1
|
Vishal CR, Gauns MU, Pratihary AK. Suboxic waters of the eastern Arabian Sea shelter secondary chlorophyll maximum dominated by heterotrophic dinoflagellate Pronoctiluca spp. (order Noctilucales). ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:161. [PMID: 39794650 DOI: 10.1007/s10661-024-13589-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025]
Abstract
In the present study, we investigated the dinoflagellate assemblages in the upper water column (< 150-m depth), focusing on the suboxic waters of the eastern Arabian Sea (EAS) along 68°E from 8°N to 21°N during the southwest monsoon 2020 (SWM-2020). Dinoflagellate abundance was higher in the upper water column (0-80-m depth, mean ± SD = 411 ± 903 cells L-1) compared to deeper waters (80-150-m depth, mean ± SD = 128 ± 216 cells L-1). Among 11 identified taxonomic dinoflagellate orders, Peridinales were predominant in the upper waters column (71%, mean ± SD = 285 ± 858 cells L-1). Noctilucales, particularly Pronoctiluca spp., dominated the deeper water column (78%, mean ± SD = 99 ± 223 cells L-1), especially at the southern stations (8-14°N, mean ± SD = 158 ± 270 cells L-1). During SWM-2020, a strong vertical gradient in Pronoctiluca with increased abundance in suboxic, colder waters (< 0.05 mL L-1, < 20 °C) coincided with the secondary chlorophyll maximum layers (12°N, SCMLs ~ 145 m, maximum 832 cells L-1). To compare this observation, samples were taken at 13°N during the winter monsoon (WM-2023), when the SCML peak was prominent (0.3 µg L-1) in suboxic waters. The results revealed an increased abundance of Pronoctiluca close to the SCML depth (~ 117 m) during WM. The canonical correspondence analysis revealed a positive correlation between SCML and Pronoctiluca, suggesting that Pronoctiluca relies on prey, i.e. low-light-adapted smaller phytoplankton. The higher abundance of Pronoctiluca compared to other oceanic regimes highlights the importance of assessing their crucial role in nutrient recycling and remineralisation within the suboxic environments of the EAS.
Collapse
Affiliation(s)
- Chazhikulam Rajan Vishal
- Biological Oceanographic Division, CSIR-National Institute of Oceanography, Panaji, Goa, 403004, India
- Department of Marine Science, School of Earth, Ocean and Atmospheric Sciences (SEOAS), Goa University, Taleigao Plateau, Panaji, Goa, 403206, India
| | - Manguesh Uttam Gauns
- Biological Oceanographic Division, CSIR-National Institute of Oceanography, Panaji, Goa, 403004, India.
| | - Anil Kiran Pratihary
- Chemical Oceanographic Division, CSIR-National Institute of Oceanography, Panaji, Goa, 403004, India
| |
Collapse
|
2
|
Sharpe G, Zhao L, Meyer MG, Gong W, Burns SM, Tagliabue A, Buck KN, Santoro AE, Graff JR, Marchetti A, Gifford S. Synechococcus nitrogen gene loss in iron-limited ocean regions. ISME COMMUNICATIONS 2023; 3:107. [PMID: 37783796 PMCID: PMC10545762 DOI: 10.1038/s43705-023-00314-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Synechococcus are the most abundant cyanobacteria in high latitude regions and are responsible for an estimated 17% of annual marine net primary productivity. Despite their biogeochemical importance, Synechococcus populations have been unevenly sampled across the ocean, with most studies focused on low-latitude strains. In particular, the near absence of Synechococcus genomes from high-latitude, High Nutrient Low Chlorophyll (HNLC) regions leaves a gap in our knowledge of picocyanobacterial adaptations to iron limitation and their influence on carbon, nitrogen, and iron cycles. We examined Synechococcus populations from the subarctic North Pacific, a well-characterized HNLC region, with quantitative metagenomics. Assembly with short and long reads produced two near complete Synechococcus metagenome-assembled genomes (MAGs). Quantitative metagenome-derived abundances of these populations matched well with flow cytometry counts, and the Synechococcus MAGs were estimated to comprise >99% of the Synechococcus at Station P. Whereas the Station P Synechococcus MAGs contained multiple genes for adaptation to iron limitation, both genomes lacked genes for uptake and assimilation of nitrate and nitrite, suggesting a dependence on ammonium, urea, and other forms of recycled nitrogen leading to reduced iron requirements. A global analysis of Synechococcus nitrate reductase abundance in the TARA Oceans dataset found nitrate assimilation genes are also lower in other HNLC regions. We propose that nitrate and nitrite assimilation gene loss in Synechococcus may represent an adaptation to severe iron limitation in high-latitude regions where ammonium availability is higher. Our findings have implications for models that quantify the contribution of cyanobacteria to primary production and subsequent carbon export.
Collapse
Affiliation(s)
- Garrett Sharpe
- Environment Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Liang Zhao
- Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Meredith G Meyer
- Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weida Gong
- Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shannon M Burns
- College of Marine Science, University of South Florida, St. Petersburg, FL, USA
| | | | - Kristen N Buck
- College of Marine Science, University of South Florida, St. Petersburg, FL, USA
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | - Alyson E Santoro
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Jason R Graff
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Adrian Marchetti
- Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott Gifford
- Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Ustick LJ, Larkin AA, Martiny AC. Global scale phylogeography of functional traits and microdiversity in Prochlorococcus. THE ISME JOURNAL 2023; 17:1671-1679. [PMID: 37454234 PMCID: PMC10504305 DOI: 10.1038/s41396-023-01469-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
Prochlorococcus is the most numerically abundant photosynthetic organism in the surface ocean. The Prochlorococcus high-light and warm-water adapted ecotype (HLII) is comprised of extensive microdiversity, but specific functional differences between microdiverse sub-clades remain elusive. Here we characterized both functional and phylogenetic diversity within the HLII ecotype using Bio-GO-SHIP metagenomes. We found widespread variation in gene frequency connected to local environmental conditions. Metagenome-assembled marker genes and genomes revealed a globally distributed novel HLII haplotype defined by adaptation to chronically low P conditions (HLII-P). Environmental correlation analysis revealed different factors were driving gene abundances verses phylogenetic differences. An analysis of cultured HLII genomes and metagenome-assembled genomes revealed a subclade within HLII, which corresponded to the novel HLII-P haplotype. This work represents the first global assessment of the HLII ecotype's phylogeography and corresponding functional differences. These findings together expand our understanding of how microdiversity structures functional differences and reveals the importance of nutrients as drivers of microdiversity in Prochlorococcus.
Collapse
Affiliation(s)
- Lucas J Ustick
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
- Structural and Computational Biology Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alyse A Larkin
- Department of Earth System Science, University of California Irvine, Irvine, CA, 92697, USA
- Global Ocean Monitoring and Observing, National Oceanic and Atmospheric Administration, Washington, DC, USA
| | - Adam C Martiny
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA.
- Department of Earth System Science, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
4
|
Berube PM, O'Keefe TJ, Rasmussen A, LeMaster T, Chisholm SW. Production and cross-feeding of nitrite within Prochlorococcus populations. mBio 2023; 14:e0123623. [PMID: 37404012 PMCID: PMC10470740 DOI: 10.1128/mbio.01236-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 07/06/2023] Open
Abstract
Prochlorococcus is an abundant photosynthetic bacterium in the open ocean, where nitrogen (N) often limits phytoplankton growth. In the low-light-adapted LLI clade of Prochlorococcus, nearly all cells can assimilate nitrite (NO2-), with a subset capable of assimilating nitrate (NO3-). LLI cells are maximally abundant near the primary NO2- maximum layer, an oceanographic feature that may, in part, be due to incomplete assimilatory NO3- reduction and subsequent NO2- release by phytoplankton. We hypothesized that some Prochlorococcus exhibit incomplete assimilatory NO3- reduction and examined NO2- accumulation in cultures of three Prochlorococcus strains (MIT0915, MIT0917, and SB) and two Synechococcus strains (WH8102 and WH7803). Only MIT0917 and SB accumulated external NO2- during growth on NO3-. Approximately 20-30% of the NO3- transported into the cell by MIT0917 was released as NO2-, with the rest assimilated into biomass. We further observed that co-cultures using NO3- as the sole N source could be established for MIT0917 and Prochlorococcus strain MIT1214 that can assimilate NO2- but not NO3-. In these co-cultures, the NO2- released by MIT0917 is efficiently consumed by its partner strain, MIT1214. Our findings highlight the potential for emergent metabolic partnerships that are mediated by the production and consumption of N cycle intermediates within Prochlorococcus populations. IMPORTANCE Earth's biogeochemical cycles are substantially driven by microorganisms and their interactions. Given that N often limits marine photosynthesis, we investigated the potential for N cross-feeding within populations of Prochlorococcus, the numerically dominant photosynthetic cell in the subtropical open ocean. In laboratory cultures, some Prochlorococcus cells release extracellular NO2- during growth on NO3-. In the wild, Prochlorococcus populations are composed of multiple functional types, including those that cannot use NO3- but can still assimilate NO2-. We show that metabolic dependencies arise when Prochlorococcus strains with complementary NO2- production and consumption phenotypes are grown together on NO3-. These findings demonstrate the potential for emergent metabolic partnerships, possibly modulating ocean nutrient gradients, that are mediated by cross-feeding of N cycle intermediates.
Collapse
Affiliation(s)
- Paul M. Berube
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Tyler J. O'Keefe
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Anna Rasmussen
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Trent LeMaster
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sallie W. Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Masuda T, Inomura K, Mareš J, Kodama T, Shiozaki T, Matsui T, Suzuki K, Takeda S, Deutsch C, Prášil O, Furuya K. Coexistence of Dominant Marine Phytoplankton Sustained by Nutrient Specialization. Microbiol Spectr 2023; 11:e0400022. [PMID: 37458590 PMCID: PMC10441275 DOI: 10.1128/spectrum.04000-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 06/07/2023] [Indexed: 08/19/2023] Open
Abstract
Prochlorococcus and Synechococcus are the two dominant picocyanobacteria in the low-nutrient surface waters of the subtropical ocean, but the basis for their coexistence has not been quantitatively demonstrated. Here, we combine in situ microcosm experiments and an ecological model to show that this coexistence can be sustained by specialization in the uptake of distinct nitrogen (N) substrates at low-level concentrations that prevail in subtropical environments. In field incubations, the response of both Prochlorococcus and Synechococcus to nanomolar N amendments demonstrates N limitation of growth in both populations. However, Prochlorococcus showed a higher affinity to ammonium, whereas Synechococcus was more adapted to nitrate uptake. A simple ecological model demonstrates that the differential nutrient preference inferred from field experiments with these genera may sustain their coexistence. It also predicts that as the supply of NO3- decreases, as expected under climate warming, the dominant genera should undergo a nonlinear shift from Synechococcus to Prochlorococcus, a pattern that is supported by subtropical field observations. Our study suggests that the evolution of differential nutrient affinities is an important mechanism for sustaining the coexistence of genera and that climate change is likely to shift the relative abundance of the dominant plankton genera in the largest biomes in the ocean. IMPORTANCE Our manuscript addresses the following fundamental question in microbial ecology: how do different plankton using the same essential nutrients coexist? Prochlorococcus and Synechococcus are the two dominant picocyanobacteria in the low-nutrient surface waters of the subtropical ocean, which support a significant amount of marine primary production. The geographical distributions of these two organisms are largely overlapping, but the basis for their coexistence in these biomes remains unclear. In this study, we combined in situ microcosm experiments and an ecosystem model to show that the coexistence of these two organisms can arise from specialization in the uptake of distinct nitrogen substrates; Prochlorococcus prefers ammonium, whereas Synechococcus prefers nitrate when these nutrients exist at low concentrations. Our framework can be used for simulating and predicting the coexistence in the future ocean and may provide hints toward understanding other similar types of coexistence.
Collapse
Affiliation(s)
- Takako Masuda
- Department of Aquatic Bioscience, The University of Tokyo, Bunkyo, Tokyo, Japan
- Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czechia
| | - Keisuke Inomura
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Jan Mareš
- Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czechia
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budejovice, Czechia
- Department of Botany, University of South Bohemia, Faculty of Science, České Budejovice, Czechia
| | - Taketoshi Kodama
- Department of Aquatic Bioscience, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Takuhei Shiozaki
- Department of Aquatic Bioscience, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Takato Matsui
- Graduate School of Environmental Science/Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | - Koji Suzuki
- Graduate School of Environmental Science/Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | - Shigenobu Takeda
- Department of Aquatic Bioscience, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Curtis Deutsch
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA
| | - Ondřej Prášil
- Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czechia
| | - Ken Furuya
- Department of Aquatic Bioscience, The University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|
6
|
Differential global distribution of marine picocyanobacteria gene clusters reveals distinct niche-related adaptive strategies. THE ISME JOURNAL 2023; 17:720-732. [PMID: 36841901 PMCID: PMC10119275 DOI: 10.1038/s41396-023-01386-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/27/2023]
Abstract
The ever-increasing number of available microbial genomes and metagenomes provides new opportunities to investigate the links between niche partitioning and genome evolution in the ocean, especially for the abundant and ubiquitous marine picocyanobacteria Prochlorococcus and Synechococcus. Here, by combining metagenome analyses of the Tara Oceans dataset with comparative genomics, including phyletic patterns and genomic context of individual genes from 256 reference genomes, we show that picocyanobacterial communities thriving in different niches possess distinct gene repertoires. We also identify clusters of adjacent genes that display specific distribution patterns in the field (eCAGs) and are thus potentially involved in the same metabolic pathway and may have a key role in niche adaptation. Several eCAGs are likely involved in the uptake or incorporation of complex organic forms of nutrients, such as guanidine, cyanate, cyanide, pyrimidine, or phosphonates, which might be either directly used by cells, for example for the biosynthesis of proteins or DNA, or degraded to inorganic nitrogen and/or phosphorus forms. We also highlight the enrichment of eCAGs involved in polysaccharide capsule biosynthesis in Synechococcus populations thriving in both nitrogen- and phosphorus-depleted areas vs. low-iron (Fe) regions, suggesting that the complexes they encode may be too energy-consuming for picocyanobacteria thriving in the latter areas. In contrast, Prochlorococcus populations thriving in Fe-depleted areas specifically possess an alternative respiratory terminal oxidase, potentially involved in the reduction of Fe(III) to Fe(II). Altogether, this study provides insights into how phytoplankton communities populate oceanic ecosystems, which is relevant to understanding their capacity to respond to ongoing climate change.
Collapse
|
7
|
Ustick LJ, Larkin AA, Martiny AC. Global scale phylogeography of functional traits and microdiversity in Prochlorococcus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525399. [PMID: 36747826 PMCID: PMC9900765 DOI: 10.1101/2023.01.24.525399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Prochlorococcus is the most numerically abundant photosynthetic organism in the surface ocean. The Prochlorococcus high-light and warm-water adapted ecotype (HLII) is comprised of extensive microdiversity, but specific functional differences between microdiverse sub-clades remain elusive. Here we characterized both functional and phylogenetic diversity within the HLII ecotype using Bio-GO-SHIP metagenomes. We found widespread variation in gene frequency connected to local environmental conditions. Metagenomically assembled marker genes and genomes revealed a globally distributed novel HLII haplotype defined by adaptation to chronically low P conditions (HLII-P). Environmental correlation analysis revealed different factors were driving gene abundances verses phylogenetic differences. An analysis of cultured HLII genomes and metagenomically assembled genomes revealed a subclade within HLII, which corresponded to the novel HLII-P haplotype. This work represents the first global assessment of the HLII ecotype’s phylogeography and corresponding functional differences. These findings together expand our understanding of how microdiversity structures functional differences and reveals the importance of nutrients as drivers of microdiversity in Prochlorococcus .
Collapse
|
8
|
Díez J, López-Lozano A, Domínguez-Martín MA, Gómez-Baena G, Muñoz-Marín MC, Melero-Rubio Y, García-Fernández JM. Regulatory and metabolic adaptations in the nitrogen assimilation of marine picocyanobacteria. FEMS Microbiol Rev 2023; 47:6794272. [PMID: 36323406 DOI: 10.1093/femsre/fuac043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
Prochlorococcus and Synechococcus are the two most abundant photosynthetic organisms on Earth, with a strong influence on the biogeochemical carbon and nitrogen cycles. Early reports demonstrated the streamlining of regulatory mechanisms in nitrogen metabolism and the removal of genes not strictly essential. The availability of a large series of genomes, and the utilization of latest generation molecular techniques have allowed elucidating the main mechanisms developed by marine picocyanobacteria to adapt to the environments where they thrive, with a particular interest in the strains inhabiting oligotrophic oceans. Given that nitrogen is often limited in those environments, a series of studies have explored the strategies utilized by Prochlorococcus and Synechococcus to exploit the low concentrations of nitrogen-containing molecules available in large areas of the oceans. These strategies include the reduction in the GC and the cellular protein contents; the utilization of truncated proteins; a reduced average amount of N in the proteome; the development of metabolic mechanisms to perceive and utilize nanomolar nitrate concentrations; and the reduced responsiveness of key molecular regulatory systems such as NtcA to 2-oxoglutarate. These findings are in sharp contrast with the large body of knowledge obtained in freshwater cyanobacteria. We will outline the main discoveries, stressing their relevance to the ecological success of these important microorganisms.
Collapse
Affiliation(s)
- J Díez
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - A López-Lozano
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - M A Domínguez-Martín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - G Gómez-Baena
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - M C Muñoz-Marín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - Y Melero-Rubio
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - J M García-Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| |
Collapse
|
9
|
Shao Q, Sun D, Fang C, Feng Y, Wang C. Biodiversity and Biogeography of Abundant and Rare Microbial Assemblages in the Western Subtropical Pacific Ocean. Front Microbiol 2022; 13:839562. [PMID: 35432250 PMCID: PMC9006148 DOI: 10.3389/fmicb.2022.839562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
The levels of chlorophyll a and nutrient concentrations in the surface waters of the western subtropical Pacific Ocean are among the lowest globally. In addition, our knowledge of basin-scale diversity and biogeography of microbial communities in this vast extremely oligotrophic environment is still rather limited. Here, high-throughput sequencing was used to examine the biodiversity and biogeography of abundant and rare microbial assemblages throughout the water column from the surface to a depth of 3,000 m across a horizontal distance of 1,100 km in the western Pacific Ocean. Microbial alpha diversity in the 200-m layer was higher than at other depths, with Gammaproteobacteria, Alphaproteobacteria, and Clostridia as the dominant classes in all samples. Distinctly vertical distributions within the microbial communities were revealed, with no difference horizontally. Some microbes exhibited depth stratification. For example, the relative abundances of Cyanobacteria and Alphaproteobacteria decreased with depth, while Nitrososphaeria, Actinobacteria, and Gammaproteobacteria increased with depth in the aphotic layers. Furthermore, we found that environmental (selective process) and spatial (neutral process) factors had different effects on abundant and rare taxa. Geographical distance showed little effect on the dispersal of all and abundant taxa, while statistically significant distance-decay relationships were observed among the rare taxa. Temperature and chlorophyll a were strongly associated with all, abundant, and rare taxa in the photic layers, while total inorganic nitrogen was recognized as the crucial factor in the aphotic layers. Variance partitioning analysis indicated that environmental selection played a relatively important role in shaping all and abundant taxa, while the variation in rare taxa explained by environmental and spatial processes was relatively low, as more than 70% of the variation remained unexplained. This study provides novel knowledge related to microbial community diversity in the western subtropical Pacific Ocean, and the analyzes biogeographical patterns among abundant and rare taxa.
Collapse
Affiliation(s)
- Qianwen Shao
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Ningbo Institute of Oceanography, Ningbo, China
| | - Dong Sun
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Chen Fang
- College of Oceanography, Hohai University, Nanjing, China
| | - Yunzhi Feng
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Chunsheng Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
10
|
Kumar A, Ng DHP, Bairoliya S, Cao B. The Dark Side of Microbial Processes: Accumulation of Nitrate During Storage of Surface Water in the Dark and the Underlying Mechanism. Microbiol Spectr 2022; 10:e0223221. [PMID: 34985332 PMCID: PMC8729765 DOI: 10.1128/spectrum.02232-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/03/2021] [Indexed: 11/20/2022] Open
Abstract
In densely populated cities with limited land, storage of surface water in underground spaces is a potential solution to meet the rising demand of clean water. In addition, due to the imperative need of renewable solar energy and limited land resources, the deployment of floating solar photovoltaic (PV) systems over water has risen exponentially. In both scenarios, microbial communities in the water do not have access to sunlight. How the absence of sunlight influences microbial community function and the water quality is largely unknown. The objective of this study was to reveal microbial processes in surface water stored in the dark and water quality dynamics. Water from a freshwater reservoir was stored in the dark or light (control) for 6 months. Water quality was monitored at regular intervals. RNA sequencing was performed on the Illumina MiSeq platform and qPCR was used to substantiate the findings arising from the sequencing data. Our results showed that storage of surface water in the dark resulted in the accumulation of nitrate in the water. Storage in the dark promoted the decay of algal cells, increasing the amount of free nitrogen in the water. Most of the free nitrogen was eventually transformed into nitrate through microbial processes. RNA sequencing-based microbial community analyses and pure culture experiments using nitrifying bacteria Nitrosomonas europaea and Nitrobacter sp. revealed that the accumulation of nitrate in the dark was likely due to an increase in nitrification rate and a decrease in the assimilation rate of nitrate back into the biomass. IMPORTANCE Microbial communities play an essential role in maintaining a healthy aquatic ecosystem. For example, in surface water reservoirs, microorganisms produce oxygen, break down toxic contaminants and remove excess nitrogen. In densely populated cities with limited land, storing surface water in underground spaces and deploying floating solar photovoltaic (PV) systems over water are potential solutions to address water and energy sustainability challenges. In both scenarios, surface water is kept in the dark. In this work, we revealed how the absence of sunlight influences microbial community function and water quality. We showed that storage of surface water in the dark affected bacterial activities responsible for nitrogen transformation, resulting in the accumulation of nitrate in the water. Our findings highlight the importance of monitoring nitrate closely if raw surface water is to be stored in the dark and the potential need of downstream treatment to remove nitrate.
Collapse
Affiliation(s)
- Amit Kumar
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Daphne H. P. Ng
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Sakcham Bairoliya
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Bin Cao
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
11
|
Evolution of Phytoplankton in Relation to Their Physiological Traits. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Defining the physiological traits that characterise phytoplankton involves comparison with related organisms in benthic habitats. Comparison of survival time in darkness under natural conditions requires more information. Gas vesicles and flagella as mechanisms of upward movement relative to surrounding water, allowing periodic vertical migration, are not confined to plankton, although buoyancy changes related to compositional changes of a large central vacuole may be restricted to plankton. Benthic microalgae have the same range of photosynthetic pigments as phytoplankton; it is not clear if there are differences in the rate of regulation and acclimation of photosynthetic machinery to variations in irradiance for phytoplankton and for microphytobenthos. There are inadequate data to determine if responses to variations in frequency or magnitude of changes in the supply of inorganic carbon, nitrogen or phosphorus differ between phytoplankton and benthic microalgae. Phagophotomixotrophy and osmophotomixotrophy occur in both phytoplankton and benthic microalgae. Further progress in identifying physiological traits specific to phytoplankton requires more experimentation on benthic microalgae that are closely related to planktonic microalgae, with attention to whether the benthic algae examined have, as far as can be determined, never been planktonic during their evolution or are derived from planktonic ancestors.
Collapse
|
12
|
Ford BA, Sullivan GJ, Moore L, Varkey D, Zhu H, Ostrowski M, Mabbutt BC, Paulsen IT, Shah BS. Functional characterisation of substrate-binding proteins to address nutrient uptake in marine picocyanobacteria. Biochem Soc Trans 2021; 49:2465-2481. [PMID: 34882230 PMCID: PMC8786288 DOI: 10.1042/bst20200244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/05/2022]
Abstract
Marine cyanobacteria are key primary producers, contributing significantly to the microbial food web and biogeochemical cycles by releasing and importing many essential nutrients cycled through the environment. A subgroup of these, the picocyanobacteria (Synechococcus and Prochlorococcus), have colonised almost all marine ecosystems, covering a range of distinct light and temperature conditions, and nutrient profiles. The intra-clade diversities displayed by this monophyletic branch of cyanobacteria is indicative of their success across a broad range of environments. Part of this diversity is due to nutrient acquisition mechanisms, such as the use of high-affinity ATP-binding cassette (ABC) transporters to competitively acquire nutrients, particularly in oligotrophic (nutrient scarce) marine environments. The specificity of nutrient uptake in ABC transporters is primarily determined by the peripheral substrate-binding protein (SBP), a receptor protein that mediates ligand recognition and initiates translocation into the cell. The recent availability of large numbers of sequenced picocyanobacterial genomes indicates both Synechococcus and Prochlorococcus apportion >50% of their transport capacity to ABC transport systems. However, the low degree of sequence homology among the SBP family limits the reliability of functional assignments using sequence annotation and prediction tools. This review highlights the use of known SBP structural representatives for the uptake of key nutrient classes by cyanobacteria to compare with predicted SBP functionalities within sequenced marine picocyanobacteria genomes. This review shows the broad range of conserved biochemical functions of picocyanobacteria and the range of novel and hypothetical ABC transport systems that require further functional characterisation.
Collapse
Affiliation(s)
- Benjamin A. Ford
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | | | - Lisa Moore
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Deepa Varkey
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Hannah Zhu
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Martin Ostrowski
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, Australia
| | - Bridget C. Mabbutt
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Ian T. Paulsen
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Bhumika S. Shah
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
13
|
Berthold M, Campbell DA. Restoration, conservation and phytoplankton hysteresis. CONSERVATION PHYSIOLOGY 2021; 9:coab062. [PMID: 34394942 PMCID: PMC8361504 DOI: 10.1093/conphys/coab062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Phytoplankton growth depends not only upon external factors that are not strongly altered by the presence of phytoplankton, such as temperature, but also upon factors that are strongly influenced by activity of phytoplankton, including photosynthetically active radiation, and the availability of the macronutrients carbon, nitrogen, phosphorus and, for some, silicate. Since phytoplankton therefore modify, and to an extent create, their own habitats, established phytoplankton communities can show resistance and resilience to change, including managed changes in nutrient regimes. Phytoplankton blooms and community structures can be predicted from the overall biogeochemical setting and inputs, but restorations may be influenced by the physiological responses of established phytoplankton taxa to nutrient inputs, temperature, second-order changes in illumination and nutrient recycling. In this review we discuss the contributions of phytoplankton ecophysiology to biogeochemical hysteresis and possible effects on community composition in the face of management, conservation or remediation plans.
Collapse
Affiliation(s)
- Maximilian Berthold
- Department of Biology, Mount Allison University, Sackville, New Brunswick E4L 1C9, Canada
| | - Douglas A Campbell
- Department of Biology, Mount Allison University, Sackville, New Brunswick E4L 1C9, Canada
| |
Collapse
|
14
|
Cyanobacteria and biogeochemical cycles through Earth history. Trends Microbiol 2021; 30:143-157. [PMID: 34229911 DOI: 10.1016/j.tim.2021.05.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022]
Abstract
Cyanobacteria are the only prokaryotes to have evolved oxygenic photosynthesis, transforming the biology and chemistry of our planet. Genomic and evolutionary studies have revolutionized our understanding of early oxygenic phototrophs, complementing and dramatically extending inferences from the geologic record. Molecular clock estimates point to a Paleoarchean origin (3.6-3.2 billion years ago, bya) of the core proteins of Photosystem II (PSII) involved in oxygenic photosynthesis and a Mesoarchean origin (3.2-2.8 bya) for the last common ancestor of modern cyanobacteria. Nonetheless, most extant cyanobacteria diversified after the Great Oxidation Event (GOE), an environmental watershed ca. 2.45 bya made possible by oxygenic photosynthesis. Throughout their evolutionary history, cyanobacteria have played a key role in the global carbon cycle.
Collapse
|
15
|
Artificial neural network analysis of microbial diversity in the central and southern Adriatic Sea. Sci Rep 2021; 11:11186. [PMID: 34045659 PMCID: PMC8159981 DOI: 10.1038/s41598-021-90863-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/17/2021] [Indexed: 11/29/2022] Open
Abstract
Bacteria are an active and diverse component of pelagic communities. The identification of main factors governing microbial diversity and spatial distribution requires advanced mathematical analyses. Here, the bacterial community composition was analysed, along with a depth profile, in the open Adriatic Sea using amplicon sequencing of bacterial 16S rRNA and the Neural gas algorithm. The performed analysis classified the sample into four best matching units representing heterogenic patterns of the bacterial community composition. The observed parameters were more differentiated by depth than by area, with temperature and identified salinity as important environmental variables. The highest diversity was observed at the deep chlorophyll maximum, while bacterial abundance and production peaked in the upper layers. The most of the identified genera belonged to Proteobacteria, with uncultured AEGEAN-169 and SAR116 lineages being dominant Alphaproteobacteria, and OM60 (NOR5) and SAR86 being dominant Gammaproteobacteria. Marine Synechococcus and Cyanobium-related species were predominant in the shallow layer, while Prochlorococcus MIT 9313 formed a higher portion below 50 m depth. Bacteroidota were represented mostly by uncultured lineages (NS4, NS5 and NS9 marine lineages). In contrast, Actinobacteriota were dominated by a candidatus genus Ca. Actinomarina. A large contribution of Nitrospinae was evident at the deepest investigated layer. Our results document that neural network analysis of environmental data may provide a novel insight into factors affecting picoplankton in the open sea environment.
Collapse
|
16
|
Ustick LJ, Larkin AA, Garcia CA, Garcia NS, Brock ML, Lee JA, Wiseman NA, Moore JK, Martiny AC. Metagenomic analysis reveals global-scale patterns of ocean nutrient limitation. Science 2021; 372:287-291. [DOI: 10.1126/science.abe6301] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/01/2021] [Indexed: 12/23/2022]
Abstract
Nutrient supply regulates the activity of phytoplankton, but the global biogeography of nutrient limitation and co-limitation is poorly understood. Prochlorococcus adapt to local environments by gene gains and losses, and we used genomic changes as an indicator of adaptation to nutrient stress. We collected metagenomes from all major ocean regions as part of the Global Ocean Ship-based Hydrographic Investigations Program (Bio-GO-SHIP) and quantified shifts in genes involved in nitrogen, phosphorus, and iron assimilation. We found regional transitions in stress type and severity as well as widespread co-stress. Prochlorococcus stress genes, bottle experiments, and Earth system model predictions were correlated. We propose that the biogeography of multinutrient stress is stoichiometrically linked by controls on nitrogen fixation. Our omics-based description of phytoplankton resource use provides a nuanced and highly resolved description of nutrient stress in the global ocean.
Collapse
Affiliation(s)
- Lucas J. Ustick
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Alyse A. Larkin
- Department of Earth System Science, University of California Irvine, Irvine, CA 92697, USA
| | - Catherine A. Garcia
- Department of Earth System Science, University of California Irvine, Irvine, CA 92697, USA
| | - Nathan S. Garcia
- Department of Earth System Science, University of California Irvine, Irvine, CA 92697, USA
| | - Melissa L. Brock
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Jenna A. Lee
- Department of Earth System Science, University of California Irvine, Irvine, CA 92697, USA
| | - Nicola A. Wiseman
- Department of Earth System Science, University of California Irvine, Irvine, CA 92697, USA
| | - J. Keith Moore
- Department of Earth System Science, University of California Irvine, Irvine, CA 92697, USA
| | - Adam C. Martiny
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USA
- Department of Earth System Science, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
17
|
Microbial production and consumption of hydrocarbons in the global ocean. Nat Microbiol 2021; 6:489-498. [PMID: 33526885 DOI: 10.1038/s41564-020-00859-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/17/2020] [Indexed: 01/30/2023]
Abstract
Seeps, spills and other oil pollution introduce hydrocarbons into the ocean. Marine cyanobacteria also produce hydrocarbons from fatty acids, but little is known about the size and turnover of this cyanobacterial hydrocarbon cycle. We report that cyanobacteria in an oligotrophic gyre mainly produce n-pentadecane and that microbial hydrocarbon production exhibits stratification and diel cycling in the sunlit surface ocean. Using chemical and isotopic tracing we find that pentadecane production mainly occurs in the lower euphotic zone. Using a multifaceted approach, we estimate that the global flux of cyanobacteria-produced pentadecane exceeds total oil input in the ocean by 100- to 500-fold. We show that rapid pentadecane consumption sustains a population of pentadecane-degrading bacteria, and possibly archaea. Our findings characterize a microbial hydrocarbon cycle in the open ocean that dwarfs oil input. We hypothesize that cyanobacterial hydrocarbon production selectively primes the ocean's microbiome with long-chain alkanes whereas degradation of other petroleum hydrocarbons is controlled by factors including proximity to petroleum seepage.
Collapse
|
18
|
The Composition and Primary Metabolic Potential of Microbial Communities Inhabiting the Surface Water in the Equatorial Eastern Indian Ocean. BIOLOGY 2021; 10:biology10030248. [PMID: 33810062 PMCID: PMC8005183 DOI: 10.3390/biology10030248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 11/29/2022]
Abstract
Simple Summary Marine microbes are regarded as the most diverse organisms in the biosphere and drive biogeochemical cycles through their metabolism. It is essential to understand the structure and metabolic function of microbial communities. The Indian Ocean is the third largest ocean in the world, and it possesses unique hydrographical properties. So far, assessments of microbial diversity and metabolism need to be improved in the Indian Ocean. Therefore, we carried out a series of investigations in the equatorial eastern Indian Ocean in order to clarify the local microbial communities and detect the genetic potential for microbial functions. The obtained results suggested Cyanobacteria was the dominant microbial group, and predicted the Calvin cycle and the assimilatory nitrate and nitrite reduction played important role in the pathway of carbon fixation and nitrogen metabolism respectively. This study provides insights into microbial community structures as well as the metabolic potential that may be active in the local environment, and lays the groundwork for understanding the roles of microbes in energy and resource cycling in this habitat. Abstract Currently, there is scant information about the biodiversity and functional diversity of microbes in the eastern Indian Ocean (EIO). Here, we used a combination of high-throughput sequencing of 16S rRNA genes and a metagenomic approach to investigate the microbial population structure and its metabolic function in the equatorial EIO. Our results show that Cyanobacterial Prochlorococcus made up the majority of the population. Interestingly, there were fewer contributions from clades SAR11 (Alphaproteobacteria) and SAR86 (Gammaproteobacteria) to microbial communities than contributions from Prochlorococcus. Based on functional gene analysis, functional genes rbcL, narB, and nasA were relatively abundant among the relevant genes. The abundance of Prochlorococcus implies its typically ecological adaptation in the local ecosystem. The microbial metabolic potential shows that in addition to the main carbon fixation pathway Calvin cycle, the rTCA cycle and the 3-HP/4-HB cycle have potential alternative carbon fixation contributions to local ecosystems. For the nitrogen cycle, the assimilatory nitrate and nitrite reduction pathway is potentially the crucial form of nitrogen utilization; unexpectedly, nitrogen fixation activity was relatively weak. This study extends our knowledge of the roles of microbes in energy and resource cycling in the EIO and provides a foundation for revealing profound biogeochemical processes driven by the microbial community in the ocean.
Collapse
|
19
|
Wang Y, Liao S, Gai Y, Liu G, Jin T, Liu H, Gram L, Strube ML, Fan G, Sahu SK, Liu S, Gan S, Xie Z, Kong L, Zhang P, Liu X, Wang DZ. Metagenomic Analysis Reveals Microbial Community Structure and Metabolic Potential for Nitrogen Acquisition in the Oligotrophic Surface Water of the Indian Ocean. Front Microbiol 2021; 12:518865. [PMID: 33679623 PMCID: PMC7935530 DOI: 10.3389/fmicb.2021.518865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/25/2021] [Indexed: 11/19/2022] Open
Abstract
Despite being the world’s third largest ocean, the Indian Ocean is one of the least studied and understood with respect to microbial diversity as well as biogeochemical and ecological functions. In this study, we investigated the microbial community and its metabolic potential for nitrogen (N) acquisition in the oligotrophic surface waters of the Indian Ocean using a metagenomic approach. Proteobacteria and Cyanobacteria dominated the microbial community with an average 37.85 and 23.56% of relative abundance, respectively, followed by Bacteroidetes (3.73%), Actinobacteria (1.69%), Firmicutes (0.76%), Verrucomicrobia (0.36%), and Planctomycetes (0.31%). Overall, only 24.3% of functional genes were common among all sampling stations indicating a high level of gene diversity. However, the presence of 82.6% common KEGG Orthology (KOs) in all samples showed high functional redundancy across the Indian Ocean. Temperature, phosphate, silicate and pH were important environmental factors regulating the microbial distribution in the Indian Ocean. The cyanobacterial genus Prochlorococcus was abundant with an average 17.4% of relative abundance in the surface waters, and while 54 Prochlorococcus genomes were detected, 53 were grouped mainly within HLII clade. In total, 179 of 234 Prochlorococcus sequences extracted from the global ocean dataset were clustered into HL clades and exhibited less divergence, but 55 sequences of LL clades presented more divergence exhibiting different branch length. The genes encoding enzymes related to ammonia metabolism, such as urease, glutamate dehydrogenase, ammonia transporter, and nitrilase presented higher abundances than the genes involved in inorganic N assimilation in both microbial community and metagenomic Prochlorococcus population. Furthermore, genes associated with dissimilatory nitrate reduction, denitrification, nitrogen fixation, nitrification and anammox were absent in metagenome Prochlorococcus population, i.e., nitrogenase and nitrate reductase. Notably, the de novo biosynthesis pathways of six different amino acids were incomplete in the metagenomic Prochlorococcus population and Prochlorococcus genomes, suggesting compensatory uptake of these amino acids from the environment. These results reveal the features of the taxonomic and functional structure of the Indian Ocean microbiome and their adaptive strategies to ambient N deficiency in the oligotrophic ocean.
Collapse
Affiliation(s)
- Yayu Wang
- BGI-Shenzhen, Shenzhen, China.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shuilin Liao
- BGI-Shenzhen, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Beijing, China
| | - Yingbao Gai
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China.,Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Guilin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Tao Jin
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Huan Liu
- BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Sunil Kumar Sahu
- BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | | | | | - Zhangxian Xie
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lingfen Kong
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | | | - Xin Liu
- BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
20
|
Co‐culture with
Synechococcus
facilitates growth of
Prochlorococcus
under ocean acidification conditions. Environ Microbiol 2020; 22:4876-4889. [DOI: 10.1111/1462-2920.15277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/01/2022]
|
21
|
Garcia CA, Hagstrom GI, Larkin AA, Ustick LJ, Levin SA, Lomas MW, Martiny AC. Linking regional shifts in microbial genome adaptation with surface ocean biogeochemistry. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190254. [PMID: 32200740 PMCID: PMC7133529 DOI: 10.1098/rstb.2019.0254] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 01/09/2023] Open
Abstract
Linking 'omics measurements with biogeochemical cycles is a widespread challenge in microbial community ecology. Here, we propose applying genomic adaptation as 'biosensors' for microbial investments to overcome nutrient stress. We then integrate this genomic information with a trait-based model to predict regional shifts in the elemental composition of marine plankton communities. We evaluated this approach using metagenomic and particulate organic matter samples from the Atlantic, Indian and Pacific Oceans. We find that our genome-based trait model significantly improves our prediction of particulate C : P (carbon : phosphorus) across ocean regions. Furthermore, we detect previously unrecognized ocean areas of iron, nitrogen and phosphorus stress. In many ecosystems, it can be very challenging to quantify microbial stress. Thus, a carefully calibrated genomic approach could become a widespread tool for understanding microbial responses to environmental changes and the biogeochemical outcomes. This article is part of the theme issue 'Conceptual challenges in microbial community ecology'.
Collapse
Affiliation(s)
- Catherine A. Garcia
- Department of Earth System Science, University of California, Irvine, CA 92697, USA
| | - George I. Hagstrom
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alyse A. Larkin
- Department of Earth System Science, University of California, Irvine, CA 92697, USA
| | - Lucas J. Ustick
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Simon A. Levin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Michael W. Lomas
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, USA
| | - Adam C. Martiny
- Department of Earth System Science, University of California, Irvine, CA 92697, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
22
|
Shilova IN, Magasin JD, Mills MM, Robidart JC, Turk-Kubo KA, Zehr JP. Phytoplankton transcriptomic and physiological responses to fixed nitrogen in the California current system. PLoS One 2020; 15:e0231771. [PMID: 32310982 PMCID: PMC7170224 DOI: 10.1371/journal.pone.0231771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/31/2020] [Indexed: 11/18/2022] Open
Abstract
Marine phytoplankton are responsible for approximately half of photosynthesis on Earth. However, their ability to drive ocean productivity depends on critical nutrients, especially bioavailable nitrogen (N) which is scarce over vast areas of the ocean. Phytoplankton differ in their preferences for N substrates as well as uptake efficiencies and minimal N requirements relative to other critical nutrients, including iron (Fe) and phosphorus. In this study, we used the MicroTOOLs high-resolution environmental microarray to examine transcriptomic responses of phytoplankton communities in the California Current System (CCS) transition zone to added urea, ammonium, nitrate, and also Fe in the late summer when N depletion is common. Transcript level changes of photosynthetic, carbon fixation, and nutrient stress genes indicated relief of N limitation in many strains of Prochlorococcus, Synechococcus, and eukaryotic phytoplankton. The transcriptomic responses helped explain shifts in physiological and growth responses observed later. All three phytoplankton groups had increased transcript levels of photosynthesis and/or carbon fixation genes in response to all N substrates. However, only Prochlorococcus had decreased transcript levels of N stress genes and grew substantially, specifically after urea and ammonium additions, suggesting that Prochlorococcus outcompeted other community members in these treatments. Diatom transcript levels of carbon fixation genes increased in response to Fe but not to Fe with N which might have favored phytoplankton that were co-limited by N and Fe. Moreover, transcription patterns of closely related strains indicated variability in N utilization, including nitrate utilization by some high-light adapted Prochlorococcus. Finally, up-regulation of urea transporter genes by both Prochlorococcus and Synechococcus in response to filtered deep water suggested a regulatory mechanism other than classic control via the global N regulator NtcA. This study indicated that co-existing phytoplankton strains experience distinct nutrient stresses in the transition zone of the CCS, an understudied region where oligotrophic and coastal communities naturally mix.
Collapse
Affiliation(s)
- Irina N. Shilova
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (INS); (JPZ)
| | - Jonathan D. Magasin
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Matthew M. Mills
- Department of Earth System Science, Stanford University, Stanford, California, United States of America
| | - Julie C. Robidart
- Ocean Technology and Engineering, National Oceanography Centre, Southampton, England, United Kingdom
| | - Kendra A. Turk-Kubo
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jonathan P. Zehr
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (INS); (JPZ)
| |
Collapse
|
23
|
Changes in the Trophic Pathways within the Microbial Food Web in the Global Warming Scenario: An Experimental Study in the Adriatic Sea. Microorganisms 2020; 8:microorganisms8040510. [PMID: 32260074 PMCID: PMC7232256 DOI: 10.3390/microorganisms8040510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 11/21/2022] Open
Abstract
A recent analysis of the Mediterranean Sea surface temperature showed significant annual warming. Since small picoplankton microorganisms play an important role in all major biogeochemical cycles, fluxes and processes occurring in marine systems (the changes at the base of the food web) as a response to human-induced temperature increase, could be amplified through the trophic chains and could also significantly affect different aspects of the structure and functioning of marine ecosystems. In this study, manipulative laboratory growth/grazing experiments were performed under in situ simulated conditions to study the structural and functional changes within the microbial food web after a 3 °C increase in temperature. The results show that a rise in temperature affects the changes in: (1) the growth and grazing rates of picoplankton, (2) their growth efficiency, (3) carrying capacities, (4) sensitivity of their production and grazing mortality to temperature, (5) satisfying protistan grazer carbon demands, (6) their preference in the selection of prey, (7) predator niche breadth and their overlap, (8) apparent uptake rates of nutrients, and (9) carbon biomass flow through the microbial food web. Furthermore, temperature affects the autotrophic and heterotrophic components of picoplankton in different ways.
Collapse
|
24
|
Silveira CB, Luque A, Roach TN, Villela H, Barno A, Green K, Reyes B, Rubio-Portillo E, Le T, Mead S, Hatay M, Vermeij MJ, Takeshita Y, Haas A, Bailey B, Rohwer F. Biophysical and physiological processes causing oxygen loss from coral reefs. eLife 2019; 8:49114. [PMID: 31793432 PMCID: PMC6890468 DOI: 10.7554/elife.49114] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/27/2019] [Indexed: 12/25/2022] Open
Abstract
The microbialization of coral reefs predicts that microbial oxygen consumption will cause reef deoxygenation. Here we tested this hypothesis by analyzing reef microbial and primary producer oxygen metabolisms. Metagenomic data and in vitro incubations of bacteria with primary producer exudates showed that fleshy algae stimulate incomplete carbon oxidation metabolisms in heterotrophic bacteria. These metabolisms lead to increased cell sizes and abundances, resulting in bacteria consuming 10 times more oxygen than in coral incubations. Experiments probing the dissolved and gaseous oxygen with primary producers and bacteria together indicated the loss of oxygen through ebullition caused by heterogenous nucleation on algae surfaces. A model incorporating experimental production and loss rates predicted that microbes and ebullition can cause the loss of up to 67% of gross benthic oxygen production. This study indicates that microbial respiration and ebullition are increasingly relevant to reef deoxygenation as reefs become dominated by fleshy algae. Rising water temperatures, pollution and other factors are increasingly threatening corals and the entire reef ecosystems they build. The potential for corals to resist and recover from the stress these factors cause ultimately depends on their ability to compete against fast-growing fleshy algae that can rapidly take over the reefs. Living on the fleshy algae, the coral and in the surrounding water are communities of bacteria and other microbes that help maintain the health of the coral reef. Both corals and algae modify the chemical and physical environment of the reef to alter the composition of the microbial communities for their own benefit. Algae, for instance, release large amounts of sugars and other molecules of organic carbon into the water. These carbon molecules are then taken up by the bacteria, along with oxygen, to produce chemical energy via a process called respiration. This could cause the levels of oxygen in the water to decrease, potentially damaging the corals and creating more open space for the algae. Previous studies have revealed how communities of microbes on coral reefs use organic carbon, but it remains unclear how they affect the levels of oxygen in the reefs. To address this question, Silveira et al. used an approach called metagenomics to analyze the bacteria in samples of water from 87 reefs across the Pacific and the Caribbean, and also performed experiments with reef bacteria grown in the laboratory. The experiments showed that bacteria growing in the presence of fleshy algae became larger and more abundant than bacteria growing near corals, resulting in the water containing lower levels of oxygen. Furthermore, the fleshy algae produced bubbles of oxygen that were released from the water. Silveira et al. developed a mathematical model that predicted that these bubbles, combined with the respiration of bacteria that live near algae, caused the loss of 67% of the oxygen in the water surrounding the reef. These findings represent a fundamental step towards understanding how changes in the levels of oxygen in water affect the ability of coral reefs to resist and recover from stress.
Collapse
Affiliation(s)
- Cynthia B Silveira
- Department of Biology, San Diego State University, San Diego, United States.,Viral Information Institute, San Diego State University, San Diego, United States
| | - Antoni Luque
- Viral Information Institute, San Diego State University, San Diego, United States.,Computational Science Research Center, San Diego State University, San Diego, United States.,Department of Mathematics and Statistics, San Diego State University, San Diego, United States
| | - Ty Nf Roach
- Hawaii Institute of Marine Biology, University of Hawaii at Mānoa, Kāneohe, United States
| | - Helena Villela
- Department of Microbiology, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Adam Barno
- Department of Microbiology, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Kevin Green
- Department of Biology, San Diego State University, San Diego, United States
| | - Brandon Reyes
- Department of Biology, San Diego State University, San Diego, United States
| | - Esther Rubio-Portillo
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Tram Le
- Department of Biology, San Diego State University, San Diego, United States
| | - Spencer Mead
- Department of Biology, San Diego State University, San Diego, United States
| | - Mark Hatay
- Department of Biology, San Diego State University, San Diego, United States.,Viral Information Institute, San Diego State University, San Diego, United States
| | - Mark Ja Vermeij
- CARMABI Foundation, Willemstad, Curaçao.,Department of Freshwater and Marine Ecology, Institute for Biodiversity andEcosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | | | - Andreas Haas
- NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, Texel, Netherlands
| | - Barbara Bailey
- Department of Mathematics and Statistics, San Diego State University, San Diego, United States
| | - Forest Rohwer
- Department of Biology, San Diego State University, San Diego, United States.,Viral Information Institute, San Diego State University, San Diego, United States
| |
Collapse
|
25
|
Picoplankton Distribution and Activity in the Deep Waters of the Southern Adriatic Sea. WATER 2019. [DOI: 10.3390/w11081655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Southern Adriatic (Eastern Mediterranean Sea) is a region strongly dominated by large-scale oceanographic processes and local open-ocean dense water formation. In this study, picoplankton biomass, distribution, and activity were examined during two oceanographic cruises and analyzed in relation to environmental parameters and hydrographic conditions comparing pre and post-winter phases (December 2015, April 2016). Picoplankton density with the domination of autotrophic biomasses was higher in the pre-winter phase when significant amounts of picoaoutotrophs were also found in the meso-and bathy-pelagic layers, while Synechococcus dominated the picoautotrophic group. Higher values of bacterial production and domination of High Nucleic Acid content bacteria (HNA bacteria) were found in deep waters, especially during the post-winter phase, suggesting that bacteria can have an active role in the deep-sea environment. Aerobic anoxygenic phototrophic bacteria accounted for a small proportion of total heterotrophic bacteria but contributed up to 4% of bacterial carbon content. Changes in the picoplankton community were mainly driven by nutrient availability, heterotrophic nanoflagellates abundance, and water mass movements and mixing. Our results suggest that autotrophic and heterotrophic members of the picoplankton community are an important carbon source in the food web in the deep-sea, as well as in the epipelagic layer. Besides, viral lysis may affect the activity of the picoplankton community and enrich the water column with dissolved organic carbon.
Collapse
|
26
|
Widner B, Fuchsman CA, Chang BX, Rocap G, Mulholland MR. Utilization of urea and cyanate in waters overlying and within the eastern tropical north Pacific oxygen deficient zone. FEMS Microbiol Ecol 2019; 94:5055141. [PMID: 30016420 DOI: 10.1093/femsec/fiy138] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 07/16/2018] [Indexed: 11/15/2022] Open
Abstract
In marine oxygen deficient zones (ODZs), which contribute up to half of marine N loss, microbes use nitrogen (N) for assimilatory and dissimilatory processes. Here, we examine N utilization above and within the ODZ of the Eastern Tropical North Pacific Ocean, focusing on distribution, uptake and genes for the utilization of two simple organic N compounds, urea and cyanate. Ammonium, urea and cyanate concentrations generally peaked in the oxycline while uptake rates were highest in the surface. Within the ODZ, concentrations were lower, but urea N and C and cyanate C were taken up. All identified autotrophs had an N assimilation pathway that did not require external ammonium: ODZ Prochlorococcus possessed genes to assimilate nitrate, nitrite and urea; nitrite oxidizers (Nitrospina) possessed genes to assimilate nitrite, urea and cyanate; anammox bacteria (Scalindua) possessed genes to utilize cyanate; and ammonia-oxidizing Thaumarchaeota possessed genes to utilize urea. Urease genes were present in 20% of microbes, including SAR11, suggesting the urea utilization capacity was widespread. In the ODZ core, cyanate genes were largely (∼95%) associated with Scalindua, suggesting that, within this ODZ, cyanate N is primarily used for N loss via anammox (cyanammox), and that anammox does not require ammonium for N loss.
Collapse
Affiliation(s)
- Brittany Widner
- Department of Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk, USA
| | - Clara A Fuchsman
- University of Washington, School of Oceanography, Seattle, USA.,Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, USA
| | - Bonnie X Chang
- Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, USA.,Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, USA
| | - Gabrielle Rocap
- University of Washington, School of Oceanography, Seattle, USA
| | - Margaret R Mulholland
- Department of Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk, USA
| |
Collapse
|
27
|
Berube PM, Rasmussen A, Braakman R, Stepanauskas R, Chisholm SW. Emergence of trait variability through the lens of nitrogen assimilation in Prochlorococcus. eLife 2019; 8:41043. [PMID: 30706847 PMCID: PMC6370341 DOI: 10.7554/elife.41043] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
Intraspecific trait variability has important consequences for the function and stability of marine ecosystems. Here we examine variation in the ability to use nitrate across hundreds of Prochlorococcus genomes to better understand the modes of evolution influencing intraspecific allocation of ecologically important functions. Nitrate assimilation genes are absent in basal lineages but occur at an intermediate frequency that is randomly distributed within recently emerged clades. The distribution of nitrate assimilation genes within clades appears largely governed by vertical inheritance, gene loss, and homologous recombination. By mapping this process onto a model of Prochlorococcus’ macroevolution, we propose that niche-constructing adaptive radiations and subsequent niche partitioning set the stage for loss of nitrate assimilation genes from basal lineages as they specialized to lower light levels. Retention of these genes in recently emerged lineages has likely been facilitated by selection as they sequentially partitioned into niches where nitrate assimilation conferred a fitness benefit.
Collapse
Affiliation(s)
- Paul M Berube
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Anna Rasmussen
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Rogier Braakman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | | | - Sallie W Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
28
|
Berthelot H, Duhamel S, L'Helguen S, Maguer JF, Wang S, Cetinić I, Cassar N. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME JOURNAL 2018; 13:651-662. [PMID: 30323264 DOI: 10.1038/s41396-018-0285-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/09/2018] [Accepted: 09/08/2018] [Indexed: 12/16/2022]
Abstract
Nitrogen (N) is a limiting nutrient in vast regions of the world's oceans, yet the sources of N available to various phytoplankton groups remain poorly understood. In this study, we investigated inorganic carbon (C) fixation rates and nitrate (NO3-), ammonium (NH4+) and urea uptake rates at the single cell level in photosynthetic pico-eukaryotes (PPE) and the cyanobacteria Prochlorococcus and Synechococcus. To that end, we used dual 15N and 13C-labeled incubation assays coupled to flow cytometry cell sorting and nanoSIMS analysis on samples collected in the North Pacific Subtropical Gyre (NPSG) and in the California Current System (CCS). Based on these analyses, we found that photosynthetic growth rates (based on C fixation) of PPE were higher in the CCS than in the NSPG, while the opposite was observed for Prochlorococcus. Reduced forms of N (NH4+ and urea) accounted for the majority of N acquisition for all the groups studied. NO3- represented a reduced fraction of total N uptake in all groups but was higher in PPE (17.4 ± 11.2% on average) than in Prochlorococcus and Synechococcus (4.5 ± 6.5 and 2.9 ± 2.1% on average, respectively). This may in part explain the contrasting biogeography of these picoplankton groups. Moreover, single cell analyses reveal that cell-to-cell heterogeneity within picoplankton groups was significantly greater for NO3- uptake than for C fixation and NH4+ uptake. We hypothesize that cellular heterogeneity in NO3- uptake within groups facilitates adaptation to the fluctuating availability of NO3- in the environment.
Collapse
Affiliation(s)
- Hugo Berthelot
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer (IUEM), Brest, France.
| | - Solange Duhamel
- Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory, PO Box 1000, 61 Route 9W, Palisades, NY, 10964, USA
| | - Stéphane L'Helguen
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer (IUEM), Brest, France
| | - Jean-Francois Maguer
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer (IUEM), Brest, France
| | - Seaver Wang
- Division of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Ivona Cetinić
- NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Code 616, Greenbelt, MD, USA.,GESTAR/Universities Space Research Association, Columbia, MD, USA
| | - Nicolas Cassar
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer (IUEM), Brest, France. .,Division of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
29
|
Parallel phylogeography of Prochlorococcus and Synechococcus. ISME JOURNAL 2018; 13:430-441. [PMID: 30283146 DOI: 10.1038/s41396-018-0287-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 11/08/2022]
Abstract
The globally abundant marine Cyanobacteria Prochlorococcus and Synechococcus share many physiological traits but presumably have different evolutionary histories and associated phylogeography. In Prochlorococcus, there is a clear phylogenetic hierarchy of ecotypes, whereas multiple Synechococcus clades have overlapping physiologies and environmental distributions. However, microbial traits are associated with different phylogenetic depths. Using this principle, we reclassified diversity at different phylogenetic levels and compared the phylogeography. We sequenced the genetic diversity of Prochlorococcus and Synechococcus from 339 samples across the tropical Pacific Ocean and North Atlantic Ocean using a highly variable phylogenetic marker gene (rpoC1). We observed clear parallel niche distributions of ecotypes leading to high Pianka's Index values driven by distinct shifts at two transition points. The first transition point at 6°N distinguished ecotypes adapted to warm waters but separated by macronutrient content. At 39°N, ecotypes adapted to warm, low macronutrient vs. colder, high macronutrient waters shifted. Finally, we detected parallel vertical and regional single-nucleotide polymorphism microdiversity within clades from both Prochlorococcus and Synechococcus, suggesting uniquely adapted populations at very specific depths, as well as between the Atlantic and Pacific Oceans. Overall, this study demonstrates that Prochlorococcus and Synechococcus have shared phylogenetic organization of traits and associated phylogeography.
Collapse
|
30
|
Li YY, Chen XH, Xie ZX, Li DX, Wu PF, Kong LF, Lin L, Kao SJ, Wang DZ. Bacterial Diversity and Nitrogen Utilization Strategies in the Upper Layer of the Northwestern Pacific Ocean. Front Microbiol 2018; 9:797. [PMID: 29922238 PMCID: PMC5996900 DOI: 10.3389/fmicb.2018.00797] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/10/2018] [Indexed: 11/13/2022] Open
Abstract
Nitrogen (N) is a primary limiting nutrient for bacterial growth and productivity in the ocean. To better understand bacterial community and their N utilization strategy in different N regimes of the ocean, we examined bacterial diversity, diazotrophic diversity, and N utilization gene expressions in the northwestern Pacific Ocean (NWPO) using a combination of high-throughput sequencing and real-time qPCR methods. 521 and 204 different operational taxonomic units (OTUs) were identified in the 16s rRNA and nifH libraries from nine surface samples. Of the 16s rRNA gene OTUs, 11.9% were observed in all samples while 3.5 and 15.9% were detected only in N-sufficient and N-deficient samples. Proteobacteria, Cyanobacteria and Bacteroidetes dominated the bacterial community. Prochlorococcus and Pseudoalteromonas were the most abundant at the genus level in N-deficient regimes, while SAR86, Synechococcus and SAR92 were predominant in the Kuroshio-Oyashio confluence region. The distribution of the nifH gene presented great divergence among sampling stations: Cyanobacterium_UCYN-A dominated the N-deficient stations, while clusters related to the Alpha-, Beta-, and Gamma-Proteobacteria were abundant in other stations. Temperature was the main factor that determined bacterial community structure and diversity while concentration of NOX-N was significantly correlated with structure and distribution of N2-fixing microorganisms. Expression of the ammonium transporter was much higher than that of urea transporter subunit A (urtA) and ferredoxin-nitrate reductase, while urtA had an increased expression in N-deficient surface water. The predicted ammonium transporter and ammonium assimilation enzymes were most abundant in surface samples while urease and nitrogenase were more abundant in the N-deficient regions. These findings underscore the fact that marine bacteria have evolved diverse N utilization strategies to adapt to different N habitats, and that urea metabolism is of vital ecological importance in N-deficient regimes.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Xiao-Huang Chen
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Dong-Xu Li
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Peng-Fei Wu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Ling-Fen Kong
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
31
|
Duhamel S, Van Wambeke F, Lefevre D, Benavides M, Bonnet S. Mixotrophic metabolism by natural communities of unicellular cyanobacteria in the western tropical South Pacific Ocean. Environ Microbiol 2018; 20:2743-2756. [PMID: 29573372 DOI: 10.1111/1462-2920.14111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 03/12/2018] [Accepted: 03/17/2018] [Indexed: 12/31/2022]
Abstract
Cyanobacteria are major contributors to ocean biogeochemical cycling. However, mixotrophic metabolism and the relative importance of inorganic and organic carbon assimilation within the most abundant cyanobacteria are still poorly understood. We explore the ability of Prochlorococcus and Synechococcus to assimilate organic molecules with variable C:N:P composition and its modulation by light availability and photosynthetic impairment. We used a combination of radiolabelled molecules incubations with flow cytometry cell sorting to separate picoplankton groups from the western tropical South Pacific Ocean. Prochlorococcus and Synechococcus assimilated glucose, leucine and ATP at all stations, but cell-specific assimilation rates of N and P containing molecules were significantly higher than glucose. Incubations in the dark or with an inhibitor of photosystem II resulted in reduced assimilation rates. Light-enhanced cell-specific glucose uptake was generally higher for cyanobacteria (∼50%) than for the low nucleic acid fraction of bacterioplankton (LNA, ∼35%). Our results confirm previous findings, based mainly on cultures and genomic potentials, showing that Prochlorococcus and Synechococcus have a flexible mixotrophic metabolism, but demonstrate that natural populations remain primarily photoautotrophs. Our findings indicate that mixotrophy by marine cyanobacteria is more likely to be an adaptation to low inorganic nutrient availability rather than a facultative pathway for carbon acquisition.
Collapse
Affiliation(s)
- Solange Duhamel
- Lamont Doherty Earth Observatory, Division of Biology and Paleo Environment, PO Box 1000, 61 Route 9W, Palisades, NY 10964, USA
| | - France Van Wambeke
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Dominique Lefevre
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Mar Benavides
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France.,Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, 98848, Noumea, New Caledonia
| | - Sophie Bonnet
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France.,Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, 98848, Noumea, New Caledonia
| |
Collapse
|
32
|
Wan XS, Sheng HX, Dai M, Zhang Y, Shi D, Trull TW, Zhu Y, Lomas MW, Kao SJ. Ambient nitrate switches the ammonium consumption pathway in the euphotic ocean. Nat Commun 2018; 9:915. [PMID: 29500422 PMCID: PMC5834513 DOI: 10.1038/s41467-018-03363-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/08/2018] [Indexed: 12/03/2022] Open
Abstract
Phytoplankton assimilation and microbial oxidation of ammonium are two critical conversion pathways in the marine nitrogen cycle. The underlying regulatory mechanisms of these two competing processes remain unclear. Here we show that ambient nitrate acts as a key variable to bifurcate ammonium flow through assimilation or oxidation, and the depth of the nitracline represents a robust spatial boundary between ammonium assimilators and oxidizers in the stratified ocean. Profiles of ammonium utilization show that phytoplankton assemblages in nitrate-depleted regimes have higher ammonium affinity than nitrifiers. In nitrate replete conditions, by contrast, phytoplankton reduce their ammonium reliance and thus enhance the success of nitrifiers. This finding helps to explain existing discrepancies in the understanding of light inhibition of surface nitrification in the global ocean, and provides further insights into the spatial linkages between oceanic nitrification and new production. The underlying regulatory mechanisms of phytoplankton assimilation and microbial oxidation of ammonium in the surface ocean are unclear. Here, using isotope labeling experiments, the authors show that ambient nitrate is a key variable bifurcating ammonium flow through assimilation or oxidation.
Collapse
Affiliation(s)
- Xianhui Sean Wan
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, 361101, Xiamen, China
| | - Hua-Xia Sheng
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, 361101, Xiamen, China
| | - Minhan Dai
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, 361101, Xiamen, China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, 361101, Xiamen, China
| | - Dalin Shi
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, 361101, Xiamen, China
| | - Thomas W Trull
- Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, and CSIRO Oceans and Atmosphere, Hobart, 7001, Australia
| | - Yifan Zhu
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, 361101, Xiamen, China
| | - Michael W Lomas
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, 361101, Xiamen, China.
| |
Collapse
|
33
|
Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria. Proc Natl Acad Sci U S A 2018; 115:E2010-E2019. [PMID: 29440402 DOI: 10.1073/pnas.1717069115] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Marine Synechococcus cyanobacteria are major contributors to global oceanic primary production and exhibit a unique diversity of photosynthetic pigments, allowing them to exploit a wide range of light niches. However, the relationship between pigment content and niche partitioning has remained largely undetermined due to the lack of a single-genetic marker resolving all pigment types (PTs). Here, we developed and employed a robust method based on three distinct marker genes (cpcBA, mpeBA, and mpeW) to estimate the relative abundance of all known Synechococcus PTs from metagenomes. Analysis of the Tara Oceans dataset allowed us to reveal the global distribution of Synechococcus PTs and to define their environmental niches. Green-light specialists (PT 3a) dominated in warm, green equatorial waters, whereas blue-light specialists (PT 3c) were particularly abundant in oligotrophic areas. Type IV chromatic acclimaters (CA4-A/B), which are able to dynamically modify their light absorption properties to maximally absorb green or blue light, were unexpectedly the most abundant PT in our dataset and predominated at depth and high latitudes. We also identified populations in which CA4 might be nonfunctional due to the lack of specific CA4 genes, notably in warm high-nutrient low-chlorophyll areas. Major ecotypes within clades I-IV and CRD1 were preferentially associated with a particular PT, while others exhibited a wide range of PTs. Altogether, this study provides important insights into the ecology of Synechococcus and highlights the complex interactions between vertical phylogeny, pigmentation, and environmental parameters that shape Synechococcus community structure and evolution.
Collapse
|
34
|
Grossowicz M, Marques GM, van Voorn GA. A dynamic energy budget (DEB) model to describe population dynamics of the marine cyanobacterium Prochlorococcus marinus. Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2017.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Goldberg SJ, Nelson CE, Viviani DA, Shulse CN, Church MJ. Cascading influence of inorganic nitrogen sources on DOM production, composition, lability and microbial community structure in the open ocean. Environ Microbiol 2017; 19:3450-3464. [PMID: 28618153 DOI: 10.1111/1462-2920.13825] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 12/22/2022]
Abstract
Nitrogen frequently limits oceanic photosynthesis and the availability of inorganic nitrogen sources in the surface oceans is shifting with global change. We evaluated the potential for abrupt increases in inorganic N sources to induce cascading effects on dissolved organic matter (DOM) and microbial communities in the surface ocean. We collected water from 5 m depth in the central North Pacific and amended duplicate 20 liter polycarbonate carboys with nitrate or ammonium, tracking planktonic carbon fixation, DOM production, DOM composition and microbial community structure responses over 1 week relative to controls. Both nitrogen sources stimulated bulk phytoplankton, bacterial and DOM production and enriched Synechococcus and Flavobacteriaceae; ammonium enriched for oligotrophic Actinobacteria OM1 and Gammaproteobacteria KI89A clades while nitrate enriched Gammaproteobacteria SAR86, SAR92 and OM60 clades. DOM resulting from both N enrichments was more labile and stimulated growth of copiotrophic Gammaproteobacteria (Alteromonadaceae and Oceanospirillaceae) and Alphaproteobacteria (Rhodobacteraceae and Hyphomonadaceae) in weeklong dark incubations relative to controls. Our study illustrates how nitrogen pulses may have direct and cascading effects on DOM composition and microbial community dynamics in the open ocean.
Collapse
Affiliation(s)
- S J Goldberg
- Center for Microbial Oceanography: Research and Education, Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, 1950 East West Road, Honolulu, HI 96822, USA
| | - C E Nelson
- Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, 1950 East West Road, Honolulu, HI 96822, USA
| | - D A Viviani
- Center for Microbial Oceanography: Research and Education, Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, 1950 East West Road, Honolulu, HI 96822, USA
| | - C N Shulse
- Center for Microbial Oceanography: Research and Education, Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, 1950 East West Road, Honolulu, HI 96822, USA
| | - M J Church
- Center for Microbial Oceanography: Research and Education, Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, 1950 East West Road, Honolulu, HI 96822, USA
| |
Collapse
|
36
|
Fundamental differences in diversity and genomic population structure between Atlantic and Pacific Prochlorococcus. ISME JOURNAL 2017; 11:1997-2011. [PMID: 28524867 DOI: 10.1038/ismej.2017.64] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/09/2017] [Accepted: 03/17/2017] [Indexed: 01/09/2023]
Abstract
The Atlantic and Pacific Oceans represent different biogeochemical regimes in which the abundant marine cyanobacterium Prochlorococcus thrives. We have shown that Prochlorococcus populations in the Atlantic are composed of hundreds of genomically, and likely ecologically, distinct coexisting subpopulations with distinct genomic backbones. Here we ask if differences in the ecology and selection pressures between the Atlantic and Pacific are reflected in the diversity and genomic composition of their indigenous Prochlorococcus populations. We applied large-scale single-cell genomics and compared the cell-by-cell genomic composition of wild populations of co-occurring cells from samples from Station ALOHA off Hawaii, and from Bermuda Atlantic Time Series Station off Bermuda. We reveal fundamental differences in diversity and genomic structure of populations between the sites. The Pacific populations are more diverse than those in the Atlantic, composed of significantly more coexisting subpopulations and lacking dominant subpopulations. Prochlorococcus from the two sites seem to be composed of mostly non-overlapping distinct sets of subpopulations with different genomic backbones-likely reflecting different sets of ocean-specific micro-niches. Furthermore, phylogenetically closely related strains carry ocean-associated nutrient acquisition genes likely reflecting differences in major selection pressures between the oceans. This differential selection, along with geographic separation, clearly has a significant role in shaping these populations.
Collapse
|
37
|
Morando M, Capone DG. Intraclade Heterogeneity in Nitrogen Utilization by Marine Prokaryotes Revealed Using Stable Isotope Probing Coupled with Tag Sequencing (Tag-SIP). Front Microbiol 2016; 7:1932. [PMID: 27994576 PMCID: PMC5133248 DOI: 10.3389/fmicb.2016.01932] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/17/2016] [Indexed: 11/13/2022] Open
Abstract
Nitrogen can greatly influence the structure and productivity of microbial communities through its relative availability and form. However, the roles of specific organisms in the uptake of different nitrogen species remain poorly characterized. Most studies seeking to identify agents of assimilation have been correlative, indirectly linking activity measurements (e.g., nitrate uptake) with the presence or absence of biological markers, particularly functional genes and their transcripts. Evidence is accumulating of previously underappreciated functional diversity in major microbial subpopulations, which may confer physiological advantages under certain environmental conditions leading to ecotype divergence. This microdiversity further complicates our view of genetic variation in environmental samples requiring the development of more targeted approaches. Here, next-generation tag sequencing was successfully coupled with stable isotope probing (Tag-SIP) to assess the ability of individual phylotypes to assimilate a specific N source. Our results provide the first direct evidence of nitrate utilization by organisms thought to lack the genes required for this process including the heterotrophic clades SAR11 and the Archaeal Marine Group II. Alternatively, this may suggest the existence of tightly coupled metabolisms with primary assimilators, e.g., symbiosis, or the rapid and efficient scavenging of recently released products by highly active individuals. These results may be connected with global dominance often seen with these clades, likely conferring an advantage over other clades unable to access these resources. We also provide new direct evidence of in situ nitrate utilization by the cyanobacterium Prochlorococcus in support of recent findings. Furthermore, these results revealed widespread functional heterogeneity, i.e., different levels of nitrogen assimilation within clades, likely reflecting niche partitioning by ecotypes.
Collapse
Affiliation(s)
- Michael Morando
- Marine and Environmental Biology, University of Southern California Los Angeles, CA, USA
| | - Douglas G Capone
- Marine and Environmental Biology, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
38
|
Liang Y, Zhang Y, Zhang Y, Luo T, Rivkin RB, Jiao N. Distributions and relationships of virio- and picoplankton in the epi-, meso- and bathypelagic zones of the Western Pacific Ocean. FEMS Microbiol Ecol 2016; 93:fiw238. [PMID: 27915283 DOI: 10.1093/femsec/fiw238] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/18/2016] [Accepted: 11/23/2016] [Indexed: 11/13/2022] Open
Abstract
Virio- and picoplankton mediate important biogeochemical processes and the environmental factors that regulate their dynamics, and the virus-host interactions are incompletely known, especially in the deep sea. Here we report on their distributions and relationships with environmental factors at 21 stations covering a latitudinal range (2-23° N) in the Western Pacific Ocean. This region is characterized by a complex western boundary current system. Synechococcus, autotrophic picoeukaryotes, heterotrophic prokaryotes and virus-like particles (VLPs) were high (<2.4 × 102-6.3 × 104, <34-2.8 × 103, 3.9 × 104-1.3 × 106 cells mL-1 and 5.1 × 105-2.7 × 107 mL-1, respectively), and Prochlorococcus were low (<2.3 × 102-1.0 × 105 cells mL-1) in the Luzon Strait and the four most southerly stations, where upwelling occurs. Covariations in the abundances of VLPs with heterotrophic and autotrophic picoplankton, and their correlation (i.e. r2 = 0.63 and 0.52, respectively) suggested a strong host dependence in the epi- and mesopelagic zones. In the bathypelagic zone, only abiotic factors significantly influenced VLPs abundance variation (r2 = 0.12). This study shows that the dynamics of virio- and picoplankton in this Western Pacific are controlled by suite of complex and depth-dependent relationship among physical and biological factors that in turn link the physical hydrography of the western boundary current system with microbial-mediated biogeochemical processes.
Collapse
Affiliation(s)
- Yantao Liang
- Research Center for Marine Biology and Carbon Sequestration, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.,Institute of Marine Microbes and Ecospheres, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
| | - Yongyu Zhang
- Research Center for Marine Biology and Carbon Sequestration, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yao Zhang
- Institute of Marine Microbes and Ecospheres, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
| | - Tingwei Luo
- Institute of Marine Microbes and Ecospheres, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
| | - Richard B Rivkin
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Nianzhi Jiao
- Institute of Marine Microbes and Ecospheres, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
| |
Collapse
|
39
|
Freedman ZB, Upchurch RA, Zak DR. Microbial Potential for Ecosystem N Loss Is Increased by Experimental N Deposition. PLoS One 2016; 11:e0164531. [PMID: 27737013 PMCID: PMC5063468 DOI: 10.1371/journal.pone.0164531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/27/2016] [Indexed: 01/05/2023] Open
Abstract
Fossil fuel combustion and fertilizer use has increased the amount of biologically available N entering terrestrial ecosystems. Nonetheless, our understanding of how anthropogenic N may alter the physiological mechanisms by which soil microorganisms cycle N in soil is still developing. Here, we applied shotgun metagenomics to a replicated long-term field experiment to determine how two decades of experimental N deposition, at a rate expected by mid-century, has affected the genetic potential of the soil microbial community to cycle N in soils. Experimental N deposition lead to a significant and persistent increase in functional assemblages mediating N cycle transformations associated with ecosystem N loss (i.e., denitrification and nitrification), whereas functional assemblages associated with N input and retention (i.e., N fixation and microbial N assimilation) were less positively affected. Furthermore, the abundance and composition of microbial taxa, as well as functional assemblages involved in housekeeping functions (i.e., DNA replication) were unaffected by experimental N deposition. Taken together, our results suggest that functional genes and gene pathways associated with ecosystem N loss have been favored by experimental N deposition, which may represent a genetic mechanism fostering increased N loss as anthropogenic N deposition increases in the future.
Collapse
Affiliation(s)
- Zachary B. Freedman
- School of Natural Resources & Environment, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| | - Rima A. Upchurch
- School of Natural Resources & Environment, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Donald R. Zak
- School of Natural Resources & Environment, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Ecology and Evolution, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
40
|
Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. Proc Natl Acad Sci U S A 2016; 113:E3365-74. [PMID: 27302952 DOI: 10.1073/pnas.1524865113] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prochlorococcus and Synechococcus are the two most abundant and widespread phytoplankton in the global ocean. To better understand the factors controlling their biogeography, a reference database of the high-resolution taxonomic marker petB, encoding cytochrome b6, was used to recruit reads out of 109 metagenomes from the Tara Oceans expedition. An unsuspected novel genetic diversity was unveiled within both genera, even for the most abundant and well-characterized clades, and 136 divergent petB sequences were successfully assembled from metagenomic reads, significantly enriching the reference database. We then defined Ecologically Significant Taxonomic Units (ESTUs)-that is, organisms belonging to the same clade and occupying a common oceanic niche. Three major ESTU assemblages were identified along the cruise transect for Prochlorococcus and eight for Synechococcus Although Prochlorococcus HLIIIA and HLIVA ESTUs codominated in iron-depleted areas of the Pacific Ocean, CRD1 and the yet-to-be cultured EnvB were the prevalent Synechococcus clades in this area, with three different CRD1 and EnvB ESTUs occupying distinct ecological niches with regard to iron availability and temperature. Sharp community shifts were also observed over short geographic distances-for example, around the Marquesas Islands or between southern Indian and Atlantic Oceans-pointing to a tight correlation between ESTU assemblages and specific physico-chemical parameters. Together, this study demonstrates that there is a previously overlooked, ecologically meaningful, fine-scale diversity within some currently defined picocyanobacterial ecotypes, bringing novel insights into the ecology, diversity, and biology of the two most abundant phototrophs on Earth.
Collapse
|
41
|
Kent AG, Dupont CL, Yooseph S, Martiny AC. Global biogeography of Prochlorococcus genome diversity in the surface ocean. ISME JOURNAL 2016; 10:1856-65. [PMID: 26836261 DOI: 10.1038/ismej.2015.265] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/05/2015] [Accepted: 12/15/2015] [Indexed: 01/08/2023]
Abstract
Prochlorococcus, the smallest known photosynthetic bacterium, is abundant in the ocean's surface layer despite large variation in environmental conditions. There are several genetically divergent lineages within Prochlorococcus and superimposed on this phylogenetic diversity is extensive gene gain and loss. The environmental role in shaping the global ocean distribution of genome diversity in Prochlorococcus is largely unknown, particularly in a framework that considers the vertical and lateral mechanisms of evolution. Here we show that Prochlorococcus field populations from a global circumnavigation harbor extensive genome diversity across the surface ocean, but this diversity is not randomly distributed. We observed a significant correspondence between phylogenetic and gene content diversity, including regional differences in both phylogenetic composition and gene content that were related to environmental factors. Several gene families were strongly associated with specific regions and environmental factors, including the identification of a set of genes related to lower nutrient and temperature regions. Metagenomic assemblies of natural Prochlorococcus genomes reinforced this association by providing linkage of genes across genomic backbones. Overall, our results show that the phylogeography in Prochlorococcus taxonomy is echoed in its genome content. Thus environmental variation shapes the functional capabilities and associated ecosystem role of the globally abundant Prochlorococcus.
Collapse
Affiliation(s)
- Alyssa G Kent
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Chris L Dupont
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, San Diego, CA, USA
| | - Shibu Yooseph
- Informatics Group, J. Craig Venter Institute, San Diego, CA, USA
| | - Adam C Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA.,Department of Earth System Science, University of California, Irvine, CA, USA
| |
Collapse
|
42
|
Larkin AA, Blinebry SK, Howes C, Lin Y, Loftus SE, Schmaus CA, Zinser ER, Johnson ZI. Niche partitioning and biogeography of high light adapted Prochlorococcus across taxonomic ranks in the North Pacific. ISME JOURNAL 2016; 10:1555-67. [PMID: 26800235 DOI: 10.1038/ismej.2015.244] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/30/2015] [Accepted: 11/18/2015] [Indexed: 02/08/2023]
Abstract
The distribution of major clades of Prochlorococcus tracks light, temperature and other environmental variables; yet, the drivers of genomic diversity within these ecotypes and the net effect on biodiversity of the larger community are poorly understood. We examined high light (HL) adapted Prochlorococcus communities across spatial and temporal environmental gradients in the Pacific Ocean to determine the ecological drivers of population structure and diversity across taxonomic ranks. We show that the Prochlorococcus community has the highest diversity at low latitudes, but seasonality driven by temperature, day length and nutrients adds complexity. At finer taxonomic resolution, some 'sub-ecotype' clades have unique, cohesive responses to environmental variables and distinct biogeographies, suggesting that presently defined ecotypes can be further partitioned into ecologically meaningful units. Intriguingly, biogeographies of the HL-I sub-ecotypes are driven by unique combinations of environmental traits, rather than through trait hierarchy, while the HL-II sub-ecotypes appear ecologically similar, thus demonstrating differences among these dominant HL ecotypes. Examining biodiversity across taxonomic ranks reveals high-resolution dynamics of Prochlorococcus evolution and ecology that are masked at phylogenetically coarse resolution. Spatial and seasonal trends of Prochlorococcus communities suggest that the future ocean may be comprised of different populations, with implications for ecosystem structure and function.
Collapse
Affiliation(s)
- Alyse A Larkin
- Marine Laboratory, Nicholas School of the Environment, and Biology Department, Duke University, Beaufort, NC, USA
| | - Sara K Blinebry
- Marine Laboratory, Nicholas School of the Environment, and Biology Department, Duke University, Beaufort, NC, USA
| | - Caroline Howes
- Marine Laboratory, Nicholas School of the Environment, and Biology Department, Duke University, Beaufort, NC, USA
| | - Yajuan Lin
- Marine Laboratory, Nicholas School of the Environment, and Biology Department, Duke University, Beaufort, NC, USA
| | - Sarah E Loftus
- Marine Laboratory, Nicholas School of the Environment, and Biology Department, Duke University, Beaufort, NC, USA
| | - Carrie A Schmaus
- Marine Laboratory, Nicholas School of the Environment, and Biology Department, Duke University, Beaufort, NC, USA
| | - Erik R Zinser
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Zackary I Johnson
- Marine Laboratory, Nicholas School of the Environment, and Biology Department, Duke University, Beaufort, NC, USA
| |
Collapse
|
43
|
Shilova IN, Robidart JC, DeLong EF, Zehr JP. Genetic Diversity Affects the Daily Transcriptional Oscillations of Marine Microbial Populations. PLoS One 2016; 11:e0146706. [PMID: 26751368 PMCID: PMC4709009 DOI: 10.1371/journal.pone.0146706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/21/2015] [Indexed: 11/18/2022] Open
Abstract
Marine microbial communities are genetically diverse but have robust synchronized daily transcriptional patterns at the genus level that are similar across a wide variety of oceanic regions. We developed a microarray-inspired gene-centric approach to resolve transcription of closely-related but distinct strains/ecotypes in high-throughput sequence data. Applying this approach to the existing metatranscriptomics datasets collected from two different oceanic regions, we found unique and variable patterns of transcription by individual taxa within the abundant picocyanobacteria Prochlorococcus and Synechococcus, the alpha Proteobacterium Pelagibacter and the eukaryotic picophytoplankton Ostreococcus. The results demonstrate that marine microbial taxa respond differentially to variability in space and time in the ocean. These intra-genus individual transcriptional patterns underlie whole microbial community responses, and the approach developed here facilitates deeper insights into microbial population dynamics.
Collapse
Affiliation(s)
- Irina N. Shilova
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Julie C. Robidart
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Edward F. DeLong
- School of Ocean and Earth Science and Technology, University of Hawai’i at Manoa, Honolulu, Hawaii, United States of America
| | - Jonathan P. Zehr
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Villar E, Farrant GK, Follows M, Garczarek L, Speich S, Audic S, Bittner L, Blanke B, Brum JR, Brunet C, Casotti R, Chase A, Dolan JR, d'Ortenzio F, Gattuso JP, Grima N, Guidi L, Hill CN, Jahn O, Jamet JL, Le Goff H, Lepoivre C, Malviya S, Pelletier E, Romagnan JB, Roux S, Santini S, Scalco E, Schwenck SM, Tanaka A, Testor P, Vannier T, Vincent F, Zingone A, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Acinas SG, Bork P, Boss E, de Vargas C, Gorsky G, Ogata H, Pesant S, Sullivan MB, Sunagawa S, Wincker P, Karsenti E, Bowler C, Not F, Hingamp P, Iudicone D. Ocean plankton. Environmental characteristics of Agulhas rings affect interocean plankton transport. Science 2015; 348:1261447. [PMID: 25999514 DOI: 10.1126/science.1261447] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Agulhas rings provide the principal route for ocean waters to circulate from the Indo-Pacific to the Atlantic basin. Their influence on global ocean circulation is well known, but their role in plankton transport is largely unexplored. We show that, although the coarse taxonomic structure of plankton communities is continuous across the Agulhas choke point, South Atlantic plankton diversity is altered compared with Indian Ocean source populations. Modeling and in situ sampling of a young Agulhas ring indicate that strong vertical mixing drives complex nitrogen cycling, shaping community metabolism and biogeochemical signatures as the ring and associated plankton transit westward. The peculiar local environment inside Agulhas rings may provide a selective mechanism contributing to the limited dispersal of Indian Ocean plankton populations into the Atlantic.
Collapse
Affiliation(s)
- Emilie Villar
- Aix Marseille Université, CNRS, IGS UMR 7256, 13288 Marseille, France.
| | - Gregory K Farrant
- CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universités, Université Pierre et Marie Curie UPMC, Université Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Michael Follows
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laurence Garczarek
- CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universités, Université Pierre et Marie Curie UPMC, Université Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Sabrina Speich
- Laboratoire de Physique des Océans (LPO) UMR 6523 CNRS-Ifremer-IRD-UBO, Plouzané, France. Department of Geosciences, Laboratoire de Météorologie Dynamique (LMD) UMR 8539, Ecole Normale Supérieure, 24 Rue Lhomond, 75231 Paris Cedex 05, France
| | - Stéphane Audic
- CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universités, Université Pierre et Marie Curie UPMC, Université Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Lucie Bittner
- CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universités, Université Pierre et Marie Curie UPMC, Université Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, F-75005 Paris, France
| | - Bruno Blanke
- Laboratoire de Physique des Océans (LPO) UMR 6523 CNRS-Ifremer-IRD-UBO, Plouzané, France
| | - Jennifer R Brum
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | | | | | - Alison Chase
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - John R Dolan
- Sorbonne Universités, UPMC Université Paris 06, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France. INSU-CNRS, UMR 7093, LOV, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France
| | - Fabrizio d'Ortenzio
- Sorbonne Universités, UPMC Université Paris 06, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France. INSU-CNRS, UMR 7093, LOV, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France
| | - Jean-Pierre Gattuso
- Sorbonne Universités, UPMC Université Paris 06, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France. INSU-CNRS, UMR 7093, LOV, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France
| | - Nicolas Grima
- Laboratoire de Physique des Océans (LPO) UMR 6523 CNRS-Ifremer-IRD-UBO, Plouzané, France
| | - Lionel Guidi
- Sorbonne Universités, UPMC Université Paris 06, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France. INSU-CNRS, UMR 7093, LOV, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France
| | - Christopher N Hill
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Oliver Jahn
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jean-Louis Jamet
- Université de Toulon, Laboratoire PROTEE-EBMA E.A. 3819, BP 20132, 83957 La Garde Cedex, France
| | - Hervé Le Goff
- CNRS, UMR 7159, Laboratoire d'Océanographie et du Climat LOCEAN, 4 Place Jussieu, 75005 Paris, France
| | - Cyrille Lepoivre
- Aix Marseille Université, CNRS, IGS UMR 7256, 13288 Marseille, France
| | - Shruti Malviya
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, F-75005 Paris, France
| | - Eric Pelletier
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Génomique, Genoscope, 2 Rue Gaston Crémieux, 91057 Evry, France. CNRS, UMR 8030, CP5706, Evry, France. Université d'Evry, UMR 8030, CP5706, Evry, France
| | - Jean-Baptiste Romagnan
- Sorbonne Universités, UPMC Université Paris 06, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France. INSU-CNRS, UMR 7093, LOV, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France
| | - Simon Roux
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Sébastien Santini
- Aix Marseille Université, CNRS, IGS UMR 7256, 13288 Marseille, France
| | - Eleonora Scalco
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Sarah M Schwenck
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Atsuko Tanaka
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, F-75005 Paris, France
| | - Pierre Testor
- CNRS, UMR 7159, Laboratoire d'Océanographie et du Climat LOCEAN, 4 Place Jussieu, 75005 Paris, France
| | - Thomas Vannier
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Génomique, Genoscope, 2 Rue Gaston Crémieux, 91057 Evry, France. CNRS, UMR 8030, CP5706, Evry, France. Université d'Evry, UMR 8030, CP5706, Evry, France
| | - Flora Vincent
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, F-75005 Paris, France
| | - Adriana Zingone
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Céline Dimier
- CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universités, Université Pierre et Marie Curie UPMC, Université Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, F-75005 Paris, France
| | - Marc Picheral
- Sorbonne Universités, UPMC Université Paris 06, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France. INSU-CNRS, UMR 7093, LOV, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France
| | - Sarah Searson
- Sorbonne Universités, UPMC Université Paris 06, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France. INSU-CNRS, UMR 7093, LOV, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France
| | - Stefanie Kandels-Lewis
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. Directors' Research, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, Barcelona E08003, Spain
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. Max-Delbrück-Centre for Molecular Medicine, 13092 Berlin, Germany
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Colomban de Vargas
- CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universités, Université Pierre et Marie Curie UPMC, Université Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Gabriel Gorsky
- Sorbonne Universités, UPMC Université Paris 06, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France. INSU-CNRS, UMR 7093, LOV, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France
| | - Hiroyuki Ogata
- Aix Marseille Université, CNRS, IGS UMR 7256, 13288 Marseille, France
| | - Stéphane Pesant
- PANGAEA, Data Publisher for Earth and Environmental Science, University of Bremen, Bremen, Germany. MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Matthew B Sullivan
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Shinichi Sunagawa
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Patrick Wincker
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Génomique, Genoscope, 2 Rue Gaston Crémieux, 91057 Evry, France. CNRS, UMR 8030, CP5706, Evry, France. Université d'Evry, UMR 8030, CP5706, Evry, France
| | - Eric Karsenti
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, F-75005 Paris, France. Directors' Research, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | - Chris Bowler
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, F-75005 Paris, France.
| | - Fabrice Not
- CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universités, Université Pierre et Marie Curie UPMC, Université Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France.
| | - Pascal Hingamp
- Aix Marseille Université, CNRS, IGS UMR 7256, 13288 Marseille, France.
| | - Daniele Iudicone
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| |
Collapse
|
45
|
Narwani A, Alexandrou MA, Herrin J, Vouaux A, Zhou C, Oakley TH, Cardinale BJ. Common Ancestry Is a Poor Predictor of Competitive Traits in Freshwater Green Algae. PLoS One 2015; 10:e0137085. [PMID: 26348482 PMCID: PMC4562640 DOI: 10.1371/journal.pone.0137085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 08/13/2015] [Indexed: 11/25/2022] Open
Abstract
Phytoplankton species traits have been used to successfully predict the outcome of competition, but these traits are notoriously laborious to measure. If these traits display a phylogenetic signal, phylogenetic distance (PD) can be used as a proxy for trait variation. We provide the first investigation of the degree of phylogenetic signal in traits related to competition in freshwater green phytoplankton. We measured 17 traits related to competition and tested whether they displayed a phylogenetic signal across a molecular phylogeny of 59 species of green algae. We also assessed the fit of five models of trait evolution to trait variation across the phylogeny. There was no significant phylogenetic signal for 13 out of 17 ecological traits. For 7 traits, a non-phylogenetic model provided the best fit. For another 7 traits, a phylogenetic model was selected, but parameter values indicated that trait variation evolved recently, diminishing the importance of common ancestry. This study suggests that traits related to competition in freshwater green algae are not generally well-predicted by patterns of common ancestry. We discuss the mechanisms by which the link between phylogenetic distance and phenotypic differentiation may be broken.
Collapse
Affiliation(s)
- Anita Narwani
- BU-G11 Überlandstrasse 133, Department of Aquatic Ecology, Eawag (Swiss Federal Institute of Aquatic Science and Technology), 8600, Dübendorf, Switzerland
- 1556 Dana Building, 440 Church Street, School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI, 48109–1041, United States of America
| | - Markos A. Alexandrou
- 4101 Life Sciences Building, UCEN Road, Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, United States of America
| | - James Herrin
- 1556 Dana Building, 440 Church Street, School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI, 48109–1041, United States of America
| | - Alaina Vouaux
- 1556 Dana Building, 440 Church Street, School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI, 48109–1041, United States of America
| | - Charles Zhou
- 1556 Dana Building, 440 Church Street, School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI, 48109–1041, United States of America
| | - Todd H. Oakley
- 4101 Life Sciences Building, UCEN Road, Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, United States of America
| | - Bradley J. Cardinale
- 1556 Dana Building, 440 Church Street, School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI, 48109–1041, United States of America
| |
Collapse
|
46
|
Fernández-Pinos MC, Casado M, Caballero G, Zinser ER, Dachs J, Piña B. Clade-Specific Quantitative Analysis of Photosynthetic Gene Expression in Prochlorococcus. PLoS One 2015; 10:e0133207. [PMID: 26244890 PMCID: PMC4526520 DOI: 10.1371/journal.pone.0133207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 06/24/2015] [Indexed: 01/04/2023] Open
Abstract
Newly designed primers targeting rbcL (CO2 fixation), psbA (photosystem II) and rnpB (reference) genes were used in qRT-PCR assays to assess the photosynthetic capability of natural communities of Prochlorococcus, the most abundant photosynthetic organism on Earth and a major contributor to primary production in oligotrophic oceans. After optimizing sample collection methodology, we analyzed a total of 62 stations from the Malaspina 2010 circumnavigation (including Atlantic, Pacific and Indian Oceans) at three different depths. Sequence and quantitative analyses of the corresponding amplicons showed the presence of high-light (HL) and low-light (LL) Prochlorococcus clades in essentially all 182 samples, with a largely uniform stratification of LL and HL sequences. Synechococcus cross-amplifications were detected by the taxon-specific melting temperatures of the amplicons. Laboratory exposure of Prochlorococcus MED4 (HL) and MIT9313 (LL) strains to organic pollutants (PAHs and organochlorine compounds) showed a decrease of rbcL transcript abundances, and of the rbcL to psbA ratios for both strains. We propose this technique as a convenient assay to evaluate effects of environmental stressors, including pollution, on the oceanic Prochlorococcus photosynthetic function.
Collapse
Affiliation(s)
| | - Marta Casado
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
| | - Gemma Caballero
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
| | - Erik R. Zinser
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Jordi Dachs
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
| | - Benjamin Piña
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
- * E-mail:
| |
Collapse
|
47
|
Berube PM, Biller SJ, Kent AG, Berta-Thompson JW, Roggensack SE, Roache-Johnson KH, Ackerman M, Moore LR, Meisel JD, Sher D, Thompson LR, Campbell L, Martiny AC, Chisholm SW. Physiology and evolution of nitrate acquisition in Prochlorococcus. THE ISME JOURNAL 2015; 9:1195-207. [PMID: 25350156 PMCID: PMC4409163 DOI: 10.1038/ismej.2014.211] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/08/2014] [Accepted: 09/23/2014] [Indexed: 01/01/2023]
Abstract
Prochlorococcus is the numerically dominant phototroph in the oligotrophic subtropical ocean and carries out a significant fraction of marine primary productivity. Although field studies have provided evidence for nitrate uptake by Prochlorococcus, little is known about this trait because axenic cultures capable of growth on nitrate have not been available. Additionally, all previously sequenced genomes lacked the genes necessary for nitrate assimilation. Here we introduce three Prochlorococcus strains capable of growth on nitrate and analyze their physiology and genome architecture. We show that the growth of high-light (HL) adapted strains on nitrate is ∼17% slower than their growth on ammonium. By analyzing 41 Prochlorococcus genomes, we find that genes for nitrate assimilation have been gained multiple times during the evolution of this group, and can be found in at least three lineages. In low-light adapted strains, nitrate assimilation genes are located in the same genomic context as in marine Synechococcus. These genes are located elsewhere in HL adapted strains and may often exist as a stable genetic acquisition as suggested by the striking degree of similarity in the order, phylogeny and location of these genes in one HL adapted strain and a consensus assembly of environmental Prochlorococcus metagenome sequences. In another HL adapted strain, nitrate utilization genes may have been independently acquired as indicated by adjacent phage mobility elements; these genes are also duplicated with each copy detected in separate genomic islands. These results provide direct evidence for nitrate utilization by Prochlorococcus and illuminate the complex evolutionary history of this trait.
Collapse
Affiliation(s)
- Paul M Berube
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven J Biller
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alyssa G Kent
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Jessie W Berta-Thompson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sara E Roggensack
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kathryn H Roache-Johnson
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
- Department of Biological Sciences, University of Southern Maine, Portland, ME, USA
| | - Marcia Ackerman
- Department of Biological Sciences, University of Southern Maine, Portland, ME, USA
| | - Lisa R Moore
- Department of Biological Sciences, University of Southern Maine, Portland, ME, USA
| | - Joshua D Meisel
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel Sher
- Department of Marine Biology, University of Haifa, Haifa, Israel
| | - Luke R Thompson
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - Lisa Campbell
- Department of Oceanography, Texas A&M University, College Station, TX, USA
| | - Adam C Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
- Department of Earth System Science, University of California, Irvine, Irvine, CA, USA
| | - Sallie W Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
48
|
Prokaryotic functional gene diversity in the sunlit ocean: Stumbling in the dark. Curr Opin Microbiol 2015; 25:33-9. [PMID: 25863027 DOI: 10.1016/j.mib.2015.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 03/07/2015] [Accepted: 03/16/2015] [Indexed: 11/24/2022]
Abstract
Prokaryotes are extremely abundant in the ocean where they drive biogeochemical cycles. The recent development and application of -omics techniques has provided an astonishing amount of information revealing the existence of a vast diversity of functional genes and a large heterogeneity within each gene. The big challenge for microbial ecologists is now to understand the ecological relevance of this variability for ecosystem functioning, a question that remains largely understudied. This brief review highlights some of the latest advances in the study of the diversity of biogeochemically relevant functional genes in the sunlit ocean.
Collapse
|
49
|
Sudek S, Everroad RC, Gehman ALM, Smith JM, Poirier CL, Chavez FP, Worden AZ. Cyanobacterial distributions along a physico-chemical gradient in the Northeastern Pacific Ocean. Environ Microbiol 2015; 17:3692-707. [PMID: 25522910 DOI: 10.1111/1462-2920.12742] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 12/11/2022]
Abstract
The cyanobacteria Prochlorococcus and Synechococcus are important marine primary producers. We explored their distributions and covariance along a physico-chemical gradient from coastal to open ocean waters in the Northeastern Pacific Ocean. An inter-annual pattern was delineated in the dynamic transition zone where upwelled and eastern boundary current waters mix, and two new Synechococcus clades, Eastern Pacific Clade (EPC) 1 and EPC2, were identified. By applying state-of-the-art phylogenetic analysis tools to bar-coded 16S amplicon datasets, we observed higher abundance of Prochlorococcus high-light I (HLI) and low-light I (LLI) in years when more oligotrophic water intruded farther inshore, while under stronger upwelling Synechococcus I and IV dominated. However, contributions of some cyanobacterial clades were proportionally relatively constant, e.g. Synechococcus EPC2. In addition to supporting observations that Prochlorococcus LLI thrive at higher irradiances than other LL taxa, the results suggest LLI tolerate lower temperatures than previously reported. The phylogenetic precision of our 16S rRNA gene analytical approach and depth of bar-coded sequencing also facilitated detection of clades at low abundance in unexpected places. These include Prochlorococcus at the coast and Cyanobium-related sequences offshore, although it remains unclear whether these came from resident or potentially advected cells. Our study enhances understanding of cyanobacterial distributions in an ecologically important eastern boundary system.
Collapse
Affiliation(s)
- Sebastian Sudek
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - R Craig Everroad
- Exobiology Branch, NASA Ames Research Center, MS 239-4, Moffett Field, CA, 94035, USA
| | - Alyssa-Lois M Gehman
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Jason M Smith
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Camille L Poirier
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Francisco P Chavez
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA.,Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, ON, M5G 1Z8, Canada
| |
Collapse
|
50
|
Astorga-Eló M, Ramírez-Flandes S, DeLong EF, Ulloa O. Genomic potential for nitrogen assimilation in uncultivated members of Prochlorococcus from an anoxic marine zone. ISME JOURNAL 2015; 9:1264-7. [PMID: 25700337 PMCID: PMC4409168 DOI: 10.1038/ismej.2015.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/19/2014] [Accepted: 12/31/2014] [Indexed: 11/09/2022]
Abstract
Cyanobacteria of the genus Prochlorococcus are the most abundant photosynthetic marine organisms and key factors in the global carbon cycle. The understanding of their distribution and ecological importance in oligotrophic tropical and subtropical waters, and their differentiation into distinct ecotypes, is based on genetic and physiological information from several isolates. Currently, all available Prochlorococcus genomes show their incapacity for nitrate utilization. However, environmental sequence data suggest that some uncultivated lineages may have acquired this capacity. Here we report that uncultivated low-light-adapted Prochlorococcus from the nutrient-rich, low-light, anoxic marine zone (AMZ) of the eastern tropical South Pacific have the genetic potential for nitrate uptake and assimilation. All genes involved in this trait were found syntenic with those present in marine Synechococcus. Genomic and phylogenetic analyses also suggest that these genes have not been aquired recently, but perhaps were retained from a common ancestor, highlighting the basal characteristics of the AMZ lineages within Prochlorococcus.
Collapse
Affiliation(s)
- Marcia Astorga-Eló
- 1] Departamento de Oceanografía and Instituto Milenio de Oceanografía, Universidad de Concepción, Concepción, Chile [2] Programa de Magíster en Bioquímica y Bioinformática, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Salvador Ramírez-Flandes
- 1] Departamento de Oceanografía and Instituto Milenio de Oceanografía, Universidad de Concepción, Concepción, Chile [2] Programa de Doctorado en Ingeniería de Sistemas Complejos, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Edward F DeLong
- 1] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA [2] Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA [3] Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI, USA
| | - Osvaldo Ulloa
- Departamento de Oceanografía and Instituto Milenio de Oceanografía, Universidad de Concepción, Concepción, Chile
| |
Collapse
|