386214 DOI: 10.1038/s41594-023-01021-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 05/15/2023] [Indexed: 07/01/2023]
Abstract
The genomic binding sites of the transcription factor (TF) and tumor suppressor p53 are unusually diverse with regard to their chromatin features, including histone modifications, raising the possibility that the local chromatin environment can contextualize p53 regulation. Here, we show that epigenetic characteristics of closed chromatin, such as DNA methylation, do not influence the binding of p53 across the genome. Instead, the ability of p53 to open chromatin and activate its target genes is locally restricted by its cofactor Trim24. Trim24 binds to both p53 and unmethylated histone 3 lysine 4 (H3K4), thereby preferentially localizing to those p53 sites that reside in closed chromatin, whereas it is deterred from accessible chromatin by H3K4 methylation. The presence of Trim24 increases cell viability upon stress and enables p53 to affect gene expression as a function of the local chromatin state. These findings link H3K4 methylation to p53 function and illustrate how specificity in chromatin can be achieved, not by TF-intrinsic sensitivity to histone modifications, but by employing chromatin-sensitive cofactors that locally modulate TF function.
Collapse
Affiliation(s)
- Luke Isbel
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Murat Iskar
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sevi Durdu
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Joscha Weiss
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Ralph S Grand
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Eric Hietter-Pfeiffer
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Zuzanna Kozicka
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Alicia K Michael
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Lukas Burger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
- Faculty of Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
19
|
Parfenyev SE, Shabelnikov SV, Tolkunova EN, Barlev NA, Mittenberg AG. p53 Affects Zeb1 Interactome of Breast Cancer Stem Cells. Int J Mol Sci 2023; 24:9806. [PMID: 37372954 DOI: 10.3390/ijms24129806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
P53 is a critical tumor suppressor that protects the integrity of genome and prevents cells from malignant transformation, including metastases. One of the driving forces behind the onset of metastases is the epithelial to mesenchymal transition (EMT) program. Zeb1 is one of the key transcription factors that govern EMT (TF-EMT). Therefore, the interaction and mutual influence of p53 and Zeb1 plays a critical role in carcinogenesis. Another important feature of tumors is their heterogeneity mediated by the presence of so-called cancer stem cells (CSCs). To this end, we have developed a novel fluorescent reporter-based approach to enrich the population of CSCs in MCF7 cells with inducible expression of Zeb1. Using these engineered cell lines, we studied the effect of p53 on Zeb1 interactomes isolated from both CSCs and regular cancer cells. By employing co-immunoprecipitations followed by mass spectrometry, we found that the composition of Zeb1 interactome was affected not only by the p53 status but also by the level of Oct4/Sox2 expression, indicating that stemness likely affects the specificity of Zeb1 interactions. This study, together with other proteomic studies of TF-EMT interactomes, provides a framework for future molecular analyses of biological functions of Zeb1 at all stages of oncogenesis.
Collapse
Affiliation(s)
- Sergey E Parfenyev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Sergey V Shabelnikov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Elena N Tolkunova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Nickolai A Barlev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 20000, Kazakhstan
| | - Alexey G Mittenberg
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| |
Collapse
|
20
|
Zhao H, Moberg KH, Veraksa A. Hippo pathway and Bonus control developmental cell fate decisions in the Drosophila eye. Dev Cell 2023; 58:416-434.e12. [PMID: 36868234 PMCID: PMC10023510 DOI: 10.1016/j.devcel.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 08/10/2022] [Accepted: 02/06/2023] [Indexed: 03/05/2023]
Abstract
The canonical function of the Hippo signaling pathway is the regulation of organ growth. How this pathway controls cell-fate determination is less well understood. Here, we identify a function of the Hippo pathway in cell-fate decisions in the developing Drosophila eye, exerted through the interaction of Yorkie (Yki) with the transcriptional regulator Bonus (Bon), an ortholog of mammalian transcriptional intermediary factor 1/tripartite motif (TIF1/TRIM) family proteins. Instead of controlling tissue growth, Yki and Bon promote epidermal and antennal fates at the expense of the eye fate. Proteomic, transcriptomic, and genetic analyses reveal that Yki and Bon control these cell-fate decisions by recruiting transcriptional and post-transcriptional co-regulators and by repressing Notch target genes and activating epidermal differentiation genes. Our work expands the range of functions and regulatory mechanisms under Hippo pathway control.
Collapse
Affiliation(s)
- Heya Zhao
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA.
| |
Collapse
|
21
|
Michaelides IN, Collie GW. E3 Ligases Meet Their Match: Fragment-Based Approaches to Discover New E3 Ligands and to Unravel E3 Biology. J Med Chem 2023; 66:3173-3194. [PMID: 36821822 PMCID: PMC10009759 DOI: 10.1021/acs.jmedchem.2c01882] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 02/25/2023]
Abstract
Ubiquitination is a key post-translational modification of proteins, affecting the regulation of multiple cellular processes. Cells are equipped with over 600 ubiquitin orchestrators, called E3 ubiquitin ligases, responsible for directing the covalent attachment of ubiquitin to substrate proteins. Due to their regulatory role in cells, significant efforts have been made to discover ligands for E3 ligases. The recent emergence of the proteolysis targeting chimera (PROTAC) and molecular glue degrader (MGD) modalities has further increased interest in E3 ligases as drug targets. This perspective focuses on how fragment based lead discovery (FBLD) methods have been used to discover new ligands for this important target class. In some cases these efforts have led to clinical candidates; in others, they have provided tools for deepening our understanding of E3 ligase biology. Recently, FBLD-derived ligands have inspired the design of PROTACs that are able to artificially modulate protein levels in cells.
Collapse
Affiliation(s)
- Iacovos N. Michaelides
- Discovery Sciences, BioPharmaceuticals
R&D, AstraZeneca, Cambridge, CB4 0WG, United
Kingdom
| | - Gavin W. Collie
- Discovery Sciences, BioPharmaceuticals
R&D, AstraZeneca, Cambridge, CB4 0WG, United
Kingdom
| |
Collapse
|
22
|
ftr82 is necessary for hair cell morphogenesis and auditory function during zebrafish development. J Genet Genomics 2023; 50:77-86. [PMID: 36464225 DOI: 10.1016/j.jgg.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/27/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022]
Abstract
Damages of sensory hair cells (HCs) are mainly responsible for sensorineural hearing loss, while the pathological mechanism remains not fully understood due to the many potential deafness genes unidentified. ftr82, a member of the largely TRIMs family in fish, has been found specifically expressed in the otic vesicle while its function is still unclear. Here, we investigate the roles of ftr82 in HC development and hearing function utilizing the zebrafish model. The results of in situ hybridization illustrate that ftr82 is always restricted to localize in otic vesicles at different stages. The defects of HCs are observed both in ftr82 morphants and mutants, including significantly decreased crista HCs, shortened cilia as well as remarkably reduced functional HCs in neuromasts, which could be successfully rescued by co-injection of exogenous ftr82 mRNA. The behavior assay of startle response indicates that larvae lacking of ftr82 exhibits lower sensitivity to external sound stimuli. Further research reveals that the loss of HCs is mainly caused by cell apoptosis mediated by caspase-3 activation. Our study demonstrates that ftr82 is a crucial hearing-related gene that regulates the HC morphogenesis and auditory function performing, which provides new insight into the rapid identification of the deafness gene.
Collapse
|
23
|
Horvath RM, Dahabieh M, Malcolm T, Sadowski I. TRIM24 controls induction of latent HIV-1 by stimulating transcriptional elongation. Commun Biol 2023; 6:86. [PMID: 36690785 PMCID: PMC9870992 DOI: 10.1038/s42003-023-04484-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 01/15/2023] [Indexed: 01/24/2023] Open
Abstract
Binding of USF1/2 and TFII-I (RBF-2) at conserved sites flanking the HIV-1 LTR enhancer is essential for reactivation from latency in T cells, with TFII-I knockdown rendering the provirus insensitive to T cell signaling. We identified an interaction of TFII-I with the tripartite motif protein TRIM24, and these factors were found to be constitutively associated with the HIV-1 LTR. Similar to the effect of TFII-I depletion, loss of TRIM24 impaired reactivation of HIV-1 in response to T cell signaling. TRIM24 deficiency did not affect recruitment of RNA Pol II to the LTR promoter, but inhibited transcriptional elongation, an effect that was associated with decreased RNA Pol II CTD S2 phosphorylation and impaired recruitment of CDK9. A considerable number of genomic loci are co-occupied by TRIM24/TFII-I, and we found that TRIM24 deletion caused altered T cell immune response, an effect that is facilitated by TFII-I. These results demonstrate a role of TRIM24 for regulation of transcriptional elongation from the HIV-1 promoter, through its interaction with TFII-I, and by recruitment of P-TEFb. Furthermore, these factors co-regulate a significant proportion of genes involved in T cell immune response, consistent with tight coupling of HIV-1 transcriptional activation and T cell signaling.
Collapse
Affiliation(s)
- Riley M Horvath
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada
| | - Matthew Dahabieh
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada
| | - Tom Malcolm
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada.
| |
Collapse
|
24
|
Ghosh M, Saha S, Li J, Montrose DC, Martinez LA. p53 engages the cGAS/STING cytosolic DNA sensing pathway for tumor suppression. Mol Cell 2023; 83:266-280.e6. [PMID: 36638783 PMCID: PMC9993620 DOI: 10.1016/j.molcel.2022.12.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
Tumor suppression by TP53 involves cell-autonomous and non-cell-autonomous mechanisms. TP53 can suppress tumor growth by modulating immune system functions; however, the mechanistic basis for this activity is not well understood. We report that p53 promotes the degradation of the DNA exonuclease TREX1, resulting in cytosolic dsDNA accumulation. We demonstrate that p53 requires the ubiquitin ligase TRIM24 to induce TREX1 degradation. The cytosolic DNA accumulation resulting from TREX1 degradation activates the cytosolic DNA-sensing cGAS/STING pathway, resulting in induction of type I interferons. TREX1 overexpression sufficed to block p53 activation of the cGAS/STING pathway. p53-mediated induction of type I interferon (IFNB1) is suppressed by cGAS/STING knockout, and p53's tumor suppressor activities are compromised by the loss of signaling through the cGAS/STING pathway. Thus, our study reveals that p53 utilizes the cGAS/STING innate immune system pathway for both cell-intrinsic and cell-extrinsic tumor suppressor activities.
Collapse
Affiliation(s)
- Monisankar Ghosh
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11790, USA; Stony Brook Cancer Center, Stony Brook, NY 11790, USA
| | - Suchandrima Saha
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11790, USA; Stony Brook Cancer Center, Stony Brook, NY 11790, USA
| | - Jinyu Li
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11790, USA; Stony Brook Cancer Center, Stony Brook, NY 11790, USA
| | - David C Montrose
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11790, USA; Stony Brook Cancer Center, Stony Brook, NY 11790, USA
| | - Luis A Martinez
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11790, USA; Stony Brook Cancer Center, Stony Brook, NY 11790, USA.
| |
Collapse
|
25
|
Bai X, Tang J. TRIM proteins in breast cancer: Function and mechanism. Biochem Biophys Res Commun 2023; 640:26-31. [PMID: 36495607 DOI: 10.1016/j.bbrc.2022.11.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most prevalent malignancy in the world, and despite tremendous progress in current treatment strategies, recurrence, metastasis and drug resistance of breast cancer remain the major causes of death in patients. Tripartite motif (TRIM) family proteins play a critical role in the tumor progression such as cell proliferation, migration, invasion, and metastasis. Accumulating evidence suggests that the TRIM protein family serve as cancer suppressor proteins or oncoproteins in breast cancer. This review focused on the roles and molecular mechanisms of TRIM protein in breast cancer. Importantly, it provides new insights that TRIM proteins may be ideal targets to treat breast cancer.
Collapse
Affiliation(s)
- Xin Bai
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Jianming Tang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
26
|
Guo Y, Hu G, Tian B, Ma M, Long F, Chen M. Circ_RNF13 Regulates the Stemness and Chemosensitivity of Colorectal Cancer by Transcriptional Regulation of DDX27 Mediated by TRIM24 Stabilization. Cancers (Basel) 2022; 14:cancers14246218. [PMID: 36551703 PMCID: PMC9776557 DOI: 10.3390/cancers14246218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most commonly diagnosed cancers with high incidence and poor prognosis worldwide. Circ_RNF13 is upregulated in CRC; however, the biological roles and downstream signaling of circ_RNF13 remain undefined. METHODS The characterization of circ_RNF13 was determined by Sanger sequencing, qRT-PCR, subcellular fractionation assay, and RNA FISH. Western blot analysis and qRT-PCR were employed to detect the expression of the key molecules and stemness markers in CRC tumor samples and cells. The stem-like activities of CRC cells were assessed by sphere formation assay, flow cytometry, and immunofluorescence (IF). Cell viability was monitored by CCK-8 assay. The chemosensitivity of CRC cells was assessed by colony formation and cell apoptosis assays. Bioinformatics analysis, RIP assay, RNA pull-down assay, and FISH/IF staining were used to detect the association between circ_RNF13 and TRIM24. The transcriptional regulation of DDX27 was investigated by ChIP assay, and the post-translational regulation of TRIM24 was detected by Co-IP. The in vitro findings were verified in a xenograft model. RESULTS circ_RNF13 and DDX27 were elevated in CRC tumor samples and cells. Knockdown of circ_RNF13 or DDX27 inhibited stemness and increased chemosensitivity in CRC cells. Mechanistically, circ_RNF13 regulated DDX27 expression via TRIM24-mediated transcriptional regulation, and circ_RNF13 stabilized TRIM24 via suppressing FBXW7-mediated TRIM24 degradation. In vivo studies revealed that the knockdown of circ_RNF13 impaired stemness and enhanced the chemosensitivity of CRC in the xenograft model. CONCLUSION circ_RNF13 regulated the stemness and chemosensitivity of CRC by transcriptional regulation of DDX27 mediated by TRIM24 stabilization.
Collapse
Affiliation(s)
| | | | | | | | | | - Miao Chen
- Correspondence: ; Tel.: +86-150-8488-6883
| |
Collapse
|
27
|
Recent advances in the pharmacological targeting of ubiquitin-regulating enzymes in cancer. Semin Cell Dev Biol 2022; 132:213-229. [PMID: 35184940 DOI: 10.1016/j.semcdb.2022.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022]
Abstract
As a post-translational modification that has pivotal roles in protein degradation, ubiquitination ensures that intracellular proteins act in a precise spatial and temporal manner to regulate diversified cellular processes. Perturbation of the ubiquitin system contributes directly to the onset and progression of a wide variety of diseases, including various subtypes of cancer. This highly regulated system has been for years an active research area for drug discovery that is exemplified by several approved drugs. In this review, we will provide an update of the main breakthrough scientific discoveries that have been leading the clinical development of ubiquitin-targeting therapies in the last decade, with a special focus on E1 and E3 modulators. We will further discuss the unique challenges of identifying new potential therapeutic targets within this ubiquitous and highly complex machinery, based on available crystallographic structures, and explore chemical approaches by which these challenges might be met.
Collapse
|
28
|
Huang N, Sun X, Li P, Liu X, Zhang X, Chen Q, Xin H. TRIM family contribute to tumorigenesis, cancer development, and drug resistance. Exp Hematol Oncol 2022; 11:75. [PMID: 36261847 PMCID: PMC9583506 DOI: 10.1186/s40164-022-00322-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
The tripartite-motif (TRIM) family represents one of the largest classes of putative single protein RING-finger E3 ubiquitin ligases. TRIM family is involved in a variety of cellular signaling transductions and biological processes. TRIM family also contributes to cancer initiation, progress, and therapy resistance, exhibiting oncogenic and tumor-suppressive functions in different human cancer types. Moreover, TRIM family members have great potential to serve as biomarkers for cancer diagnosis and prognosis. In this review, we focus on the specific mechanisms of the participation of TRIM family members in tumorigenesis, and cancer development including interacting with dysregulated signaling pathways such as JAK/STAT, PI3K/AKT, TGF-β, NF-κB, Wnt/β-catenin, and p53 hub. In addition, many studies have demonstrated that the TRIM family are related to tumor resistance; modulate the epithelial–mesenchymal transition (EMT) process, and guarantee the acquisition of cancer stem cells (CSCs) phenotype. In the end, we havediscussed the potential of TRIM family members for cancer therapeutic targets.
Collapse
Affiliation(s)
- Ning Huang
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.,PharmaLegacy Laboratories Co.,Ltd, Shengrong Road No.388, Zhangjiang High-tech Park, Pudong New Area, Shanghai, China
| | - Xiaolin Sun
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Peng Li
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Xin Liu
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.,PharmaLegacy Laboratories Co.,Ltd, Shengrong Road No.388, Zhangjiang High-tech Park, Pudong New Area, Shanghai, China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Qian Chen
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
29
|
Abuetabh Y, Wu HH, Chai C, Al Yousef H, Persad S, Sergi CM, Leng R. DNA damage response revisited: the p53 family and its regulators provide endless cancer therapy opportunities. Exp Mol Med 2022; 54:1658-1669. [PMID: 36207426 PMCID: PMC9636249 DOI: 10.1038/s12276-022-00863-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 12/29/2022] Open
Abstract
Antitumor therapeutic strategies that fundamentally rely on the induction of DNA damage to eradicate and inhibit the growth of cancer cells are integral approaches to cancer therapy. Although DNA-damaging therapies advance the battle with cancer, resistance, and recurrence following treatment are common. Thus, searching for vulnerabilities that facilitate the action of DNA-damaging agents by sensitizing cancer cells is an active research area. Therefore, it is crucial to decipher the detailed molecular events involved in DNA damage responses (DDRs) to DNA-damaging agents in cancer. The tumor suppressor p53 is active at the hub of the DDR. Researchers have identified an increasing number of genes regulated by p53 transcriptional functions that have been shown to be critical direct or indirect mediators of cell fate, cell cycle regulation, and DNA repair. Posttranslational modifications (PTMs) primarily orchestrate and direct the activity of p53 in response to DNA damage. Many molecules mediating PTMs on p53 have been identified. The anticancer potential realized by targeting these molecules has been shown through experiments and clinical trials to sensitize cancer cells to DNA-damaging agents. This review briefly acknowledges the complexity of DDR pathways/networks. We specifically focus on p53 regulators, protein kinases, and E3/E4 ubiquitin ligases and their anticancer potential.
Collapse
Affiliation(s)
- Yasser Abuetabh
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - H Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Chengsen Chai
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
- College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Habib Al Yousef
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Sujata Persad
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Consolato M Sergi
- Division of Anatomical Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada.
| |
Collapse
|
30
|
Wei W, Chen Q, Liu M, Sheng Y, OuYang Q, Feng W, Yang X, Ding L, Su S, Zhang J, Fang L, Vidal-Puig A, Wang HY, Chen S. TRIM24 is an insulin-responsive regulator of P-bodies. Nat Commun 2022; 13:3972. [PMID: 35803934 PMCID: PMC9270398 DOI: 10.1038/s41467-022-31735-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
Insulin is a potent inducer of mRNA transcription and translation, contributing to metabolic regulation. Insulin has also been suggested to regulate mRNA stability through the processing body (P-body) molecular machinery. However, whether and how insulin regulates mRNA stability via P-bodies is not clear. Here we show that the E3-ligase TRIM24 is a critical factor linking insulin signalling to P-bodies. Upon insulin stimulation, protein kinase B (PKB, also known as Akt) phosphorylates TRIM24 and stimulates its shuttling from the nucleus into the cytoplasm. TRIM24 interacts with several critical components of P-bodies in the cytoplasm, promoting their polyubiquitylation, which consequently stabilises Pparγ mRNA. Inactivation of TRIM24 E3-ligase activity or prevention of its phosphorylation via knockin mutations in mice promotes hepatic Pparγ degradation via P-bodies. Consequently, both knockin mutations alleviate hepatosteatosis in mice fed on a high-fat diet. Our results demonstrate the critical role of TRIM24 in linking insulin signalling to P-bodies and have therapeutic implications for the treatment of hepatosteatosis.
Collapse
Affiliation(s)
- Wen Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Qiaoli Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Minjun Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Yang Sheng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Qian OuYang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Weikuan Feng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Xinyu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Longfei Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Shu Su
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, 210061, China
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Jingzi Zhang
- School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Lei Fang
- School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Antonio Vidal-Puig
- TVP Lab, WT/MRC Institute of Metabolic Science, MRC Metabolic Diseases Unit - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
- Cambridge University Nanjing Centre of Technology and Innovation, Jiangbei Area, Nanjing, China
| | - Hong-Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, 210061, China.
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China.
- Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China.
| | - Shuai Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, 210061, China.
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China.
- Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China.
| |
Collapse
|
31
|
Yan J, Li T, Miao Z, Wang P, Sheng C, Zhuang C. Homobivalent, Trivalent, and Covalent PROTACs: Emerging Strategies for Protein Degradation. J Med Chem 2022; 65:8798-8827. [PMID: 35763424 DOI: 10.1021/acs.jmedchem.2c00728] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Proteolysis-targeting chimeras (PROTACs) is a fast-growing technology providing many strengths over inhibition of protein activity directly and is attracting increasing interest in new drug discovery and development. However, efficiently identifying potent and drug-like degraders is still challenging in the development of PROTACs. Complementary to traditional PROTACs, several emerging types of PROTACs, such as homobivalent PROTACs based on two E3 ligases (e.g., CRBN, VHL, MDM2, TRIM24), chemical- or biological-based trivalent/multitargeted PROTACs, and covalent PROTACs, are rising for targeted protein degradation. These new types of PROTACs have several advantages over the traditional PROTACs including high selectivity, low toxicity, better therapeutic effects, and so on. In this perspective, we will summarize the latest development of representative PROTACs focusing on research mainly in past 10 years and discuss their advantages and disadvantages. Moreover, the outlook and perspectives on the associated challenges and future directions will be provided.
Collapse
Affiliation(s)
- Jianyu Yan
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Tengfei Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhenyuan Miao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Pei Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
32
|
TRIM24 Expression as an Independent Biomarker for Prognosis and Tumor Recurrence in HNSCC. J Pers Med 2022; 12:jpm12060991. [PMID: 35743773 PMCID: PMC9225579 DOI: 10.3390/jpm12060991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Head and neck squamous cell carcinomas (HNSCCs) are among the most common cancers in humans worldwide and have a rather poor prognosis. TRIM24 has various intracellular functions and was identified in other cancer entities as a poor prognostic factor for patients. Methods: The expression of TRIM24 was evaluated by using immunohistochemistry. We used a large and representative cohort of 341 HNSCC patients. Data derived from immunohistochemistry evaluation was correlated with clinicopathological data from HNSCC patients. Results: The TRIM24 expression in HNSCC primary tumors is negatively correlated with the p16 status of the tumor tissues. Primary tumors of patients who developed a local recurrence were significantly more often positive for TRIM24. Kaplan–Meier analyses and Cox regression showed that patients with TRIM24 expressing tumors have significantly worse overall survival and progression-free survival and that TRIM24 expression is independent of other established risk factors. Conclusions: TRIM24 might be a new prognostic biomarker for the survival prognosis and early detection of local recurrences in HNSCC patients. It could be used for risk stratification of HNSCC patients and to identify those patients who are more prone to develop a local recurrence and therefore could profit from more frequent follow-up examinations.
Collapse
|
33
|
Torres F, Walser R, Kaderli J, Rossi E, Bobby R, Packer MJ, Sarda S, Walker G, Hitchin JR, Milbradt AG, Orts J. NMR Molecular Replacement Provides New Insights into Binding Modes to Bromodomains of BRD4 and TRIM24. J Med Chem 2022; 65:5565-5574. [PMID: 35357834 PMCID: PMC9017284 DOI: 10.1021/acs.jmedchem.1c01703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structure-based drug discovery (SBDD) largely relies on structural information from X-ray crystallography because traditional NMR structure calculation methods are too time consuming to be aligned with typical drug discovery timelines. The recently developed NMR molecular replacement (NMR2) method dramatically reduces the time needed to generate ligand-protein complex structures using published structures (apo or holo) of the target protein and treating all observed NOEs as ambiguous restraints, bypassing the laborious process of obtaining sequence-specific resonance assignments for the protein target. We apply this method to two therapeutic targets, the bromodomain of TRIM24 and the second bromodomain of BRD4. We show that the NMR2 methodology can guide SBDD by rationalizing the observed SAR. We also demonstrate that new types of restraints and selective methyl labeling have the potential to dramatically reduce "time to structure" and extend the method to targets beyond the reach of traditional NMR structure elucidation.
Collapse
Affiliation(s)
- Felix Torres
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, HCI F217, Eidgenossische Technische Hochschule Zurich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Reto Walser
- BioPharmaceuticals R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - Janina Kaderli
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, HCI F217, Eidgenossische Technische Hochschule Zurich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Emanuele Rossi
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, HCI F217, Eidgenossische Technische Hochschule Zurich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Romel Bobby
- BioPharmaceuticals R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - Martin J Packer
- Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - Sunil Sarda
- BioPharmaceuticals R&D, AstraZeneca, Cambridge, CB4 0WG, United Kingdom
| | - Graeme Walker
- Drug Discovery Unit, Cancer Research UK Manchester Institute, Alderley Park, Macclesfield SK10 4TG, United Kingdom
| | - James R Hitchin
- Drug Discovery Unit, Cancer Research UK Manchester Institute, Alderley Park, Macclesfield SK10 4TG, United Kingdom
| | | | - Julien Orts
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, HCI F217, Eidgenossische Technische Hochschule Zurich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.,Department of Pharmaceutical Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| |
Collapse
|
34
|
Xiang Q, Luo G, Zhang C, Hu Q, Wang C, Wu T, Xu H, Hu J, Zhuang X, Zhang M, Wu S, Xu J, Zhang Y, Liu J, Xu Y. Discovery, optimization and evaluation of 1-(indolin-1-yl)ethan-1-ones as novel selective TRIM24/BRPF1 bromodomain inhibitors. Eur J Med Chem 2022; 236:114311. [PMID: 35385803 DOI: 10.1016/j.ejmech.2022.114311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 12/12/2022]
Abstract
TRIM24 (tripartite motif-containing protein 24) and BRPF1 (bromodomain and PHD finger containing protein 1) are epigenetics "readers" and potential therapeutic targets for cancer and other diseases. Here we describe the structure-guided design of 1-(indolin-1-yl)ethan-1-ones as novel TRIM24/BRPF1 bromodomain inhibitors. The representative compound 20l (Y08624) is a new TRIM24/BRPF1 dual inhibitor, with IC50 values of 0.98 and 1.16 μM, respectively. Cellular activity of 20l was validated by viability assay in prostate cancer (PC) cell lines. In PC xenograft models, 20l suppressed tumor growth (50 mg/kg/day, TGI = 53%) without exhibiting noticeable toxicity. Compound 20l represents a versatile starting point for the development of more potent TRIM24/BRPF1 inhibitors.
Collapse
Affiliation(s)
- Qiuping Xiang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Guolong Luo
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing, 100049, China
| | - Cheng Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Qingqing Hu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing, 100049, China
| | - Chao Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing, 100049, China
| | - Tianbang Wu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China; Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hongrui Xu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiankang Hu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing, 100049, China
| | - Xiaoxi Zhuang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Maofeng Zhang
- College of Pharmacy, Taizhou Polytechnic College, Taizhou, 225300, China
| | - Shuang Wu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Jinxin Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yan Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yong Xu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China; State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China.
| |
Collapse
|
35
|
Deng Y, Shi Y, Wen C. TRIM3 Inhibits H 2O 2-Induced Apoptosis in Human Lens Epithelial Cells by Decreasing p53 via Ubiquitination. Curr Eye Res 2022; 47:747-752. [PMID: 35317686 DOI: 10.1080/02713683.2022.2040538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Cataract is a leading visual disease characterized by enhanced oxidative stress and increased apoptosis of human lens epithelial cells (HLECs). TRIM3 is a tumor suppressor in many cancers. However, its role in cataract remains unknown. In this study, we aimed to explore the role of TRIM3 in H2O2-injured HLECs and the underlying mechanisms involved. METHODS HLECs were treated with different H2O2 concentrations to induce apoptosis. A lentivirus was designed to overexpress TRIM3 and p53, and TRIM3 knockdown was prepared. A P53 inhibitor, PFTα, was used to knockdown p53. Cell viability and apoptosis were detected by CCK-8 and flow cytometric analyses, respectively. TRIM3, p53, Bcl2, and Bax expression levels were determined by qRT-qPCR and western blotting. RESULTS It was found that H2O2-treated HLECs had markedly decreased cell viability and TRIM3 expression. TRIM3 overexpression attenuated the H2O2-induced HLEC apoptosis, while TRIM3 knockdown promoted it. P53, a downstream target of TRIM3, was found to be negatively regulated by TRIM3 via ubiquitination in HLECs. Furthermore, p53 overexpression abolished the effect of TRIM3 overexpression on H2O2-induced HLEC apoptosis, while PFTα alleviated the TRIM3 knockdown-mediated HLEC apoptosis. CONCLUSION This study demonstrates that TRIM3 inhibited the H2O2-induced apoptosis of HLECs by decreasing p53 via ubiquitination.
Collapse
Affiliation(s)
- Yingying Deng
- Department of Ophtalmology, Shanghai Eighth People Hospital, Shanghai, China
| | - Yuhua Shi
- Department of Ophtalmology, Shanghai Eighth People Hospital, Shanghai, China
| | - Chenting Wen
- Department of Ophtalmology, Shanghai Eighth People Hospital, Shanghai, China
| |
Collapse
|
36
|
Lacoursiere RE, Hadi D, Shaw GS. Acetylation, Phosphorylation, Ubiquitination (Oh My!): Following Post-Translational Modifications on the Ubiquitin Road. Biomolecules 2022; 12:biom12030467. [PMID: 35327659 PMCID: PMC8946176 DOI: 10.3390/biom12030467] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
Ubiquitination is controlled by a series of E1, E2, and E3 enzymes that can ligate ubiquitin to cellular proteins and dictate the turnover of a substrate and the outcome of signalling events such as DNA damage repair and cell cycle. This process is complex due to the combinatorial power of ~35 E2 and ~1000 E3 enzymes involved and the multiple lysine residues on ubiquitin that can be used to assemble polyubiquitin chains. Recently, mass spectrometric methods have identified that most enzymes in the ubiquitination cascade can be further modified through acetylation or phosphorylation under particular cellular conditions and altered modifications have been noted in different cancers and neurodegenerative diseases. This review provides a cohesive summary of ubiquitination, acetylation, and phosphorylation sites in ubiquitin, the human E1 enzyme UBA1, all E2 enzymes, and some representative E3 enzymes. The potential impacts these post-translational modifications might have on each protein function are highlighted, as well as the observations from human disease.
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Loss of chromosome 7 has long been associated with adverse-risk myeloid malignancy. In the last decade, CUX1 has been identified as a critical tumor suppressor gene (TSG) located within a commonly deleted segment of chromosome arm 7q. Additional genes encoded on 7q have also been identified as bona fide myeloid tumor suppressors, further implicating chromosome 7 deletions in disease pathogenesis. This review will discuss the clinical implications of del(7q) and CUX1 mutations, both in disease and clonal hematopoiesis, and synthesize recent literature on CUX1 and other chromosome 7 TSGs. RECENT FINDINGS Two major studies, including a new mouse model, have been published that support a role for CUX1 inactivation in the development of myeloid neoplasms. Additional recent studies describe the cellular and hematopoietic effects from loss of the 7q genes LUC7L2 and KMT2C/MLL3, and the implications of chromosome 7 deletions in clonal hematopoiesis. SUMMARY Mounting evidence supports CUX1 as being a key chromosome 7 TSG. As 7q encodes additional myeloid regulators and tumor suppressors, improved models of chromosome loss are needed to interrogate combinatorial loss of these critical 7q genes.
Collapse
Affiliation(s)
| | - Megan E McNerney
- Department of Pathology
- Department of Pediatrics, Section of Hematology/Oncology
- The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
38
|
Tian H, Zhao H, Qu B, Chu X, Xin X, Zhang Q, Li W, Yang S. TRIM24 promotes colorectal cancer cell progression via the Wnt/β-catenin signaling pathway activation. Am J Transl Res 2022; 14:831-848. [PMID: 35273688 PMCID: PMC8902576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 10/12/2021] [Indexed: 06/14/2023]
Abstract
Overexpression of TRIM24 is observed in several human cancers and is correlated with an increase in the progression and metastasis of tumors. In this study, we investigated the changes in activity and biochemical events that occur after overexpression of TRIM24 in a colorectal cancer (CRC) mouse model. We observed upregulated TRIM24 expression in CRC tissues compared to that in nonneoplastic adjacent tissues. Enhanced expression of TRIM24 was significantly associated with the status of lymph nodes and poor recurrence-free survival of patients with CRC. The role of TRIM24 in CRC tumor growth was investigated using an orthotopic model of MC38 mouse colon cancer cells overexpressing TRIM24, and CRC tumor growth was found to increase dramatically by TRIM24 overexpression. Moreover, angiogenesis was stimulated by TRIM24 overexpression via the upregulation of vascular endothelial growth factor (VEGF) expression. Overexpression of TRIM24 in MC38 cells led to an increase in the protein levels of ALDH1 and other stem cell markers. In addition, we observed that Wnt/β-catenin signaling is required for the function of TRIM24 in CRC cells. Tumor-associated macrophages (TAMs) were found to be recruited by tumor cells overexpressing TRIM24 via the increased expression of CCL2/5, CSF-1, and VEGF, further enhancing CRC tumor growth. In conclusion, overexpression of TRIM24 facilitates the growth of CRC and the remodeling of the tumor stroma via angiogenesis stimulation and TAM recruitment. The Wnt/β-catenin pathway is a possible crucial link in the TRIM24-associated progression of tumors, which may provide opportunities for pharmacological intervention.
Collapse
Affiliation(s)
- Hong Tian
- Oncology Department, The 4th People’s Hospital of ShenyangShenyang 110013, Liaoning, China
| | - Hongmei Zhao
- Department of Laboratory Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province)Shenyang 110016, Liaoning, China
| | - Bo Qu
- Department of Laboratory Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province)Shenyang 110016, Liaoning, China
| | - Xiaoli Chu
- Oncology Department, The 4th People’s Hospital of ShenyangShenyang 110013, Liaoning, China
| | - Xing Xin
- Oncology Department, The 4th People’s Hospital of ShenyangShenyang 110013, Liaoning, China
| | - Qingwei Zhang
- General Surgery Dept. VI Ward (Biliary-Pancreatic Surgery), The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province)Shenyang 110016, Liaoning, China
| | - Weizhou Li
- Department of Laboratory Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province)Shenyang 110016, Liaoning, China
| | - Shida Yang
- Department of Laboratory Medicine, The People’s Hospital of China Medical University (The People’s Hospital of Liaoning Province)Shenyang 110016, Liaoning, China
| |
Collapse
|
39
|
Zhang L, Chen H, Ding B, Jiang W. High expression of TRIM24 predicts worse prognosis and promotes proliferation and metastasis of epithelial ovarian cancer. J Ovarian Res 2022; 15:19. [PMID: 35105347 PMCID: PMC8805319 DOI: 10.1186/s13048-022-00948-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/16/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Tripartite Motif-Containing 24 (TRIM24) is a member of the tripartite motif family. TRIM24 is claimed aberrantly activated in a number of cancers, such as breast cancer, prostate cancer and lung cancer. However, the expression of TRIM24 in epithelial ovarian cancer (EOC) and its relationship with prognosis remain unclear. In this study, we investigated the expression pattern and underlying clinical significance of TRIM24 in EOC. RESULTS Data from Oncomine and immunohistochemistry of tissue samples demonstrated that TRIM24 expression was obviously elevated in ovarian carcinoma compared with normal ovary tissues. Elevated TRIM24 expression was closely correlated with serum CA-125 (P = 0.0294), metastasis (P = 0.0022), FIGO (International Federation of Gynecology and Obstetrics) stage (P = 0.0068) and Ki-67 level (P = 0.0395). Kaplan-Meier survival analysis found that TRIM24 expression increased inversely with the clinical prognosis of patients with EOC. Moreover, colony formation and CCK-8 assays showed that TRIM24 promoted EOC cell growth, and tumorigenic experiments in nude mice showed that TRIM24 knockdown inhibited tumor growth in vivo. The Spearman's correlations revealed that the expression of TRIM24 was significantly correlated with levels of Ki-67 (P = 0.01), at a correlation coefficient of 0.517. Wound-healing and transwell migration assays demonstrated TRIM24 facilitated cell migration. Mechanism studies showed that TRIM24 could promote the phosphorylation level of Akt and the process of EMT. CONCLUSION Our results confirmed that TRIM24 could predict poor prognosis of EOC patients and promote tumor progression by regulating Akt pathway and EMT. TRIM24 may be used as a new prognostic marker for EOC and may provide a new strategy for targeted therapy of epithelial ovarian cancer.
Collapse
Affiliation(s)
- Liwei Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Hong Chen
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu Province, 212300, China
| | - Baijuan Ding
- Department of Obstetrics and Gynecology, Tengzhou Central People's Hospital, Tengzhou, Shandong Province, 277599, China
| | - Wei Jiang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.
| |
Collapse
|
40
|
Bernasocchi T, Theurillat JPP. SPOP-mutant prostate cancer: Translating fundamental biology into patient care. Cancer Lett 2021; 529:11-18. [PMID: 34974131 DOI: 10.1016/j.canlet.2021.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023]
Abstract
Comprehensive cancer genome studies have revealed genetically-defined subtypes of prostate cancer with distinct truncal driver mutations. Because prostate cancer has been largely seen as a rather uniform disease, the clinical significance of this discovery remained largely obscure. However, recent findings imply distinct biological features and therapeutic vulnerabilities linked to specific truncal mutations. Here we review our current understanding of prostate cancers harboring recurrent point mutations in the ubiquitin ligase adaptor protein SPOP and discuss opportunities for future clinical translation. More specifically, activation of the androgen receptor (AR) signaling emerges as the key oncogenic pathway. SPOP-mutant prostate cancer patients respond to AR inhibition in various clinical settings. Molecular insights on how mutant SPOP promotes tumorigenesis may open more specific therapeutic avenues which, in combination with conventional AR-targeting agents, could improve the outcome of patients with SPOP-mutant prostate cancer.
Collapse
Affiliation(s)
- Tiziano Bernasocchi
- Institute of Oncology Research, Bellinzona, TI, 6500, Switzerland; Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, TI, 6900, Lugano, Switzerland
| | - Jean-Philippe P Theurillat
- Institute of Oncology Research, Bellinzona, TI, 6500, Switzerland; Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, TI, 6900, Lugano, Switzerland.
| |
Collapse
|
41
|
Xue Y, Ge W, Shi W, Huang W, Wang R. Prognostic role of tripartite motif containing 24 in various human solid malignant neoplasms: An updated meta-analysis and systematic review. Medicine (Baltimore) 2021; 100:e28383. [PMID: 34941167 PMCID: PMC8702049 DOI: 10.1097/md.0000000000028383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 11/10/2021] [Accepted: 12/01/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Currently, clinical studies of tripartite motif containing 24 (TRIM24) on human solid malignant neoplasms were developing, but the prognosis value of TRIM24 continues to be controversial. The aim of our study is to explore the prognostic effect of TRIM24 in various human solid malignant neoplasms. METHODS We performed a comprehensive research for eligible studies which evaluated the prognostic roles of TRIM24 in cancer patients based on PubMed, Embase, Web of Science, and China National Knowledge Infrastructure. The hazard ratios (HRs) with 95% confidence intervals (CIs) for various malignances were extracted from eligible studies. RESULTS A total of 13 studies with 1909 patients were enrolled in this analysis. Combined analyses showed that high expression of TRIM24 significantly predicted poorer overall survival both in univariate analysis (HR = 1.61, 95% CI 1.21-2.15, P = .001) and multivariate analysis (HR = 2.19, 95% CI 1.10-4.38, P = .026). In stratified analyses, high TRIM24 expression level predicted even worse overall survival in hormone-related cancers (HR = 1.92, 95% CI 1.28-2.86, P = .001). Although, expression of TRIM24 failed to show a significant relation with progression-free survival/disease-free survival/recurrence-free survival (HR = 1.42, 95% CI 0.93-2.16, P = .106), high expression predicted significant worse progression-free survival/disease-free survival/recurrence-free survival in hormone-related cancer (HR = 1.71, 95% CI 1.12-2.59, P = .013). CONCLUSION TRIM24 could serve as a new biomarker for patients with solid malignancies and could be a potential therapeutic target for patients especially for patients with hormone-related malignancies.
Collapse
|
42
|
Dai X, Zhang T, Hua D. Ubiquitination and SUMOylation: protein homeostasis control over cancer. Epigenomics 2021; 14:43-58. [PMID: 34875856 DOI: 10.2217/epi-2021-0371] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ubiquitination and SUMOylation are two essential components of the ubiquitination proteasome system playing fundamental roles in protein homeostasis maintenance and signal transduction, perturbation of which is associated with tumorigenesis. By comparing the mechanisms of ubiquitination and SUMOylation, assessing their crosstalk, reviewing their differential associations with cancer and identifying unaddressed yet important questions that may lead the field trend, this review sheds light on the similarities and differences of ubiquitination and SUMOylation toward the improved harnessing of both post-translational modification machineries, as well as forecasts novel onco-therapeutic opportunities through cell homeostasis control.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122,China
| | - Tongxin Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122,China
| | - Dong Hua
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122,China.,Wuxi People's Hospital, Wuxi, 214023, China.,Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
43
|
Killing by Degradation: Regulation of Apoptosis by the Ubiquitin-Proteasome-System. Cells 2021; 10:cells10123465. [PMID: 34943974 PMCID: PMC8700063 DOI: 10.3390/cells10123465] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is a cell suicide process that is essential for development, tissue homeostasis and human health. Impaired apoptosis is associated with a variety of human diseases, including neurodegenerative disorders, autoimmunity and cancer. As the levels of pro- and anti-apoptotic proteins can determine the life or death of cells, tight regulation of these proteins is critical. The ubiquitin proteasome system (UPS) is essential for maintaining protein turnover, which can either trigger or inhibit apoptosis. In this review, we will describe the E3 ligases that regulate the levels of pro- and anti-apoptotic proteins and assisting proteins that regulate the levels of these E3 ligases. We will provide examples of apoptotic cell death modulations using the UPS, determined by positive and negative feedback loop reactions. Specifically, we will review how the stability of p53, Bcl-2 family members and IAPs (Inhibitor of Apoptosis proteins) are regulated upon initiation of apoptosis. As increased levels of oncogenes and decreased levels of tumor suppressor proteins can promote tumorigenesis, targeting these pathways offers opportunities to develop novel anti-cancer therapies, which act by recruiting the UPS for the effective and selective killing of cancer cells.
Collapse
|
44
|
Shah VV, Duncan AD, Jiang S, Stratton SA, Allton KL, Yam C, Jain A, Krause PM, Lu Y, Cai S, Tu Y, Zhou X, Zhang X, Jiang Y, Carroll CL, Kang Z, Liu B, Shen J, Gagea M, Manu SM, Huo L, Gilcrease M, Powell RT, Guo L, Stephan C, Davies PJ, Parker-Thornburg J, Lozano G, Behringer RR, Piwnica-Worms H, Chang JT, Moulder SL, Barton MC. Mammary-specific expression of Trim24 establishes a mouse model of human metaplastic breast cancer. Nat Commun 2021; 12:5389. [PMID: 34508101 PMCID: PMC8433435 DOI: 10.1038/s41467-021-25650-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/17/2021] [Indexed: 12/24/2022] Open
Abstract
Conditional overexpression of histone reader Tripartite motif containing protein 24 (TRIM24) in mouse mammary epithelia (Trim24COE) drives spontaneous development of mammary carcinosarcoma tumors, lacking ER, PR and HER2. Human carcinosarcomas or metaplastic breast cancers (MpBC) are a rare, chemorefractory subclass of triple-negative breast cancers (TNBC). Comparison of Trim24COE metaplastic carcinosarcoma morphology, TRIM24 protein levels and a derived Trim24COE gene signature reveals strong correlation with human MpBC tumors and MpBC patient-derived xenograft (PDX) models. Global and single-cell tumor profiling reveal Met as a direct oncogenic target of TRIM24, leading to aberrant PI3K/mTOR activation. Here, we find that pharmacological inhibition of these pathways in primary Trim24COE tumor cells and TRIM24-PROTAC treatment of MpBC TNBC PDX tumorspheres decreased cellular viability, suggesting potential in therapeutically targeting TRIM24 and its regulated pathways in TRIM24-expressing TNBC.
Collapse
Affiliation(s)
- Vrutant V Shah
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aundrietta D Duncan
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX, USA
- Salarius Pharmaceuticals, Houston, TX, USA
| | - Shiming Jiang
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Thoracic Head and Neck Medicine Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sabrina A Stratton
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kendra L Allton
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Neurodegeneration Consortium, Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clinton Yam
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abhinav Jain
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX, USA
| | - Patrick M Krause
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yue Lu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shirong Cai
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yizheng Tu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xinhui Zhou
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaomei Zhang
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yan Jiang
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher L Carroll
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute of Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhijun Kang
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute of Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Liu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Shen
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mihai Gagea
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sebastian M Manu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lei Huo
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Gilcrease
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Reid T Powell
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX, USA
| | - Lei Guo
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX, USA
| | - Clifford Stephan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX, USA
| | - Peter J Davies
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX, USA
| | - Jan Parker-Thornburg
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX, USA
| | - Richard R Behringer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX, USA
| | - Helen Piwnica-Worms
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey T Chang
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX, USA.
- Department of Integrative Biology and Pharmacology, University of Texas Health Sciences Center at Houston, Houston, TX, USA.
| | - Stacy L Moulder
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Michelle Craig Barton
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX, USA.
- Division of Oncological Sciences, Cancer Early Detection Advanced Research, Center Knight Cancer Institute Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
45
|
Chronic stress primes innate immune responses in mice and humans. Cell Rep 2021; 36:109595. [PMID: 34496250 PMCID: PMC8493594 DOI: 10.1016/j.celrep.2021.109595] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/24/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
Psychological stress (PS) is associated with systemic inflammation and accelerates inflammatory disease progression (e.g., atherosclerosis). The mechanisms underlying stress-mediated inflammation and future health risk are poorly understood. Monocytes are key in sustaining systemic inflammation, and recent studies demonstrate that they maintain the memory of inflammatory insults, leading to a heightened inflammatory response upon rechallenge. We show that PS induces remodeling of the chromatin landscape and transcriptomic reprogramming of monocytes, skewing them to a primed hyperinflammatory phenotype. Monocytes from stressed mice and humans exhibit a characteristic inflammatory transcriptomic signature and are hyperresponsive upon stimulation with Toll-like receptor ligands. RNA and ATAC sequencing reveal that monocytes from stressed mice and humans exhibit activation of metabolic pathways (mTOR and PI3K) and reduced chromatin accessibility at mitochondrial respiration-associated loci. Collectively, our findings suggest that PS primes the reprogramming of myeloid cells to a hyperresponsive inflammatory state, which may explain how PS confers inflammatory disease risk. Barrett et al. investigate the impact of psychological stress on monocytes. They report that psychological stress remodels the chromatin landscape of monocytes and the myeloid transcriptome, with stress-mediated changes skewing monocytes to a primed-hyperinflammatory phenotype. This study provides mechanistic insight into how psychological stress confers risk to inflammation-based disorders.
Collapse
|
46
|
Boyson SP, Gao C, Quinn K, Boyd J, Paculova H, Frietze S, Glass KC. Functional Roles of Bromodomain Proteins in Cancer. Cancers (Basel) 2021; 13:3606. [PMID: 34298819 PMCID: PMC8303718 DOI: 10.3390/cancers13143606] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
Histone acetylation is generally associated with an open chromatin configuration that facilitates many cellular processes including gene transcription, DNA repair, and DNA replication. Aberrant levels of histone lysine acetylation are associated with the development of cancer. Bromodomains represent a family of structurally well-characterized effector domains that recognize acetylated lysines in chromatin. As part of their fundamental reader activity, bromodomain-containing proteins play versatile roles in epigenetic regulation, and additional functional modules are often present in the same protein, or through the assembly of larger enzymatic complexes. Dysregulated gene expression, chromosomal translocations, and/or mutations in bromodomain-containing proteins have been correlated with poor patient outcomes in cancer. Thus, bromodomains have emerged as a highly tractable class of epigenetic targets due to their well-defined structural domains, and the increasing ease of designing or screening for molecules that modulate the reading process. Recent developments in pharmacological agents that target specific bromodomains has helped to understand the diverse mechanisms that bromodomains play with their interaction partners in a variety of chromatin processes, and provide the promise of applying bromodomain inhibitors into the clinical field of cancer treatment. In this review, we explore the expression and protein interactome profiles of bromodomain-containing proteins and discuss them in terms of functional groups. Furthermore, we highlight our current understanding of the roles of bromodomain-containing proteins in cancer, as well as emerging strategies to specifically target bromodomains, including combination therapies using bromodomain inhibitors alongside traditional therapeutic approaches designed to re-program tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Samuel P. Boyson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Cong Gao
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Kathleen Quinn
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Joseph Boyd
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Hana Paculova
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| | - Karen C. Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| |
Collapse
|
47
|
D'Amico F, Mukhopadhyay R, Ovaa H, Mulder MPC. Targeting TRIM Proteins: A Quest towards Drugging an Emerging Protein Class. Chembiochem 2021; 22:2011-2031. [PMID: 33482040 PMCID: PMC8251876 DOI: 10.1002/cbic.202000787] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/22/2021] [Indexed: 02/06/2023]
Abstract
The ubiquitylation machinery regulates several fundamental biological processes from protein homeostasis to a wide variety of cellular signaling pathways. As a consequence, its dysregulation is linked to diseases including cancer, neurodegeneration, and autoimmunity. With this review, we aim to highlight the therapeutic potential of targeting E3 ligases, with a special focus on an emerging class of RING ligases, named tri-partite motif (TRIM) proteins, whose role as targets for drug development is currently gaining pharmaceutical attention. TRIM proteins exert their catalytic activity as scaffolds involved in many protein-protein interactions, whose multidomains and adapter-like nature make their druggability very challenging. Herein, we give an overview of the current understanding of this class of single polypeptide RING E3 ligases and discuss potential targeting options.
Collapse
Affiliation(s)
- Francesca D'Amico
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333ZCLeidenThe Netherlands
| | - Rishov Mukhopadhyay
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333ZCLeidenThe Netherlands
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333ZCLeidenThe Netherlands
| | - Monique P. C. Mulder
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333ZCLeidenThe Netherlands
| |
Collapse
|
48
|
The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression. Int J Mol Sci 2021; 22:ijms22115754. [PMID: 34072267 PMCID: PMC8198665 DOI: 10.3390/ijms22115754] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
The cell cycle is a collection of events by which cellular components such as genetic materials and cytoplasmic components are accurately divided into two daughter cells. The cell cycle transition is primarily driven by the activation of cyclin-dependent kinases (CDKs), which activities are regulated by the ubiquitin-mediated proteolysis of key regulators such as cyclins, CDK inhibitors (CKIs), other kinases and phosphatases. Thus, the ubiquitin-proteasome system (UPS) plays a pivotal role in the regulation of the cell cycle progression via recognition, interaction, and ubiquitination or deubiquitination of key proteins. The illegitimate degradation of tumor suppressor or abnormally high accumulation of oncoproteins often results in deregulation of cell proliferation, genomic instability, and cancer occurrence. In this review, we demonstrate the diversity and complexity of the regulation of UPS machinery of the cell cycle. A profound understanding of the ubiquitination machinery will provide new insights into the regulation of the cell cycle transition, cancer treatment, and the development of anti-cancer drugs.
Collapse
|
49
|
Zhao G, Liu C, Wen X, Luan G, Xie L, Guo X. The translational values of TRIM family in pan-cancers: From functions and mechanisms to clinics. Pharmacol Ther 2021; 227:107881. [PMID: 33930453 DOI: 10.1016/j.pharmthera.2021.107881] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death across the world. Tripartite motif (TRIM) family, with E3 ubiquitin ligase activities in majority of its members, is reported to be involved in multiple cellular processes and signaling pathways. TRIM proteins have critical effects in the regulation of biological behaviors of cancer cells. Here, we discussed the current understanding of the molecular mechanism of TRIM proteins regulation of cancer cells. We also comprehensively reviewed published studies on TRIM family members as oncogenes or tumor suppressors in the oncogenesis, development, and progression of a variety of types of human cancers. Finally, we highlighted that certain TRIM family members are potential molecular biomarkers for cancer diagnosis and prognosis, and potential therapeutic targets.
Collapse
Affiliation(s)
- Guo Zhao
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Chuan Liu
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xin Wen
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Gan Luan
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Longxiang Xie
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
50
|
The Association between TIF1 Family Members and Cancer Stemness in Solid Tumors. Cancers (Basel) 2021; 13:cancers13071528. [PMID: 33810347 PMCID: PMC8061774 DOI: 10.3390/cancers13071528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Stem cell-associated molecular features of solid tumors, collectively known as cancer stemness, are of great importance in the development, progression, and reoccurrence of cancer. Transcriptional and epigenetic dysregulation is significantly associated with cancer stemness. Here, we investigated the association between the Transcriptional Intermediary Factor 1 (TIF1) family members and cancer stemness in solid tumors. We aimed to evaluate the potential value of TIF1 members in predicting a stem-like cancer phenotype. Our results indicate that only TIF1β (also known as Tripartite Motif protein 28, TRIM28) high expression is consequently associated with a “stemness high” phenotype, regardless of the tumor type, resulting in a worse prognosis for cancer patients. The oncogenic signature of TRIM28HIGH tumors significantly reflects the enrichment of “stemness high” cancers with targets for c-Myc (MYC Proto-Oncogene). TRIM28-associated gene expression profiles are also robustly enriched with stemness markers. Our results demonstrate that the association between high TRIM28 expression and an enriched cancer stem cell-like phenotype is a common phenomenon across solid tumors. Abstract Cancer progression entails a gradual loss of a differentiated phenotype in parallel with the acquisition of stem cell-like features. Cancer de-differentiation and the acquisition of stemness features are mediated by the transcriptional and epigenetic dysregulation of cancer cells. Here, using publicly available data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and harnessing several bioinformatic tools, we characterized the association between Transcriptional Intermediary Factor 1 (TIF1) family members and cancer stemness in 27 distinct types of solid tumors. We aimed to define the prognostic value for TIF1 members in predicting a stem cell-like cancer phenotype and patient outcome. Our results demonstrate that high expression of only one member of the TIF1 family, namely TIF1β (also known as Tripartite Motif protein 28, TRIM28) is consequently associated with enriched cancer stemness across the tested solid tumor types, resulting in a worse prognosis for cancer patients. TRIM28 is highly expressed in higher grade tumors that exhibit stem cell-like traits. In contrast to other TIF1 members, only TIF1β/TRIM28-associated gene expression profiles were robustly enriched with stemness markers regardless of the tumor type. Our work demonstrates that TIF1 family members exhibit distinct expression patterns in stem cell-like tumors, despite their structural and functional similarity. Among other TIF1 members, only TRIM28 might serve as a marker of cancer stemness features.
Collapse
|