1
|
Xia Y, Xu J, Li J, Chen B, Dai Y, Zare RN. Visualization of the Charging of Water Droplets Sprayed into Air. J Phys Chem A 2024; 128:5684-5690. [PMID: 38968601 DOI: 10.1021/acs.jpca.4c02981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Water droplets are spraying into air using air as a nebulizing gas, and the droplets pass between two parallel metal plates with opposite charges. A high-speed camera records droplet trajectories in the uniform electric field, providing visual evidence for the Lenard effect, that is, smaller droplets are negatively charged whereas larger droplets are positively charged. By analyzing the velocities of the droplets between the metal plates, the charges on the droplets can be estimated. Some key observations include: (1) localized electric fields with intensities on the order of 109 V/m are generated, and charges are expected to jump (micro-lightening) between a positively charged larger droplet and the negatively charged smaller droplet as they separate; (2) the strength of the electric field is sufficiently powerful to ionize gases surrounding the droplets; and (3) observations in an open-air mass spectrometer reveal the presence of ions such as N2+, O2+, NO+, and NO2+. These findings provide new insight into the origins of some atmospheric ions and have implications for understanding ionization processes in the atmosphere and chemical transformations in water droplets, advancing knowledge in the field of aerosol science and water microdroplet chemistry.
Collapse
Affiliation(s)
- Yu Xia
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, P. R. China
| | - Jinheng Xu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Juan Li
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, P. R. China
| | - Bolei Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, P. R. China
| | - Yifan Dai
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Knorr N, Rosselli S, Nelles G. Electrostatic Surface Charging by Water Dewetting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14321-14333. [PMID: 38967322 DOI: 10.1021/acs.langmuir.4c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Water dewetting generates static electricity. We reviewed historical experiments of this phenomenon, and we studied the charging of polymer slides and metal electrode supported polymer films withdrawn vertically from a pool of aqueous solutions. For pure water, charging was negative and surface charge densities increased with the speed of dewetting, which we explain by the thermally activated entrainment of nanometer-sized water droplets or clusters charged by unbalanced adsorbed electric double-layer ions. Surface charge densities increased for reduced polymer film thickness following a power law, which we explain by reduced discharge of the entrained water volumes. At low salinity c ≲ 10 μM, charging was proportional to electrokinetic interfacial charge densities: the negative charging was increased for alkaline solutions and for most salts at μM concentrations and the charge polarity was inversed to positive for a cationic surfactant, a salt with a highly positively charged cation, and for a strong acid at approximately pH 4. Charging was reduced again for c ≳ 100 μM, especially at high dewetting speeds and for chaotropic ions, which we explain by the entrainment of larger and more discharged droplets. We determined adsorption energies of the charged water clusters on the dewetted surface from thermally stimulated discharge of the charged polymer slides and we show that the surface charge distribution, imaged by charged toner powders and measured microscopically by Kelvin probe force microscopy, is a record of the dewetting process that provides spatial and kinetic information about the three-phase contact line motion.
Collapse
Affiliation(s)
- Nikolaus Knorr
- Stuttgart Laboratory 2, Sony Europe B.V., Hedelfinger Strasse 61, Stuttgart D-70327, Germany
| | - Silvia Rosselli
- Stuttgart Laboratory 2, Sony Europe B.V., Hedelfinger Strasse 61, Stuttgart D-70327, Germany
| | - Gabriele Nelles
- Stuttgart Laboratory 2, Sony Europe B.V., Hedelfinger Strasse 61, Stuttgart D-70327, Germany
| |
Collapse
|
3
|
Le KCM, Tran ATQ, Vu MP, Duong PVQ, Nguyen KT. Preventing Static Biofilm Formation of Staphylococcus aureus on Different Types of Surfaces Using Microbubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1698-1706. [PMID: 38198688 DOI: 10.1021/acs.langmuir.3c02773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Bacterial fouling and biofilm formation on surfaces have been ongoing problems in real life as well as in the medical field. Different approaches have been taken to tackle the issues, from costly surface modification to antibiotic-delivering strategies. In this study, we examined the potential of using stabilized microbubbles (MBs) to shield against bacterial adhesion. Three types of surfaces were tested: hydrophilic glass (hydrophilic surface), neutral hydrophobic polystyrene (PS)-coated surfaces, and negatively charged hydrophobic octadecyltrichlorosilane (OTS)-coated surfaces. By evaluating the colony-forming unit (CFU) values from each surface, MBs stabilized by 0.05 mM SDS were shown to only produce significant reduction of Staphylococcus aureus adhesion on PS surfaces, up to 60.29 and 82.32% compared to no-MB PS surfaces, and no-MB uncoated surfaces, correspondingly, due to the appropriate size, stability, and negative charges of the MB shielding layer. On the other hand, OTS coatings had an intrinsic antiadhesion effect (69.83% compared to uncoated surface), given that the negatively charged OTS-aqueous interface or surface porosity nature of the coating prohibited the attachment of MBs, leading to the elimination of the antifouling effect of MBs. Ultimately, MBs gave better shielding results than surface modification when compared to uncoated surfaces and hence can be applied more widely.
Collapse
Affiliation(s)
- Khoa C M Le
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Anh T Q Tran
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Mai P Vu
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Phuong V Q Duong
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Khoi T Nguyen
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| |
Collapse
|
4
|
Patra A, Bandyopadhyay A, Roy S, Mondal JA. Origin of Strong Hydrogen Bonding and Preferred Orientation of Water at Uncharged Polyethylene Glycol Polymer/Water Interface. J Phys Chem Lett 2023; 14:11359-11366. [PMID: 38065092 DOI: 10.1021/acs.jpclett.3c03098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Polyethylene glycol (PEG), a water-soluble non-ionic polymer, finds diverse applications from Li-ion batteries to drug delivery. The effectiveness of PEG in these contexts hinges on water's behavior at PEG/water interfaces. Employing heterodyne-detected vibrational sum frequency generation and Raman spectroscopy along with a novel analytical approach, termed difference spectroscopy with simultaneous curve-fitting analysis, we observed that water exhibits both "hydrogen-up" and "hydrogen-down" orientations at PEG(≥400u)/water interfaces. As the molar mass of PEG increases, the contribution of the strongly hydrogen-bonded and H-up-oriented water rises. We propose that the PEG-affected interfacial water originates from the asymmetrical hydration of the surface-adsorbed PEG, as evidenced by the resemblance between the water spectra in the hydration shell of PEG and those at the PEG/water interface. These findings elucidate the molecular mechanism underlying PEG's catalytic role in water splitting at membrane interfaces.
Collapse
Affiliation(s)
- Animesh Patra
- School of Chemistry, Centre for Excellence in Basic Sciences, Mumbai 400098, India
| | - Anisha Bandyopadhyay
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Trombay, Mumbai 400085, India
| | - Subhadip Roy
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Trombay, Mumbai 400085, India
| | - Jahur Alam Mondal
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Trombay, Mumbai 400085, India
| |
Collapse
|
5
|
Li X, Ratschow AD, Hardt S, Butt HJ. Surface Charge Deposition by Moving Drops Reduces Contact Angles. PHYSICAL REVIEW LETTERS 2023; 131:228201. [PMID: 38101382 DOI: 10.1103/physrevlett.131.228201] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/19/2023] [Indexed: 12/17/2023]
Abstract
Slide electrification-the spontaneous charge separation by sliding aqueous drops-can lead to an electrostatic potential in the order of 1 kV and change drop motion substantially. To find out how slide electrification influences the contact angles of moving drops, we analyzed the dynamic contact angles of aqueous drops sliding down tilted plates with insulated surfaces, grounded surfaces, and while grounding the drop. The observed decrease in dynamic contact angles at different salt concentrations is attributed to two effects: An electrocapillary reduction of contact angles caused by drop charging and a change in the free surface energy of the solid due to surface charging.
Collapse
Affiliation(s)
- Xiaomei Li
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Aaron D Ratschow
- Institute for Nano- and Microfluidics, TU Darmstadt, Peter-Grünberg-Str. 10, D-64289 Darmstadt, Germany
| | - Steffen Hardt
- Institute for Nano- and Microfluidics, TU Darmstadt, Peter-Grünberg-Str. 10, D-64289 Darmstadt, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
6
|
Shultz MJ, Bisson P, Wang J, Marmolejos J, Davies RG, Gubbins E, Xiong Z. High phase resolution: Probing interactions in complex interfaces with sum frequency generation. Biointerphases 2023; 18:058502. [PMID: 37902617 DOI: 10.1116/6.0002963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
An often-quoted statement attributed to Wolfgang Pauli is that God made the bulk, but the surface was invented by the devil. Although humorous, the statement really reflects frustration in developing a detailed picture of a surface. In the last several decades, that frustration has begun to abate with numerous techniques providing clues to interactions and reactions at surfaces. Often these techniques require considerable prior knowledge. Complex mixtures on irregular or soft surfaces-complex interfaces-thus represent the last frontier. Two optical techniques: sum frequency generation (SFG) and second harmonic generation (SHG) are beginning to lift the veil on complex interfaces. Of these techniques, SFG with one excitation in the infrared has the potential to provide exquisite molecular- and moiety-specific vibrational data. This Perspective is intended both to aid newcomers in gaining traction in this field and to demonstrate the impact of high-phase resolution. It starts with a basic description of light-induced surface polarization that is at the heart of SFG. The sum frequency is generated when the input fields are sufficiently intense that the interaction is nonlinear. This nonlinearity represents a challenge for disentangling data to reveal the molecular-level picture. Three, high-phase-resolution methods that reveal interactions at the surface are described.
Collapse
Affiliation(s)
- Mary Jane Shultz
- Laboratory for Water and Surface Studies, Tufts University, Pearson Laboratory, 62 Talbot Ave., Medford, Massachusetts 02155
| | - Patrick Bisson
- Cambridge Polymer Group, Inc., 100 Trade Center Drive, Suite 200, Woburn, Massachusetts 01801
| | - Jing Wang
- Laboratory for Water and Surface Studies, Tufts University, Pearson Laboratory, 62 Talbot Ave., Medford, Massachusetts 02155
| | - Joam Marmolejos
- Laboratory for Water and Surface Studies, Tufts University, Pearson Laboratory, 62 Talbot Ave., Medford, Massachusetts 02155
| | - Rebecca G Davies
- Laboratory for Water and Surface Studies, Tufts University, Pearson Laboratory, 62 Talbot Ave., Medford, Massachusetts 02155
| | - Emma Gubbins
- Laboratory for Water and Surface Studies, Tufts University, Pearson Laboratory, 62 Talbot Ave., Medford, Massachusetts 02155
| | - Ziqing Xiong
- Laboratory for Water and Surface Studies, Tufts University, Pearson Laboratory, 62 Talbot Ave., Medford, Massachusetts 02155
| |
Collapse
|
7
|
Kaku Y, Isobe N, Ogawa NO, Ohkouchi N, Ikuta T, Saito T, Fujisawa S. Chitin nanofiber-coated biodegradable polymer microparticles via one-pot aqueous process. Carbohydr Polym 2023; 312:120828. [PMID: 37059556 DOI: 10.1016/j.carbpol.2023.120828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
Tailoring the surface of biodegradable microparticles is important for various applications in the fields of cosmetics, biotechnology, and drug delivery. Chitin nanofibers (ChNFs) are one of the promising materials for surface tailoring owing to its functionality, such as biocompatibility and antibiotic properties. Here, we show biodegradable polymer microparticles densely coated with ChNFs. Cellulose acetate (CA) was used as the core material in this study, and ChNF coating was successfully carried out via a one-pot aqueous process. The average particle size of the ChNF-coated CA microparticles was approximately 6 μm, and the coating procedure had little effect on the size or shape of the original CA microparticles. The ChNF-coated CA microparticles comprised 0.2-0.4 wt% of the thin surface ChNF layers. Owing to the surface cationic ChNFs, the ζ-potential value of the ChNF-coated microparticles was +27.4 mV. The surface ChNF layer efficiently adsorbed anionic dye molecules, and repeatable adsorption/desorption behavior was exhibited owing to the coating stability of the surface ChNFs. The ChNF coating in this study was a facile aqueous process and was applicable to CA-based materials of various sizes and shapes. This versatility will open new possibilities for future biodegradable polymer materials that satisfy the increasing demand for sustainable development.
Collapse
Affiliation(s)
- Yuto Kaku
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Biogeochemistry Research Center (BGC), Research Institute for Marine Resources Utilization (MRU), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Noriyuki Isobe
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Biogeochemistry Research Center (BGC), Research Institute for Marine Resources Utilization (MRU), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Nanako O Ogawa
- Biogeochemistry Research Center (BGC), Research Institute for Marine Resources Utilization (MRU), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Naohiko Ohkouchi
- Biogeochemistry Research Center (BGC), Research Institute for Marine Resources Utilization (MRU), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Tetsuro Ikuta
- Marine Biodiversity and Environmental Assessment Research Center (BioEnv), Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Tsuguyuki Saito
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuji Fujisawa
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
8
|
Raji F, Nguyen CV, Nguyen NN, Nguyen TAH, Nguyen AV. Probing interfacial water structure induced by charge reversal and hydrophobicity of silica surface in the presence of divalent heavy metal ions using sum frequency generation spectroscopy. J Colloid Interface Sci 2023; 647:152-162. [PMID: 37247479 DOI: 10.1016/j.jcis.2023.05.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
HYPOTHESIS Adsorption of divalent heavy metal ions (DHMIs) at the mineral-water interfaces changes interfacial chemical species and charges, interfacial water structure, Stern (SL), and diffuse (DL) layers. These molecular changes can be detected by probing changing orientation and hydrogen-bond network of interfacial water molecules in response to changing local charges and hydrophobicity. EXPERIMENTS Sum-frequency generation (SFG) spectroscopy was used to probe changes in vibrational resonances of interfacial OH vs. DHMI concentration and pH. SFG spectra were deconvoluted using the measured surface potential and maximum entropy method in conjunction with the electrical double-layer theory for the SL and DL structures and correlated by hydrophobicity. FINDINGS Three surface charge reversals (CRs) were detected at low (CR1), medium (CR2), and high (CR3) pHs. Unlike CR1, SFG signals were minimized at CR2 and CR3 for DHMIs-silica systems highlighting considerable alterations in the structure of interfacial waters due to the inner-sphere sorption of metal hydroxo complexes. SFG results showed "hydrophobic-like" stretching modes at > 3600 cm-1 for Pb-, Cu-, and Zn-treated silica. However, contact angle measurements revealed the hydrophobization of silica only in the presence of Pb(II), as confirmed by an in-depth SFG analysis of the hydrogen-bond network of the interfacial water molecules in the SL.
Collapse
Affiliation(s)
- Foad Raji
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cuong V Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ngoc N Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tuan A H Nguyen
- Sustainable Minerals Institute, The University of Queensland, QLD 4072, Australia
| | - Anh V Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
9
|
Zhang H, Sundaresan S, Webb MA. Molecular Dynamics Investigation of Nanoscale Hydrophobicity of Polymer Surfaces: What Makes Water Wet? J Phys Chem B 2023. [PMID: 37043668 DOI: 10.1021/acs.jpcb.3c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The wettability of a polymer surface─related to its hydrophobicity or tendency to repel water─can be crucial for determining its utility, such as for a coating or a purification membrane. While wettability is commonly associated with the macroscopic measurement of a contact angle between surface, water, and air, the molecular physics that underlie these macroscopic observations are not fully known, and anticipating the relative behavior of different polymers is challenging. To address this gap in molecular-level understanding, we use molecular dynamics simulations to investigate and contrast interactions of water with six chemically distinct polymers: polytetrafluoroethylene, polyethylene, polyvinyl chloride, poly(methyl methacrylate), Nylon-66, and poly(vinyl alcohol). We show that several prospective quantitative metrics for hydrophobicity agree well with experimental contact angles. Moreover, the behavior of water in proximity to these polymer surfaces can be distinguished with analysis of interfacial water dynamics, extent of hydrogen bonding, and molecular orientation─even when macroscopic measures of hydrophobicity are similar. The predominant factor dictating wettability is found to be the extent of hydrogen bonding between polymer and water, but the precise manifestation of hydrogen bonding and its impact on surface water structure varies. In the absence of hydrogen bonding, other molecular interactions and polymer mechanics control hydrophobic ordering. These results provide new insights into how polymer chemistry specifically impacts water-polymer interactions and translates to surface hydrophobicity. Such factors may facilitate the design or processing of polymer surfaces to achieve targeted wetting behavior, and presented analyses can be useful in studying the interfacial physics of other systems.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Sankaran Sundaresan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Michael A Webb
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
10
|
Gong L, Wu F, Yang W, Huang C, Li W, Wang X, Wang J, Tang T, Zeng H. Unraveling the hydrophobic interaction mechanisms of hydrocarbon and fluorinated surfaces. J Colloid Interface Sci 2023; 635:273-283. [PMID: 36587579 DOI: 10.1016/j.jcis.2022.12.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
HYPOTHESIS Numerous hydrocarbon and fluorine-based hydrophobic surfaces have been widely applied in various engineering and bioengineering fields. It is hypothesized that the hydrophobic interactions of hydrocarbon and fluorinated surfaces in aqueous media would show some differences. EXPERIMENTS The hydrophobic interactions of hydrocarbon and fluorinated surfaces with air bubbles in aqueous solutions have been systematically and quantitatively measured using a bubble probe atomic force microscopy (AFM) technique. Ethanol was introduced to water for modulating the solution polarity. The experimental force profiles were analyzed using a theoretical model combining the Reynolds lubrication theory and augmented Young-Laplace equation by including disjoining pressure arisen from the Derjarguin-Landau-Verwey-Overbeek (DLVO) and non-DLVO interactions (i.e., hydrophobic interactions). FINDINGS The experiment results show that the hydrophobic interactions were firstly weakened and then strengthened by increasing ethanol content in the aqueous media, mainly due to the variation in interfacial hydrogen bonding network. The fluorinated surface exhibited less sensitivity to ethanol than hydrocarbon surface, which is attributed to the presence of ordered interfacial water layer. Our work reveals the different hydrophobic effects of hydrocarbon and fluorinated surfaces, with useful implications on modulating the interfacial interactions of relevant materials in various engineering and bioengineering applications.
Collapse
Affiliation(s)
- Lu Gong
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Feiyi Wu
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wenshuai Yang
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Charley Huang
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wenhui Li
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xiaogang Wang
- Heavy Machinery Engineering Research Center of Education Ministry, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Jianmei Wang
- Heavy Machinery Engineering Research Center of Education Ministry, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Tian Tang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
11
|
Chen W, Sanders SE, Özdamar B, Louaas D, Brigiano FS, Pezzotti S, Petersen PB, Gaigeot MP. On the Trail of Molecular Hydrophilicity and Hydrophobicity at Aqueous Interfaces. J Phys Chem Lett 2023; 14:1301-1309. [PMID: 36724059 DOI: 10.1021/acs.jpclett.2c03300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Uncovering microscopic hydrophilicity and hydrophobicity at heterogeneous aqueous interfaces is essential as it dictates physico/chemical properties such as wetting, the electrical double layer, and reactivity. Several molecular and spectroscopic descriptors were proposed, but a major limitation is the lack of connections between them. Here, we combine density functional theory-based MD simulations (DFT-MD) and SFG spectroscopy to explore how interfacial water responds in contact with self-assembled monolayers (SAM) of tunable hydrophilicity. We introduce a microscopic metric to track the transition from hydrophobic to hydrophilic interfaces. This metric combines the H/V descriptor, a structural descriptor based on the preferential orientation within the water network in the topmost binding interfacial layer (BIL) and spectroscopic fingerprints of H-bonded and dangling OH groups of water carried by BIL-resolved SFG spectra. This metric builds a bridge between molecular descriptors of hydrophilicity/hydrophobicity and spectroscopically measured quantities and provides a recipe to quantitatively or qualitatively interpret experimental SFG signals.
Collapse
Affiliation(s)
- Wanlin Chen
- Université Paris-Saclay, Université Evry, CNRS, LAMBE UMR8587, 91025Evry-Courcouronnes, France
| | - Stephanie E Sanders
- Department of Chemistry and Biochemistry, Ruhr University Bochum, 44801Bochum, Germany
| | - Burak Özdamar
- Université Paris-Saclay, Université Evry, CNRS, LAMBE UMR8587, 91025Evry-Courcouronnes, France
| | - Dorian Louaas
- Université Paris-Saclay, Université Evry, CNRS, LAMBE UMR8587, 91025Evry-Courcouronnes, France
| | - Flavio Siro Brigiano
- Université Paris-Saclay, Université Evry, CNRS, LAMBE UMR8587, 91025Evry-Courcouronnes, France
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS, 4 Place Jussieu, 75005Paris, France
| | - Simone Pezzotti
- Université Paris-Saclay, Université Evry, CNRS, LAMBE UMR8587, 91025Evry-Courcouronnes, France
- Department of Physical Chemistry II, Ruhr University Bochum, D-44801Bochum, Germany
| | - Poul B Petersen
- Department of Chemistry and Biochemistry, Ruhr University Bochum, 44801Bochum, Germany
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, Université Evry, CNRS, LAMBE UMR8587, 91025Evry-Courcouronnes, France
| |
Collapse
|
12
|
Bandyopadhyay D, Bhanja K, Choudhury N. On the Propensity of Excess Hydroxide Ions at the Alcohol Monolayer-Water Interface. J Phys Chem B 2023; 127:783-793. [PMID: 36639623 DOI: 10.1021/acs.jpcb.2c05719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Atomistic molecular dynamics simulations have been employed to study the self-ion (H+ and OH-) distribution at the interface between long-chain C16-OH alcohol (cetyl alcohol) monolayer and water. It is well known that the free air-water interface is acidic due to accumulation of the hydronium (H3O+) ions at the interface. In the present study, we have observed that contrary to the air-water interface, at the long-chain alcohol monolayer-water interface, it is the hydroxide (OH-) ion, not the hydronium ion (H3O+) that gets accumulated. By calculating the potential of mean forces, it is confirmed that there is extra stabilization for the OH- ions at the interface relative to the bulk, but no such stabilization is observed for the H3O+ ions. By analyzing the interaction of the self-ions with other constituents in the medium, it is clearly shown that the favorable interaction of the OH- ions with the alcoholic -OH groups stabilizes this ion at the interface. By calculating coordination numbers of the self-ions it is observed that around 50% water neighbors are substituted by alcoholic -OH in case of the hydroxide ion at the interface, whereas in the case of hydronium ions, only 15% water neighbors are substituted by the alcoholic -OH. The most interesting observation about the local structure and H-bonding pattern is that the hydroxide ion acts solely as the H-bond acceptor, but the hydronium ion acts only as the H-bond donor.
Collapse
Affiliation(s)
| | - Kalyan Bhanja
- Heavy Water Division, Bhabha Atomic Research Centre, Mumbai400 085, India
| | - Niharendu Choudhury
- Theoretical Chemistry Section, Chemistry Division, Bhabha Atomic Research Centre, Mumbai400 085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai400 094, India
| |
Collapse
|
13
|
Puhl DL, Funnell JL, Fink TD, Swaminathan A, Oudega M, Zha RH, Gilbert RJ. Electrospun fiber-mediated delivery of neurotrophin-3 mRNA for neural tissue engineering applications. Acta Biomater 2023; 155:370-385. [PMID: 36423820 DOI: 10.1016/j.actbio.2022.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Aligned electrospun fibers provide topographical cues and local therapeutic delivery to facilitate robust peripheral nerve regeneration. mRNA delivery enables transient expression of desired proteins that promote axonal regeneration. However, no prior work delivers mRNA from electrospun fibers for peripheral nerve regeneration applications. Here, we developed the first aligned electrospun fibers to deliver pseudouridine-modified (Ψ) neurotrophin-3 (NT-3) mRNA (ΨNT-3mRNA) to primary Schwann cells and assessed NT-3 secretion and bioactivity. We first electrospun aligned poly(L-lactic acid) (PLLA) fibers and coated them with the anionic substrates dextran sulfate sodium salt (DSS) or poly(3,4-dihydroxy-L-phenylalanine) (pDOPA). Cationic lipoplexes containing ΨNT-3mRNA complexed to JetMESSENGER® were then immobilized to the fibers, resulting in detectable ΨNT-3mRNA release for 28 days from all fiber groups investigated (PLLA+mRNA, 0.5DSS4h+mRNA, and 2pDOPA4h+mRNA). The 2pDOPA4h+mRNA group significantly increased Schwann cell secretion of NT-3 for 21 days compared to control PLLA fibers (p < 0.001-0.05) and, on average, increased Schwann cell secretion of NT-3 by ≥ 2-fold compared to bolus mRNA delivery from the 1µgBolus+mRNA and 3µgBolus+mRNA groups. The 2pDOPA4h+mRNA fibers supported Schwann cell secretion of NT-3 at levels that significantly increased dorsal root ganglia (DRG) neurite extension by 44% (p < 0.0001) and neurite area by 64% (p < 0.001) compared to control PLLA fibers. The data show that the 2pDOPA4h+mRNA fibers enhance the ability of Schwann cells to promote neurite growth from DRG, demonstrating this platform's potential capability to improve peripheral nerve regeneration. STATEMENT OF SIGNIFICANCE: Aligned electrospun fibers enhance axonal regeneration by providing structural support and guidance cues, but further therapeutic stimulation is necessary to improve functional outcomes. mRNA delivery enables the transient expression of therapeutic proteins, yet achieving local, sustained delivery remains challenging. Previous work shows that genetic material delivery from electrospun fibers improves regeneration; however, mRNA delivery has not been explored. Here, we examine mRNA delivery from aligned electrospun fibers to enhance neurite outgrowth. We show that immobilization of NT-3mRNA/JetMESSENGER® lipoplexes to aligned electrospun fibers functionalized with pDOPA enables local, sustained NT-3mRNA delivery to Schwann cells, increasing Schwann cell secretion of NT-3 and enhancing DRG neurite outgrowth. This study displays the potential benefits of electrospun fiber-mediated mRNA delivery platforms for neural tissue engineering.
Collapse
Affiliation(s)
- Devan L Puhl
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Jessica L Funnell
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Tanner D Fink
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Anuj Swaminathan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Martin Oudega
- Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA; Department of Neuroscience, Northwestern University, Chicago, IL, USA; Edward Hines Jr VA Hospital, Hines, IL, USA
| | - R Helen Zha
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
14
|
Krzan M, Rey NG, Jarek E, Czakaj A, Santini E, Ravera F, Liggieri L, Warszynski P, Braunschweig B. Surface Properties of Saponin-Chitosan Mixtures. Molecules 2022; 27:7505. [PMID: 36364333 PMCID: PMC9658537 DOI: 10.3390/molecules27217505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 08/03/2024] Open
Abstract
The surface properties of saponin and saponin-chitosan mixtures were analysed as a function of their bulk mixing ratio using vibrational sum-frequency generation (SFG), surface tensiometry and dilational rheology measurements. Our experiments show that saponin-chitosan mixtures present some remarkable properties, such as a strong amphiphilicity of the saponin and high dilational viscoelasticity. We believe this points to the presence of chitosan in the adsorption layer, despite its complete lack of surface activity. We explain this phenomenon by electrostatic interactions between the saponin as an anionic surfactant and chitosan as a polycation, leading to surface-active saponin-chitosan complexes and aggregates. Analysing the SFG intensity of the O-H stretching bands from interfacial water molecules, we found that in the case of pH 3.4 for a mixture consisting of 0.1 g/L saponin and 0.001 g/L chitosan, the adsorption layer was electrically neutral. This conclusion from SFG spectra is corroborated by results from surface tensiometry showing a significant reduction in surface tension and effects on the dilational surface elasticity strictly at saponin/chitosan ratios, where SFG spectra indicate zero net charge at the air-water interface.
Collapse
Affiliation(s)
- Marcel Krzan
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Krakow, Poland
| | - Natalia García Rey
- Institute of Physical Chemistry and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Ewelina Jarek
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Krakow, Poland
| | - Agnieszka Czakaj
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Krakow, Poland
| | - Eva Santini
- Institute of Condensed Matter and Technologies for Energy, Consiglio Nazionale delle Ricerche, Via Marini 6, 16149 Genova, Italy
| | - Francesca Ravera
- Institute of Condensed Matter and Technologies for Energy, Consiglio Nazionale delle Ricerche, Via Marini 6, 16149 Genova, Italy
| | - Libero Liggieri
- Institute of Condensed Matter and Technologies for Energy, Consiglio Nazionale delle Ricerche, Via Marini 6, 16149 Genova, Italy
| | - Piotr Warszynski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Krakow, Poland
| | - Björn Braunschweig
- Institute of Physical Chemistry and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| |
Collapse
|
15
|
Homogeneous interfacial water structure favors realizing a low-friction coefficient state. J Colloid Interface Sci 2022; 626:324-333. [DOI: 10.1016/j.jcis.2022.06.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022]
|
16
|
Perrin L, Desobry-Banon S, Gillet G, Desobry S. Review of High-Frequency Ultrasounds Emulsification Methods and Oil/Water Interfacial Organization in Absence of any Kind of Stabilizer. Foods 2022; 11:2194. [PMID: 35892779 PMCID: PMC9331899 DOI: 10.3390/foods11152194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Emulsions are multiphasic systems composed of at least two immiscible phases. Emulsion formulation can be made by numerous processes such as low-frequency ultrasounds, high-pressure homogenization, microfluidization, as well as membrane emulsification. These processes often need emulsifiers' presence to help formulate emulsions and to stabilize them over time. However, certain emulsifiers, especially chemical stabilizers, are less and less desired in products because of their negative environment and health impacts. Thus, to avoid them, promising processes using high-frequency ultrasounds were developed to formulate and stabilize emulsifier-free emulsions. High-frequency ultrasounds are ultrasounds having frequency greater than 100 kHz. Until now, emulsifier-free emulsions' stability is not fully understood. Some authors suppose that stability is obtained through hydroxide ions' organization at the hydrophobic/water interfaces, which have been mainly demonstrated by macroscopic studies. Whereas other authors, using microscopic studies, or simulation studies, suppose that the hydrophobic/water interfaces would be rather stabilized thanks to hydronium ions. These theories are discussed in this review.
Collapse
Affiliation(s)
- Louise Perrin
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye, CEDEX, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (S.D.-B.); (S.D.)
- SAS GENIALIS, Route d’Achères, 18250 Henrichemont, France;
| | - Sylvie Desobry-Banon
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye, CEDEX, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (S.D.-B.); (S.D.)
| | | | - Stephane Desobry
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye, CEDEX, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (S.D.-B.); (S.D.)
| |
Collapse
|
17
|
Liu R, Zhang C, Liang X, Liu J, Wu X, Chen M. Structural and Dynamic Properties of Solvated Hydroxide and Hydronium Ions in Water from Ab Initio Modeling. J Chem Phys 2022; 157:024503. [DOI: 10.1063/5.0094944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Predicting the asymmetric structure and dynamics of solvated hydroxide and hydronium in water has been a challenging task from ab initio molecular dynamics (AIMD). The difficulty mainly comes from a lack of accurate and efficient exchange-correlation functional in elucidating the amphiphilic nature and the ubiquitous proton transfer behaviors of the two ions. By adopting the strongly-constrained and appropriately normed (SCAN) meta-GGA functional in AIMD simulations, we systematically examine the amphiphilic properties, the solvation structures, the electronic structures, and the dynamic properties of the two water ions. In particular, we compare these results to those predicted by the PBE0-TS functional, which is an accurate yet computationally more expensive exchange-correlation functional. We demonstrate that the general-purpose SCAN functional provides a reliable choice in describing the two water ions. Specifically, in the SCAN picture of water ions, the appearance of the fourth and fifth hydrogen bonds near hydroxide stabilizes the pot-like shape solvation structure and suppresses the structural diffusion, while the hydronium stably donates three hydrogen bonds to its neighbors. We apply a detailed analysis of the proton transfer mechanism of the two ions and find the two ions exhibit substantially different proton transfer patterns. Our AIMD simulations indicate hydroxide diffuses slower than hydronium in water, which is consistent with the experiments.
Collapse
Affiliation(s)
| | | | | | | | - Xifan Wu
- Physics, Temple University, United States of America
| | - Mohan Chen
- College of Engineering, Peking University, China
| |
Collapse
|
18
|
Li J, Chen SL, Hou Y, Yuan Q, Gan W. Revealing the mechanisms of vesicle formation with multiple spectral methods. Phys Chem Chem Phys 2022; 24:12465-12475. [PMID: 35575256 DOI: 10.1039/d2cp01183b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The investigation of the self-assembly of amphiphilic molecules and the formation of micelles/vesicles has attracted significant attention. However, in situ and real-time methods for such studies are rare. Here, a surface-sensitive second harmonic generation (SHG) technique was applied to study the formation of vesicles in solutions of an anti-cancer drug, doxorubicin (DOX), and a generally used surfactant (sodium bis (2-ethylhexyl) sulfosuccinate, AOT). With the aid of two-photon fluorescence (TPF), Rayleigh scattering and TEM, we revealed the structural evolution of the aggregated micelles/vesicles. It was found that AOT and DOX molecules rapidly aggregated and formed micelles in the solution. The residual DOX then acted as a "glue" that induced the aggregating/growing of the micelles and the transformation from aggregates to vesicles. The existence of lipid films, which was considered as the necessary intermediate state for vesicle formation, was excluded via the SHG observations, indicating that hollow shells may be directly transformed from solid aggregated micelles in the self-assembly formation of complex vesicles. The combined spectroscopic methods were also used to investigate the formation of vesicles from a commonly used lipid (i.e., 1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt, DOPG) from its stacked bilayers. The swelling, curving and sealing of the DOPG bilayers for vesicle formation was monitored and clear dynamics were revealed. This work shows that the vesicle formation mechanism varies with the initial state of the surfactant/lipid molecules. It not only demonstrates the capability of the combined spectroscopic methods in investigating the aggregated systems but also provides new insight for understanding the formation of vesicles.
Collapse
Affiliation(s)
- Jianhui Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, also School of Science, Harbin Institute of Technology (Shenzhen), University Town, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Shenzhen 518055, Guangdong, Harbin 150001, Heilongjiang, China.
| | - Shun-Li Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, Guangdong, China
| | - Yi Hou
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, also School of Science, Harbin Institute of Technology (Shenzhen), University Town, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Shenzhen 518055, Guangdong, Harbin 150001, Heilongjiang, China.
| | - Qunhui Yuan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, also School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, also School of Science, Harbin Institute of Technology (Shenzhen), University Town, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Shenzhen 518055, Guangdong, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
19
|
Zhu Q, Wallentine SK, Deng GH, Rebstock JA, Baker LR. The Solvation-Induced Onsager Reaction Field Rather than the Double-Layer Field Controls CO 2 Reduction on Gold. JACS AU 2022; 2:472-482. [PMID: 35252996 PMCID: PMC8889607 DOI: 10.1021/jacsau.1c00512] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Indexed: 06/14/2023]
Abstract
The selectivity and activity of the carbon dioxide reduction (CO2R) reaction are sensitive functions of the electrolyte cation. By measuring the vibrational Stark shift of in situ-generated CO on Au in the presence of alkali cations, we quantify the total electric field present at catalytic active sites and deconvolute this field into contributions from (1) the electrochemical Stern layer and (2) the Onsager (or solvation-induced) reaction field. Contrary to recent theoretical reports, the CO2R kinetics does not depend on the Stern field but instead is closely correlated with the strength of the Onsager reaction field. These results show that in the presence of adsorbed (bent) CO2, the Onsager field greatly exceeds the Stern field and is primarily responsible for CO2 activation. Additional measurements of the cation-dependent water spectra using vibrational sum frequency generation spectroscopy show that interfacial solvation strongly influences the CO2R activity. These combined results confirm that the cation-dependent interfacial water structure and its associated electric field must be explicitly considered for accurate understanding of CO2R reaction kinetics.
Collapse
|
20
|
Díaz D, Garcia-Gonzalez D, Bista P, Weber SAL, Butt HJ, Stetten A, Kappl M. Charging of drops impacting onto superhydrophobic surfaces. SOFT MATTER 2022; 18:1628-1635. [PMID: 35113106 DOI: 10.1039/d1sm01725j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
When neutral water drops impact and rebound from superhydrophobic surfaces, they acquire a positive electrical charge. To measure the charge, we analyzed the trajectory of rebounding drops in an external electric field by high-speed video imaging. Although this charging phenomenon has been observed in the past, little is known about the controlling parameters for the amount of drop charging. Here we investigate the relative importance of five of these potential variables: impact speed, drop contact area, contact line retraction speed, drop size, and type of surface. We additionally apply our previously reported model for sliding drop electrification to the case of impacting drops, suggesting that the two cases contain the same charge separation mechanism at the contact line. Both our experimental results and our theoretical model indicate that maximum contact area is the dominant control parameter for charge separation.
Collapse
Affiliation(s)
- Diego Díaz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Diana Garcia-Gonzalez
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, Department of Science and Technology, University of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| | - Pravash Bista
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Stefan A L Weber
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
- Department of Physics, Johannes Gutenberg University, Staudingerweg 10, 55128 Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Amy Stetten
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Michael Kappl
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
21
|
Judd KD, Gonzalez NM, Yang T, Cremer PS. Contact Ion Pair Formation Is Not Necessarily Stronger than Solvent Shared Ion Pairing. J Phys Chem Lett 2022; 13:923-930. [PMID: 35050629 DOI: 10.1021/acs.jpclett.1c03576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Vibrational sum frequency spectroscopy (VSFS) and pressure-area Langmuir trough measurements were used to investigate the binding of alkali metal cations to eicosyl sulfate (ESO4) surfactants in monolayers at the air/water interface. The number density of sulfate groups could be tuned by mixing the anionic surfactant with eicosanol. The equilibrium dissociation constant for K+ to the fatty sulfate interface showed 10 times greater affinity than for Li+ and approximately 3 times greater than for Na+. All three cations formed solvent shared ion pairs when the mole fraction of ESO4 was 0.33 or lower. Above this threshold charge density, Li+ formed contact ion pairs with the sulfate headgroups, presumably via bridging structures. By contrast, K+ only bound to the sulfate moieties in solvent shared ion pairing configurations. The behavior for Na+ was intermediate. These results demonstrate that there is not necessarily a correlation between contact ion pair formation and stronger binding affinity.
Collapse
Affiliation(s)
- Kenneth D Judd
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nicole M Gonzalez
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tinglu Yang
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Paul S Cremer
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
22
|
Recent progress of vibrational spectroscopic study on the interfacial structure of biomimetic membranes. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/j.cjac.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Moll C, Versluis J, Bakker HJ. Direct Observation of the Orientation of Urea Molecules at Charged Interfaces. J Phys Chem Lett 2021; 12:10823-10828. [PMID: 34726406 PMCID: PMC8591664 DOI: 10.1021/acs.jpclett.1c03012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Dissolving urea into water induces special solvation properties that play a crucial role in many biological processes. Here we probe the properties of urea molecules at charged aqueous interfaces using heterodyne-detected vibrational sum-frequency generation (HD-VSFG) spectroscopy. We find that at the neat water/air interface urea molecules do not yield a significant sum-frequency generation signal. However, upon the addition of ionic surfactants, we observe two vibrational bands at 1660 and 1590 cm-1 in the HD-VSFG spectrum, assigned to mixed bands of the C═O stretch and NH2 bend vibrations of urea. The orientation of the urea molecules depends on the sign of the charge localized at surface and closely follows the orientation of the neighboring water molecules. We demonstrate that urea is an excellent probe of the local electric field at aqueous interfaces.
Collapse
|
24
|
Benaglia S, Uhlig MR, Hernández-Muñoz J, Chacón E, Tarazona P, Garcia R. Tip Charge Dependence of Three-Dimensional AFM Mapping of Concentrated Ionic Solutions. PHYSICAL REVIEW LETTERS 2021; 127:196101. [PMID: 34797127 DOI: 10.1103/physrevlett.127.196101] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
A molecular scale understanding of the organization and structure of a liquid near a solid surface is currently a major challenge in surface science. It has implications across different fields from electrochemistry and energy storage to molecular biology. Three-dimensional AFM generates atomically resolved maps of solid-liquid interfaces. The imaging mechanism behind those maps is under debate, in particular, for concentrated ionic solutions. Theory predicts that the observed contrast should depend on the tip's charged state. Here, by using neutrally, negatively, and positively charged tips, we demonstrate that the 3D maps depend on the tip's polarization. A neutral tip will explore the total particle density distribution (water and ions) while a charged tip will reveal the charge density distribution. The experimental data reproduce the key findings of the theory.
Collapse
Affiliation(s)
- Simone Benaglia
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Manuel R Uhlig
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Jose Hernández-Muñoz
- Departamento de Física Teórica de la Materia Condensada, IFIMAC Condensed Matter Physics Center, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Enrique Chacón
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Pedro Tarazona
- Departamento de Física Teórica de la Materia Condensada, IFIMAC Condensed Matter Physics Center, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| |
Collapse
|
25
|
Molotkovsky RJ, Galimzyanov TR, Ermakov YA. Heterogeneity in Lateral Distribution of Polycations at the Surface of Lipid Membrane: From the Experimental Data to the Theoretical Model. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6623. [PMID: 34772149 PMCID: PMC8585412 DOI: 10.3390/ma14216623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
Natural and synthetic polycations of different kinds attract substantial attention due to an increasing number of their applications in the biomedical industry and in pharmacology. The key characteristic determining the effectiveness of the majority of these applications is the number of macromolecules adsorbed on the surface of biological cells or their lipid models. Their study is complicated by a possible heterogeneity of polymer layer adsorbed on the membrane. Experimental methods reflecting the structure of the layer include the electrokinetic measurements in liposome suspension and the boundary potential of planar bilayer lipid membranes (BLM) and lipid monolayers with a mixed composition of lipids and the ionic media. In the review, we systematically analyze the methods of experimental registration and theoretical description of the laterally heterogeneous structures in the polymer layer published in the literature and in our previous studies. In particular, we consider a model based on classical theory of the electrical double layer, used to analyze the available data of the electrokinetic measurements in liposome suspension with polylysines of varying molecular mass. This model suggests a few parameters related to the heterogeneity of the polymer layer and allows determining the conditions for its appearance at the membrane surface. A further development of this theoretical approach is discussed.
Collapse
Affiliation(s)
- Rodion J. Molotkovsky
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia;
| | | | - Yury A. Ermakov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia;
| |
Collapse
|
26
|
Pluronic stabilized conjugated polymer nanoparticles for NIR fluorescence imaging and dual phototherapy applications. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Li S, Wu L, Zhen W, Zhu M, Cheng X, Jiang X. Molecular Nature of Structured Water in the Light-Induced Interfacial Capacitance Changes at the Bioelectric Interface. J Phys Chem Lett 2021; 12:9982-9988. [PMID: 34617750 DOI: 10.1021/acs.jpclett.1c02617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Uncovering the function of structured water in the interfacial capacitance at the molecular level is the basis for the development of the concept and model of the electric double layer; however, the limitation of the available technology makes this task difficult. Herein, using surface-enhanced infrared absorption spectroscopy combined with electrochemistry, we revealed the contribution of the cleavage of loosely bonded tetrahedral water to the enhancement of model membrane capacitance. Upon further combination with ionic perturbation, we found that the interface hydrogen bonding environment in the stern layer was greatly significant for the light-induced cleavage of tetrahedral water and thus the conversion of optical signals into electrical signals. Our work has taken an important step toward gaining experimental insight into the relationship between water structure and capacitance at the bioelectric interface.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Lie Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun, Jilin 130022, P. R. China
| | - Wenyao Zhen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Manyu Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Xiaowei Cheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
28
|
Moll CJ, Versluis J, Bakker HJ. Direct Evidence for a Surface and Bulk Specific Response in the Sum-Frequency Generation Spectrum of the Water Bend Vibration. PHYSICAL REVIEW LETTERS 2021; 127:116001. [PMID: 34558941 DOI: 10.1103/physrevlett.127.116001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 05/19/2023]
Abstract
We study the bending mode of pure water and charged aqueous surfaces using heterodyne-detected vibrational sum-frequency generation spectroscopy. We observe a low (1626 cm^{-1}) and a high (1656 cm^{-1}) frequency component that can be unambiguously assigned to an interfacial dipole and a bulk quadrupolar response, respectively. We thus demonstrate that probing the bending mode provides structural and quantitative information on both the surface and the bulk.
Collapse
Affiliation(s)
- C J Moll
- AMOLF, Ultrafast Spectroscopy, Science Park 104, 1098XG Amsterdam, Netherlands
| | - J Versluis
- AMOLF, Ultrafast Spectroscopy, Science Park 104, 1098XG Amsterdam, Netherlands
| | - H J Bakker
- AMOLF, Ultrafast Spectroscopy, Science Park 104, 1098XG Amsterdam, Netherlands
| |
Collapse
|
29
|
Recent progress on research of molybdenite flotation: A review. Adv Colloid Interface Sci 2021; 295:102466. [PMID: 34332747 DOI: 10.1016/j.cis.2021.102466] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 11/23/2022]
Abstract
Molybdenum is an important alloy element for metallurgical industry because of its high temperature stability. As the major mineral reserve for molybdenum, molybdenite (MoS2) is commonly found in porphyry copper deposits. Molybdenite is naturally floatable and can be separated from copper sulfide mineral using froth flotation. Properties of molybdenite such as mineralogy, microstructure, surface wettability, zeta potential, etc. can have a great effect on its floatability. Organic and inorganic depressants and surface pre-treatment methods are applied to improve the recovery of molybdenite. Electrochemical potential measurements using different electrodes are used to monitor process conditions and enable processing parameter adjustments to improve flotation circuit performance and reduce operating costs. Cations like Ca2+ and Mg2+ are reported to have negative effects on the flotation of molybdenite in alkaline solution, and dispersants and oil collectors need to be added to restore the flotation of molybdenite. In addition, effects of gangue minerals, particle size, and oil collectors and surfactants on molybdenite recovery are also discussed in this manuscript.
Collapse
|
30
|
Wang D, Tian Y, Jiang L. Abnormal Properties of Low-Dimensional Confined Water. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100788. [PMID: 34176214 DOI: 10.1002/smll.202100788] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/25/2021] [Indexed: 06/13/2023]
Abstract
Water molecules confined to low-dimensional spaces exhibit unusual properties compared to bulk water. For example, the alternating hydrophilic and hydrophobic nanodomains on flat silicon wafer can induce the abnormal spreading of water (contact angles near 0°) which is caused by the 2D capillary effect. Hence, exploring the physicochemical properties of confined water from the nanoscale is of great value for understanding the challenges in material science and promoting the applications of nanomaterials in the fields of mass transport, nanofluidic designing, and fuel cell. The knowledge framework of confined water can also help to better understand the complex functions of the hydration layer of biomolecules, and even trace the origin of life. In this review, the physical properties, abnormal behaviors, and functions of the confined water are mainly summarized through several common low-dimensional water formats in the fields of solid/air-water interface, nanochannel confinement, and biological hydration layer. These researches indicate that the unusual behaviors of the confined water depend strongly on the confinement size and the interaction between the molecules and confining surface. These diverse properties of confined water open a new door to materials science and may play an important role in the future development of biology.
Collapse
Affiliation(s)
- Dianyu Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Ye Tian
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
31
|
Yu CH, Lo CC, Chen KH, Chang YR, Chen CW, Wen CY. Self-assembly nuclei with a preferred orientation at the extended hydrophobic surface toward textured growth of ZnO nanorods in aqueous chemical bath deposition. NANOTECHNOLOGY 2021; 32:175603. [PMID: 33455957 DOI: 10.1088/1361-6528/abdc8c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Textured growth of ZnO nanorods with no restriction of the substrate material is beneficial to their applications. The approaches to grow ZnO nanorods with texture are based on preparing suitable surface structure on the growth substrate, e.g. using a crystalline substrate with a specific surface structures or pre-depositing seed layers by high-temperature annealing of precursors. In the aqueous nutrient solution of the chemical bath deposition (CBD) process for ZnO growth, the concentration of Zn2+ ions at the extended hydrophobic surface is sufficiently high for forming self-assembly nuclei with a preferred orientation, resulting in the subsequent textured growth of ZnO nanorods. In this research, the hydrophobic surface is prepared by modifying Si surface with a self-assembly octadecyltrimethoxysilane (OTMS) monolayer. The formation mechanism of the nuclei on this hydrophobic surface for the textured growth of ZnO nanorods is investigated. It is shown that the nuclei form at the beginning of the CBD process and later transform into the Wurtzite structure to seed ZnO growth. An alternative approach to prepare seed layers is therefore involved in the aqueous CBD process, which is applicable to a range of hydrophobic substrates for textured growth of ZnO nanorods.
Collapse
Affiliation(s)
- Chia-Hao Yu
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chang-Chen Lo
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Kuan-Hung Chen
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yih-Ren Chang
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Wei Chen
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Yen Wen
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
32
|
Wang H, Xiong W. Vibrational Sum-Frequency Generation Hyperspectral Microscopy for Molecular Self-Assembled Systems. Annu Rev Phys Chem 2021; 72:279-306. [PMID: 33441031 DOI: 10.1146/annurev-physchem-090519-050510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this review, we discuss the recent developments and applications of vibrational sum-frequency generation (VSFG) microscopy. This hyperspectral imaging technique can resolve systems without inversion symmetry, such as surfaces, interfaces and noncentrosymmetric self-assembled materials, in the spatial, temporal, and spectral domains. We discuss two common VSFG microscopy geometries: wide-field and confocal point-scanning. We then introduce the principle of VSFG and the relationships between hyperspectral imaging with traditional spectroscopy, microscopy, and time-resolved measurements. We further highlight crucial applications of VSFG microscopy in self-assembled monolayers, cellulose in plants, collagen fibers, and lattice self-assembled biomimetic materials. In these systems, VSFG microscopy reveals relationships between physical properties that would otherwise be hidden without being spectrally, spatially, and temporally resolved. Lastly, we discuss the recent development of ultrafast transient VSFG microscopy, which can spatially measure the ultrafast vibrational dynamics of self-assembled materials. The review ends with an outlook on the technical challenges of and scientific potential for VSFG microscopy.
Collapse
Affiliation(s)
- Haoyuan Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA; ,
| | - Wei Xiong
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA; , .,Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
33
|
Zhang C, Adera S, Aizenberg J, Chen Z. Why Are Water Droplets Highly Mobile on Nanostructured Oil-Impregnated Surfaces? ACS APPLIED MATERIALS & INTERFACES 2021; 13:15901-15909. [PMID: 33754694 DOI: 10.1021/acsami.1c01649] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Porous lubricated surfaces (aka slippery liquid-infused porous surfaces, SLIPS) have been demonstrated to repel various liquids. The origin of this repellency, however, is not fully understood. By using surface-sensitive sum frequency generation vibrational spectroscopy, we characterized the water/oil interface of a water droplet residing on (a) an oil-impregnated nanostructured surface (SLIPS) and (b) the same oil layer without the underlying nanostructures. Different from water molecules in contact with bulk oil without nanostructures, droplets on SLIPS adopt a molecular orientation that is predominantly parallel to the water/oil interface, leading to weaker hydrogen bonding interactions between water droplets and the lubrication film, giving SLIPS their water repellency. Our results demonstrate that the molecular interactions between two contacting liquids can be manipulated by the implementation of nanostructured substrates. The results also offer the molecular principles for controlling nanostructure to reduce oil depletion-one of the limitations and major concerns of SLIPS.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48103, United States
| | - Solomon Adera
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48103, United States
| |
Collapse
|
34
|
Zhu Y, Tso CY, Ho TC, Leung MKH, Yao S. Coalescence-Induced Jumping Droplets on Nanostructured Biphilic Surfaces with Contact Electrification Effects. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11470-11479. [PMID: 33630565 DOI: 10.1021/acsami.0c22055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Benefitting from the coalescence-induced droplet jumping on superhydrophobic surfaces, the condensing droplets on heat exchangers can be removed efficiently, significantly improving the condensation heat-transfer performance of various thermal applications. However, the enhancement of droplet jumping height and self-removal to further improve the condensation heat-transfer performance of the thermal applications remains a challenge due to considerable interfacial adhesion caused by the inevitable partial-Wenzel state condensing droplets on superhydrophobic surfaces. In this study, a biphilic nanostructure is developed to effectively improve the droplet jumping height by decreasing the interfacial adhesion with the formation of Cassie-like droplets. Under atmospheric conditions, ∼28% improvement of droplet jumping height is achieved on a biphilic surface compared to that of a superhydrophobic surface. Additionally, the droplet contact electrification on biphilic surfaces discovered in this work allows the droplets to jump ∼137% higher compared with that under atmospheric conditions. Furthermore, the droplet jumping and electrification mechanisms on the biphilic surface are revealed by building a theoretical model that can predict the experimental results well. Apart from being a milestone for the droplet jumping physics development on biphilic nanostructures, this work also provides new insights into the micro-droplet discipline.
Collapse
Affiliation(s)
- Yihao Zhu
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Kowloon 999077, Hong Kong
| | - Chi Yan Tso
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Kowloon 999077, Hong Kong
| | - Tsz Chung Ho
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Kowloon 999077, Hong Kong
| | - Michael K H Leung
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Kowloon 999077, Hong Kong
| | - Shuhuai Yao
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| |
Collapse
|
35
|
Lee WH, Yoon SG, Jin H, Yoo J, Han J, Cho YH, Kim YS. Electron Density-Change in Semiconductor by Ion-Adsorption at Solid-Liquid Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007581. [PMID: 33538022 DOI: 10.1002/adma.202007581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The change in electrical properties of electrodes by adsorption or desorption at interfaces is a well-known phenomenon required for signal production in electrically transduced sensing technologies. Furthermore, in terms of electrolyte-insulator-semiconductor (EIS) structure, several studies of energy conversion techniques focused on ion-adsorption at the solid-liquid interface have suggested that the electric signal is generated by ionovoltaic phenomena. However, finding substantial clues for the ion-adsorption phenomena in the EIS structure is still a difficult task because direct evidence for carrier accumulation in semiconductors by Coulomb interactions is insufficient. Here, a sophisticated Hall measurement system is demonstrated to quantitatively analyze accumulated electron density-change inside the semiconductor depending on the ion-adsorption at the solid-liquid interface. Also, an enhanced EIS-structured device is designed in an aqueous-soaked system that works with the ionovoltaic principle to monitor the ion-dynamics in liquid electrolyte media, interestingly confirming ion-concentration dependence and ion-specificity by generated peak voltages. This newly introduced peculiar method contributes to an in-depth understanding of the ionovoltaic phenomena in terms of carrier actions in the semiconductors and ionic behaviors in the aqueous-bulk phases, providing informative analysis about interfacial adsorptions that can expand the scope of ion-sensing platforms.
Collapse
Affiliation(s)
- Won Hyung Lee
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sun Geun Yoon
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Huding Jin
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeeyoung Yoo
- School of Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Junghyup Han
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yong Hyun Cho
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Youn Sang Kim
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Suwon, 16229, Republic of Korea
| |
Collapse
|
36
|
Zhang T, Peruch F, Wirotius AL, Ibarboure E, Rosu F, Schatz C, Garbay B. Unprecedented coupling of natural rubber and ELP: synthesis, characterization and self-assembly properties. Polym Chem 2021. [DOI: 10.1039/d1py00969a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing new biomaterials is an active research area owing to their applications in regenerative medicine, tissue engineering and drug delivery.
Collapse
Affiliation(s)
- Tingting Zhang
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | - Frédéric Peruch
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | | | - Emmanuel Ibarboure
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS & Inserm, IECB, UMS3033, US001, 33607 Pessac, France
| | - Christophe Schatz
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | - Bertrand Garbay
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| |
Collapse
|
37
|
Kozon D, Bednarczyk P, Szewczyk A, Jańczewski D. Regulation of Lipid Bilayer Ion Permeability by Antibacterial Polymethyloxazoline-Polyethyleneimine Copolymers. Chembiochem 2020; 22:1020-1029. [PMID: 33124737 DOI: 10.1002/cbic.202000656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/28/2020] [Indexed: 01/08/2023]
Abstract
Amphiphilic antimicrobial polymers display activity against the outer bacterial cell membrane, triggering various physiological effects. We investigated the regulation of ion transport across the lipid bilayer to understand differences in biological activity for a series of amphiphilic polymethyloxazoline - polyethyleneimine copolymers. The results confirmed that the tested structures were able to increase the permeability of the lipid bilayer (LB) membrane or its rupture. Black lipid membrane (BLM) experiments show that the triggered conductance profile and its character is strongly correlated with the polymer structure and zeta potential. The polymer exhibiting the highest antimicrobial activity promotes ion transport by using a unique mechanism and step-like characteristics with well-defined discreet openings and closings. The molecule was incorporated into the membrane in a reproducible way, and the observed channel-like activity could be responsible for the antibacterial activity of this molecule.
Collapse
Affiliation(s)
- Dominika Kozon
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-787, Warsaw, Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093, Warsaw, Poland
| | - Dominik Jańczewski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| |
Collapse
|
38
|
Cimatu KLA, Premadasa UI, Ambagaspitiya TD, Adhikari NM, Jang JH. Evident phase separation and surface segregation of hydrophobic moieties at the copolymer surface using atomic force microscopy and SFG spectroscopy. J Colloid Interface Sci 2020; 580:645-659. [PMID: 32712471 DOI: 10.1016/j.jcis.2020.07.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 11/18/2022]
Abstract
HYPOTHESIS Copolymers are developed to enhance the overall physical and chemical properties of polymers. The surface nature of a copolymer is relevant to creating efficient materials to improve adhesion and biocompatibility. We hypothesize that the improved adhesion, as a surface property, is due to phase separation, surface segregation, and the overall molecular organization of different polymer components at the copolymer surface. EXPERIMENTS The surface structure of a copolymer composed of 2-hydroxyethyl methacrylate (HEMA) monomer and 2-phenoxyethyl methacrylate (PhEMA) monomer was analyzed in comparison to the polyHEMA and polyPhEMA homopolymers using atomic force microscopy (AFM) and sum frequency generation (SFG) spectroscopy. FINDINGS The contrast in the phase images was due to the variance in the hydrophobic level provided by the hydroxyl and phenoxy modified monomers in the copolymer. The distribution of the adhesion values, supporting the presence of hydrophobic moieties, across the polymer surface defined the surface segregation of these two components. SFG spectra of the copolymer thin film showed combined spectral features of both polyHEMA and polyPhEMA thin films at the polymer surface. The tilt angles of the alpha-methyl group of homopolymers using the polarization intensity ratio analysis and the polarization mapping method were estimated to be in the range from 48° to 66°.
Collapse
Affiliation(s)
- Katherine Leslee A Cimatu
- Department of Chemistry and Biochemistry, Ohio University, 100 University Terrace, 136 Clippinger Laboratories, Athens, OH 45701-2979, United States.
| | - Uvinduni I Premadasa
- Department of Chemistry and Biochemistry, Ohio University, 100 University Terrace, 136 Clippinger Laboratories, Athens, OH 45701-2979, United States
| | - Tharushi D Ambagaspitiya
- Department of Chemistry and Biochemistry, Ohio University, 100 University Terrace, 136 Clippinger Laboratories, Athens, OH 45701-2979, United States
| | - Narendra M Adhikari
- Department of Chemistry and Biochemistry, Ohio University, 100 University Terrace, 136 Clippinger Laboratories, Athens, OH 45701-2979, United States
| | - Joon Hee Jang
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, United States
| |
Collapse
|
39
|
Nauruzbayeva J, Sun Z, Gallo A, Ibrahim M, Santamarina JC, Mishra H. Electrification at water-hydrophobe interfaces. Nat Commun 2020; 11:5285. [PMID: 33082321 PMCID: PMC7576844 DOI: 10.1038/s41467-020-19054-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 09/28/2020] [Indexed: 11/23/2022] Open
Abstract
The mechanisms leading to the electrification of water when it comes in contact with hydrophobic surfaces remains a research frontier in chemical science. A clear understanding of these mechanisms could, for instance, aid the rational design of triboelectric generators and micro- and nano-fluidic devices. Here, we investigate the origins of the excess positive charges incurred on water droplets that are dispensed from capillaries made of polypropylene, perfluorodecyltrichlorosilane-coated glass, and polytetrafluoroethylene. Results demonstrate that the magnitude and sign of electrical charges vary depending on: the hydrophobicity/hydrophilicity of the capillary; the presence/absence of a water reservoir inside the capillary; the chemical and physical properties of aqueous solutions such as pH, ionic strength, dielectric constant and dissolved CO2 content; and environmental conditions such as relative humidity. Based on these results, we deduce that common hydrophobic materials possess surface-bound negative charge. Thus, when these surfaces are submerged in water, hydrated cations form an electrical double layer. Furthermore, we demonstrate that the primary role of hydrophobicity is to facilitate water-substrate separation without leaving a significant amount of liquid behind. These results advance the fundamental understanding of water-hydrophobe interfaces and should translate into superior materials and technologies for energy transduction, electrowetting, and separation processes, among others.
Collapse
Affiliation(s)
- Jamilya Nauruzbayeva
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955 - 6900, Saudi Arabia
| | - Zhonghao Sun
- King Abdullah University of Science and Technology, Ali I. Al-Naimi Petroleum Engineering Research Center (ANPERC), Division of Physical Science and Engineering, Thuwal, 23955 - 6900, Saudi Arabia
| | - Adair Gallo
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955 - 6900, Saudi Arabia
| | - Mahmoud Ibrahim
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955 - 6900, Saudi Arabia
| | - J Carlos Santamarina
- King Abdullah University of Science and Technology, Ali I. Al-Naimi Petroleum Engineering Research Center (ANPERC), Division of Physical Science and Engineering, Thuwal, 23955 - 6900, Saudi Arabia
| | - Himanshu Mishra
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955 - 6900, Saudi Arabia.
| |
Collapse
|
40
|
Yang S, Chen M, Su Y, Xu J, Wu X, Tian C. Stabilization of Hydroxide Ions at the Interface of a Hydrophobic Monolayer on Water via Reduced Proton Transfer. PHYSICAL REVIEW LETTERS 2020; 125:156803. [PMID: 33095625 DOI: 10.1103/physrevlett.125.156803] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
We report a joint study using surface-specific sum-frequency vibrational spectroscopy and ab initio molecular dynamics simulations, respectively, on a pristine hydrophobic (sub)monolayer hexane-water interface, namely, the hexane/water interface with varied vapor pressures of hexane and different pHs in water. We show clear evidence that hexane on water revises the interfacial water structure in a way that stabilizes the hypercoordinated solvation structure and slows down the migration of hydroxide ion (OH^{-}) relative to that in bulk water. This mechanism effectively attracts the OH^{-} to the water-hydrophobic interface with respect to its counterion. The result illustrates the striking difference of proton transfer of hydrated OH^{-} at the interface and in the bulk, which is responsible for the intrinsic charging effect at the hydrophobic interface.
Collapse
Affiliation(s)
- Shanshan Yang
- State Key Laboratory of Surface Physics and Key Laboratory of Micro- and Nano-Photonic Structures (MOE), Department of Physics, Fudan University, Shanghai 200433, China
| | - Mohan Chen
- CAPT, HEDPS, College of Engineering, Peking University, Beijing 100871, China
| | - Yudan Su
- State Key Laboratory of Surface Physics and Key Laboratory of Micro- and Nano-Photonic Structures (MOE), Department of Physics, Fudan University, Shanghai 200433, China
| | - Jianhang Xu
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Xifan Wu
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Chuanshan Tian
- State Key Laboratory of Surface Physics and Key Laboratory of Micro- and Nano-Photonic Structures (MOE), Department of Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
41
|
Xiong H, Lee JK, Zare RN, Min W. Strong Electric Field Observed at the Interface of Aqueous Microdroplets. J Phys Chem Lett 2020; 11:7423-7428. [PMID: 32804510 DOI: 10.1021/acs.jpclett.0c02061] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Chemical reactions in aqueous microdroplets often exhibit unusual kinetic and thermodynamic properties not observed in bulk solution. While an electric field has been implicated at the water interface, there has been no direct measurement in aqueous microdroplets, largely due to the lack of proper measurement tools. Herein, we employ newly developed stimulated Raman excited fluorescence microscopy to measure the electric field at the water-oil interface of microdroplets. As determined by the vibrational Stark effect of a nitrile-bearing fluorescent probe, the strength of the electric field is found to be on the order of 107 V/cm. This strong electric field aligns probe dipoles with respect to the interface. The formation of the electric field likely arises from charge separation caused by the adsorption of negative ions at the water-oil interface of microdroplets. We suggest that this strong electric field might account in part for the unique properties of chemical reactions reported in microdroplets.
Collapse
Affiliation(s)
- Hanqing Xiong
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jae Kyoo Lee
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Wei Min
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
42
|
Piontek SM, DelloStritto M, Mandal B, Marshall T, Klein ML, Borguet E. Probing Heterogeneous Charge Distributions at the α-Al2O3(0001)/H2O Interface. J Am Chem Soc 2020; 142:12096-12105. [DOI: 10.1021/jacs.0c01366] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Dalstein L, Huang JR, Wen YC. Wavelength-scanning second-harmonic generation for determining absolute charge density at aqueous interfaces. OPTICS LETTERS 2020; 45:3733-3736. [PMID: 32630941 DOI: 10.1364/ol.396002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
We develop a new, to the best of our knowledge, optical scheme based on second-harmonic generation (SHG) at multiple wavelengths for unequivocal separation of the second-order and the electric-field-induced third-order nonlinear optical contributions from aqueous interfaces. The third-order SHG originating from the field-induced reorientation order of water molecules in the electrical double layer offers an optical label-free and inherent probe to the surface charge density and surface potential in the absolute scales. We verify this wavelength-scanning SHG scheme both theoretically and experimentally, and show that the approach is applicable to water interfaces with bulk ionic strength below 500 µM and can achieve a detection sensitivity for a surface charge density of ∼10-4C/m2.
Collapse
|
44
|
Xie Y, Khishvand M, Piri M. Wettability of Calcite Surfaces: Impacts of Brine Ionic Composition and Oil Phase Polarity at Elevated Temperature and Pressure Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6079-6088. [PMID: 32388994 DOI: 10.1021/acs.langmuir.0c00367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The interactions among the polar components of oil, aqueous phase ions, and carbonate minerals, as well as their subsequent effects on surface wettability, can significantly impact the fluid distribution and recovery in a hydrocarbon reservoir. In this study, we investigate the adsorption/desorption of molecules from oils with different levels of polarity on calcite surfaces during different displacement processes under elevated pressure and temperature conditions. We measured dynamic contact angles (CA) on untreated and aged calcite substrates using brines with different salinities and compositions and model oils, that is, mixtures of varying concentrations of stearic acid (SA) and n-decane. In particular, the impacts of the concentrations of Ca2+, SO42-, and OH- ions on the adsorption phenomena were explored. For the nonpolar oil, increasing brine salinity or removing Ca2+ ions from the aqueous phase impacted the potentials of oil-brine and brine-mineral interfaces and shifted the wettability of calcite surface toward more water-wet conditions. In the presence of polar oil, the adsorption of the polar components controls the surface wettability. Higher concentrations of Ca2+/SO42- could facilitate/obstruct the polar component adsorption and thus increase/decrease the dynamic oil-water CAs. It is also observed that the brine salinity does not impact the wettability if excess SA is added to the oil phase, that is, if the oil phase is strongly polar. Moreover, the adsorption of SA on the calcite surface under experimental conditions is found to be reversible during the displacement events. The surface energy calculation for the adsorption process indicates that the surface coverage of calcite by SA is more sensitive to the presence of Ca2+ in brine than the concentration of polar components in oil. We also conducted several experiments on calcite substrates aged with SA. The measurements demonstrate that the adsorbed SA molecules are detached when the aged mineral surface is exposed to a lower-salinity brine at high temperatures, and the SA molecules could be adsorbed back on the surface once the displacement is halted.
Collapse
Affiliation(s)
- Yun Xie
- Center of Innovation for Flow through Porous Media, Department of Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Mahdi Khishvand
- Center of Innovation for Flow through Porous Media, Department of Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Mohammad Piri
- Center of Innovation for Flow through Porous Media, Department of Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
45
|
Yuan X, Tang B, Barman J, Groenewold J, Zhou G. Approximately symmetric electrowetting on an oil-lubricated surface. RSC Adv 2020; 10:20257-20263. [PMID: 35520452 PMCID: PMC9054235 DOI: 10.1039/d0ra02405h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/09/2020] [Indexed: 12/24/2022] Open
Abstract
As the most widely used insulator materials in the electrowetting (EW) systems, amorphous fluoropolymers (AFs) provide excellent hydrophobicity, dielectric properties and chemical inertness; however, they suffer from charge trapping during electrowetting with water and the consequent asymmetric phenomenon. In this study, an ultra-thin oil-lubricated AF surface was proposed to release the charge trapping in the dielectric layer and further suppress the polarity-dependent asymmetry during electrowetting. The negative spontaneously trapped charges gathering on the dielectric/water interface with aging time were characterized by various measurements and calculations, which explained the polarity dependence of the asymmetric electrowetting. Approximately symmetric EW curves withstanding water aging were obtained for the oil-lubricated AF surface, confirming the blocking effect on charge trapping induced by the lubricated surface. The improved reversibility of EW with low contact angle hysteresis brought by the oil-lubricated surface was also demonstrated. This study reveals the mechanism behind the asymmetric EW phenomenon and offers an attractive oil-lubricated EW material system for suppressing the charge trapping on the dielectric/water interface, which can significantly improve the manipulation of the EW devices.
Collapse
Affiliation(s)
- Xi Yuan
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays South China Academy of Advanced Optoelectronics, South China Normal University Guangzhou 510006 P. R. China .,National Center for International Research on Green Optoelectronics, South China Normal University Guangzhou 510006 P. R. China
| | - Biao Tang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays South China Academy of Advanced Optoelectronics, South China Normal University Guangzhou 510006 P. R. China .,National Center for International Research on Green Optoelectronics, South China Normal University Guangzhou 510006 P. R. China
| | - Jitesh Barman
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays South China Academy of Advanced Optoelectronics, South China Normal University Guangzhou 510006 P. R. China .,National Center for International Research on Green Optoelectronics, South China Normal University Guangzhou 510006 P. R. China
| | - Jan Groenewold
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays South China Academy of Advanced Optoelectronics, South China Normal University Guangzhou 510006 P. R. China .,National Center for International Research on Green Optoelectronics, South China Normal University Guangzhou 510006 P. R. China.,Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Research Institute, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays South China Academy of Advanced Optoelectronics, South China Normal University Guangzhou 510006 P. R. China .,National Center for International Research on Green Optoelectronics, South China Normal University Guangzhou 510006 P. R. China.,Academy of Shenzhen Guohua Optoelectronics Shenzhen 518110 P. R. China
| |
Collapse
|
46
|
Tang F, Ohto T, Sun S, Rouxel JR, Imoto S, Backus EHG, Mukamel S, Bonn M, Nagata Y. Molecular Structure and Modeling of Water-Air and Ice-Air Interfaces Monitored by Sum-Frequency Generation. Chem Rev 2020; 120:3633-3667. [PMID: 32141737 PMCID: PMC7181271 DOI: 10.1021/acs.chemrev.9b00512] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Indexed: 12/26/2022]
Abstract
From a glass of water to glaciers in Antarctica, water-air and ice-air interfaces are abundant on Earth. Molecular-level structure and dynamics at these interfaces are key for understanding many chemical/physical/atmospheric processes including the slipperiness of ice surfaces, the surface tension of water, and evaporation/sublimation of water. Sum-frequency generation (SFG) spectroscopy is a powerful tool to probe the molecular-level structure of these interfaces because SFG can specifically probe the topmost interfacial water molecules separately from the bulk and is sensitive to molecular conformation. Nevertheless, experimental SFG has several limitations. For example, SFG cannot provide information on the depth of the interface and how the orientation of the molecules varies with distance from the surface. By combining the SFG spectroscopy with simulation techniques, one can directly compare the experimental data with the simulated SFG spectra, allowing us to unveil the molecular-level structure of water-air and ice-air interfaces. Here, we present an overview of the different simulation protocols available for SFG spectra calculations. We systematically compare the SFG spectra computed with different approaches, revealing the advantages and disadvantages of the different methods. Furthermore, we account for the findings through combined SFG experiments and simulations and provide future challenges for SFG experiments and simulations at different aqueous interfaces.
Collapse
Affiliation(s)
- Fujie Tang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Tatsuhiko Ohto
- Graduate
School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shumei Sun
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physical Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Jérémy R. Rouxel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Sho Imoto
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Ellen H. G. Backus
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physical Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yuki Nagata
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physics, State Key Laboratory of Surface Physics and Key Laboratory
of Micro- and Nano-Photonic Structures (MOE), Fudan University, Shanghai 200433, China
| |
Collapse
|
47
|
Uematsu Y, Bonthuis DJ, Netz RR. Nanomolar Surface-Active Charged Impurities Account for the Zeta Potential of Hydrophobic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3645-3658. [PMID: 32167772 DOI: 10.1021/acs.langmuir.9b03795] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The electrification of hydrophobic surfaces is an intensely debated subject in physical chemistry. We theoretically study the ζ potential of hydrophobic surfaces for varying pH and salt concentration by solving the Poisson-Boltzmann and Stokes equations with individual ionic adsorption affinities. Using the ionic surface affinities extracted from the experimentally measured surface tension of the air-electrolyte interface, we first show that the interfacial adsorption and repulsion of small inorganic ions such as H3O+, OH-, HCO3-, and CO32- cannot account for the ζ potential observed in experiments because the surface affinities of these ions are too small. Even if we take hydrodynamic slip into account, the characteristic dependence of the ζ potential on pH and salt concentration cannot be reproduced. Instead, to explain the sizable experimentally measured ζ potential of hydrophobic surfaces, we assume minute amounts of impurities in the water and include the impurities' acidic and basic reactions with water. We find good agreement between our predictions and the reported experimental ζ potential data of various hydrophobic surfaces if we account for impurities that consist of a mixture of weak acids (pKa = 5-7) and weak bases (pKb = 12) at a concentration of the order of 10-7 M.
Collapse
Affiliation(s)
- Yuki Uematsu
- Department of Physics, Kyushu University, 819-0395 Fukuoka, Japan
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Douwe Jan Bonthuis
- Institute of Theoretical and Computational Physics, Graz University of Technology, 8010 Graz, Austria
| | - Roland R Netz
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
48
|
Monroe J, Barry M, DeStefano A, Aydogan Gokturk P, Jiao S, Robinson-Brown D, Webber T, Crumlin EJ, Han S, Shell MS. Water Structure and Properties at Hydrophilic and Hydrophobic Surfaces. Annu Rev Chem Biomol Eng 2020; 11:523-557. [PMID: 32169001 DOI: 10.1146/annurev-chembioeng-120919-114657] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The properties of water on both molecular and macroscopic surfaces critically influence a wide range of physical behaviors, with applications spanning from membrane science to catalysis to protein engineering. Yet, our current understanding of water interfacing molecular and material surfaces is incomplete, in part because measurement of water structure and molecular-scale properties challenges even the most advanced experimental characterization techniques and computational approaches. This review highlights progress in the ongoing development of tools working to answer fundamental questions on the principles that govern the interactions between water and surfaces. One outstanding and critical question is what universal molecular signatures capture the hydrophobicity of different surfaces in an operationally meaningful way, since traditional macroscopic hydrophobicity measures like contact angles fail to capture even basic properties of molecular or extended surfaces with any heterogeneity at the nanometer length scale. Resolving this grand challenge will require close interactions between state-of-the-art experiments, simulations, and theory, spanning research groups and using agreed-upon model systems, to synthesize an integrated knowledge of solvation water structure, dynamics, and thermodynamics.
Collapse
Affiliation(s)
- Jacob Monroe
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Mikayla Barry
- Department of Materials, University of California, Santa Barbara, California 93106, USA
| | - Audra DeStefano
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Pinar Aydogan Gokturk
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Sally Jiao
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Dennis Robinson-Brown
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Thomas Webber
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Ethan J Crumlin
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; .,Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| |
Collapse
|
49
|
Myalitsin A, Ghosh S, Urashima SH, Nihonyanagi S, Yamaguchi S, Aoki T, Tahara T. Structure of water and polymer at the buried polymer/water interface unveiled using heterodyne-detected vibrational sum frequency generation. Phys Chem Chem Phys 2020; 22:16527-16531. [DOI: 10.1039/d0cp02618b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterodyne-detected vibrational sum frequency generation reveals the molecular-level structure of the polymer/water interface that is different from what has been argued.
Collapse
Affiliation(s)
- Anton Myalitsin
- Molecular Spectroscopy Laboratory
- RIKEN
- Saitama 351-0198
- Japan
- Nissan ARC, Ltd
| | - Sanat Ghosh
- Molecular Spectroscopy Laboratory
- RIKEN
- Saitama 351-0198
- Japan
| | | | - Satoshi Nihonyanagi
- Molecular Spectroscopy Laboratory
- RIKEN
- Saitama 351-0198
- Japan
- Ultrafast Spectroscopy Research Team
| | - Shoichi Yamaguchi
- Department of Applied Chemistry
- Graduate School of Science and Technology
- Saitama University
- Saitama 338-8570
- Japan
| | - Takashi Aoki
- Department of Biobased Materials Science
- Graduate School of Science and Technology
- Kyoto Institute of Technology
- Kyoto 606-8585
- Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory
- RIKEN
- Saitama 351-0198
- Japan
- Ultrafast Spectroscopy Research Team
| |
Collapse
|
50
|
Del Grosso CA, Leng C, Zhang K, Hung HC, Jiang S, Chen Z, Wilker JJ. Surface hydration for antifouling and bio-adhesion. Chem Sci 2020; 11:10367-10377. [PMID: 34094298 PMCID: PMC8162394 DOI: 10.1039/d0sc03690k] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Antifouling properties of materials play crucial roles in many important applications such as biomedical implants, marine antifouling coatings, biosensing, and membranes for separation. Poly(ethylene glycol) (or PEG) containing polymers and zwitterionic polymers have been shown to be excellent antifouling materials. It is believed that their outstanding antifouling activity comes from their strong surface hydration. On the other hand, it is difficult to develop underwater glues, although adhesives with strong adhesion in a dry environment are widely available. This is related to dehydration, which is important for adhesion for many cases while water is the enemy of adhesion. In this research, we applied sum frequency generation (SFG) vibrational spectroscopy to investigate buried interfaces between mussel adhesive plaques and a variety of materials including antifouling polymers and control samples, supplemented by studies on marine animal (mussel) behavior and adhesion measurements. It was found that PEG containing polymers and zwitterionic polymers have very strong surface hydration in an aqueous environment, which is the key for their excellent antifouling performance. Because of the strong surface hydration, mussels do not settle on these surfaces even after binding to the surfaces with rubber bands. For control samples, SFG results indicate that their surface hydration is much weaker, and therefore mussels can generate adhesives to displace water to cause dehydration at the interface. Because of the dehydration, mussels can foul on the surfaces of these control materials. Our experiments also showed that if mussels were forced to deposit adhesives onto the PEG containing polymers and zwitterionic polymers, interfacial dehydration did not occur. However, even with the strong interfacial hydration, strong adhesion between mussel adhesives and antifouling polymer surfaces was detected, showing that under certain circumstances, interfacial water could enhance the interfacial bio-adhesion. Antifouling properties of materials play crucial roles in many important applications such as biomedical implants, marine antifouling coatings, biosensing, and membranes for separation.![]()
Collapse
Affiliation(s)
| | - Chuan Leng
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| | - Kexin Zhang
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| | - Hsiang-Chieh Hung
- Department of Chemical Engineering
- University of Washington
- Seattle
- USA
| | - Shaoyi Jiang
- Department of Chemical Engineering
- University of Washington
- Seattle
- USA
| | - Zhan Chen
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| | - Jonathan J. Wilker
- Department of Chemistry
- Purdue University
- West Lafayette
- USA
- School of Materials Engineering
| |
Collapse
|