1
|
Yabukarski F, Doukov T, Pinney MM, Biel JT, Fraser JS, Herschlag D. Ensemble-function relationships to dissect mechanisms of enzyme catalysis. SCIENCE ADVANCES 2022; 8:eabn7738. [PMID: 36240280 PMCID: PMC9565801 DOI: 10.1126/sciadv.abn7738] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 08/30/2022] [Indexed: 05/27/2023]
Abstract
Decades of structure-function studies have established our current extensive understanding of enzymes. However, traditional structural models are snapshots of broader conformational ensembles of interchanging states. We demonstrate the need for conformational ensembles to understand function, using the enzyme ketosteroid isomerase (KSI) as an example. Comparison of prior KSI cryogenic x-ray structures suggested deleterious mutational effects from a misaligned oxyanion hole catalytic residue. However, ensemble information from room-temperature x-ray crystallography, combined with functional studies, excluded this model. Ensemble-function analyses can deconvolute effects from altering the probability of occupying a state (P-effects) and changing the reactivity of each state (k-effects); our ensemble-function analyses revealed functional effects arising from weakened oxyanion hole hydrogen bonding and substrate repositioning within the active site. Ensemble-function studies will have an integral role in understanding enzymes and in meeting the future goals of a predictive understanding of enzyme catalysis and engineering new enzymes.
Collapse
Affiliation(s)
- Filip Yabukarski
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Tzanko Doukov
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Margaux M. Pinney
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Justin T. Biel
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Esteve F, Altava B, Luis SV, García-Verdugo E. Basically, nucleophilicity matters little: towards unravelling the supramolecular driving forces in enzyme-like CO 2 conversion. Org Biomol Chem 2022; 20:6637-6645. [PMID: 35929502 DOI: 10.1039/d2ob00948j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction mechanism for the cycloaddition of CO2 to styrene oxide in the presence of macrocyclic pseudopeptides has been studied using DFT methods. Computational calculations indicate that the unprecedented catalytic behaviour previously observed experimentally, in which the most reactive species was not the most nucleophilic but the most basic one, can be associated to the tight cooperativity between several supramolecular interactions promoted by simple peptidomimetics able to display a synzymatic behaviour. This bizarre catalytic performance afforded remarkable conversions of a sluggish substrate like styrene oxide into the desired cyclic carbonate, even under relatively mild reaction conditions, opening the way for the practical use of CO2 as a raw material in the preparation of valuable chemicals. Furthermore, the remote modification of essential structural features of the macrocycle (synzyme engineering) permitted the driving forces of the synzymatic system to be analyzed, stressing the crucial synergic effect between an elegantly preorganized oxyanion hole and additional aromatic interactions.
Collapse
Affiliation(s)
- Ferran Esteve
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, Castellón, 12071, Spain.
| | - Belén Altava
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, Castellón, 12071, Spain.
| | - Santiago V Luis
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, Castellón, 12071, Spain.
| | - Eduardo García-Verdugo
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, Castellón, 12071, Spain.
| |
Collapse
|
3
|
Chen D, Li Y, Li X, Savidge T, Qian Y, Fan X. Factors determining the enzyme catalytic power caused by noncovalent interactions: Charge alterations in enzyme active sites. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
4
|
Lou Y, Wei J, Li M, Zhu Y. Distal Ionic Substrate-Catalyst Interactions Enable Long-Range Stereocontrol: Access to Remote Quaternary Stereocenters through a Desymmetrizing Suzuki-Miyaura Reaction. J Am Chem Soc 2022; 144:123-129. [PMID: 34979078 PMCID: PMC9549467 DOI: 10.1021/jacs.1c12345] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Spatial distancing of a substrate's reactive group and nonreactive catalyst-binding group from its pro-stereogenic element presents substantial hurdles in asymmetric catalysis. In this context, we report a desymmetrizing Suzuki-Miyaura reaction that establishes chirality at a remote quaternary carbon. The anionic, chiral catalyst exerts stereocontrol through electrostatic steering of substrates, even as the substrate's reactive group and charged catalyst-binding group become increasingly distanced. This study demonstrates that precise long-range stereocontrol is achievable by engaging ionic substrate-ligand interactions at a distal position.
Collapse
Affiliation(s)
- Yazhou Lou
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Junqiang Wei
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Mingfeng Li
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Ye Zhu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
5
|
Assessment of enzyme active site positioning and tests of catalytic mechanisms through X-ray-derived conformational ensembles. Proc Natl Acad Sci U S A 2020; 117:33204-33215. [PMID: 33376217 DOI: 10.1073/pnas.2011350117] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How enzymes achieve their enormous rate enhancements remains a central question in biology, and our understanding to date has impacted drug development, influenced enzyme design, and deepened our appreciation of evolutionary processes. While enzymes position catalytic and reactant groups in active sites, physics requires that atoms undergo constant motion. Numerous proposals have invoked positioning or motions as central for enzyme function, but a scarcity of experimental data has limited our understanding of positioning and motion, their relative importance, and their changes through the enzyme's reaction cycle. To examine positioning and motions and test catalytic proposals, we collected "room temperature" X-ray crystallography data for Pseudomonas putida ketosteroid isomerase (KSI), and we obtained conformational ensembles for this and a homologous KSI from multiple PDB crystal structures. Ensemble analyses indicated limited change through KSI's reaction cycle. Active site positioning was on the 1- to 1.5-Å scale, and was not exceptional compared to noncatalytic groups. The KSI ensembles provided evidence against catalytic proposals invoking oxyanion hole geometric discrimination between the ground state and transition state or highly precise general base positioning. Instead, increasing or decreasing positioning of KSI's general base reduced catalysis, suggesting optimized Ångstrom-scale conformational heterogeneity that allows KSI to efficiently catalyze multiple reaction steps. Ensemble analyses of surrounding groups for WT and mutant KSIs provided insights into the forces and interactions that allow and limit active-site motions. Most generally, this ensemble perspective extends traditional structure-function relationships, providing the basis for a new era of "ensemble-function" interrogation of enzymes.
Collapse
|
6
|
Golec JC, Carter EM, Ward JW, Whittingham WG, Simón L, Paton RS, Dixon DJ. BIMP-Catalyzed 1,3-Prototropic Shift for the Highly Enantioselective Synthesis of Conjugated Cyclohexenones. Angew Chem Int Ed Engl 2020; 59:17417-17422. [PMID: 32558981 PMCID: PMC7540019 DOI: 10.1002/anie.202006202] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/03/2020] [Indexed: 12/18/2022]
Abstract
A bifunctional iminophosphorane (BIMP)-catalysed enantioselective synthesis of α,β-unsaturated cyclohexenones through a facially selective 1,3-prototropic shift of β,γ-unsaturated prochiral isomers, under mild reaction conditions and in short reaction times, on a range of structurally diverse substrates, is reported. α,β-Unsaturated cyclohexenone products primed for downstream derivatisation were obtained in high yields (up to 99 %) and consistently high enantioselectivity (up to 99 % ee). Computational studies into the reaction mechanism and origins of enantioselectivity, including multivariate linear regression of TS energy, were carried out and the obtained data were found to be in good agreement with experimental findings.
Collapse
Affiliation(s)
- Jonathan C. Golec
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Eve M. Carter
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - John W. Ward
- Leverhulme Research Centre for Functional Materials DesignThe Materials Innovation FactoryDepartment of ChemistryUniversity of LiverpoolLiverpoolL7 3NYUK
| | | | - Luis Simón
- Facultad de Ciencias QuímicasUniversidad de SalamancaPlaza de los Caídos 1–537008SalamancaSpain
| | - Robert S. Paton
- Department of ChemistryColorado State University1301 Center AveFt. CollinsCO80523-1872USA
| | - Darren J. Dixon
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
7
|
Golec JC, Carter EM, Ward JW, Whittingham WG, Simón L, Paton RS, Dixon DJ. BIMP‐Catalyzed 1,3‐Prototropic Shift for the Highly Enantioselective Synthesis of Conjugated Cyclohexenones. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jonathan C. Golec
- Department of Chemistry Chemistry Research Laboratory University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Eve M. Carter
- Department of Chemistry Chemistry Research Laboratory University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - John W. Ward
- Leverhulme Research Centre for Functional Materials Design The Materials Innovation Factory Department of Chemistry University of Liverpool Liverpool L7 3NY UK
| | | | - Luis Simón
- Facultad de Ciencias Químicas Universidad de Salamanca Plaza de los Caídos 1–5 37008 Salamanca Spain
| | - Robert S. Paton
- Department of Chemistry Colorado State University 1301 Center Ave Ft. Collins CO 80523-1872 USA
| | - Darren J. Dixon
- Department of Chemistry Chemistry Research Laboratory University of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
8
|
Rosenberg MM, Yao T, Patton GC, Redfield AG, Roberts MF, Hedstrom L. Enzyme-Substrate-Cofactor Dynamical Networks Revealed by High-Resolution Field Cycling Relaxometry. Biochemistry 2020; 59:2359-2370. [PMID: 32479091 PMCID: PMC8364753 DOI: 10.1021/acs.biochem.0c00212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The remarkable power and specificity of enzyme catalysis rely on the dynamic alignment of the enzyme, substrates, and cofactors, yet the role of dynamics has usually been approached from the perspective of the protein. We have been using an underappreciated NMR technique, subtesla high-resolution field cycling 31P NMR relaxometry, to investigate the dynamics of the enzyme-bound substrates and cofactor on guanosine-5'-monophosphate reductase (GMPR). GMPR forms two dead end, yet catalytically competent, complexes that mimic distinct steps in the catalytic cycle: E·IMP·NADP+ undergoes a partial hydride transfer reaction, while E·GMP·NADP+ undergoes a partial deamination reaction. A different cofactor conformation is required for each partial reaction. Here we report the effects of mutations designed to perturb cofactor conformation and ammonia binding with the goal of identifying the structural features that contribute to the distinct dynamic signatures of the hydride transfer and deamination complexes. These experiments suggest that Asp129 is a central cog in a dynamic network required for both hydride transfer and deamination. In contrast, Lys77 modulates the conformation and mobility of substrates and cofactors in a reaction-specific manner. Thr105 and Tyr318 are part of a deamination-specific dynamic network that includes the 2'-OH of GMP. These residues have comparatively little effect on the dynamic properties of the hydride transfer complex. These results further illustrate the potential of high-resolution field cycling NMR relaxometry for the investigation of ligand dynamics. In addition, exchange experiments indicate that NH3/NH4+ has a high affinity for the deamination complex but a low affinity for the hydride transfer complex, suggesting that the movement of ammonia may gate the cofactor conformational change. Collectively, these experiments reinforce the view that the enzyme, substrates, and cofactor are linked in intricate, reaction-specific, dynamic networks and demonstrate that distal portions of the substrates and cofactors are critical features in these networks.
Collapse
Affiliation(s)
- Masha M. Rosenberg
- Department of Biology, Brandeis University, MS009, 415 South St., Waltham MA 02453-9110 USA
| | - Tianjiong Yao
- Department of Biology, Brandeis University, MS009, 415 South St., Waltham MA 02453-9110 USA
| | - Gregory C. Patton
- Department of Biology, Brandeis University, MS009, 415 South St., Waltham MA 02453-9110 USA
| | - Alfred G. Redfield
- Department of Biochemistry, Brandeis University, MS009, 415 South Street, Waltham, MA 02453-9110 USA
| | - Mary F. Roberts
- Department of Chemistry, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-9110 USA
| | - Lizbeth Hedstrom
- Department of Biology, Brandeis University, MS009, 415 South St., Waltham MA 02453-9110 USA
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453-3808 USA
| |
Collapse
|
9
|
Komaki Y, Simpson AMA, Choe JK, Pinney MM, Herschlag D, Chuang YH, Mitch WA. Serum electrolytes can promote hydroxyl radical-initiated biomolecular damage from inflammation. Free Radic Biol Med 2019; 141:475-482. [PMID: 31349038 DOI: 10.1016/j.freeradbiomed.2019.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/11/2019] [Accepted: 07/22/2019] [Indexed: 11/24/2022]
Abstract
Chronic inflammatory disorders are associated with biomolecular damage attributed partly to reactions with Reactive Oxygen Species (ROS), particularly hydroxyl radicals (•OH). However, the impacts of serum electrolytes on ROS-associated damage has received little attention. We demonstrate that the conversion of •OH to carbonate and halogen radicals via reactions with serum-relevant carbonate and halide concentrations fundamentally alters the targeting of amino acids and loss of enzymatic activity in catalase, albumin and carbonic anhydrase, three important blood proteins. Chemical kinetic modeling indicated that carbonate and halogen radical concentrations should exceed •OH concentrations by 6 and 2 orders of magnitude, respectively. Steady-state γ-radiolysis experiments demonstrated that serum-level carbonates and halides increased tyrosine, tryptophan and enzymatic activity losses in catalase up to 6-fold. These outcomes were specific to carbonates and halides, not general ionic strength effects. Serum carbonates and halides increased the degradation of tyrosines and methionines in albumin, and increased the degradation of histidines while decreasing enzymatic activity loss in carbonic anhydrase. Serum electrolytes increased the degradation of tyrosines, tryptophans and enzymatic activity in the model enzyme, ketosteroid isomerase, predominantly due to carbonate radical reactions. Treatment of a mutant ketosteroid isomerase indicated that preferential targeting of the active site tyrosine accounted for half of the total tyrosine loss. The results suggest that carbonate and halogen radicals may be more significant than •OH as drivers for protein degradation in serum. Accounting for the selective targeting of biomolecules by these daughter radicals is important for developing a mechanistic understanding of the consequences of oxidative stress.
Collapse
Affiliation(s)
- Yukako Komaki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Adam M-A Simpson
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA, 94305, USA
| | - Jong Kwon Choe
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Margaux M Pinney
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
| | - Yi-Hsueh Chuang
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA, 94305, USA
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA, 94305, USA.
| |
Collapse
|
10
|
Bearne SL. The role of Brønsted base basicity in estimating carbon acidity at enzyme active sites: a caveat. Org Biomol Chem 2019; 17:7161-7165. [PMID: 31317156 DOI: 10.1039/c9ob00863b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many enzymes catalyze the abstraction of a proton from a carbon acid substrate to initiate a variety of reactions; however, the development of a complete quantitative description of enzyme-catalyzed heterolytic cleavage of a C-H bond remains a challenge to enzymologists. To determine the pK value for such substrates bound at the active site, recent studies have estimated the equilibrium for formation of the deprotonated intermediate at the active site, however, accurate knowledge of the pK of the conjugate acid of the Brønsted base catalyst (BH+) is also required. Herein, it is shown that using the value of pK of the enzyme-substrate complex can underestimate the value of pK by an amount between zero and pδ, where pδ is the change in basicity of BH+ upon going from the enzyme-substrate complex to the enzyme-intermediate complex.
Collapse
Affiliation(s)
- Stephen L Bearne
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada. and Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
11
|
Peng F, Cheng X, Wang H, Song S, Chen T, Li X, He Y, Huang Y, Liu S, Yang F, Su Z. Structure-based reconstruction of a Mycobacterium hypothetical protein into an active Δ 5-3-ketosteroid isomerase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:821-830. [PMID: 31226491 DOI: 10.1016/j.bbapap.2019.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 11/25/2022]
Abstract
Protein engineering based on structure homology holds the potential to engineer steroid-transforming enzymes on demand. Based on the genome sequencing analysis of industrial Mycobacterium strain HGMS2 to produce 4-androstene-3,17-dione (4-AD), three hypothetical proteins were predicted as putative Δ5-3-ketosteroid isomerases (KSIs) to catalyze an intramolecular proton transfer involving the transformation of 5-androstene-3,17-dione (5-AD) into 4-AD, which were defined as mKSI228, mKSI291 and mKSI753. Activity assays indicated that mKSI228 and mKSI291 exhibited weak activity, as low as 0.7% and 1.5%, respectively, of a well-studied and highly active KSI from Pseudomonas putida KSI (pKSI), while mKSI753 had no activity similar to Mycobacterium tuberculosis KSI (mtKSI). Although the 3D structures of the putative mKSIs were homologous to pKSI, their amino acid sequences were significantly different from those of pKSI and tKSI. Thus, by use of these two KSIs as homology models, we were able to convert the low-active mKSI291 into a high-active active KSI by site-directed mutagenesis. On the other hand, an X-ray crystallographic structure of mKSI291 identified a water molecule in its active site. This unique water molecule might function as a bridge to connect Ser-OH, Tyr57-OH and C3O of the intermediate form a hydrogen-bonding network that was responsible for its weak activity, compared with that of mtKSI. Our results not only demonstrated the use of a protein engineering approach to understanding KSI catalytic mechanism, but also provided an example for engineering the catalytic active sites and gaining a functional enzyme based on homologous structures.
Collapse
Affiliation(s)
- Fei Peng
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xiyao Cheng
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China; Wuhan Amersino Biodevelop Inc, B1-Building, Biolake Park, Wuhan 430075, China
| | - Hongwei Wang
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Shikui Song
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Tian Chen
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xin Li
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yijun He
- Hubei Goto Biotech Inc, No. 1 Baiguoshu Road, Shuidu Industrial Park, Danjiangkou, Hubei 442700, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Sen Liu
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Fei Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics and Department of Biological and Food Engineering, Hubei University of Technology, Wuhan 430068, China; Wuhan Amersino Biodevelop Inc, B1-Building, Biolake Park, Wuhan 430075, China.
| |
Collapse
|
12
|
Sun H, Jiang J, Sun Y, Zhang Q, Liu M. Self-assembled organic nanotube promoted allylation of ketones in aqueous phase. Chem Commun (Camb) 2019; 55:3254-3257. [PMID: 30810138 DOI: 10.1039/c9cc00941h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A self-assembled organic nanotube was found to promote the allylation of ketones in the aqueous phase.
Collapse
Affiliation(s)
- Hui Sun
- School of Chemical & Environmental Engineering, China University of Mining & Technology, Beijing, 100083, P. R. China. and CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, Nanophotonics Research Division, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190 Beijing, P. R. China.
| | - Jian Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, Nanophotonics Research Division, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190 Beijing, P. R. China.
| | - Yimeng Sun
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, Nanophotonics Research Division, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190 Beijing, P. R. China.
| | - Qingwu Zhang
- School of Chemical & Environmental Engineering, China University of Mining & Technology, Beijing, 100083, P. R. China.
| | - Minghua Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, Nanophotonics Research Division, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190 Beijing, P. R. China. and Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190, Beijing, P. R. China
| |
Collapse
|
13
|
Hwang CC, Chang PR, Hsieh CL, Chou YH, Wang TP. Thermodynamic analysis of remote substrate binding energy in 3α-hydroxysteroid dehydrogenase/carbonyl reductase catalysis. Chem Biol Interact 2019; 302:183-189. [PMID: 30794798 DOI: 10.1016/j.cbi.2019.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/30/2019] [Accepted: 02/14/2019] [Indexed: 11/16/2022]
Abstract
The binding energy of enzyme and substrate is used to lower the activation energy for the catalytic reaction. 3α-HSD/CR uses remote binding interactions to accelerate the reaction of androsterone with NAD+. Here, we examine the enthalpic and entropic components of the remote binding energy in the 3α-HSD/CR-catalyzed reaction of NAD+ with androsterone versus the substrate analogs, 2-decalol and cyclohexanol, by analyzing the temperature-dependent kinetic parameters through steady-state kinetics. The effects of temperature on kcat/Km for 3α-HSD/CR acting on androsterone, 2-decalol, and cyclohexanol show the reactions are entropically favorable but enthalpically unfavorable. Thermodynamic analysis from the temperature-dependent values of Km and kcat shows the binding of the E-NAD+ complex with either 2-decalol or cyclohexanol to form the ternary complex is endothermic and entropy-driven, and the subsequent conversion to the transition state is both enthalpically and entropically unfavorable. Hence, solvation entropy may play an important role in the binding process through both the desolvation of the solute molecules and the release of bound water molecules from the active site into bulk solvent. As compared to the thermodynamic parameters of 3α-HSD/CR acting on cyclohexanol, the hydrophobic interaction of the B-ring of steroids with the active site of 3α-HSD/CR contributes to catalysis by increasing exclusively the entropy of activation (ΔTΔS‡ = 1.8 kcal/mol), while the BCD-ring of androsterone significantly lowers ΔΔH‡ by 10.4 kcal/mol with a slight entropic penalty of -1.9 kcal/mol. Therefore, the remote non-reacting sites of androsterone may induce a conformational change of the substrate binding loop with an entropic cost for better interaction with the transition state to decrease the enthalpy of activation, significantly increasing catalytic efficiency.
Collapse
Affiliation(s)
- Chi-Ching Hwang
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
| | - Pei-Ru Chang
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chia-Lin Hsieh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yun-Hao Chou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Tzu-Pin Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| |
Collapse
|
14
|
Abstract
![]()
The enormous rate accelerations observed
for many enzyme catalysts
are due to strong stabilizing interactions between the protein and
reaction transition state. The defining property of these catalysts
is their specificity for binding the transition state with a much
higher affinity than substrate. Experimental results are presented
which show that the phosphodianion-binding energy of phosphate monoester
substrates is used to drive conversion of their protein catalysts
from flexible and entropically rich ground states to stiff and catalytically
active Michaelis complexes. These results are generalized to other
enzyme-catalyzed reactions. The existence of many enzymes in flexible,
entropically rich, and inactive ground states provides a mechanism
for utilization of ligand-binding energy to mold these catalysts into
stiff and active forms. This reduces the substrate-binding energy
expressed at the Michaelis complex, while enabling the full and specific
expression of large transition-state binding energies. Evidence is
presented that the complexity of enzyme conformational changes increases
with increases in the enzymatic rate acceleration. The requirement
that a large fraction of the total substrate-binding energy be utilized
to drive conformational changes of floppy enzymes is proposed to favor
the selection and evolution of protein folds with multiple flexible
unstructured loops, such as the TIM-barrel fold. The effect of protein
motions on the kinetic parameters for enzymes that undergo ligand-driven
conformational changes is considered. The results of computational
studies to model the complex ligand-driven conformational change in
catalysis by triosephosphate isomerase are presented.
Collapse
Affiliation(s)
- John P Richard
- Department of Chemistry , SUNY, University at Buffalo , Buffalo , New York 14260-3000 , United States
| |
Collapse
|
15
|
Mohamed RA, Salleh AB, Leow ATC, Yahaya NM, Abdul Rahman MB. Ability of T1 Lipase to Degrade Amorphous P(3HB): Structural and Functional Study. Mol Biotechnol 2018; 59:284-293. [PMID: 28580552 DOI: 10.1007/s12033-017-0012-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
An enzyme with broad substrate specificity would be an asset for industrial application. T1 lipase apparently has the same active site residues as polyhydroxyalkanoates (PHA) depolymerase. Sequences of both enzymes were studied and compared, and a conserved lipase box pentapeptide region around the nucleophilic serine was detected. The alignment of 3-D structures for both enzymes showed their active site residues were well aligned with an RMSD value of 1.981 Å despite their sequence similarity of only 53.8%. Docking of T1 lipase with P(3HB) gave forth high binding energy of 5.4 kcal/mol, with the distance of 4.05 Å between serine hydroxyl (OH) group of TI lipase to the carbonyl carbon of the substrate, similar to the native PhaZ7 Pl . This suggests the possible ability of T1 lipase to bind P(3HB) in its active site. The ability of T1 lipase in degrading amorphous P(3HB) was investigated on 0.2% (w/v) P(3HB) plate. Halo zone was observed around the colony containing the enzyme which confirms that T1 lipase is indeed able to degrade amorphous P(3HB). Results obtained in this study highlight the fact that T1 lipase is a versatile hydrolase enzyme which does not only record triglyceride degradation activity but amorphous P(3HB) degradation activity as well.
Collapse
Affiliation(s)
- Rauda A Mohamed
- Laboratory of Enzyme Technology, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Abu Bakar Salleh
- Laboratory of Enzyme Technology, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Adam Thean Chor Leow
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Normi M Yahaya
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | | |
Collapse
|
16
|
Rosenberg MM, Redfield AG, Roberts MF, Hedstrom L. Dynamic Characteristics of Guanosine-5'-monophosphate Reductase Complexes Revealed by High-Resolution 31P Field-Cycling NMR Relaxometry. Biochemistry 2018; 57:3146-3154. [PMID: 29547266 DOI: 10.1021/acs.biochem.8b00142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability of enzymes to modulate the dynamics of bound substrates and cofactors is a critical feature of catalysis, but the role of dynamics has largely been approached from the perspective of the protein. Here, we use an underappreciated NMR technique, subtesla high-resolution field-cycling 31P NMR relaxometry, to interrogate the dynamics of enzyme bound substrates and cofactors in guanosine-5'-monophosphate reductase (GMPR). These experiments reveal distinct binding modes and dynamic profiles associated with the 31P nuclei in the Michaelis complexes for the deamination and hydride transfer steps of the catalytic cycle. Importantly, the substrate is constrained and the cofactor is more dynamic in the deamination complex E·GMP·NADP+, whereas the substrate is more dynamic and the cofactor is constrained in the hydride transfer complex E·IMP·NADP+. The presence of D2O perturbed the relaxation of the 31P nuclei in E·IMP·NADP+ but not in E·GMP·NADP+, providing further evidence of distinct binding modes with different dynamic properties. dIMP and dGMP are poor substrates, and the dynamics of the cofactor complexes of dGMP/dIMP are disregulated relative to GMP/IMP. The substrate 2'-OH interacts with Asp219, and mutation of Asp219 to Ala decreases the value of Vmax by a factor of 30. Counterintuitively, loss of Asp219 makes both substrates and cofactors less dynamic. These observations suggest that the interactions between the substrate 2'-OH and Asp219 coordinate the dynamic properties of the Michaelis complexes, and these dynamics are important for progression through the catalytic cycle.
Collapse
Affiliation(s)
- Masha M Rosenberg
- Department of Biology , Brandeis University , MS009, 415 South Street , Waltham , Massachusetts 02453-9110 , United States
| | - Alfred G Redfield
- Department of Biochemistry , Brandeis University , MS009, 415 South Street , Waltham , Massachusetts 02453-9110 , United States
| | - Mary F Roberts
- Department of Chemistry , Boston College , 140 Commonwealth Avenue , Chestnut Hill , Massachusetts 02467-9110 , United States
| | - Lizbeth Hedstrom
- Department of Biology , Brandeis University , MS009, 415 South Street , Waltham , Massachusetts 02453-9110 , United States.,Department of Chemistry , Brandeis University , 415 South Street , Waltham , Massachusetts 02453-3808 , United States
| |
Collapse
|
17
|
Currin A, Dunstan MS, Johannissen LO, Hollywood KA, Vinaixa M, Jervis AJ, Swainston N, Rattray NJW, Gardiner JM, Kell DB, Takano E, Toogood HS, Scrutton NS. Engineering the "Missing Link" in Biosynthetic (-)-Menthol Production: Bacterial Isopulegone Isomerase. ACS Catal 2018; 8:2012-2020. [PMID: 29750129 PMCID: PMC5937688 DOI: 10.1021/acscatal.7b04115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/15/2018] [Indexed: 12/28/2022]
Abstract
The realization of a synthetic biology approach to microbial (1R,2S,5R)-(-)-menthol (1) production relies on the identification of a gene encoding an isopulegone isomerase (IPGI), the only enzyme in the Mentha piperita biosynthetic pathway as yet unidentified. We demonstrate that Δ5-3-ketosteroid isomerase (KSI) from Pseudomonas putida can act as an IPGI, producing (R)-(+)-pulegone ((R)-2) from (+)-cis-isopulegone (3). Using a robotics-driven semirational design strategy, we identified a key KSI variant encoding four active site mutations, which confer a 4.3-fold increase in activity over the wild-type enzyme. This was assisted by the generation of crystal structures of four KSI variants, combined with molecular modeling of 3 binding to identify key active site residue targets. The KSI variant was demonstrated to function efficiently within cascade biocatalytic reactions with downstream Mentha enzymes pulegone reductase and (-)-menthone:(-)-menthol reductase to generate 1 from 3. This study introduces the use of a recombinant IPGI, engineered to function efficiently within a biosynthetic pathway for the production of 1 in microorganisms.
Collapse
Affiliation(s)
- Andrew Currin
- Manchester
Centre for Fine and Speciality Chemicals (SYNBIOCHEM) and School of Chemistry,
Manchester Institute of Biotechnology, University
of Manchester, Manchester M1 7DN, United Kingdom
| | - Mark S. Dunstan
- Manchester
Centre for Fine and Speciality Chemicals (SYNBIOCHEM) and School of Chemistry,
Manchester Institute of Biotechnology, University
of Manchester, Manchester M1 7DN, United Kingdom
| | - Linus O. Johannissen
- Manchester
Centre for Fine and Speciality Chemicals (SYNBIOCHEM) and School of Chemistry,
Manchester Institute of Biotechnology, University
of Manchester, Manchester M1 7DN, United Kingdom
| | - Katherine A. Hollywood
- Manchester
Centre for Fine and Speciality Chemicals (SYNBIOCHEM) and School of Chemistry,
Manchester Institute of Biotechnology, University
of Manchester, Manchester M1 7DN, United Kingdom
| | - Maria Vinaixa
- Manchester
Centre for Fine and Speciality Chemicals (SYNBIOCHEM) and School of Chemistry,
Manchester Institute of Biotechnology, University
of Manchester, Manchester M1 7DN, United Kingdom
| | - Adrian J. Jervis
- Manchester
Centre for Fine and Speciality Chemicals (SYNBIOCHEM) and School of Chemistry,
Manchester Institute of Biotechnology, University
of Manchester, Manchester M1 7DN, United Kingdom
| | - Neil Swainston
- Manchester
Centre for Fine and Speciality Chemicals (SYNBIOCHEM) and School of Chemistry,
Manchester Institute of Biotechnology, University
of Manchester, Manchester M1 7DN, United Kingdom
| | - Nicholas J. W. Rattray
- Manchester
Centre for Fine and Speciality Chemicals (SYNBIOCHEM) and School of Chemistry,
Manchester Institute of Biotechnology, University
of Manchester, Manchester M1 7DN, United Kingdom
| | - John M. Gardiner
- Manchester
Centre for Fine and Speciality Chemicals (SYNBIOCHEM) and School of Chemistry,
Manchester Institute of Biotechnology, University
of Manchester, Manchester M1 7DN, United Kingdom
| | - Douglas B. Kell
- Manchester
Centre for Fine and Speciality Chemicals (SYNBIOCHEM) and School of Chemistry,
Manchester Institute of Biotechnology, University
of Manchester, Manchester M1 7DN, United Kingdom
| | - Eriko Takano
- Manchester
Centre for Fine and Speciality Chemicals (SYNBIOCHEM) and School of Chemistry,
Manchester Institute of Biotechnology, University
of Manchester, Manchester M1 7DN, United Kingdom
| | - Helen S. Toogood
- Manchester
Centre for Fine and Speciality Chemicals (SYNBIOCHEM) and School of Chemistry,
Manchester Institute of Biotechnology, University
of Manchester, Manchester M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester
Centre for Fine and Speciality Chemicals (SYNBIOCHEM) and School of Chemistry,
Manchester Institute of Biotechnology, University
of Manchester, Manchester M1 7DN, United Kingdom
| |
Collapse
|
18
|
Abstract
In recent years, there has been much discussion regarding the origin of enzymatic catalysis and whether including protein dynamics is necessary for understanding catalytic enhancement. An important contribution in this debate was made with the application of the vibrational Stark effect spectroscopy to measure electric fields in the active site. This provided a window on electric fields at the transition state in enzymatic reactions. We performed computational studies on two enzymes where we have shown that fast dynamics is part of the reaction mechanism and calculated the electric field near the bond-breaking event. We found that the fast motions that we had identified lead to an increase of the electric field, thus preparing an enzymatic configuration that is electrostatically favorable for the catalytic chemical step. We also studied the enzyme that has been the subject of Stark spectroscopy, ketosteroid isomerase, and found electric fields of a similar magnitude to the two previous examples.
Collapse
|
19
|
Abstract
What happens inside an enzyme's active site to allow slow and difficult chemical reactions to occur so rapidly? This question has occupied biochemists' attention for a long time. Computer models of increasing sophistication have predicted an important role for electrostatic interactions in enzymatic reactions, yet this hypothesis has proved vexingly difficult to test experimentally. Recent experiments utilizing the vibrational Stark effect make it possible to measure the electric field a substrate molecule experiences when bound inside its enzyme's active site. These experiments have provided compelling evidence supporting a major electrostatic contribution to enzymatic catalysis. Here, we review these results and develop a simple model for electrostatic catalysis that enables us to incorporate disparate concepts introduced by many investigators to describe how enzymes work into a more unified framework stressing the importance of electric fields at the active site.
Collapse
Affiliation(s)
- Stephen D Fried
- Proteins and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom;
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305;
| |
Collapse
|
20
|
Beker W, van der Kamp MW, Mulholland AJ, Sokalski WA. Rapid Estimation of Catalytic Efficiency by Cumulative Atomic Multipole Moments: Application to Ketosteroid Isomerase Mutants. J Chem Theory Comput 2017; 13:945-955. [PMID: 28103023 DOI: 10.1021/acs.jctc.6b01131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We propose a simple atomic multipole electrostatic model to rapidly evaluate the effects of mutation on enzyme activity and test its performance on wild-type and mutant ketosteroid isomerase. The predictions of our atomic multipole model are similar to those obtained with symmetry-adapted perturbation theory at a fraction of the computational cost. We further show that this approach is relatively insensitive to the precise amino acid side chain conformation in mutants and may thus be useful in computational enzyme (re)design.
Collapse
Affiliation(s)
- Wiktor Beker
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology , Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Marc W van der Kamp
- School of Biochemistry, Biomedical Sciences Building, University Walk , Bristol BS8 1TD, United Kingdom.,BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, Tyndall Avenue, University of Bristol , Bristol BS8 1TQ, United Kingdom.,Centre of Computational Chemistry, School of Chemistry, Cantock's Close, University of Bristol , Bristol BS8 1TS, United Kingdom
| | - Adrian J Mulholland
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, Tyndall Avenue, University of Bristol , Bristol BS8 1TQ, United Kingdom.,Centre of Computational Chemistry, School of Chemistry, Cantock's Close, University of Bristol , Bristol BS8 1TS, United Kingdom
| | - W Andrzej Sokalski
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology , Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
21
|
Wu Y, Boxer SG. A Critical Test of the Electrostatic Contribution to Catalysis with Noncanonical Amino Acids in Ketosteroid Isomerase. J Am Chem Soc 2016; 138:11890-5. [PMID: 27545569 PMCID: PMC5063566 DOI: 10.1021/jacs.6b06843] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The vibrational Stark effect (VSE) has been used to measure the electric field in the active site of ketosteroid isomerase (KSI). These measured fields correlate with ΔG(⧧) in a series of conventional mutants, yielding an estimate for the electrostatic contribution to catalysis (Fried et al. Science 2014, 346, 1510-1513). In this work we test this result with much more conservative variants in which individual Tyr residues in the active site are replaced by 3-chlorotyrosine via amber suppression. The electric fields sensed at the position of the carbonyl bond involved in charge displacement during catalysis were characterized using the VSE, where the field sensitivity has been calibrated by vibrational Stark spectroscopy, solvatochromism, and MD simulations. A linear relationship is observed between the electric field and ΔG(⧧) that interpolates between wild-type and more drastic conventional mutations, reinforcing the evaluation of the electrostatic contribution to catalysis in KSI. A simplified model and calculation are developed to estimate changes in the electric field accompanying changes in the extended hydrogen-bond network in the active site. The results are consistent with a model in which the O-H group of a key active site tyrosine functions by imposing a static electrostatic potential onto the carbonyl bond. The model suggests that the contribution to catalysis from the active site hydrogen bonds is of similar weight to the distal interactions from the rest of the protein. A similar linear correlation was also observed between the proton affinity of KSI's active site and the catalytic rate, suggesting a direct connection between the strength of the H-bond and the electric field it exerts.
Collapse
Affiliation(s)
- Yufan Wu
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| |
Collapse
|
22
|
Schwans JP, Sunden F, Gonzalez A, Tsai Y, Herschlag D. Correction to "Evaluating the Catalytic Contribution from the Oxyanion Hole in Ketosteroid Isomerase". J Am Chem Soc 2016; 138:7801-2. [PMID: 27299372 DOI: 10.1021/jacs.6b04665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Wu Y, Fried SD, Boxer SG. Dissecting Proton Delocalization in an Enzyme's Hydrogen Bond Network with Unnatural Amino Acids. Biochemistry 2015; 54:7110-9. [PMID: 26571340 DOI: 10.1021/acs.biochem.5b00958] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extended hydrogen bond networks are a common structural motif of enzymes. A recent analysis proposed quantum delocalization of protons as a feature present in the hydrogen bond network spanning a triad of tyrosines (Y(16), Y(32), and Y(57)) in the active site of ketosteroid isomerase (KSI), contributing to its unusual acidity and large isotope shift. In this study, we utilized amber suppression to substitute each tyrosine residue with 3-chlorotyrosine to test the delocalization model and the proton affinity balance in the triad. X-ray crystal structures of each variant demonstrated that the structure, notably the O-O distances within the triad, was unaffected by 3-chlorotyrosine substitutions. The changes in the cluster's acidity and the acidity's isotope dependence in these variants were assessed via UV-vis spectroscopy and the proton sharing pattern among individual residues with (13)C nuclear magnetic resonance. Our data show pKa detuning at each triad residue alters the proton delocalization behavior in the H-bond network. The extra stabilization energy necessary for the unusual acidity mainly comes from the strong interactions between Y(57) and Y(16). This is further enabled by Y(32), which maintains the right geometry and matched proton affinity in the triad. This study provides a rich picture of the energetics of the hydrogen bond network in enzymes for further model refinement.
Collapse
Affiliation(s)
- Yufan Wu
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| | - Stephen D Fried
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| |
Collapse
|
24
|
He Y, Haque MM, Stuehr DJ, Lu HP. Single-molecule spectroscopy reveals how calmodulin activates NO synthase by controlling its conformational fluctuation dynamics. Proc Natl Acad Sci U S A 2015; 112:11835-40. [PMID: 26311846 PMCID: PMC4586839 DOI: 10.1073/pnas.1508829112] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mechanisms that regulate the nitric oxide synthase enzymes (NOS) are of interest in biology and medicine. Although NOS catalysis relies on domain motions, and is activated by calmodulin binding, the relationships are unclear. We used single-molecule fluorescence resonance energy transfer (FRET) spectroscopy to elucidate the conformational states distribution and associated conformational fluctuation dynamics of the two electron transfer domains in a FRET dye-labeled neuronal NOS reductase domain, and to understand how calmodulin affects the dynamics to regulate catalysis. We found that calmodulin alters NOS conformational behaviors in several ways: It changes the distance distribution between the NOS domains, shortens the lifetimes of the individual conformational states, and instills conformational discipline by greatly narrowing the distributions of the conformational states and fluctuation rates. This information was specifically obtainable only by single-molecule spectroscopic measurements, and reveals how calmodulin promotes catalysis by shaping the physical and temporal conformational behaviors of NOS.
Collapse
Affiliation(s)
- Yufan He
- Center for Photochemical Sciences, Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403
| | - Mohammad Mahfuzul Haque
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Dennis J Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - H Peter Lu
- Center for Photochemical Sciences, Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403;
| |
Collapse
|
25
|
Brodkin HR, DeLateur NA, Somarowthu S, Mills CL, Novak WR, Beuning PJ, Ringe D, Ondrechen MJ. Prediction of distal residue participation in enzyme catalysis. Protein Sci 2015; 24:762-78. [PMID: 25627867 PMCID: PMC4420525 DOI: 10.1002/pro.2648] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/10/2015] [Accepted: 01/26/2015] [Indexed: 11/09/2022]
Abstract
A scoring method for the prediction of catalytically important residues in enzyme structures is presented and used to examine the participation of distal residues in enzyme catalysis. Scores are based on the Partial Order Optimum Likelihood (POOL) machine learning method, using computed electrostatic properties, surface geometric features, and information obtained from the phylogenetic tree as input features. Predictions of distal residue participation in catalysis are compared with experimental kinetics data from the literature on variants of the featured enzymes; some additional kinetics measurements are reported for variants of Pseudomonas putida nitrile hydratase (ppNH) and for Escherichia coli alkaline phosphatase (AP). The multilayer active sites of P. putida nitrile hydratase and of human phosphoglucose isomerase are predicted by the POOL log ZP scores, as is the single-layer active site of P. putida ketosteroid isomerase. The log ZP score cutoff utilized here results in over-prediction of distal residue involvement in E. coli alkaline phosphatase. While fewer experimental data points are available for P. putida mandelate racemase and for human carbonic anhydrase II, the POOL log ZP scores properly predict the previously reported participation of distal residues.
Collapse
Affiliation(s)
- Heather R Brodkin
- Department of Chemistry and Chemical Biology, Northeastern UniversityBoston, Massachusetts, 02115
- Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWaltham, Massachusetts, 02454–9110
- Department of Chemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWaltham, Massachusetts, 02454–9110
| | - Nicholas A DeLateur
- Department of Chemistry and Chemical Biology, Northeastern UniversityBoston, Massachusetts, 02115
| | - Srinivas Somarowthu
- Department of Chemistry and Chemical Biology, Northeastern UniversityBoston, Massachusetts, 02115
| | - Caitlyn L Mills
- Department of Chemistry and Chemical Biology, Northeastern UniversityBoston, Massachusetts, 02115
| | - Walter R Novak
- Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWaltham, Massachusetts, 02454–9110
- Department of Chemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWaltham, Massachusetts, 02454–9110
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern UniversityBoston, Massachusetts, 02115
| | - Dagmar Ringe
- Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWaltham, Massachusetts, 02454–9110
- Department of Chemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWaltham, Massachusetts, 02454–9110
| | - Mary Jo Ondrechen
- Department of Chemistry and Chemical Biology, Northeastern UniversityBoston, Massachusetts, 02115
| |
Collapse
|
26
|
|
27
|
Frushicheva MP, Mills MJL, Schopf P, Singh MK, Warshel A. Computer aided enzyme design and catalytic concepts. Curr Opin Chem Biol 2014; 21:56-62. [PMID: 24814389 PMCID: PMC4149935 DOI: 10.1016/j.cbpa.2014.03.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/19/2014] [Accepted: 03/26/2014] [Indexed: 11/21/2022]
Abstract
Gaining a deeper understanding of enzyme catalysis is of great practical and fundamental importance. Over the years it has become clear that despite advances made in experimental mutational studies, a quantitative understanding of enzyme catalysis will not be possible without the use of computer modeling approaches. While we believe that electrostatic preorganization is by far the most important catalytic factor, convincing the wider scientific community of this may require the demonstration of effective rational enzyme design. Here we make the point that the main current advances in enzyme design are basically advances in directed evolution and that computer aided enzyme design must involve approaches that can reproduce catalysis in well-defined test cases. Such an approach is provided by the empirical valence bond method.
Collapse
Affiliation(s)
- Maria P. Frushicheva
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Matthew J. L. Mills
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Patrick Schopf
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Manoj K. Singh
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
28
|
Natarajan A, Schwans JP, Herschlag D. Using unnatural amino acids to probe the energetics of oxyanion hole hydrogen bonds in the ketosteroid isomerase active site. J Am Chem Soc 2014; 136:7643-54. [PMID: 24787954 PMCID: PMC4046884 DOI: 10.1021/ja413174b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Indexed: 02/04/2023]
Abstract
Hydrogen bonds are ubiquitous in enzyme active sites, providing binding interactions and stabilizing charge rearrangements on substrate groups over the course of a reaction. But understanding the origin and magnitude of their catalytic contributions relative to hydrogen bonds made in aqueous solution remains difficult, in part because of complexities encountered in energetic interpretation of traditional site-directed mutagenesis experiments. It has been proposed for ketosteroid isomerase and other enzymes that active site hydrogen bonding groups provide energetic stabilization via "short, strong" or "low-barrier" hydrogen bonds that are formed due to matching of their pKa or proton affinity to that of the transition state. It has also been proposed that the ketosteroid isomerase and other enzyme active sites provide electrostatic environments that result in larger energetic responses (i.e., greater "sensitivity") to ground-state to transition-state charge rearrangement, relative to aqueous solution, thereby providing catalysis relative to the corresponding reaction in water. To test these models, we substituted tyrosine with fluorotyrosines (F-Tyr's) in the ketosteroid isomerase (KSI) oxyanion hole to systematically vary the proton affinity of an active site hydrogen bond donor while minimizing steric or structural effects. We found that a 40-fold increase in intrinsic F-Tyr acidity caused no significant change in activity for reactions with three different substrates. F-Tyr substitution did not change the solvent or primary kinetic isotope effect for proton abstraction, consistent with no change in mechanism arising from these substitutions. The observed shallow dependence of activity on the pKa of the substituted Tyr residues suggests that the KSI oxyanion hole does not provide catalysis by forming an energetically exceptional pKa-matched hydrogen bond. In addition, the shallow dependence provides no indication of an active site electrostatic environment that greatly enhances the energetic response to charge accumulation, consistent with prior experimental results.
Collapse
Affiliation(s)
- Aditya Natarajan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
| | | | - Daniel Herschlag
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
29
|
Schwans JP, Hanoian P, Lengerich BJ, Sunden F, Gonzalez A, Tsai Y, Hammes-Schiffer S, Herschlag D. Experimental and computational mutagenesis to investigate the positioning of a general base within an enzyme active site. Biochemistry 2014; 53:2541-55. [PMID: 24597914 PMCID: PMC4004248 DOI: 10.1021/bi401671t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The
positioning of catalytic groups within proteins plays an important
role in enzyme catalysis, and here we investigate the positioning
of the general base in the enzyme ketosteroid isomerase (KSI). The
oxygen atoms of Asp38, the general base in KSI, were previously shown
to be involved in anion–aromatic interactions with two neighboring
Phe residues. Here we ask whether those interactions are sufficient,
within the overall protein architecture, to position Asp38 for catalysis
or whether the side chains that pack against Asp38 and/or the residues
of the structured loop that is capped by Asp38 are necessary to achieve
optimal positioning for catalysis. To test positioning, we mutated
each of the aforementioned residues, alone and in combinations, in
a background with the native Asp general base and in a D38E mutant
background, as Glu at position 38 was previously shown to be mispositioned
for general base catalysis. These double-mutant cycles reveal positioning
effects as large as 103-fold, indicating that structural
features in addition to the overall protein architecture and the Phe
residues neighboring the carboxylate oxygen atoms play roles in positioning.
X-ray crystallography and molecular dynamics simulations suggest that
the functional effects arise from both restricting dynamic fluctuations
and disfavoring potential mispositioned states. Whereas it may have
been anticipated that multiple interactions would be necessary for
optimal general base positioning, the energetic contributions from
positioning and the nonadditive nature of these interactions are not
revealed by structural inspection and require functional dissection.
Recognizing the extent, type, and energetic interconnectivity of interactions
that contribute to positioning catalytic groups has implications for
enzyme evolution and may help reveal the nature and extent of interactions
required to design enzymes that rival those found in biology.
Collapse
Affiliation(s)
- Jason P Schwans
- Department of Biochemistry, Stanford University , B400 Beckman Center, 279 Campus Drive, Stanford, California 94305, United States
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Richard JP, Amyes TL, Goryanova B, Zhai X. Enzyme architecture: on the importance of being in a protein cage. Curr Opin Chem Biol 2014; 21:1-10. [PMID: 24699188 DOI: 10.1016/j.cbpa.2014.03.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/01/2014] [Indexed: 11/30/2022]
Abstract
Substrate binding occludes water from the active sites of many enzymes. There is a correlation between the burden to enzymatic catalysis of deprotonation of carbon acids and the substrate immobilization at solvent-occluded active sites for ketosteroid isomerase (KSI--small burden, substrate pKa=13), triosephosphate isomerase (TIM, substrate pKa≈18) and diaminopimelate epimerase (DAP epimerase, large burden, substrate pKa≈29) catalyzed reaction. KSI binds substrates at a surface cleft, TIM binds substrate at an exposed 'cage' formed by closure of flexible loops; and, DAP epimerase binds substrate in a tight cage formed by an 'oyster-like' clamping motion of protein domains. Directed evolution of a solvent-occluded active site at a designed protein catalyst of the Kemp elimination reaction is discussed.
Collapse
Affiliation(s)
- John P Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY 14260-3000, USA.
| | - Tina L Amyes
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY 14260-3000, USA
| | - Bogdana Goryanova
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY 14260-3000, USA
| | - Xiang Zhai
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY 14260-3000, USA
| |
Collapse
|
31
|
Tiwari MK, Kalia VC, Kang YC, Lee JK. Role of a remote leucine residue in the catalytic function of polyol dehydrogenase. ACTA ACUST UNITED AC 2014; 10:3255-63. [DOI: 10.1039/c4mb00459k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study examined the role of remote residues on the structure and function of zinc-dependent polyol dehydrogenases.
Collapse
Affiliation(s)
| | - Vipin C. Kalia
- Microbial Biotechnology and Genomics
- CSIR-Institute of Genomics and Integrative Biology
- Delhi-110007, India
| | - Yun Chan Kang
- Department of Materials Science and Engineering
- Korea University
- Seoul 136-713, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering
- Seoul 143–701, Republic of Korea
| |
Collapse
|
32
|
Shokri A, Wang Y, O’Doherty GA, Wang XB, Kass SR. Hydrogen-Bond Networks: Strengths of Different Types of Hydrogen Bonds and An Alternative to the Low Barrier Hydrogen-Bond Proposal. J Am Chem Soc 2013; 135:17919-24. [DOI: 10.1021/ja408762r] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alireza Shokri
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yanping Wang
- Department
of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - George A. O’Doherty
- Department
of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Xue-Bin Wang
- Chemical
and Materials Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department
of Physics, Washington State University, Richland, Washington 99354, United States
| | - Steven R. Kass
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
33
|
Thermodynamic framework for identifying free energy inventories of enzyme catalytic cycles. Proc Natl Acad Sci U S A 2013; 110:12271-6. [PMID: 23840058 DOI: 10.1073/pnas.1310964110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pauling's suggestion that enzymes are complementary in structure to the activated complexes of the reactions they catalyze has provided the conceptual basis to explain how enzymes obtain their fantastic catalytic prowess, and has served as a guiding principle in drug design for over 50 y. However, this model by itself fails to predict the magnitude of enzymes' rate accelerations. We construct a thermodynamic framework that begins with the classic concept of differential binding but invokes additional terms that are needed to account for subtle effects in the catalytic cycle's proton inventory. Although the model presented can be applied generally, this analysis focuses on ketosteroid isomerase (KSI) as an example, where recent experiments along with a large body of kinetic and thermodynamic data have provided strong support for the noncanonical thermodynamic contribution described. The resulting analysis precisely predicts the free energy barrier of KSI's reaction as determined from transition-state theory using only empirical thermodynamic data. This agreement is suggestive that a complete free energy inventory of the KSI catalytic cycle has been identified.
Collapse
|
34
|
Use of anion-aromatic interactions to position the general base in the ketosteroid isomerase active site. Proc Natl Acad Sci U S A 2013; 110:11308-13. [PMID: 23798413 DOI: 10.1073/pnas.1206710110] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the cation-pi pair, formed between a side chain or substrate cation and the negative electrostatic potential of a pi system on the face of an aromatic ring, has been widely discussed and has been shown to be important in protein structure and protein-ligand interactions, there has been little discussion of the potential structural and functional importance in proteins of the related anion-aromatic pair (i.e., interaction of a negatively charged group with the positive electrostatic potential on the ring edge of an aromatic group). We posited, based on prior structural information, that anion-aromatic interactions between the anionic Asp general base and Phe54 and Phe116 might be used instead of a hydrogen-bond network to position the general base in the active site of ketosteroid isomerase from Comamonas testosteroni as there are no neighboring hydrogen-bonding groups. We have tested the role of the Phe residues using site-directed mutagenesis, double-mutant cycles, and high-resolution X-ray crystallography. These results indicate a catalytic role of these Phe residues. Extensive analysis of the Protein Data Bank provides strong support for a catalytic role of these and other Phe residues in providing anion-aromatic interactions that position anionic general bases within enzyme active sites. Our results further reveal a potential selective advantage of Phe in certain situations, relative to more traditional hydrogen-bonding groups, because it can simultaneously aid in the binding of hydrophobic substrates and positioning of a neighboring general base.
Collapse
|
35
|
Abstract
Linus Pauling proposed that the large rate accelerations for enzymes are caused by the high specificity of the protein catalyst for binding the reaction transition state. The observation that stable analogues of the transition states for enzymatic reactions often act as tight-binding inhibitors provided early support for this simple and elegant proposal. We review experimental results that support the proposal that Pauling's model provides a satisfactory explanation for the rate accelerations for many heterolytic enzymatic reactions through high-energy reaction intermediates, such as proton transfer and decarboxylation. Specificity in transition state binding is obtained when the total intrinsic binding energy of the substrate is significantly larger than the binding energy observed at the Michaelis complex. The results of recent studies that aimed to characterize the specificity in binding of the enolate oxygen at the transition state for the 1,3-isomerization reaction catalyzed by ketosteroid isomerase are reviewed. Interactions between pig heart succinyl-coenzyme A:3-oxoacid coenzyme A transferase (SCOT) and the nonreacting portions of coenzyme A (CoA) are responsible for a rate increase of 3 × 10(12)-fold, which is close to the estimated total 5 × 10(13)-fold enzymatic rate acceleration. Studies that partition the interactions between SCOT and CoA into their contributing parts are reviewed. Interactions of the protein with the substrate phosphodianion group provide an ~12 kcal/mol stabilization of the transition state for the reactions catalyzed by triosephosphate isomerase, orotidine 5'-monophosphate decarboxylase, and α-glycerol phosphate dehydrogenase. The interactions of these enzymes with the substrate piece phosphite dianion provide a 6-8 kcal/mol stabilization of the transition state for reaction of the appropriate truncated substrate. Enzyme activation by phosphite dianion reflects the higher dianion affinity for binding to the enzyme-transition state complex compared with that of the free enzyme. Evidence is presented that supports a model in which the binding energy of the phosphite dianion piece, or the phosphodianion group of the whole substrate, is utilized to drive an enzyme conformational change from an inactive open form E(O) to an active closed form E(C), by closure of a phosphodianion gripper loop. Members of the enolase and haloalkanoic acid dehalogenase superfamilies use variable capping domains to interact with nonreacting portions of the substrate and sequester the substrate from interaction with bulk solvent. Interactions of this capping domain with the phenyl group of mandelate have been shown to activate mandelate racemase for catalysis of deprotonation of α-carbonyl carbon. We propose that an important function of these capping domains is to utilize the binding interactions with nonreacting portions of the substrate to activate the enzyme for catalysis.
Collapse
Affiliation(s)
- Tina L. Amyes
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000
| | - John P. Richard
- To whom correspondence should be addressed: Tel: (716) 645 4232; Fax: (716) 645 6963;
| |
Collapse
|
36
|
Herschlag D, Natarajan A. Fundamental challenges in mechanistic enzymology: progress toward understanding the rate enhancements of enzymes. Biochemistry 2013; 52:2050-67. [PMID: 23488725 DOI: 10.1021/bi4000113] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzymes are remarkable catalysts that lie at the heart of biology, accelerating chemical reactions to an astounding extent with extraordinary specificity. Enormous progress in understanding the chemical basis of enzymatic transformations and the basic mechanisms underlying rate enhancements over the past decades is apparent. Nevertheless, it has been difficult to achieve a quantitative understanding of how the underlying mechanisms account for the energetics of catalysis, because of the complexity of enzyme systems and the absence of underlying energetic additivity. We review case studies from our own work that illustrate the power of precisely defined and clearly articulated questions when dealing with such complex and multifaceted systems, and we also use this approach to evaluate our current ability to design enzymes. We close by highlighting a series of questions that help frame some of what remains to be understood, and we encourage the reader to define additional questions and directions that will deepen and broaden our understanding of enzymes and their catalysis.
Collapse
Affiliation(s)
- Daniel Herschlag
- Department of Biochemistry, Stanford University School of Medicine , Stanford, California 94305, United States
| | | |
Collapse
|
37
|
van der Kamp MW, Chaudret R, Mulholland AJ. QM/MM modelling of ketosteroid isomerase reactivity indicates that active site closure is integral to catalysis. FEBS J 2013; 280:3120-31. [PMID: 23356661 DOI: 10.1111/febs.12158] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/18/2013] [Accepted: 01/25/2013] [Indexed: 11/29/2022]
Abstract
Ketosteroid isomerase (Δ⁵-3-keto steroid isomerase or steroid Δ-isomerase) is a highly efficient enzyme at the centre of current debates on enzyme catalysis. We have modelled the reaction mechanism of the isomerization of 3-oxo-Δ⁵-steroids into their Δ⁴-conjugated isomers using high-level combined quantum mechanics/molecular mechanics (QM/MM) methods, and semi-empirical QM/MM molecular dynamics simulations. Energy profiles were obtained at various levels of QM theory (AM1, B3LYP and SCS-MP2). The high-level QM/MM profile is consistent with experimental data. QM/MM dynamics simulations indicate that active site closure and desolvation of the catalytic Asp38 occur before or during formation of dienolate intermediates. These changes have a significant effect on the reaction barrier. A low barrier to reaction is found only when the active site is closed, poising it for catalysis. This conformational change is thus integral to the whole process. The effects on the barrier are apparently largely due to changes in solvation. The combination of high-level QM/MM energy profiles and QM/MM dynamics simulation shows that the reaction involves active site closure, desolvation of the catalytic base, efficient isomerization and re-opening of the active site. These changes highlight the transition between the ligand binding/releasing form and the catalytic form of the enzyme. The results demonstrate that electrostatic interactions (as a consequence of pre-organization of the active site) are crucial for stabilization during the chemical reaction step, but closure of the active site is essential for efficient catalysis to occur.
Collapse
Affiliation(s)
- Marc W van der Kamp
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
38
|
Ruben EA, Schwans JP, Sonnett M, Natarajan A, Gonzalez A, Tsai Y, Herschlag D. Ground state destabilization from a positioned general base in the ketosteroid isomerase active site. Biochemistry 2013; 52:1074-81. [PMID: 23311398 DOI: 10.1021/bi301348x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We compared the binding affinities of ground state analogues for bacterial ketosteroid isomerase (KSI) with a wild-type anionic Asp general base and with uncharged Asn and Ala in the general base position to provide a measure of potential ground state destabilization that could arise from the close juxtaposition of the anionic Asp and hydrophobic steroid in the reaction's Michaelis complex. The analogue binding affinity increased ~1 order of magnitude for the Asp38Asn mutation and ~2 orders of magnitude for the Asp38Ala mutation, relative to the affinity with Asp38, for KSI from two sources. The increased level of binding suggests that the abutment of a charged general base and a hydrophobic steroid is modestly destabilizing, relative to a standard state in water, and that this destabilization is relieved in the transition state and intermediate in which the charge on the general base has been neutralized because of proton abstraction. Stronger binding also arose from mutation of Pro39, the residue adjacent to the Asp general base, consistent with an ability of the Asp general base to now reorient to avoid the destabilizing interaction. Consistent with this model, the Pro mutants reduced or eliminated the increased level of binding upon replacement of Asp38 with Asn or Ala. These results, supported by additional structural observations, suggest that ground state destabilization from the negatively charged Asp38 general base provides a modest contribution to KSI catalysis. They also provide a clear illustration of the well-recognized concept that enzymes evolve for catalytic function and not, in general, to maximize ground state binding. This ground state destabilization mechanism may be common to the many enzymes with anionic side chains that deprotonate carbon acids.
Collapse
Affiliation(s)
- Eliza A Ruben
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Phosphoryl transfer plays key roles in signaling, energy transduction, protein synthesis, and maintaining the integrity of the genetic material. On the surface, it would appear to be a simple nucleophile displacement reaction. However, this simplicity is deceptive, as, even in aqueous solution, the low-lying d-orbitals on the phosphorus atom allow for eight distinct mechanistic possibilities, before even introducing the complexities of the enzyme catalyzed reactions. To further complicate matters, while powerful, traditional experimental techniques such as the use of linear free-energy relationships (LFER) or measuring isotope effects cannot make unique distinctions between different potential mechanisms. A quarter of a century has passed since Westheimer wrote his seminal review, 'Why Nature Chose Phosphate' (Science 235 (1987), 1173), and a lot has changed in the field since then. The present review revisits this biologically crucial issue, exploring both relevant enzymatic systems as well as the corresponding chemistry in aqueous solution, and demonstrating that the only way key questions in this field are likely to be resolved is through careful theoretical studies (which of course should be able to reproduce all relevant experimental data). Finally, we demonstrate that the reason that nature really chose phosphate is due to interplay between two counteracting effects: on the one hand, phosphates are negatively charged and the resulting charge-charge repulsion with the attacking nucleophile contributes to the very high barrier for hydrolysis, making phosphate esters among the most inert compounds known. However, biology is not only about reducing the barrier to unfavorable chemical reactions. That is, the same charge-charge repulsion that makes phosphate ester hydrolysis so unfavorable also makes it possible to regulate, by exploiting the electrostatics. This means that phosphate ester hydrolysis can not only be turned on, but also be turned off, by fine tuning the electrostatic environment and the present review demonstrates numerous examples where this is the case. Without this capacity for regulation, it would be impossible to have for instance a signaling or metabolic cascade, where the action of each participant is determined by the fine-tuned activity of the previous piece in the production line. This makes phosphate esters the ideal compounds to facilitate life as we know it.
Collapse
|
40
|
Lee JH, Deng L. Asymmetric approach toward chiral cyclohex-2-enones from anisoles via an enantioselective isomerization by a new chiral diamine catalyst. J Am Chem Soc 2012; 134:18209-12. [PMID: 23043531 PMCID: PMC3492513 DOI: 10.1021/ja308623n] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A 3-step asymmetric approach toward the optically active chiral cyclohex-2-enones from anisoles has been developed. The crucial asymmetric induction step is an unprecedented catalytic enantioselective isomerization of β,γ-unsaturated cyclohex-3-en-1-ones to the corresponding α,β-unsaturated chiral enones. This new asymmetric transformation was realized by cooperative iminium-base catalysis with an electronically tunable new organic catalyst. The synthetic utility of this methodology is highlighted by the enantioselective total synthesis of (-)-isoacanthodoral.
Collapse
Affiliation(s)
- Jung Hwa Lee
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Li Deng
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| |
Collapse
|
41
|
Barrozo A, Borstnar R, Marloie G, Kamerlin SCL. Computational protein engineering: bridging the gap between rational design and laboratory evolution. Int J Mol Sci 2012. [PMID: 23202907 PMCID: PMC3497281 DOI: 10.3390/ijms131012428] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Enzymes are tremendously proficient catalysts, which can be used as extracellular catalysts for a whole host of processes, from chemical synthesis to the generation of novel biofuels. For them to be more amenable to the needs of biotechnology, however, it is often necessary to be able to manipulate their physico-chemical properties in an efficient and streamlined manner, and, ideally, to be able to train them to catalyze completely new reactions. Recent years have seen an explosion of interest in different approaches to achieve this, both in the laboratory, and in silico. There remains, however, a gap between current approaches to computational enzyme design, which have primarily focused on the early stages of the design process, and laboratory evolution, which is an extremely powerful tool for enzyme redesign, but will always be limited by the vastness of sequence space combined with the low frequency for desirable mutations. This review discusses different approaches towards computational enzyme design and demonstrates how combining newly developed screening approaches that can rapidly predict potential mutation “hotspots” with approaches that can quantitatively and reliably dissect the catalytic step can bridge the gap that currently exists between computational enzyme design and laboratory evolution studies.
Collapse
Affiliation(s)
- Alexandre Barrozo
- Department of Cell and Molecular Biology, Uppsala Biomedical Center (BMC), Uppsala University, Box 596, S-751 24 Uppsala, Sweden; E-Mails: (A.B.); (R.B.); (G.M.)
| | - Rok Borstnar
- Department of Cell and Molecular Biology, Uppsala Biomedical Center (BMC), Uppsala University, Box 596, S-751 24 Uppsala, Sweden; E-Mails: (A.B.); (R.B.); (G.M.)
- Laboratory for Biocomputing and Bioinformatics, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Gaël Marloie
- Department of Cell and Molecular Biology, Uppsala Biomedical Center (BMC), Uppsala University, Box 596, S-751 24 Uppsala, Sweden; E-Mails: (A.B.); (R.B.); (G.M.)
| | - Shina Caroline Lynn Kamerlin
- Department of Cell and Molecular Biology, Uppsala Biomedical Center (BMC), Uppsala University, Box 596, S-751 24 Uppsala, Sweden; E-Mails: (A.B.); (R.B.); (G.M.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +46-18-471-4423; Fax: +46-18-530-396
| |
Collapse
|
42
|
Shokri A, Schmidt J, Wang XB, Kass SR. Hydrogen Bonded Arrays: The Power of Multiple Hydrogen Bonds. J Am Chem Soc 2012; 134:2094-9. [DOI: 10.1021/ja2081907] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Alireza Shokri
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455,
United States
| | - Jacob Schmidt
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455,
United States
| | - Xue-Bin Wang
- Chemical & Materials Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MS K8-88 Richland, Washington 99352, United States, and Department of Physics, Washington State University, 2710 University Drive, Richland, Washington 99354, United States
| | - Steven R. Kass
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455,
United States
| |
Collapse
|
43
|
Fried SD, Boxer SG. Evaluation of the energetics of the concerted acid-base mechanism in enzymatic catalysis: the case of ketosteroid isomerase. J Phys Chem B 2012; 116:690-7. [PMID: 22148842 PMCID: PMC3257410 DOI: 10.1021/jp210544w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Structures of enzymes invariably reveal the proximity of acidic and basic residues to reactive sites on the substrate, so it is natural and common to suggest that enzymes employ concerted mechanisms to catalyze their difficult reactions. Ketosteroid isomerase (KSI) has served as a paradigm of enzymatic proton transfer chemistry, and its catalytic effect has previously been attributed to concerted proton transfer. We employ a specific inhibitor that contains an IR probe that reports directly and quantitatively on the ionization state of the ligand when bound in the active site of KSI. Measurement of the fractional ionization provides a missing link in a thermodynamic cycle that can discriminate the free energy advantage of a concerted versus nonconcerted mechanism. It is found that the maximum thermodynamic advantage that KSI could capture from a concerted mechanism (ΔΔG° = 0.5 kcal mol(-1)) is quite small.
Collapse
Affiliation(s)
- Stephen D. Fried
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080
| |
Collapse
|
44
|
Schwans JP, Sunden F, Gonzalez A, Tsai Y, Herschlag D. Evaluating the catalytic contribution from the oxyanion hole in ketosteroid isomerase. J Am Chem Soc 2011; 133:20052-5. [PMID: 22053826 PMCID: PMC3241876 DOI: 10.1021/ja208050t] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prior site-directed mutagenesis studies in bacterial ketosteroid isomerase (KSI) reported that substitution of both oxyanion hole hydrogen bond donors gives a 10(5)- to 10(8)-fold rate reduction, suggesting that the oxyanion hole may provide the major contribution to KSI catalysis. But these seemingly conservative mutations replaced the oxyanion hole hydrogen bond donors with hydrophobic side chains that could lead to suboptimal solvation of the incipient oxyanion in the mutants, thereby potentially exaggerating the apparent energetic benefit of the hydrogen bonds relative to water-mediated hydrogen bonds in solution. We determined the functional and structural consequences of substituting the oxyanion hole hydrogen bond donors and several residues surrounding the oxyanion hole with smaller residues in an attempt to create a local site that would provide interactions more analogous to those in aqueous solution. These more drastic mutations created an active-site cavity estimated to be ~650 Å(3) and sufficient for occupancy by 15-17 water molecules and led to a rate decrease of only ~10(3)-fold for KSI from two different species, a much smaller effect than that observed from more traditional conservative mutations. The results underscore the strong context dependence of hydrogen bond energetics and suggest that the oxyanion hole provides an important, but moderate, catalytic contribution relative to the interactions in the corresponding solution reaction.
Collapse
Affiliation(s)
- Jason P. Schwans
- Department of Biochemistry, Stanford University, Stanford, CA 94305
| | - Fanny Sunden
- Department of Biochemistry, Stanford University, Stanford, CA 94305
| | - Ana Gonzalez
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025
| | - Yingssu Tsai
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA 94305
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025
| |
Collapse
|
45
|
Warshel A, Dryga A. Simulating electrostatic energies in proteins: perspectives and some recent studies of pKas, redox, and other crucial functional properties. Proteins 2011; 79:3469-84. [PMID: 21910139 DOI: 10.1002/prot.23125] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 05/09/2011] [Accepted: 06/09/2011] [Indexed: 01/30/2023]
Abstract
Electrostatic energies provide what is arguably the most effective tool for structure-function correlation of biological molecules. Here, we provide an overview of the current state-of-the-art simulations of electrostatic energies in macromolecules, emphasizing the microscopic perspective but also relating it to macroscopic approaches. We comment on the convergence issue and other problems of the microscopic models and the ways of keeping the microscopic physics while moving to semi-macroscopic directions. We discuss the nature of the protein dielectric "constants" reiterating our long-standing point that the dielectric "constants" in semi-macroscopic models depend on the definition and the specific treatment. The advances and the challenges in the field are illustrated considering different functional properties including pK(a)'s, redox potentials, ion and proton channels, enzyme catalysis, ligand binding, and protein stability. We emphasize the microscopic overcharging approach for studying pK(a) 's of internal groups in proteins and give a demonstration of power of this approach. We also emphasize recent advances in coarse grained models with a physically based electrostatic treatment and provide some examples including further directions in treating voltage activated ion channels.
Collapse
Affiliation(s)
- Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, USA.
| | | |
Collapse
|
46
|
Hanoian P, Hammes-Schiffer S. Water in the active site of ketosteroid isomerase. Biochemistry 2011; 50:6689-700. [PMID: 21710970 DOI: 10.1021/bi200703y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Classical molecular dynamics simulations were utilized to investigate the structural and dynamical properties of water in the active site of ketosteroid isomerase (KSI) to provide insight into the role of these water molecules in the enzyme-catalyzed reaction. This reaction is thought to proceed via a dienolate intermediate that is stabilized by hydrogen bonding with residues Tyr16 and Asp103. A comparative study was performed for the wild-type (WT) KSI and the Y16F, Y16S, and Y16F/Y32F/Y57F (FFF) mutants. These systems were studied with three different bound ligands: equilenin, which is an intermediate analog, and the intermediate states of two steroid substrates. Several distinct water occupation sites were identified in the active site of KSI for the WT and mutant systems. Three additional sites were identified in the Y16S mutant that were not occupied in WT KSI or the other mutants studied. The number of water molecules directly hydrogen bonded to the ligand oxygen was approximately two in the Y16S mutant and one in the Y16F and FFF mutants, with intermittent hydrogen bonding of one water molecule in WT KSI. The molecular dynamics trajectories of the Y16F and FFF mutants reproduced the small conformational changes of residue 16 observed in the crystal structures of these two mutants. Quantum mechanical/molecular mechanical calculations of (1)H NMR chemical shifts of the protons in the active site hydrogen-bonding network suggest that the presence of water in the active site does not prevent the formation of short hydrogen bonds with far-downfield chemical shifts. The molecular dynamics simulations indicate that the active site water molecules exchange much more frequently for WT KSI and the FFF mutant than for the Y16F and Y16S mutants. This difference is most likely due to the hydrogen-bonding interaction between Tyr57 and an active site water molecule that is persistent in the Y16F and Y16S mutants but absent in the FFF mutant and significantly less probable in WT KSI.
Collapse
Affiliation(s)
- Philip Hanoian
- Department of Chemistry, 104 Chemistry Building, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
47
|
The empirical valence bond model: theory and applications. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2011. [DOI: 10.1002/wcms.10] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Kamerlin SCL, Chu ZT, Warshel A. On catalytic preorganization in oxyanion holes: highlighting the problems with the gas-phase modeling of oxyanion holes and illustrating the need for complete enzyme models. J Org Chem 2010; 75:6391-401. [PMID: 20825150 PMCID: PMC2945449 DOI: 10.1021/jo100651s] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxyanion holes play a major role in catalyzing enzymatic reactions, yet the corresponding energetics is frequently misunderstood. The main problem may be associated with the nontrivial nature of the electrostatic preorganization effect, without following the relevant formulation. That is, although the energetics of oxyanion holes have been fully quantified in early studies (which include both the enzymatic and reference solution reactions), the findings of these studies are sometimes overlooked, and, in some cases, it is assumed that gas-phase calculations with a fixed model of an oxyanion hole are sufficient for assessing the corresponding effect in the protein. Herein, we present a systematic analysis of this issue, clarifying the problems associated with modeling oxyanions by means of two fixed water molecules (or related constructs). We then re-emphasize the point that the effect of the oxyanion hole is mainly due to the fact that the relevant dipoles are already set in an orientation that stabilizes the TS charges, whereas the corresponding dipoles in solution are randomly oriented, resulting in the need to pay a very large reorganization energy. Simply calculating interaction energies with relatively fixed species cannot capture this crucial point, and considering it may help in advancing rational enzyme design.
Collapse
Affiliation(s)
- Shina C. L. Kamerlin
- Department of Chemistry (SGM418), University of Southern California, 3620 McClintock Ave., Los Angeles CA-90089, USA
| | - Zhen T. Chu
- Department of Chemistry (SGM418), University of Southern California, 3620 McClintock Ave., Los Angeles CA-90089, USA
| | - A. Warshel
- Department of Chemistry (SGM418), University of Southern California, 3620 McClintock Ave., Los Angeles CA-90089, USA
| |
Collapse
|
49
|
Simón L, Goodman JM. Enzyme catalysis by hydrogen bonds: the balance between transition state binding and substrate binding in oxyanion holes. J Org Chem 2010; 75:1831-40. [PMID: 20039621 DOI: 10.1021/jo901503d] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxyanion holes stabilize oxygen anions in transition states. Data have been gathered both from enzyme structures and from corresponding structures from the Cambridge Crystallographic Database. The two data sets show a striking contrast. The small molecule interactions in the Cambridge database optimize hydrogen bonding. The enzyme active sites do not. Analyzing the data with the help of DFT calculations on theozyme-like models, we conclude that enzymes have not optimized binding to the transition state structures in reaction pathways involving oxyanion holes, because the best binding arrangement for the anions also optimizes binding for the starting materials of the reactions. Instead, enzymes arrange the hydrogen bonds so that the oxyanions are stabilized reasonably, but suboptimally, in order to avoid overstabilization of the ground state.
Collapse
Affiliation(s)
- Luis Simón
- Unilever Centre for Molecular Science Informatics, Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | | |
Collapse
|
50
|
Kamerlin SCL, Warshel A. At the dawn of the 21st century: Is dynamics the missing link for understanding enzyme catalysis? Proteins 2010; 78:1339-75. [PMID: 20099310 PMCID: PMC2841229 DOI: 10.1002/prot.22654] [Citation(s) in RCA: 356] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Enzymes play a key role in almost all biological processes, accelerating a variety of metabolic reactions as well as controlling energy transduction, the transcription, and translation of genetic information, and signaling. They possess the remarkable capacity to accelerate reactions by many orders of magnitude compared to their uncatalyzed counterparts, making feasible crucial processes that would otherwise not occur on biologically relevant timescales. Thus, there is broad interest in understanding the catalytic power of enzymes on a molecular level. Several proposals have been put forward to try to explain this phenomenon, and one that has rapidly gained momentum in recent years is the idea that enzyme dynamics somehow contributes to catalysis. This review examines the dynamical proposal in a critical way, considering basically all reasonable definitions, including (but not limited to) such proposed effects as "coupling between conformational and chemical motions," "landscape searches" and "entropy funnels." It is shown that none of these proposed effects have been experimentally demonstrated to contribute to catalysis, nor are they supported by consistent theoretical studies. On the other hand, it is clarified that careful simulation studies have excluded most (if not all) dynamical proposals. This review places significant emphasis on clarifying the role of logical definitions of different catalytic proposals, and on the need for a clear formulation in terms of the assumed potential surface and reaction coordinate. Finally, it is pointed out that electrostatic preorganization actually accounts for the observed catalytic effects of enzymes, through the corresponding changes in the activation free energies.
Collapse
Affiliation(s)
- Shina C. L. Kamerlin
- Department of Chemistry, University of Southern California, 3620 McClintock Ave., Los Angeles CA-90089, USA
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, 3620 McClintock Ave., Los Angeles CA-90089, USA
| |
Collapse
|