1
|
Zou M, Shabala S, Zhao C, Zhou M. Molecular mechanisms and regulation of recombination frequency and distribution in plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:86. [PMID: 38512498 PMCID: PMC10957645 DOI: 10.1007/s00122-024-04590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
KEY MESSAGE Recent developments in understanding the distribution and distinctive features of recombination hotspots are reviewed and approaches are proposed to increase recombination frequency in coldspot regions. Recombination events during meiosis provide the foundation and premise for creating new varieties of crops. The frequency of recombination in different genomic regions differs across eukaryote species, with recombination generally occurring more frequently at the ends of chromosomes. In most crop species, recombination is rare in centromeric regions. If a desired gene variant is linked in repulsion with an undesired variant of a second gene in a region with a low recombination rate, obtaining a recombinant plant combining two favorable alleles will be challenging. Traditional crop breeding involves combining desirable genes from parental plants into offspring. Therefore, understanding the mechanisms of recombination and factors affecting the occurrence of meiotic recombination is important for crop breeding. Here, we review chromosome recombination types, recombination mechanisms, genes and proteins involved in the meiotic recombination process, recombination hotspots and their regulation systems and discuss how to increase recombination frequency in recombination coldspot regions.
Collapse
Affiliation(s)
- Meilin Zou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Perth, 6009, Australia
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia.
| |
Collapse
|
2
|
Anirban A, Masouleh AK, Henry RJ, O'Hare TJ. Sequence variations associated with novel purple-pericarp super-sweetcorn compared to its purple-pericarp maize and white super-sweetcorn parents. Mol Genet Genomics 2023; 298:1395-1405. [PMID: 37679604 PMCID: PMC10657292 DOI: 10.1007/s00438-023-02060-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/06/2023] [Indexed: 09/09/2023]
Abstract
Recently, a novel purple-pericarp super-sweetcorn line, 'Tim1' (A1A1.sh2sh2) was derived from the purple-pericarp maize 'Costa Rica' (A1Sh2.A1Sh2) and white shrunken2 (sh2) super-sweetcorn 'Tims-white' (a1sh2.a1sh2), however, information regarding anthocyanin biosynthesis genes controlling purple colour and sweetness gene is lacking. Specific sequence differences in the CDS (coding DNA sequence) and promoter regions of the anthocyanin biosynthesis structural genes, anthocyanin1 (A1), purple aleurone1 (Pr1) and regulatory genes, purple plant1 (Pl1), plant colour1 (B1), coloured1 (R1), and the sweetcorn structural gene, shrunken2 (sh2) were investigated using the publicly available annotated yellow starchy maize, B73 (NAM5.0) as a reference genome. In the CDS region, the A1, Pl1 and R1 gene sequence differences of 'Tim1' and 'Costa Rica' were similar, as they control purple-pericarp pigmentation. However, the B1 gene showed similarity between the 'Tim1' and 'Tims-white' lines, which may indicate that it does not have a role in controlling pericarp colour, unlike the report of a previous study. In the case of the Pr1 gene, in contrast to 'Costa Rica', 6- and 8-bp dinucleotide (TA) repeats were observed in the promoter region of the 'Tims-white' and 'Tim1' lines, respectively, indicating the defective functionality (redder colour in 'Tim1' rather than purple in 'Costa Rica') of the recessive pr1 allele. In sweetcorn, the structural gene (sh2), sequence showed similarity between purple-sweet 'Tim1' and its white-sweet parent 'Tims-white', as both display a shrunken phenotype in their mature kernels. These findings revealed that the developed purple-sweet line is different to the reference yellow-nonsweet line in both the anthocyanin biosynthesis and sweetcorn genes.
Collapse
Affiliation(s)
- Apurba Anirban
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia.
| | | | - Robert J Henry
- Centre for Crop Science, QAAFI, The University of Queensland, Brisbane, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, Australia
| | - Tim J O'Hare
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia
| |
Collapse
|
3
|
Hunter CT, McCarty DR, Koch KE. Independent evolution of transposase and TIRs facilitated by recombination between Mutator transposons from divergent clades in maize. Proc Natl Acad Sci U S A 2023; 120:e2305298120. [PMID: 37490540 PMCID: PMC10401008 DOI: 10.1073/pnas.2305298120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/25/2023] [Indexed: 07/27/2023] Open
Abstract
Nearly all eukaryotes carry DNA transposons of the Robertson's Mutator (Mu) superfamily, a widespread source of genome instability and genetic variation. Despite their pervasive impact on host genomes, much remains unknown about the evolution of these transposons. Transposase recognition of terminal inverted repeats (TIRs) is thought to drive and constrain coevolution of MuDR transposase genes and TIRs. To address the extent of this relationship and its impact, we compared separate phylogenies of TIRs and MuDR gene sequences from Mu elements in the maize genome. Five major clades were identified. As expected, most Mu elements were bound by highly similar TIRs from the same clade (homomorphic type). However, a subset of elements contained dissimilar TIRs derived from divergent clades. These "heteromorphs" typically occurred in multiple copies indicating active transposition in the genome. In addition, analysis of internal sequences showed that exchanges between elements having divergent TIRs produced new mudra and mudrb gene combinations. In several instances, TIR homomorphs had been regenerated within a heteromorph clade with retention of distinctive internal MuDR sequence combinations. Results reveal that recombination between divergent clades facilitates independent evolution of transposase (mudra), transposase-binding targets (TIRs), and capacity for insertion (mudrb) of active Mu elements. This mechanism would be enhanced by the preference of Mu insertions for recombination-rich regions near the 5' ends of genes. We suggest that cycles of recombination give rise to alternating homo- and heteromorph forms that enhance the diversity on which selection for Mu fitness can operate.
Collapse
Affiliation(s)
- Charles T. Hunter
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, United States Department of Agriculture - Agricultural Research Service, Gainesville, FL32608
| | - Donald R. McCarty
- Horticultural Sciences Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL32611
| | - Karen E. Koch
- Horticultural Sciences Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL32611
| |
Collapse
|
4
|
Profiling and Quantification of Anthocyanins in Purple-Pericarp Sweetcorn and Purple-Pericarp Maize. Molecules 2023; 28:molecules28062665. [PMID: 36985635 PMCID: PMC10051822 DOI: 10.3390/molecules28062665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Purple-pericarp sweetcorn accessions, derived from crossing purple-pericarp maize with white shrunken2 sweetcorn, were assessed for differences in anthocyanin profile at both sweetcorn eating stage and at full kernel maturity. The ‘Tim1’ sweetcorn line developed a similar total anthocyanin concentration to its ‘Costa Rica’ parent when assessed at sweetcorn-eating stage. At full maturity it surpassed the purple maize parent, but this was mainly due to the presence of starch diluting the anthocyanin concentration of the latter. The anthocyanin/colour relationship was affected by both total anthocyanin concentration and the ratio of cyanidin- to pelargonidin-based anthocyanins. Malonylation of anthocyanins was also found to vary and did not appear to be linked with either cyanidin:pelargonidin ratio or total anthocyanin concentration. In addition, anthocyanin synthesis was affected by kernel maturity at harvest, with colour development increasing in conjunction with a progression of anthocyanin development across the kernel surface. Pigmentation was present in the aleurone, pericarp and vitreous endosperm of kernels of the purple-pericarp maize parent and purple-pericarp sweetcorn accessions when fully mature, but pigmentation was only apparent in the pericarp at sweetcorn-eating stage. Importantly for consumers, anthocyanin pigmentation covered almost the entire kernel surface at sweetcorn-eating stage.
Collapse
|
5
|
Breaking the tight genetic linkage between the a1 and sh2 genes led to the development of anthocyanin-rich purple-pericarp super-sweetcorn. Sci Rep 2023; 13:1050. [PMID: 36658178 PMCID: PMC9852272 DOI: 10.1038/s41598-023-28083-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
The existence of purple-pericarp super-sweetcorn based on the supersweet mutation, shrunken2 (sh2), has not been previously reported, due to its extremely tight genetic linkage to a non-functional anthocyanin biosynthesis gene, anthocyaninless1 (a1). Generally, pericarp-pigmented starchy purple corn contains significantly higher anthocyanin. The development of purple-pericarp super-sweetcorn is dependent on breaking the a1-sh2 tight genetic linkage, which occurs at a very low frequency of < 1 in 1000 meiotic crossovers. Here, to develop purple-pericarp super-sweetcorn, an initial cross between a male purple-pericarp maize, 'Costa Rica' (A1Sh2.A1Sh2) and a female white shrunken2 super-sweetcorn, 'Tims-white' (a1sh2.a1sh2), was conducted. Subsequent self-pollination based on purple-pericarp-shrunken kernels identified a small frequency (0.08%) of initial heterozygous F3 segregants (A1a1.sh2sh2) producing a fully sh2 cob with a purple-pericarp phenotype, enabled by breaking the close genetic linkage between the a1 and sh2 genes. Resulting rounds of self-pollination generated a F6 homozygous purple-pericarp super-sweetcorn (A1A1.sh2sh2) line, 'Tim1'. Genome sequencing revealed a recombination break between the a1 and yz1 genes of the a1-yz1-x1-sh2 multigenic interval. The novel purple-pericarp super-sweetcorn produced a similar concentration of anthocyanin and sugar as in its purple-pericarp maize and white super-sweetcorn parents, respectively, potentially adding a broader range of health benefits than currently exists with standard yellow/white sweetcorn.
Collapse
|
6
|
Peniche-Pavía HA, Guzmán TJ, Magaña-Cerino JM, Gurrola-Díaz CM, Tiessen A. Maize Flavonoid Biosynthesis, Regulation, and Human Health Relevance: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165166. [PMID: 36014406 PMCID: PMC9413827 DOI: 10.3390/molecules27165166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
Maize is one of the most important crops for human and animal consumption and contains a chemical arsenal essential for survival: flavonoids. Moreover, flavonoids are well known for their beneficial effects on human health. In this review, we decided to organize the information about maize flavonoids into three sections. In the first section, we include updated information about the enzymatic pathway of maize flavonoids. We describe a total of twenty-one genes for the flavonoid pathway of maize. The first three genes participate in the general phenylpropanoid pathway. Four genes are common biosynthetic early genes for flavonoids, and fourteen are specific genes for the flavonoid subgroups, the anthocyanins, and flavone C-glycosides. The second section explains the tissue accumulation and regulation of flavonoids by environmental factors affecting the expression of the MYB-bHLH-WD40 (MBW) transcriptional complex. The study of transcription factors of the MBW complex is fundamental for understanding how the flavonoid profiles generate a palette of colors in the plant tissues. Finally, we also include an update of the biological activities of C3G, the major maize anthocyanin, including anticancer, antidiabetic, and antioxidant effects, among others. This review intends to disclose and integrate the existing knowledge regarding maize flavonoid pigmentation and its relevance in the human health sector.
Collapse
Affiliation(s)
- Héctor A. Peniche-Pavía
- Departamento de Bioquímica y Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Irapuato, Libramiento Norte Km. 9.6, Irapuato 36824, Guanajuato, Mexico
| | - Tereso J. Guzmán
- Department of Pharmacology, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Jesús M. Magaña-Cerino
- División Académica de Ciencias de la Salud, Centro de Investigación y Posgrado, Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez Magaña 2838-A, Col. Tamulté de las Barrancas, Villahermosa 86150, Tabasco, Mexico
| | - Carmen M. Gurrola-Díaz
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Enfermedades Crónico Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Universidad de Guadalajara, C. Sierra Mojada 950. Col. Independencia, Guadalajara 44340, Jalisco, Mexico
- Correspondence: ; Tel.: +52-33-10585200 (ext. 33930)
| | - Axel Tiessen
- Departamento de Bioquímica y Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Irapuato, Libramiento Norte Km. 9.6, Irapuato 36824, Guanajuato, Mexico
| |
Collapse
|
7
|
Anderson SN, Stitzer MC, Brohammer AB, Zhou P, Noshay JM, O'Connor CH, Hirsch CD, Ross-Ibarra J, Hirsch CN, Springer NM. Transposable elements contribute to dynamic genome content in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1052-1065. [PMID: 31381222 DOI: 10.1111/tpj.14489] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/15/2019] [Accepted: 07/26/2019] [Indexed: 05/05/2023]
Abstract
Transposable elements (TEs) are ubiquitous components of eukaryotic genomes and can create variation in genome organization and content. Most maize genomes are composed of TEs. We developed an approach to define shared and variable TE insertions across genome assemblies and applied this method to four maize genomes (B73, W22, Mo17 and PH207) with uniform structural annotations of TEs. Among these genomes we identified approximately 400 000 TEs that are polymorphic, encompassing 1.6 Gb of variable TE sequence. These polymorphic TEs include a combination of recent transposition events as well as deletions of older TEs. There are examples of polymorphic TEs within each of the superfamilies of TEs and they are found distributed across the genome, including in regions of recent shared ancestry among individuals. There are many examples of polymorphic TEs within or near maize genes. In addition, there are 2380 gene annotations in the B73 genome that are located within variable TEs, providing evidence for the role of TEs in contributing to the substantial differences in annotated gene content among these genotypes. TEs are highly variable in our survey of four temperate maize genomes, highlighting the major contribution of TEs in driving variation in genome organization and gene content. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://github.com/SNAnderson/maizeTE_variation; https://mcstitzer.github.io/maize_TEs.
Collapse
Affiliation(s)
- Sarah N Anderson
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Michelle C Stitzer
- Department of Plant Sciences and Center for Population Biology, University of California, Davis, CA, 95616, USA
| | - Alex B Brohammer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Peng Zhou
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Jaclyn M Noshay
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Christine H O'Connor
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Cory D Hirsch
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences and Center for Population Biology, University of California, Davis, CA, 95616, USA
- Genome Center, University of California, Davis, CA, 95616, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| |
Collapse
|
8
|
Fayos I, Mieulet D, Petit J, Meunier AC, Périn C, Nicolas A, Guiderdoni E. Engineering meiotic recombination pathways in rice. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2062-2077. [PMID: 31199561 PMCID: PMC6790369 DOI: 10.1111/pbi.13189] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/01/2019] [Accepted: 06/05/2019] [Indexed: 05/02/2023]
Abstract
In the last 15 years, outstanding progress has been made in understanding the function of meiotic genes in the model dicot and monocot plants Arabidopsis and rice (Oryza sativa L.), respectively. This knowledge allowed to modulate meiotic recombination in Arabidopsis and, more recently, in rice. For instance, the overall frequency of crossovers (COs) has been stimulated 2.3- and 3.2-fold through the inactivation of the rice FANCM and RECQ4 DNA helicases, respectively, two genes involved in the repair of DNA double-strand breaks (DSBs) as noncrossovers (NCOs) of the Class II crossover pathway. Differently, the programmed induction of DSBs and COs at desired sites is currently explored by guiding the SPO11-1 topoisomerase-like transesterase, initiating meiotic recombination in all eukaryotes, to specific target regions of the rice genome. Furthermore, the inactivation of 3 meiosis-specific genes, namely PAIR1, OsREC8 and OsOSD1, in the Mitosis instead of Meiosis (MiMe) mutant turned rice meiosis into mitosis, thereby abolishing recombination and achieving the first component of apomixis, apomeiosis. The successful translation of Arabidopsis results into a crop further allowed the implementation of two breakthrough strategies that triggered parthenogenesis from the MiMe unreduced clonal egg cell and completed the second component of diplosporous apomixis. Here, we review the most recent advances in and future prospects of the manipulation of meiotic recombination in rice and potentially other major crops, all essential for global food security.
Collapse
Affiliation(s)
- Ian Fayos
- CiradUMR AGAPMontpellierFrance
- Université de MontpellierCirad-Inra-Montpellier SupAgroMontpellierFrance
| | - Delphine Mieulet
- CiradUMR AGAPMontpellierFrance
- Université de MontpellierCirad-Inra-Montpellier SupAgroMontpellierFrance
| | - Julie Petit
- CiradUMR AGAPMontpellierFrance
- Université de MontpellierCirad-Inra-Montpellier SupAgroMontpellierFrance
| | - Anne Cécile Meunier
- CiradUMR AGAPMontpellierFrance
- Université de MontpellierCirad-Inra-Montpellier SupAgroMontpellierFrance
| | - Christophe Périn
- CiradUMR AGAPMontpellierFrance
- Université de MontpellierCirad-Inra-Montpellier SupAgroMontpellierFrance
| | - Alain Nicolas
- Institut Curie, CNRS UMR 3244University PSLParisFrance
- MeiogenixParisFrance
| | - Emmanuel Guiderdoni
- CiradUMR AGAPMontpellierFrance
- Université de MontpellierCirad-Inra-Montpellier SupAgroMontpellierFrance
| |
Collapse
|
9
|
Mapping and validation of Anthocyanin1 pigmentation gene for its effectiveness in early selection of shrunken2 gene governing kernel sweetness in maize. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Dluzewska J, Szymanska M, Ziolkowski PA. Where to Cross Over? Defining Crossover Sites in Plants. Front Genet 2018; 9:609. [PMID: 30619450 PMCID: PMC6299014 DOI: 10.3389/fgene.2018.00609] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022] Open
Abstract
It is believed that recombination in meiosis serves to reshuffle genetic material from both parents to increase genetic variation in the progeny. At the same time, the number of crossovers is usually kept at a very low level. As a consequence, many organisms need to make the best possible use from the one or two crossovers that occur per chromosome in meiosis. From this perspective, the decision of where to allocate rare crossover events becomes an important issue, especially in self-pollinating plant species, which experience limited variation due to inbreeding. However, the freedom in crossover allocation is significantly limited by other, genetic and non-genetic factors, including chromatin structure. Here we summarize recent progress in our understanding of those processes with a special emphasis on plant genomes. First, we focus on factors which influence the distribution of recombination initiation sites and discuss their effects at both, the single hotspot level and at the chromosome scale. We also briefly explain the aspects of hotspot evolution and their regulation. Next, we analyze how recombination initiation sites translate into the development of crossovers and their location. Moreover, we provide an overview of the sequence polymorphism impact on crossover formation and chromosomal distribution.
Collapse
Affiliation(s)
- Julia Dluzewska
- Department of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Maja Szymanska
- Department of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Piotr A Ziolkowski
- Department of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
11
|
Liu S, Schnable JC, Ott A, Yeh CTE, Springer NM, Yu J, Muehlbauer G, Timmermans MCP, Scanlon MJ, Schnable PS. Intragenic Meiotic Crossovers Generate Novel Alleles with Transgressive Expression Levels. Mol Biol Evol 2018; 35:2762-2772. [PMID: 30184112 PMCID: PMC6231493 DOI: 10.1093/molbev/msy174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Meiotic recombination is an evolutionary force that generates new genetic diversity upon which selection can act. Whereas multiple studies have assessed genome-wide patterns of recombination and specific cases of intragenic recombination, few studies have assessed intragenic recombination genome-wide in higher eukaryotes. We identified recombination events within or near genes in a population of maize recombinant inbred lines (RILs) using RNA-sequencing data. Our results are consistent with case studies that have shown that intragenic crossovers cluster at the 5′ ends of some genes. Further, we identified cases of intragenic crossovers that generate transgressive transcript accumulation patterns, that is, recombinant alleles displayed higher or lower levels of expression than did nonrecombinant alleles in any of ∼100 RILs, implicating intragenic recombination in the generation of new variants upon which selection can act. Thousands of apparent gene conversion events were identified, allowing us to estimate the genome-wide rate of gene conversion at SNP sites (4.9 × 10−5). The density of syntenic genes (i.e., those conserved at the same genomic locations since the divergence of maize and sorghum) exhibits a substantial correlation with crossover frequency, whereas the density of nonsyntenic genes (i.e., those which have transposed or been lost subsequent to the divergence of maize and sorghum) shows little correlation, suggesting that crossovers occur at higher rates in syntenic genes than in nonsyntenic genes. Increased rates of crossovers in syntenic genes could be either a consequence of the evolutionary conservation of synteny or a biological process that helps to maintain synteny.
Collapse
Affiliation(s)
- Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS.,Department of Agronomy, Iowa State University, Ames, IA
| | - James C Schnable
- Department of Agriculture and Horticulture, University of Nebraska-Lincoln, Lincoln, NE
| | - Alina Ott
- Department of Agronomy, Iowa State University, Ames, IA.,Roche Sequencing Solutions, 500 S Rosa Road, Madison, WI
| | | | - Nathan M Springer
- Department of Plant and Microbial Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN
| | - Jianming Yu
- Department of Agronomy, Iowa State University, Ames, IA
| | - Gary Muehlbauer
- Department of Agronomy and Plant Genetics, Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN
| | | | | | | |
Collapse
|
12
|
Okagaki RJ, Dukowic-Schulze S, Eggleston WB, Muehlbauer GJ. A Critical Assessment of 60 Years of Maize Intragenic Recombination. FRONTIERS IN PLANT SCIENCE 2018; 9:1560. [PMID: 30420864 PMCID: PMC6215864 DOI: 10.3389/fpls.2018.01560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/04/2018] [Indexed: 06/09/2023]
Abstract
Until the mid-1950s, it was believed that genetic crossovers did not occur within genes. Crossovers occurred between genes, the "beads on a string" model. Then in 1956, Seymour Benzer published his classic paper describing crossing over within a gene, intragenic recombination. This result from a bacteriophage gene prompted Oliver Nelson to study intragenic recombination in the maize Waxy locus. His studies along with subsequent work by others working with maize and other organisms described the outcomes of intragenic recombination and provided some of the earliest evidence that genes, not intergenic regions, were recombination hotspots. High-throughput genotyping approaches have since replaced single gene intragenic studies for characterizing the outcomes of recombination. These large-scale studies confirm that genes, or more generally genic regions, are the most active recombinogenic regions, and suggested a pattern of crossovers similar to the budding yeast Saccharomyces cerevisiae. In S. cerevisiae recombination is initiated by double-strand breaks (DSBs) near transcription start sites (TSSs) of genes producing a polarity gradient where crossovers preferentially resolve at the 5' end of genes. Intragenic studies in maize yielded less evidence for either polarity or for DSBs near TSSs initiating recombination and in certain respects resembled Schizosaccharomyces pombe or mouse. These different perspectives highlight the need to draw upon the strengths of different approaches and caution against relying on a single model system or approach for understanding recombination.
Collapse
Affiliation(s)
- Ron J. Okagaki
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
| | | | - William B. Eggleston
- Department of Biology, Virginia Commonwealth University, St. Paul, MN, United States
| | - Gary J. Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
13
|
Lawrence EJ, Griffin CH, Henderson IR. Modification of meiotic recombination by natural variation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5471-5483. [PMID: 28992351 DOI: 10.1093/jxb/erx306] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is a specialized cell division that produces haploid gametes required for sexual reproduction. During the first meiotic division, homologous chromosomes pair and undergo reciprocal crossing over, which recombines linked sequence variation. Meiotic recombination frequency varies extensively both within and between species. In this review, we will examine the molecular basis of meiotic recombination rate variation, with an emphasis on plant genomes. We first consider cis modification caused by polymorphisms at the site of recombination, or elsewhere on the same chromosome. We review cis effects caused by mismatches within recombining joint molecules, the effect of structural hemizygosity, and the role of specific DNA sequence motifs. In contrast, trans modification of recombination is exerted by polymorphic loci encoding diffusible molecules, which are able to modulate recombination on the same and/or other chromosomes. We consider trans modifiers that act to change total recombination levels, hotspot locations, or interactions between homologous and homeologous chromosomes in polyploid species. Finally, we consider the significance of genetic variation that modifies meiotic recombination for adaptation and evolution of plant species.
Collapse
Affiliation(s)
- Emma J Lawrence
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Catherine H Griffin
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
14
|
Complexity of genetic mechanisms conferring nonuniformity of recombination in maize. Sci Rep 2017; 7:1205. [PMID: 28446764 PMCID: PMC5430679 DOI: 10.1038/s41598-017-01240-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/28/2017] [Indexed: 11/10/2022] Open
Abstract
Recombinations occur nonuniformly across the maize genome. To dissect the genetic mechanisms underlying the nonuniformity of recombination, we performed quantitative trait locus (QTL) mapping using recombinant inbred line populations. Genome-wide QTL scan identified hundreds of QTLs with both cis-prone and trans- effects for recombination number variation. To provide detailed insights into cis- factors associated with recombination variation, we examined the genomic features around recombination hot regions, including density of genes, DNA transposons, retrotransposons, and some specific motifs. Compared to recombination variation in whole genome, more QTLs were mapped for variations in recombination hot regions. The majority QTLs for recombination hot regions are trans-QTLs and co-localized with genes from the recombination pathway. We also found that recombination variation was positively associated with the presence of genes and DNA transposons, but negatively related to the presence of long terminal repeat retrotransposons. Additionally, 41 recombination hot regions were fine-mapped. The high-resolution genotyping of five randomly selected regions in two F2 populations verified that they indeed have ultra-high recombination frequency, which is even higher than that of the well-known recombination hot regions sh1-bz and a1-sh2. Taken together, our results further our understanding of recombination variation in plants.
Collapse
|
15
|
Meiotic Crossing Over in Maize Knob Heterochromatin. Genetics 2017; 205:1101-1112. [PMID: 28108587 DOI: 10.1534/genetics.116.196089] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/10/2017] [Indexed: 12/31/2022] Open
Abstract
There is ample evidence that crossing over is suppressed in heterochromatin associated with centromeres and nucleolus organizers (NORs). This characteristic has been attributed to all heterochromatin, but the generalization may not be justified. To investigate the relationship of crossing over to heterochromatin that is not associated with centromeres or NORs, we used a combination of fluorescence in situ hybridization of the maize 180-bp knob repeat to show the locations of knob heterochromatin and fluorescent immunolocalization of MLH1 protein and AFD1 protein to show the locations of MLH1 foci on maize synaptonemal complexes (SCs, pachytene chromosomes). MLH1 foci correspond to the location of recombination nodules (RNs) that mark sites of crossing over. We found that MLH1 foci occur at similar frequencies per unit length of SC in interstitial knobs and in the 1 µm segments of SC in euchromatin immediately to either side of interstitial knobs. These results indicate not only that crossing over occurs within knob heterochromatin, but also that crossing over is not suppressed in the context of SC length in maize knobs. However, because there is more DNA per unit length of SC in knobs compared to euchromatin, crossing over is suppressed (but not eliminated) in knobs in the context of DNA length compared to adjacent euchromatin.
Collapse
|
16
|
Pan Q, Li L, Yang X, Tong H, Xu S, Li Z, Li W, Muehlbauer GJ, Li J, Yan J. Genome-wide recombination dynamics are associated with phenotypic variation in maize. THE NEW PHYTOLOGIST 2016; 210:1083-94. [PMID: 26720856 DOI: 10.1111/nph.13810] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/11/2015] [Indexed: 05/04/2023]
Abstract
Meiotic recombination is a major driver of genetic diversity, species evolution, and agricultural improvement. Thus, an understanding of the genetic recombination landscape across the maize (Zea mays) genome will provide insight and tools for further study of maize evolution and improvement. Here, we used c. 50 000 single nucleotide polymorphisms to precisely map recombination events in 12 artificial maize segregating populations. We observed substantial variation in the recombination frequency and distribution along the ten maize chromosomes among the 12 populations and identified 143 recombination hot regions. Recombination breakpoints were partitioned into intragenic and intergenic events. Interestingly, an increase in the number of genes containing recombination events was accompanied by a decrease in the number of recombination events per gene. This kept the overall number of intragenic recombination events nearly invariable in a given population, suggesting that the recombination variation observed among populations was largely attributed to intergenic recombination. However, significant associations between intragenic recombination events and variation in gene expression and agronomic traits were observed, suggesting potential roles for intragenic recombination in plant phenotypic diversity. Our results provide a comprehensive view of the maize recombination landscape, and show an association between recombination, gene expression and phenotypic variation, which may enhance crop genetic improvement.
Collapse
Affiliation(s)
- Qingchun Pan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Xiaohong Yang
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Hao Tong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shutu Xu
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Zhigang Li
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Weiya Li
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, 55108, USA
- Department of Plant Biology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Jiansheng Li
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
17
|
Melamed-Bessudo C, Shilo S, Levy AA. Meiotic recombination and genome evolution in plants. CURRENT OPINION IN PLANT BIOLOGY 2016; 30:82-7. [PMID: 26939088 DOI: 10.1016/j.pbi.2016.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/07/2016] [Accepted: 02/08/2016] [Indexed: 05/22/2023]
Abstract
Homologous recombination affects genome evolution through crossover, gene conversion and point mutations. Whole genome sequencing together with a detailed epigenome analysis have shed new light on our understanding of how meiotic recombination shapes plant genes and genome structure. Crossover events are associated with DNA sequence motifs, together with an open chromatin signature (hypomethylated CpGs, low nucleosome occupancy or specific histone modifications). The crossover landscape may differ between male and female meiocytes and between species. At the gene level, crossovers occur preferentially in promoter regions in Arabidopsis. In recent years, there is rising support suggesting that biased mismatch repair during meiotic recombination may increase GC content genome-wide and may be responsible for the GC content gradient found in many plant genes.
Collapse
Affiliation(s)
- Cathy Melamed-Bessudo
- Plant and Environmental Sciences Department, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shay Shilo
- Plant and Environmental Sciences Department, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Avraham A Levy
- Plant and Environmental Sciences Department, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
18
|
Sehgal D, Singh R, Rajpal VR. Quantitative Trait Loci Mapping in Plants: Concepts and Approaches. MOLECULAR BREEDING FOR SUSTAINABLE CROP IMPROVEMENT 2016. [DOI: 10.1007/978-3-319-27090-6_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Zheng L, McMullen MD, Bauer E, Schön CC, Gierl A, Frey M. Prolonged expression of the BX1 signature enzyme is associated with a recombination hotspot in the benzoxazinoid gene cluster in Zea mays. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3917-30. [PMID: 25969552 PMCID: PMC4473990 DOI: 10.1093/jxb/erv192] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Benzoxazinoids represent preformed protective and allelopathic compounds. The main benzoxazinoid in maize (Zea mays L.) is 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA). DIMBOA confers resistance to herbivores and microbes. Protective concentrations are found predominantly in young plantlets. We made use of the genetic diversity present in the maize nested association mapping (NAM) panel to identify lines with significant benzoxazinoid concentrations at later developmental stages. At 24 d after imbibition (dai), only three lines, including Mo17, showed effective DIMBOA concentrations of 1.5mM or more; B73, by contrast, had low a DIMBOA content. Mapping studies based on Mo17 and B73 were performed to reveal mechanisms that influence the DIMBOA level in 24 dai plants. A major quantitative trait locus mapped to the Bx gene cluster located on the short arm of chromosome 4, which encodes the DIMBOA biosynthetic genes. Mo17 was distinguished from all other NAM lines by high transcriptional expression of the Bx1 gene at later developmental stages. Bx1 encodes the signature enzyme of the pathway. In Mo17×B73 hybrids at 24 dai, only the Mo17 Bx1 allele transcript was detected. A 3.9kb cis-element, termed DICE (distal cis-element), that is located in the Bx gene cluster approximately 140 kb upstream of Bx1, was required for high Bx1 transcript levels during later developmental stages in Mo17. The DICE region was a hotspot of meiotic recombination. Genetic analysis revealed that high 24 dai DIMBOA concentrations were not strictly dependent on high Bx1 transcript levels. However, constitutive expression of Bx1 in transgenics increased DIMBOA levels at 24 dai, corroborating a correlation between DIMBOA content and Bx1 transcription.
Collapse
MESH Headings
- Alleles
- Base Pairing/genetics
- Benzoxazines/metabolism
- Biosynthetic Pathways/genetics
- Chromosome Mapping
- Chromosomes, Plant/genetics
- Crosses, Genetic
- Gene Expression Regulation, Plant
- Genes, Plant
- Genotype
- Inbreeding
- Multigene Family
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Promoter Regions, Genetic/genetics
- Quantitative Trait Loci
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombination, Genetic
- Seedlings/metabolism
- Transcription, Genetic
- Zea mays/genetics
- Zea mays/growth & development
Collapse
Affiliation(s)
- Linlin Zheng
- Lehrstuhl für Genetik, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | | | - Eva Bauer
- Lehrstuhl für Pflanzenzüchtung, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Chris-Carolin Schön
- Lehrstuhl für Pflanzenzüchtung, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Alfons Gierl
- Lehrstuhl für Genetik, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Monika Frey
- Lehrstuhl für Genetik, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
20
|
Bayer PE, Ruperao P, Mason AS, Stiller J, Chan CKK, Hayashi S, Long Y, Meng J, Sutton T, Visendi P, Varshney RK, Batley J, Edwards D. High-resolution skim genotyping by sequencing reveals the distribution of crossovers and gene conversions in Cicer arietinum and Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1039-47. [PMID: 25754422 DOI: 10.1007/s00122-015-2488-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/24/2015] [Indexed: 05/03/2023]
Abstract
We characterise the distribution of crossover and non-crossover recombination in Brassica napus and Cicer arietinum using a low-coverage genotyping by sequencing pipeline SkimGBS. The growth of next-generation DNA sequencing technologies has led to a rapid increase in sequence-based genotyping for applications including diversity assessment, genome structure validation and gene-trait association. We have established a skim-based genotyping by sequencing method for crop plants and applied this approach to genotype-segregating populations of Brassica napus and Cicer arietinum. Comparison of progeny genotypes with those of the parental individuals allowed the identification of crossover and non-crossover (gene conversion) events. Our results identify the positions of recombination events with high resolution, permitting the mapping and frequency assessment of recombination in segregating populations.
Collapse
Affiliation(s)
- Philipp E Bayer
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, 4072, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kramer V, Shaw JR, Senior ML, Hannah LC. The sh2-R allele of the maize shrunken-2 locus was caused by a complex chromosomal rearrangement. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:445-452. [PMID: 25504539 DOI: 10.1007/s00122-014-2443-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/06/2014] [Indexed: 06/04/2023]
Abstract
The mutant that originally defined the shrunken - 2 locus of maize is shown here to be the product of a complex chromosomal rearrangement. The maize shrunken-2 gene (sh2) encodes the large subunit of the heterotetrameric enzyme, adenosine diphosphate glucose pyrophosphorylases and a rate-limiting enzyme in starch biosynthesis. The sh2 gene was defined approximately 72 years ago by the isolation of a loss-of-function allele conditioning a shrunken, but viable seed. In subsequent years, the realization that this allele, termed zsh2-R or sh2-Reference, causes an extremely high level of sucrose to accumulate in the developing seed led to a revolution in the sweet corn industry. Now, the vast majority of sweet corns grown throughout the world contain this mutant allele. Through initial Southern analysis followed by genomic sequencing, the work reported here shows that this allele arose through a complex set of events involving at least three breaks of chromosome 3 as well as an intra-chromosomal inversion. These findings provide an explanation for some previously reported, unexpected observations concerning rates of recombination within and between genes in this region.
Collapse
Affiliation(s)
- Vance Kramer
- Syngenta Biotechnology, 3054 East Cornwallis Rd, Durham, NC, 27603, USA
| | | | | | | |
Collapse
|
22
|
Epigenetic control of meiotic recombination in plants. SCIENCE CHINA-LIFE SCIENCES 2015; 58:223-31. [PMID: 25651968 DOI: 10.1007/s11427-015-4811-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
Abstract
Meiotic recombination is a deeply conserved process within eukaryotes that has a profound effect on patterns of natural genetic variation. During meiosis homologous chromosomes pair and undergo DNA double strand breaks generated by the Spo11 endonuclease. These breaks can be repaired as crossovers that result in reciprocal exchange between chromosomes. The frequency of recombination along chromosomes is highly variable, for example, crossovers are rarely observed in heterochromatin and the centromeric regions. Recent work in plants has shown that crossover hotspots occur in gene promoters and are associated with specific chromatin modifications, including H2A.Z. Meiotic chromosomes are also organized in loop-base arrays connected to an underlying chromosome axis, which likely interacts with chromatin to organize patterns of recombination. Therefore, epigenetic information exerts a major influence on patterns of meiotic recombination along chromosomes, genetic variation within populations and evolution of plant genomes.
Collapse
|
23
|
Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M. The molecular biology of meiosis in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:297-327. [PMID: 25494464 DOI: 10.1146/annurev-arplant-050213-035923] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is the cell division that reshuffles genetic information between generations. Recently, much progress has been made in understanding this process; in particular, the identification and functional analysis of more than 80 plant genes involved in meiosis have dramatically deepened our knowledge of this peculiar cell division. In this review, we provide an overview of advancements in the understanding of all aspects of plant meiosis, including recombination, chromosome synapsis, cell cycle control, chromosome distribution, and the challenge of polyploidy.
Collapse
Affiliation(s)
- Raphaël Mercier
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France; , , , ,
| | | | | | | | | |
Collapse
|
24
|
Xu L, Zhang Y, Shao S, Chen W, Tan J, Zhu M, Zhong T, Fan X, Xu M. High-resolution mapping and characterization of qRgls2, a major quantitative trait locus involved in maize resistance to gray leaf spot. BMC PLANT BIOLOGY 2014; 14:230. [PMID: 25174589 PMCID: PMC4175277 DOI: 10.1186/s12870-014-0230-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 08/18/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Gray leaf spot (GLS) caused by Cercospora zeae-maydis (Czm) or Cercospora zeina (Cz) is a devastating maize disease and results in substantial yield reductions worldwide. GLS resistance is a quantitatively inherited trait. The development and cultivation of GLS-resistant maize hybrids are the most cost-effective and efficient ways to control this disease. RESULTS We previously detected a major GLS resistance QTL, qRgls2, in bin 5.03-04, which spans the whole centromere of chromosome 5 encompassing a physical distance of ~110-Mb. With advanced backcross populations derived from the cross between the resistant Y32 and susceptible Q11 inbred lines, a sequential recombinant-derived progeny testing strategy was adapted to fine map qRgls2. We narrowed the region of qRgls2 from an initial ~110-Mb to an interval of ~1-Mb, flanked by the markers G346 and DD11. qRgls2 showed predominantly additive genetic effects and significantly increased the resistance percentage by 20.6 to 24.6% across multiple generations. A total of 15 genes were predicted in the mapped region according to the 5b.60 annotation of the maize B73 genome v2. Two pieces of the mapped qRgls2 region shared collinearity with two distant segments on maize chromosome 4. CONCLUSIONS qRgls2, a major QTL involved in GLS resistance, was mapped to a ~1-Mb region close to the centromere of chromosome 5. There are 15 predicted genes in the mapped region. It is assumed that qRgls2 could be widely used to improve maize resistance to GLS.
Collapse
Affiliation(s)
- Ling Xu
- />National Maize Improvement Center of China, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193 PR China
| | - Yan Zhang
- />National Maize Improvement Center of China, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193 PR China
| | - Siquan Shao
- />Baoshan Institute of Agricultural Science, Taibao North Road, Longyang District, Baoshan, 678000 PR China
| | - Wei Chen
- />Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Longtou Street, Kunming, 650205 PR China
| | - Jing Tan
- />Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Longtou Street, Kunming, 650205 PR China
| | - Mang Zhu
- />National Maize Improvement Center of China, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193 PR China
| | - Tao Zhong
- />National Maize Improvement Center of China, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193 PR China
| | - Xingming Fan
- />Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Longtou Street, Kunming, 650205 PR China
| | - Mingliang Xu
- />National Maize Improvement Center of China, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193 PR China
| |
Collapse
|
25
|
Hawkins JS, Delgado V, Feng L, Carlise M, Dooner HK, Bennetzen JL. Variation in allelic expression associated with a recombination hotspot in Zea mays. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:375-384. [PMID: 24761964 DOI: 10.1111/tpj.12537] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 03/28/2014] [Accepted: 04/11/2014] [Indexed: 06/03/2023]
Abstract
Gene expression is a complex process, requiring precise spatial and temporal regulation of transcription factor activity; however, modifications of individual cis- and trans-acting modules can be molded by natural selection to create a sizeable number of novel phenotypes. Results from decades of research indicate that developmental and phenotypic divergence among eukaryotic organisms is driven primarily by variation in levels of gene expression that are dictated by mutations, either in structural or regulatory regions, of genes. The relative contributions and interplay of cis- and trans-acting regulatory factors to this evolutionary process, however, remain poorly understood. Analysis of eight genes in the Bz1-Sh1 interval of Zea mays (maize) indicates significant allele-specific expression biases in at least one tissue for all genes, ranging from 1.3-fold to 36-fold. All detected effects were cis-regulatory in nature, although genetic background may also influence the level of expression bias and tissue specificity for some allelic combinations. Most allelic pairs exhibited the same direction and approximate intensity of bias across all four tissues; however, a subset of allelic pairs show alternating dominance across different tissue types or variation in the degree of bias in different tissues. In addition, the genes showing the most striking levels of allelic bias co-localize with a previously described recombination hotspot in this region, suggesting a naturally occurring genetic mechanism for creating regulatory variability for a subset of plant genes that may ultimately lead to evolutionary diversification.
Collapse
Affiliation(s)
- Jennifer S Hawkins
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA; Department of Genetics, The University of Georgia, Athens, GA, 30602, USA
| | | | | | | | | | | |
Collapse
|
26
|
de Massy B. Initiation of meiotic recombination: how and where? Conservation and specificities among eukaryotes. Annu Rev Genet 2014; 47:563-99. [PMID: 24050176 DOI: 10.1146/annurev-genet-110711-155423] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Meiotic recombination is essential for fertility in most sexually reproducing species. This process also creates new combinations of alleles and has important consequences for genome evolution. Meiotic recombination is initiated by the formation of DNA double-strand breaks (DSBs), which are repaired by homologous recombination. DSBs are catalyzed by the evolutionarily conserved SPO11 protein, assisted by several other factors. Some of them are absolutely required, whereas others are needed only for full levels of DSB formation and may participate in the regulation of DSB timing and frequency as well as the coordination between DSB formation and repair. The sites where DSBs occur are not randomly distributed in the genome, and remarkably distinct strategies have emerged to control their localization in different species. Here, I review the recent advances in the components required for DSB formation and localization in the various model organisms in which these studies have been performed.
Collapse
Affiliation(s)
- Bernard de Massy
- Institute of Human Genetics, Centre National de la Recherché Scientifique, UPR1142, 34396 Montpellier, France;
| |
Collapse
|
27
|
Contrasted patterns of crossover and non-crossover at Arabidopsis thaliana meiotic recombination hotspots. PLoS Genet 2013; 9:e1003922. [PMID: 24244190 PMCID: PMC3828143 DOI: 10.1371/journal.pgen.1003922] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/11/2013] [Indexed: 11/25/2022] Open
Abstract
The vast majority of meiotic recombination events (crossovers (COs) and non-crossovers (NCOs)) cluster in narrow hotspots surrounded by large regions devoid of recombinational activity. Here, using a new molecular approach in plants, called “pollen-typing”, we detected and characterized hundreds of CO and NCO molecules in two different hotspot regions in Arabidopsis thaliana. This analysis revealed that COs are concentrated in regions of a few kilobases where their rates reach up to 50 times the genome average. The hotspots themselves tend to cluster in regions less than 8 kilobases in size with overlapping CO distribution. Non-crossover (NCO) events also occurred in the two hotspots but at very different levels (local CO/NCO ratios of 1/1 and 30/1) and their track lengths were quite small (a few hundred base pairs). We also showed that the ZMM protein MSH4 plays a role in CO formation and somewhat unexpectedly we also found that it is involved in the generation of NCOs but with a different level of effect. Finally, factors acting in cis and in trans appear to shape the rate and distribution of COs at meiotic recombination hotspots. During meiosis, genomes are reshuffled by recombination between homologous chromosomes. Reciprocal recombination events called crossovers are clustered in several kilobase-wide regions called hotspots, where their frequency is greatly enhanced compared to adjacent regions. Our understanding of hotspot organization is based on analyses performed in only a few species and rules differ between species. For the first time, hundreds of recombination events were analyzed in Arabidopsis thaliana revealing several new features: (i) crossovers are concentrated in hotspots where their rate reaches up to 50 times the genome average; (ii) non-crossovers events, (also called gene conversions not associated with crossovers) also occur in hotspots but at very different levels; and (iii) in the absence of the recombination protein MSH4, the crossover rate is dramatically reduced (70 times less than the wild-type level) and the crossover distribution within a hotspot is also largely modified; unexpectedly, the non-crossover rate was also altered (15% of the wild-type level at a hotspot). Finally we showed that factors acting in cis and in trans may influence the level and distribution of crossovers at and between hotspots.
Collapse
|
28
|
Characterization of meiotic non-crossover molecules from Arabidopsis thaliana pollen. Methods Mol Biol 2013; 990:177-90. [PMID: 23559214 DOI: 10.1007/978-1-62703-333-6_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Meiotic recombination is essential for proper segregation of homologous chromosomes and thus for formation of viable gametes. Recombination generates either crossovers (COs), which are reciprocal exchanges between chromosome segments, or gene conversion not associated with crossovers (NCOs). Both kinds of events occur in narrow regions (less than 10 kb) called hotspots, which are distributed along chromosomes. While NCOs may represent a large fraction of meiotic recombination events in plants, as in many other higher eukaryotes, they have been poorly characterized due to the technical difficulty of detecting them. Here, we present a powerful approach, based on allele-specific PCR amplification of single molecules from pollen genomic DNA, allowing detection, quantification and characterization of NCO events arising at low frequencies at recombination hotspots.
Collapse
|
29
|
Erhard KF, Parkinson SE, Gross SM, Barbour JER, Lim JP, Hollick JB. Maize RNA polymerase IV defines trans-generational epigenetic variation. THE PLANT CELL 2013; 25:808-19. [PMID: 23512852 PMCID: PMC3634690 DOI: 10.1105/tpc.112.107680] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/20/2013] [Accepted: 02/26/2013] [Indexed: 05/19/2023]
Abstract
The maize (Zea mays) RNA Polymerase IV (Pol IV) largest subunit, RNA Polymerase D1 (RPD1 or NRPD1), is required for facilitating paramutations, restricting expression patterns of genes required for normal development, and generating small interfering RNA (siRNAs). Despite this expanded role for maize Pol IV relative to Arabidopsis thaliana, neither the general characteristics of Pol IV-regulated haplotypes, nor their prevalence, are known. Here, we show that specific haplotypes of the purple plant1 locus, encoding an anthocyanin pigment regulator, acquire and retain an expanded expression domain following transmission from siRNA biogenesis mutants. This conditioned expression pattern is progressively enhanced over generations in Pol IV mutants and then remains heritable after restoration of Pol IV function. This unusual genetic behavior is associated with promoter-proximal transposon fragments but is independent of sequences required for paramutation. These results indicate that trans-generational Pol IV action defines the expression patterns of haplotypes using co-opted transposon-derived sequences as regulatory elements. Our results provide a molecular framework for the concept that induced changes to the heterochromatic component of the genome are coincident with heritable changes in gene regulation. Alterations of this Pol IV-based regulatory system can generate potentially desirable and adaptive traits for selection to act upon.
Collapse
Affiliation(s)
- Karl F. Erhard
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Susan E. Parkinson
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Stephen M. Gross
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Joy-El R. Barbour
- Department of Molecular Cell Biology, University of California, Berkeley, California 94720-3200
| | - Jana P. Lim
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Jay B. Hollick
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
- Address correspondence to
| |
Collapse
|
30
|
Ghaffari R, Cannon EKS, Kanizay LB, Lawrence CJ, Dawe RK. Maize chromosomal knobs are located in gene-dense areas and suppress local recombination. Chromosoma 2012; 122:67-75. [PMID: 23223973 PMCID: PMC3608884 DOI: 10.1007/s00412-012-0391-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/09/2012] [Accepted: 10/25/2012] [Indexed: 01/12/2023]
Abstract
Knobs are conspicuous heterochromatic regions found on the chromosomes of maize and its relatives. The number, locations, and sizes of knobs vary dramatically, with most lines containing between four and eight knobs in mid-arm positions. Prior data suggest that some knobs may reduce recombination. However, comprehensive tests have not been carried out, primarily because most knobs have not been placed on the genetic map. We used fluorescent in situ hybridization and two recombinant inbred populations to map seven knobs and to accurately place three knobs from the B73 inbred on the genomic sequence assembly. The data show that knobs lie in gene-dense regions of the maize genome. Comparisons to 23 other recombinant inbred populations segregating for knobs at the same sites confirm that large knobs can locally reduce crossing over by as much as twofold on a cM/Mb scale. These effects do not extend beyond regions ~10 cM to either side of knobs and do not appear to affect linkage disequilibrium among genes within and near knob repeat regions of the B73 RefGen_v2 assembly.
Collapse
Affiliation(s)
- Rashin Ghaffari
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | | | | | | | | |
Collapse
|
31
|
Ren Y, Zhao H, Kou Q, Jiang J, Guo S, Zhang H, Hou W, Zou X, Sun H, Gong G, Levi A, Xu Y. A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome. PLoS One 2012; 7:e29453. [PMID: 22247776 PMCID: PMC3256148 DOI: 10.1371/journal.pone.0029453] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 11/22/2011] [Indexed: 11/19/2022] Open
Abstract
As part of our ongoing efforts to sequence and map the watermelon (Citrullus spp.) genome, we have constructed a high density genetic linkage map. The map positioned 234 watermelon genome sequence scaffolds (an average size of 1.41 Mb) that cover about 330 Mb and account for 93.5% of the 353 Mb of the assembled genomic sequences of the elite Chinese watermelon line 97103 (Citrullus lanatus var. lanatus). The genetic map was constructed using an F(8) population of 103 recombinant inbred lines (RILs). The RILs are derived from a cross between the line 97103 and the United States Plant Introduction (PI) 296341-FR (C. lanatus var. citroides) that contains resistance to fusarium wilt (races 0, 1, and 2). The genetic map consists of eleven linkage groups that include 698 simple sequence repeat (SSR), 219 insertion-deletion (InDel) and 36 structure variation (SV) markers and spans ∼800 cM with a mean marker interval of 0.8 cM. Using fluorescent in situ hybridization (FISH) with 11 BACs that produced chromosome-specifc signals, we have depicted watermelon chromosomes that correspond to the eleven linkage groups constructed in this study. The high resolution genetic map developed here should be a useful platform for the assembly of the watermelon genome, for the development of sequence-based markers used in breeding programs, and for the identification of genes associated with important agricultural traits.
Collapse
Affiliation(s)
- Yi Ren
- National Engineering Research Center for Vegetables, BAAFS, Beijing, China
| | - Hong Zhao
- National Engineering Research Center for Vegetables, BAAFS, Beijing, China
| | - Qinghe Kou
- National Engineering Research Center for Vegetables, BAAFS, Beijing, China
- College of Life Science, Capital Normal University, Beijing, China
| | - Jiao Jiang
- National Engineering Research Center for Vegetables, BAAFS, Beijing, China
- College of Life Science, Capital Normal University, Beijing, China
| | - Shaogui Guo
- National Engineering Research Center for Vegetables, BAAFS, Beijing, China
| | - Haiying Zhang
- National Engineering Research Center for Vegetables, BAAFS, Beijing, China
| | - Wenju Hou
- National Engineering Research Center for Vegetables, BAAFS, Beijing, China
| | - Xiaohua Zou
- National Engineering Research Center for Vegetables, BAAFS, Beijing, China
| | - Honghe Sun
- National Engineering Research Center for Vegetables, BAAFS, Beijing, China
| | - Guoyi Gong
- National Engineering Research Center for Vegetables, BAAFS, Beijing, China
| | - Amnon Levi
- U.S. Vegetable Laboratory, United States Department of Agriculture-Agricultural Research Service, Charleston, South Carolina, United States of America
| | - Yong Xu
- National Engineering Research Center for Vegetables, BAAFS, Beijing, China
- * E-mail:
| |
Collapse
|
32
|
Molecular characterization of a genomic interval with highly uneven recombination distribution on maize chromosome 10 L. Genetica 2011; 139:1109-18. [PMID: 22057628 DOI: 10.1007/s10709-011-9613-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 10/22/2011] [Indexed: 10/15/2022]
Abstract
Homologous recombination in meiosis provides the evolutionary driving force in eukaryotic organisms by generating genetic variability. Meiotic recombination does not always occur evenly across the chromosome, and therefore genetic and physical distances are not consistently in proportion. We discovered a 278 kb interval on the long arm of chromosome 10 (10 L) through analyzed 13,933 descendants of backcross population. The recombinant events distributed unevenly in the interval. The ratio of genetic to physical distance in the interval fluctuated about 47-fold. With the assistance of molecular markers, the interval was divided into several subintervals for further characterization. In agreement with previous observations, high gene-density regions such as subinterval A and B were also genetic recombination hot subintervals, and repetitive sequence-riched region such as subinterval C was also found to be recombination inert at the detection level of the study. However, we found an unusual subinterval D, in which the 72-kb region contained 6 genes. The gene-density of subinterval D was 5.8 times that of the genome-wide average. The ratio of genetic to physical distance in subinterval D was 0.58 cM/Mb, only about 3/4 of the genome average. We carried out an analysis of sequence polymorphisms and methylation status in subinterval D, and the potential causes of recombination suppression were discussed. This study was another case of a detailed genetic analysis of an unusual recombination region in the maize genome.
Collapse
|
33
|
Lee WK, Jeong N, Indrasumunar A, Gresshoff PM, Jeong SC. Glycine max non-nodulation locus rj1: a recombinogenic region encompassing a SNP in a lysine motif receptor-like kinase (GmNFR1α). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:875-84. [PMID: 21104396 DOI: 10.1007/s00122-010-1493-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 11/04/2010] [Indexed: 05/30/2023]
Abstract
The rj1 mutation of soybean is a simple recessive allele in a single line that arose as a spontaneous mutation in a population; it exhibits non-nodulation with virtually all Bradyrhizobium and Sinorhizobium strains. Here, we described fine genetic and physical mapping of the rj1 locus on soybean chromosome 2. The initial mapping of the rj1 locus using public markers indicated that A343.p2, a sequence-based marker that contains sequence similar to a part of the LjNFR1 gene regulating nodule formation as a member of lysin motif-type receptor-like kinase (LYK) family, maps very close to or cosegregates with the rj1 locus. The sequence of A343.p2 is 100% identical to parts of two BAC clone sequences (GM_WBb0002O19 and GM_WBb098N11) that contain three members of the LYK family. We analyzed the sequence contig (262 kbp) of the two BAC clones by resequencing and subsequent fine genetic and physical mapping. The results indicated that rj1 is located in a gene-rich region with a recombination rate of 120 kbp/cM: several fold higher than the genome average. Among the LYK genes, NFR1α is most likely the gene encoded at the Rj1 locus. The non-nodulating rj1 allele was created by a single base-pair deletion that results in a premature stop codon. Taken together, the fine genetic and physical mapping of the Rj1-residing chromosomal region, combined with the unexpected observation of a putative recombination hotspot, allowed us to demonstrate that the Rj1 locus most likely encodes the NFR1α gene.
Collapse
Affiliation(s)
- Woo Kyu Lee
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon, Chungbuk, Republic of Korea
| | | | | | | | | |
Collapse
|
34
|
Saintenac C, Faure S, Remay A, Choulet F, Ravel C, Paux E, Balfourier F, Feuillet C, Sourdille P. Variation in crossover rates across a 3-Mb contig of bread wheat (Triticum aestivum) reveals the presence of a meiotic recombination hotspot. Chromosoma 2010; 120:185-98. [PMID: 21161258 DOI: 10.1007/s00412-010-0302-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/27/2010] [Accepted: 11/20/2010] [Indexed: 10/18/2022]
Abstract
In bread wheat (Triticum aestivum L.), initial studies using deletion lines indicated that crossover (CO) events occur mainly in the telomeric regions of the chromosomes with a possible correlation with the presence of genes. However, little is known about the distribution of COs at the sequence level. To investigate this, we studied in detail the pattern of COs along a contig of 3.110 Mb using two F2 segregating populations (Chinese Spring × Renan (F2-CsRe) and Chinese Spring × Courtot (F2-CsCt)) each containing ~2,000 individuals. The availability of the sequence of the contig from Cs enabled the development of 318 markers among which 23 co-dominant polymorphic markers (11 SSRs and 12 SNPs) were selected for CO distribution analyses. The distribution of CO events was not homogeneous throughout the contig, ranging from 0.05 to 2.77 cM/Mb, but was conserved between the two populations despite very different contig recombination rate averages (0.82 cM/Mb in F2-CsRe vs 0.35 cM/Mb in F2-CsCt). The CO frequency was correlated with the percentage of coding sequence in Cs and with the polymorphism rate between Cs and Re or Ct in both populations, indicating an impact of these two factors on CO distribution. At a finer scale, COs were found in a region covering 2.38 kb, spanning a gene coding for a glycosyl transferase (Hga3), suggesting the presence of a CO hotspot. A non-crossover event covering at least 453 bp was also identified in the same interval. From these results, we can conclude that gene content could be one of the factors driving recombination in bread wheat.
Collapse
Affiliation(s)
- Cyrille Saintenac
- UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, INRA-UBP, Domaine de Crouël, 234 Avenue du Brézet, Clermont-Ferrand, 63100, France
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Swanson-Wagner RA, Eichten SR, Kumari S, Tiffin P, Stein JC, Ware D, Springer NM. Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Res 2010; 20:1689-99. [PMID: 21036921 DOI: 10.1101/gr.109165.110] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Individuals of the same species are generally thought to have very similar genomes. However, there is growing evidence that structural variation in the form of copy number variation (CNV) and presence-absence variation (PAV) can lead to variation in the genome content of individuals within a species. Array comparative genomic hybridization (CGH) was used to compare gene content and copy number variation among 19 diverse maize inbreds and 14 genotypes of the wild ancestor of maize, teosinte. We identified 479 genes exhibiting higher copy number in some genotypes (UpCNV) and 3410 genes that have either fewer copies or are missing in the genome of at least one genotype relative to B73 (DownCNV/PAV). Many of these DownCNV/PAV are examples of genes present in B73, but missing from other genotypes. Over 70% of the CNV/PAV examples are identified in multiple genotypes, and the majority of events are observed in both maize and teosinte, suggesting that these variants predate domestication and that there is not strong selection acting against them. Many of the genes affected by CNV/PAV are either maize specific (thus possible annotation artifacts) or members of large gene families, suggesting that the gene loss can be tolerated through buffering by redundant functions encoded elsewhere in the genome. While this structural variation may not result in major qualitative variation due to genetic buffering, it may significantly contribute to quantitative variation.
Collapse
Affiliation(s)
- Ruth A Swanson-Wagner
- Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Ingvardsen CR, Xing Y, Frei UK, Lübberstedt T. Genetic and physical fine mapping of Scmv2, a potyvirus resistance gene in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:1621-34. [PMID: 20155410 DOI: 10.1007/s00122-010-1281-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 01/24/2010] [Indexed: 05/08/2023]
Abstract
Sugarcane mosaic virus (SCMV) is an important virus pathogen both in European and Chinese maize production, causing serious losses in grain and forage yield in susceptible cultivars. Two major resistance loci confer resistance to SCMV, one located on chromosome 3 (Scmv2) and one on chromosome 6 (Scmv1). We developed a large isogenic mapping population segregating in the Scmv2, but not the Scmv1 region, to minimize genetic variation potentially affecting expression of SCMV resistance. We fine mapped Scmv2 to a region of 0.28 cM, covering a physical distance of 1.3426 Mb, and developed six new polymorphic SSR markers based on publicly available BAC sequences within this region. At present, we still have three recombinants left between Scmv2 and the nearest polymorphic marker on either side of the Scmv2 locus. The region showed synteny to a 1.6 Mb long sequence on chromosome 12 in rice. Analysis of the public B73 BAC library as well as the syntenic rice region did not reveal any similarity to known resistance genes. However, four new candidate genes with a possible involvement in movement of virus were detected.
Collapse
Affiliation(s)
- Christina Roenn Ingvardsen
- Department of Genetics and Biotechnology, Faculty of Agricultural Sciences, University of Aarhus, Forsøgsvej 1, 4200, Slagelse, Denmark.
| | | | | | | |
Collapse
|
37
|
Imai K, Murai M, Hao Y, Chiba Y, Chiba A, Ishikawa R. Mapping of riceUr1(Undulated rachis-1) gene with effect on increasing spikelet number per panicle and sink size, and development of selection markers for the breeding by the use ofUr1. Hereditas 2009; 146:260-8. [DOI: 10.1111/j.1601-5223.2009.02108.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
38
|
Zhou S, Wei F, Nguyen J, Bechner M, Potamousis K, Goldstein S, Pape L, Mehan MR, Churas C, Pasternak S, Forrest DK, Wise R, Ware D, Wing RA, Waterman MS, Livny M, Schwartz DC. A single molecule scaffold for the maize genome. PLoS Genet 2009; 5:e1000711. [PMID: 19936062 PMCID: PMC2774507 DOI: 10.1371/journal.pgen.1000711] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 10/05/2009] [Indexed: 11/18/2022] Open
Abstract
About 85% of the maize genome consists of highly repetitive sequences that are interspersed by low-copy, gene-coding sequences. The maize community has dealt with this genomic complexity by the construction of an integrated genetic and physical map (iMap), but this resource alone was not sufficient for ensuring the quality of the current sequence build. For this purpose, we constructed a genome-wide, high-resolution optical map of the maize inbred line B73 genome containing >91,000 restriction sites (averaging 1 site/∼23 kb) accrued from mapping genomic DNA molecules. Our optical map comprises 66 contigs, averaging 31.88 Mb in size and spanning 91.5% (2,103.93 Mb/∼2,300 Mb) of the maize genome. A new algorithm was created that considered both optical map and unfinished BAC sequence data for placing 60/66 (2,032.42 Mb) optical map contigs onto the maize iMap. The alignment of optical maps against numerous data sources yielded comprehensive results that proved revealing and productive. For example, gaps were uncovered and characterized within the iMap, the FPC (fingerprinted contigs) map, and the chromosome-wide pseudomolecules. Such alignments also suggested amended placements of FPC contigs on the maize genetic map and proactively guided the assembly of chromosome-wide pseudomolecules, especially within complex genomic regions. Lastly, we think that the full integration of B73 optical maps with the maize iMap would greatly facilitate maize sequence finishing efforts that would make it a valuable reference for comparative studies among cereals, or other maize inbred lines and cultivars. The maize genome contains abundant repeats interspersed by low-copy, gene-coding sequences that make it a challenge to sequence; consequently, current BAC sequence assemblies average 11 contigs per clone. The iMap deals with such complexity by the judicious integration of IBM genetic and B73 physical maps, but the B73 genome structure could differ from the IBM population because of genetic recombination and subsequent rearrangements. Accordingly, we report a genome-wide, high-resolution optical map of maize B73 genome that was constructed from the direct analysis of genomic DNA molecules without using genetic markers. The integration of optical and iMap resources with comparisons to FPC maps enabled a uniquely comprehensive and scalable assessment of a given BAC's sequence assembly, its placement within a FPC contig, and the location of this FPC contig within a chromosome-wide pseudomolecule. As such, the overall utility of the maize optical map for the validation of sequence assemblies has been significant and demonstrates the inherent advantages of single molecule platforms. Construction of the maize optical map represents the first physical map of a eukaryotic genome larger than 400 Mb that was created de novo from individual genomic DNA molecules.
Collapse
Affiliation(s)
- Shiguo Zhou
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, UW Biotechnology Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Fusheng Wei
- Department of Plant Sciences, Arizona Genomics Institute, University of Arizona, Tucson, Arizona, United States of America
| | - John Nguyen
- Departments of Mathematics, Biology, and Computer Science, University of Southern California, Los Angeles, California, United States of America
| | - Mike Bechner
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, UW Biotechnology Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Konstantinos Potamousis
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, UW Biotechnology Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Steve Goldstein
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, UW Biotechnology Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Louise Pape
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, UW Biotechnology Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Michael R. Mehan
- Departments of Mathematics, Biology, and Computer Science, University of Southern California, Los Angeles, California, United States of America
| | - Chris Churas
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, UW Biotechnology Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Shiran Pasternak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Dan K. Forrest
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, UW Biotechnology Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Roger Wise
- Corn Insects and Crop Genetics Research, United States Department of Agriculture–Agricultural Research Service and Department of Plant Pathology, Iowa State University, Ames, Iowa, United States of America
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- Plant, Soil, and Nutrition Research, United States Department of Agriculture–Agricultural Research Service, Ithaca, New York, United States of America
| | - Rod A. Wing
- Department of Plant Sciences, Arizona Genomics Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Michael S. Waterman
- Departments of Mathematics, Biology, and Computer Science, University of Southern California, Los Angeles, California, United States of America
| | - Miron Livny
- Computer Sciences Department, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David C. Schwartz
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, UW Biotechnology Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
39
|
Springer NM, Ying K, Fu Y, Ji T, Yeh CT, Jia Y, Wu W, Richmond T, Kitzman J, Rosenbaum H, Iniguez AL, Barbazuk WB, Jeddeloh JA, Nettleton D, Schnable PS. Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet 2009; 5:e1000734. [PMID: 19956538 PMCID: PMC2780416 DOI: 10.1371/journal.pgen.1000734] [Citation(s) in RCA: 355] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 10/19/2009] [Indexed: 12/25/2022] Open
Abstract
Following the domestication of maize over the past approximately 10,000 years, breeders have exploited the extensive genetic diversity of this species to mold its phenotype to meet human needs. The extent of structural variation, including copy number variation (CNV) and presence/absence variation (PAV), which are thought to contribute to the extraordinary phenotypic diversity and plasticity of this important crop, have not been elucidated. Whole-genome, array-based, comparative genomic hybridization (CGH) revealed a level of structural diversity between the inbred lines B73 and Mo17 that is unprecedented among higher eukaryotes. A detailed analysis of altered segments of DNA conservatively estimates that there are several hundred CNV sequences among the two genotypes, as well as several thousand PAV sequences that are present in B73 but not Mo17. Haplotype-specific PAVs contain hundreds of single-copy, expressed genes that may contribute to heterosis and to the extraordinary phenotypic diversity of this important crop.
Collapse
Affiliation(s)
- Nathan M. Springer
- Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Kai Ying
- Interdepartmental Genetics Graduate Program, Iowa State University, Ames, Iowa, United States of America
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Yan Fu
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
- Center for Carbon Capturing Crops, Iowa State University, Ames, Iowa, United States of America
| | - Tieming Ji
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Cheng-Ting Yeh
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Yi Jia
- Interdepartment Plant Biology, Iowa State University, Ames, Iowa, United States of America
| | - Wei Wu
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Todd Richmond
- Roche NimbleGen, Madison, Wisconsin, United States of America
| | - Jacob Kitzman
- Roche NimbleGen, Madison, Wisconsin, United States of America
| | - Heidi Rosenbaum
- Roche NimbleGen, Madison, Wisconsin, United States of America
| | | | - W. Brad Barbazuk
- University of Florida, Gainesville, Florida, United States of America
| | | | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Patrick S. Schnable
- Interdepartmental Genetics Graduate Program, Iowa State University, Ames, Iowa, United States of America
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, United States of America
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
- Center for Carbon Capturing Crops, Iowa State University, Ames, Iowa, United States of America
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
- Interdepartment Plant Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
40
|
Wei F, Stein JC, Liang C, Zhang J, Fulton RS, Baucom RS, De Paoli E, Zhou S, Yang L, Han Y, Pasternak S, Narechania A, Zhang L, Yeh CT, Ying K, Nagel DH, Collura K, Kudrna D, Currie J, Lin J, Kim H, Angelova A, Scara G, Wissotski M, Golser W, Courtney L, Kruchowski S, Graves TA, Rock SM, Adams S, Fulton LA, Fronick C, Courtney W, Kramer M, Spiegel L, Nascimento L, Kalyanaraman A, Chaparro C, Deragon JM, Miguel PS, Jiang N, Wessler SR, Green PJ, Yu Y, Schwartz DC, Meyers BC, Bennetzen JL, Martienssen RA, McCombie WR, Aluru S, Clifton SW, Schnable PS, Ware D, Wilson RK, Wing RA. Detailed analysis of a contiguous 22-Mb region of the maize genome. PLoS Genet 2009; 5:e1000728. [PMID: 19936048 PMCID: PMC2773423 DOI: 10.1371/journal.pgen.1000728] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 10/16/2009] [Indexed: 12/20/2022] Open
Abstract
Most of our understanding of plant genome structure and evolution has come from the careful annotation of small (e.g., 100 kb) sequenced genomic regions or from automated annotation of complete genome sequences. Here, we sequenced and carefully annotated a contiguous 22 Mb region of maize chromosome 4 using an improved pseudomolecule for annotation. The sequence segment was comprehensively ordered, oriented, and confirmed using the maize optical map. Nearly 84% of the sequence is composed of transposable elements (TEs) that are mostly nested within each other, of which most families are low-copy. We identified 544 gene models using multiple levels of evidence, as well as five miRNA genes. Gene fragments, many captured by TEs, are prevalent within this region. Elimination of gene redundancy from a tetraploid maize ancestor that originated a few million years ago is responsible in this region for most disruptions of synteny with sorghum and rice. Consistent with other sub-genomic analyses in maize, small RNA mapping showed that many small RNAs match TEs and that most TEs match small RNAs. These results, performed on approximately 1% of the maize genome, demonstrate the feasibility of refining the B73 RefGen_v1 genome assembly by incorporating optical map, high-resolution genetic map, and comparative genomic data sets. Such improvements, along with those of gene and repeat annotation, will serve to promote future functional genomic and phylogenomic research in maize and other grasses.
Collapse
Affiliation(s)
- Fusheng Wei
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Joshua C. Stein
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Chengzhi Liang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Jianwei Zhang
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Robert S. Fulton
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Regina S. Baucom
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Emanuele De Paoli
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Shiguo Zhou
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Lixing Yang
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Yujun Han
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Shiran Pasternak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Apurva Narechania
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Lifang Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Cheng-Ting Yeh
- Department of Agronomy and Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Kai Ying
- Department of Agronomy and Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Dawn H. Nagel
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Kristi Collura
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - David Kudrna
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Jennifer Currie
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Jinke Lin
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - HyeRan Kim
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Angelina Angelova
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Gabriel Scara
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Marina Wissotski
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Wolfgang Golser
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Laura Courtney
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Scott Kruchowski
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Tina A. Graves
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Susan M. Rock
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stephanie Adams
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Lucinda A. Fulton
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Catrina Fronick
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - William Courtney
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Melissa Kramer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Lori Spiegel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Lydia Nascimento
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Ananth Kalyanaraman
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, Washington, United States of America
| | - Cristian Chaparro
- Université de Perpignan Via Domitia, CNRS UMR 5096, Perpignan, France
| | - Jean-Marc Deragon
- Université de Perpignan Via Domitia, CNRS UMR 5096, Perpignan, France
| | - Phillip San Miguel
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Ning Jiang
- Department of Horticulture, Michigan State University, East Lansing, Michigan, United States of America
| | - Susan R. Wessler
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Pamela J. Green
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Yeisoo Yu
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - David C. Schwartz
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Blake C. Meyers
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Jeffrey L. Bennetzen
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Robert A. Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - W. Richard McCombie
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Srinivas Aluru
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa, United States of America
| | - Sandra W. Clifton
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Patrick S. Schnable
- Department of Agronomy and Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Richard K. Wilson
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Rod A. Wing
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
41
|
He L, Dooner HK. Haplotype structure strongly affects recombination in a maize genetic interval polymorphic for Helitron and retrotransposon insertions. Proc Natl Acad Sci U S A 2009; 106:8410-6. [PMID: 19416860 PMCID: PMC2688972 DOI: 10.1073/pnas.0902972106] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Indexed: 11/18/2022] Open
Abstract
We have asked here how the remarkable variation in maize haplotype structure affects recombination. We compared recombination across a genetic interval of 9S in 2 highly dissimilar heterozygotes that shared 1 parent. The genetic interval in the common haplotype is approximately 100 kb long and contains 6 genes interspersed with gene-fragment-bearing Helitrons and retrotransposons that, together, comprise 70% of its length. In one heterozygote, most intergenic insertions are homozygous, although polymorphic, enabling us to determine whether any recombination junctions fall within them. In the other, most intergenic insertions are hemizygous and, thus, incapable of homologous recombination. Our analysis of the frequency and distribution of recombination in the interval revealed that: (i) Most junctions were circumscribed to the gene space, where they showed a highly nonuniform distribution. In both heterozygotes, more than half of the junctions fell in the stc1 gene, making it a clear recombination hotspot in the region. However, the genetic size of stc1 was 2-fold lower when flanked by a hemizygous 25-kb retrotransposon cluster. (ii) No junctions fell in the hypro1 gene in either heterozygote, making it a genic recombination coldspot. (iii) No recombination occurred within the gene fragments borne on Helitrons nor within retrotransposons, so neither insertion class contributes to the interval's genetic length. (iv) Unexpectedly, several junctions fell in an intergenic region not shared by all 3 haplotypes. (v) In general, the ability of a sequence to recombine correlated inversely with its methylation status. Our results show that haplotypic structural variability strongly affects the frequency and distribution of recombination events in maize.
Collapse
Affiliation(s)
- Limei He
- The Waksman Institute, Rutgers University, Piscataway, NJ 08855; and
| | - Hugo K. Dooner
- The Waksman Institute, Rutgers University, Piscataway, NJ 08855; and
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901
| |
Collapse
|
42
|
Yang Q, Lin F, Wang L, Pan Q. Identification and mapping of Pi41, a major gene conferring resistance to rice blast in the Oryza sativa subsp. indica reference cultivar, 93-11. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:1027-34. [PMID: 19153709 DOI: 10.1007/s00122-008-0959-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2007] [Accepted: 12/22/2008] [Indexed: 05/17/2023]
Abstract
The Oryza sativa subsp. indica reference cultivar (cv.), 93-11 is completely resistant to many Chinese isolates of the rice blast fungus. Resistance segregated in a 3:1 (resistance/susceptible) ratio in an F(2) population from the cross between 93-11 and the japonica reference cv. Nipponbare, when challenged with two independent blast isolates. The chromosomal location of this monogenic resistance was mapped to a region of the long arm of chromosome 12 by bulk segregant analysis, using 180 evenly distributed SSR markers. Five additional SSR loci and nine newly developed PCR-based markers allowed the target region to be reduced to ca. 1.8 cM, equivalent in Nipponbare to about 800 kb. In the reference sequence of Nipponbare, this region includes an NBS-LRR cluster of four genes. The known blast resistance gene Pi-GD-3 also maps in this region, but the 93-11 resistance was distinguishable from Pi-GD-3 on the basis of race specificity. We have therefore named the 93-11 resistance Pi41. Seven markers completely linked to Pi41 will facilitate both marker-assisted breeding and gene isolation cloning.
Collapse
Affiliation(s)
- Qinzhong Yang
- Laboratory of Plant Resistance and Genetics, College of Resources and Environmental Sciences, South China Agricultural University, 510642, Guangzhou, China
| | | | | | | |
Collapse
|
43
|
Lukaszewski AJ. Unexpected behavior of an inverted rye chromosome arm in wheat. Chromosoma 2008; 117:569-78. [PMID: 18679702 DOI: 10.1007/s00412-008-0174-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 06/14/2008] [Accepted: 06/16/2008] [Indexed: 02/07/2023]
Abstract
Distal location of chiasmata in chromosome arms is thought to be a consequence of the distal initiation of synapsis. Observations of meiotic behavior of a rye chromosome with an inverted arm show that patterns of chiasma distribution and frequency are also inverted; therefore, the patterns of synapsis and chiasma distribution are independent, and recombination frequency along a chromosome is position-independent and segment-specific. Since cases of random distribution of chiasmata and recombination are known in rye, a genetic mechanism must be present that licenses specific chromosome regions for recombination. Large differences in the metaphase I pairing of the inversion in various combinations of two armed and telocentric chromosomes confirm the major role of the telomere bouquet in early homologue recognition. However, occasional synapsis and chiasmate pairing of the distal regions of normal arms with the proximal regions of the inversion suggest that an alternative mechanism for juxtaposing of homologues must also be present. Synapsis in inversion heterozygotes was mostly complete but in the antiparallel orientation, hence defying homology, but non-homologues never synapsed. Instances of synapsis strictly limited to the chiasma-capable segments of the arm suggest that, in rye, both recombination-dependent and recombination-independent mechanisms for homologue recognition must be present.
Collapse
Affiliation(s)
- Adam J Lukaszewski
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
44
|
Meiotic Chromatin: The Substrate for Recombination Initiation. RECOMBINATION AND MEIOSIS 2008. [DOI: 10.1007/7050_2008_040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
45
|
Abstract
Rates of Mu transposon insertions and excisions are both high in late somatic cells of maize. In contrast, although high rates of insertions are observed in germinal cells, germinal excisions are recovered only rarely. Plants doubly homozygous for deletion alleles of rad51A1 and rad51A2 do not encode functional RAD51 protein (RAD51-). Approximately 1% of the gametes from RAD51+ plants that carry the MuDR-insertion allele a1-m5216 include at least partial deletions of MuDR and the a1 gene. The structures of these deletions suggest they arise via the repair of MuDR-induced double-strand breaks via nonhomologous end joining. In RAD51- plants these germinal deletions are recovered at rates that are at least 40-fold higher. These rates are not substantially affected by the presence or absence of an a1-containing homolog. Together, these findings indicate that in RAD51+ germinal cells MuDR-induced double-strand breaks (DSBs) are efficiently repaired via RAD51-directed homologous recombination with the sister chromatid. This suggests that RAD51- plants may offer an efficient means to generate deletion alleles for functional genomic studies. Additionally, the high proportion of Mu-active, RAD51- plants that exhibit severe developmental defects suggest that RAD51 plays a critical role in the repair of MuDR-induced DSBs early in vegetative development.
Collapse
|
46
|
Peters AD. A combination of cis and trans control can solve the hotspot conversion paradox. Genetics 2008; 178:1579-93. [PMID: 18245829 PMCID: PMC2278049 DOI: 10.1534/genetics.107.084061] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 01/02/2008] [Indexed: 01/06/2023] Open
Abstract
There is growing evidence that in a variety of organisms the majority of meiotic recombination events occur at a relatively small fraction of loci, known as recombination hotspots. If hotspot activity results from the DNA sequence at or near the hotspot itself (in cis), these hotspots are expected to be rapidly lost due to biased gene conversion, unless there is strong selection in favor of the hotspot itself. This phenomenon makes it very difficult to maintain existing hotspots and even more difficult for new hotspots to evolve; it has therefore come to be known as the "hotspot conversion paradox." I develop an analytical framework for exploring the evolution of recombination hotspots under the forces of selection, mutation, and conversion. I derive the general conditions under which cis- and trans-controlled hotspots can be maintained, as well as those under which new hotspots controlled by both a cis and a trans locus can invade a population. I show that the conditions for maintenance of and invasion by trans- or cis-plus-trans-controlled hotspots are broader than for those controlled entirely in cis. Finally, I show that a combination of cis and trans control may allow for long-lived polymorphisms in hotspot activity, the patterns of which may explain some recently observed features of recombination hotspots.
Collapse
Affiliation(s)
- A D Peters
- Department of Zoology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| |
Collapse
|
47
|
Buhler C, Borde V, Lichten M. Mapping meiotic single-strand DNA reveals a new landscape of DNA double-strand breaks in Saccharomyces cerevisiae. PLoS Biol 2008; 5:e324. [PMID: 18076285 PMCID: PMC2121111 DOI: 10.1371/journal.pbio.0050324] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Accepted: 10/25/2007] [Indexed: 11/19/2022] Open
Abstract
DNA double-strand breaks (DSBs), which are formed by the Spo11 protein, initiate meiotic recombination. Previous DSB-mapping studies have used rad50S or sae2Δ mutants, which are defective in break processing, to accumulate Spo11-linked DSBs, and report large (≥ 50 kb) “DSB-hot” regions that are separated by “DSB-cold” domains of similar size. Substantial recombination occurs in some DSB-cold regions, suggesting that DSB patterns are not normal in rad50S or sae2Δ mutants. We therefore developed a novel method to map genome-wide, single-strand DNA (ssDNA)–associated DSBs that accumulate in processing-capable, repair-defective dmc1Δ and dmc1Δ rad51Δ mutants. DSBs were observed at known hot spots, but also in most previously identified “DSB-cold” regions, including near centromeres and telomeres. Although approximately 40% of the genome is DSB-cold in rad50S mutants, analysis of meiotic ssDNA from dmc1Δ shows that most of these regions have substantial DSB activity. Southern blot assays of DSBs in selected regions in dmc1Δ, rad50S, and wild-type cells confirm these findings. Thus, DSBs are distributed much more uniformly than was previously believed. Comparisons of DSB signals in dmc1, dmc1 rad51, and dmc1 spo11 mutant strains identify Dmc1 as a critical strand-exchange activity genome-wide, and confirm previous conclusions that Spo11-induced lesions initiate all meiotic recombination. During meiosis, the two copies of each chromosome present in the full (diploid) genome come together and then separate, forming haploid gametes (sperm and eggs, in animals). Recombination, which swaps DNA between chromosomes, is critical for chromosome pairing and separation, and also promotes genetic diversity in the next generation, providing the feedstock for evolution. DNA double-strand breaks (DSBs), which are formed by the conserved Spo11 nuclease, initiate meiotic recombination. DSB mapping is thus an alternative to standard genetic analysis for determining where meiotic recombination occurs. DSBs have been most extensively mapped in budding yeast mutants that fail to remove Spo11 from break ends, blocking further recombination steps. Paradoxically, those studies indicated that DSBs are absent from large regions where recombination was known to occur. We developed a new DSB mapping method that purifies and analyzes the single-strand DNA formed at breaks after Spo11 removal. This new map shows that DSBs (and by inference, recombination) actually occur frequently throughout almost all of the budding yeast genome, in a distribution that is consistent with recombination's roles in chromosome pairing and in generating genetic diversity. This new mapping method will be useful for studying meiotic recombination and DNA damage repair in other organisms. The authors developed a new method to detect DNA damage genome-wide, and they used it to show that meiotic recombination is more uniformly distributed in budding yeast than was previously believed.
Collapse
Affiliation(s)
- Cyril Buhler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Valérie Borde
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Dooner HK, He L. Maize genome structure variation: interplay between retrotransposon polymorphisms and genic recombination. THE PLANT CELL 2008; 20:249-58. [PMID: 18296625 PMCID: PMC2276454 DOI: 10.1105/tpc.107.057596] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/05/2008] [Accepted: 02/12/2008] [Indexed: 05/18/2023]
Abstract
Although maize (Zea mays) retrotransposons are recombinationally inert, the highly polymorphic structure of maize haplotypes raises questions regarding the local effect of intergenic retrotransposons on recombination. To examine this effect, we compared recombination in the same genetic interval with and without a large retrotransposon cluster. We used three different bz1 locus haplotypes, McC, B73, and W22, in the same genetic background. We analyzed recombination between the bz1 and stc1 markers in heterozygotes that differ by the presence and absence of a 26-kb intergenic retrotransposon cluster. To facilitate the genetic screen, we used Ds and Ac markers that allowed us to identify recombinants by their seed pigmentation. We sequenced 239 recombination junctions and assigned them to a single nucleotide polymorphism-delimited interval in the region. The genetic distance between the markers was twofold smaller in the presence of the retrotransposon cluster. The reduction was seen in bz1 and stc1, but no recombination occurred in the highly polymorphic intergenic region of either heterozygote. Recombination within genes shuffled flanking retrotransposon clusters, creating new chimeric haplotypes and either contracting or expanding the physical distance between markers. Our findings imply that haplotype structure will profoundly affect the correlation between genetic and physical distance for the same interval in maize.
Collapse
Affiliation(s)
- Hugo K Dooner
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | |
Collapse
|
49
|
Esch E, Szymaniak JM, Yates H, Pawlowski WP, Buckler ES. Using crossover breakpoints in recombinant inbred lines to identify quantitative trait loci controlling the global recombination frequency. Genetics 2007; 177:1851-8. [PMID: 17947409 PMCID: PMC2147985 DOI: 10.1534/genetics.107.080622] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 08/28/2007] [Indexed: 01/02/2023] Open
Abstract
Recombination is a crucial component of evolution and breeding, producing new genetic combinations on which selection can act. Rates of recombination vary tremendously, not only between species but also within species and for specific chromosomal segments. In this study, by examining recombination events captured in recombinant inbred mapping populations previously created for maize, wheat, Arabidopsis, and mouse, we demonstrate that substantial variation exists for genomewide crossover rates in both outcrossed and inbred plant and animal species. We also identify quantitative trait loci (QTL) that control this variation. The method that we developed and employed here holds promise for elucidating factors that regulate meiotic recombination and for creation of hyperrecombinogenic lines, which can help overcome limited recombination that hampers breeding progress.
Collapse
Affiliation(s)
- Elisabeth Esch
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | | | | | | | | |
Collapse
|
50
|
Langer M, Sniderhan LF, Grossniklaus U, Ray A. Transposon excision from an atypical site: a mechanism of evolution of novel transposable elements. PLoS One 2007; 2:e965. [PMID: 17912344 PMCID: PMC1978519 DOI: 10.1371/journal.pone.0000965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 07/26/2007] [Indexed: 12/04/2022] Open
Abstract
The role of transposable elements in sculpting the genome is well appreciated but remains poorly understood. Some organisms, such as humans, do not have active transposons; however, transposable elements were presumably active in their ancestral genomes. Of specific interest is whether the DNA surrounding the sites of transposon excision become recombinogenic, thus bringing about homologous recombination. Previous studies in maize and Drosophila have provided conflicting evidence on whether transposon excision is correlated with homologous recombination. Here we take advantage of an atypical Dissociation (Ds) element, a maize transposon that can be mobilized by the Ac transposase gene in Arabidopsis thaliana, to address questions on the mechanism of Ds excision. This atypical Ds element contains an adjacent 598 base pairs (bp) inverted repeat; the element was allowed to excise by the introduction of an unlinked Ac transposase source through mating. Footprints at the excision site suggest a micro-homology mediated non-homologous end joining reminiscent of V(D)J recombination involving the formation of intra-helix 3′ to 5′ trans-esterification as an intermediate, a mechanism consistent with previous observations in maize, Antirrhinum and in certain insects. The proposed mechanism suggests that the broken chromosome at the excision site should not allow recombinational interaction with the homologous chromosome, and that the linked inverted repeat should also be mobilizable. To test the first prediction, we measured recombination of flanking chromosomal arms selected for the excision of Ds. In congruence with the model, Ds excision did not influence crossover recombination. Furthermore, evidence for correlated movement of the adjacent inverted repeat sequence is presented; its origin and movement suggest a novel mechanism for the evolution of repeated elements. Taken together these results suggest that the movement of transposable elements themselves may not directly influence linkage. Possibility remains, however, for novel repeated DNA sequences produced as a consequence of transposon movement to influence crossover in subsequent generations.
Collapse
Affiliation(s)
- Marybeth Langer
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Lynn F. Sniderhan
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Ueli Grossniklaus
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Animesh Ray
- Department of Biology, University of Rochester, Rochester, New York, United States of America
- Keck Graduate Institute, Claremont, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|