1
|
Zhu K, Wang H, Ye K, Chen G, Zhang Z. Netrin-1 signaling pathway mechanisms in neurodegenerative diseases. Neural Regen Res 2025; 20:960-972. [PMID: 38989931 PMCID: PMC11438344 DOI: 10.4103/nrr.nrr-d-23-01573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/16/2024] [Indexed: 07/12/2024] Open
Abstract
Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development. Their profound impacts then extend into adulthood to encompass the maintenance of neuronal survival and synaptic function. Increasing amounts of evidence highlight several key points: (1) Diminished Netrin-1 levels exacerbate pathological progression in animal models of Alzheimer's disease and Parkinson's disease, and potentially, similar alterations occur in humans. (2) Genetic mutations of Netrin-1 receptors increase an individuals' susceptibility to neurodegenerative disorders. (3) Therapeutic approaches targeting Netrin-1 and its receptors offer the benefits of enhancing memory and motor function. (4) Netrin-1 and its receptors show genetic and epigenetic alterations in a variety of cancers. These findings provide compelling evidence that Netrin-1 and its receptors are crucial targets in neurodegenerative diseases. Through a comprehensive review of Netrin-1 signaling pathways, our objective is to uncover potential therapeutic avenues for neurodegenerative disorders.
Collapse
Affiliation(s)
- Kedong Zhu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hualong Wang
- Department of Neurology, The First Hospital of Hebei Medical University; Brain Aging and Cognitive Neuroscience Laboratory of Heibei Province, Shijiazhuang, Hebei Province, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Guiqin Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Muir RT, Callum JL, Yu AYX, Kapral MK, Swartz RH, Black SE, MacIntosh BJ, Fergusson DA, Kleinman S, Demchuk AD, Stys PK, Smith EE, Hill MD. Beta-Amyloid Related Neurodegenerative and Neurovascular Diseases: Potential Implications for Transfusion Medicine. Transfus Med Rev 2024; 38:150858. [PMID: 39413667 DOI: 10.1016/j.tmrv.2024.150858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 10/18/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is a progressive cerebrovascular and neurodegenerative disorder that is caused by the aberrant accumulation of soluble beta-amyloid isoforms in the small vessel walls of the cerebral and cerebellar cortices and the leptomeninges. Vascular beta-amyloid deposition increases vulnerability to intracerebral hemorrhage (ICH). Clinically, CAA can be the underlying cause of up to half of spontaneous lobar ICHs and can also present with convexity subarachnoid hemorrhage, transient focal neurologic episodes and progressive cognitive decline leading to dementia. The majority of CAA is sporadic, with increasing prevalence with age and often coexists with Alzheimer's Disease (AD). Genetic and iatrogenic etiologies are rare. Cases of CAA and AD have been linked to the use of cadaveric pituitary hormone and later life iatrogenic CAA has also been described following early-life neurosurgical procedures with cadaveric dura grafts. Together these data suggest a capacity of beta-amyloid transmissibility. A recent study found that in over 1 million transfusion recipients from donors who later developed (i) >1 ICH or (ii) one ICH event and dementia, had an elevated risk of developing future ICH. Considering prior reports of transfusion associated variant-Creutzfeldt Jakob Disease in humans and in vivo evidence in sheep, coupled with emerging data supporting beta-amyloid's prion-like properties, raises the question of whether CAA could be transmissible by blood transfusion. This would also have implications for screening, especially in an era of emerging plasma biomarkers of cerebral amyloidosis. Given the public health concerns raised by this biologically plausible question, there is a need for future studies with well-characterized definitions - and temporal ascertainment - of CAA exposure and outcomes to examine whether CAA is transfusion-transmissible, and, if so, with what frequency and timing of onset.
Collapse
Affiliation(s)
- Ryan T Muir
- Calgary Stroke Program, Department of Clinical Neurosciences, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Jeannie L Callum
- Department of Pathology and Molecular Medicine, Queen's University, Ontario, Canada; Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Research Program Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Amy Y X Yu
- Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Research Program Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; ICES (formerly Institute for Clinical Evaluative Sciences), Toronto, Ontario, Canada
| | - Moira K Kapral
- ICES (formerly Institute for Clinical Evaluative Sciences), Toronto, Ontario, Canada; Department of Medicine, General Internal Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Richard H Swartz
- Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Research Program Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; ICES (formerly Institute for Clinical Evaluative Sciences), Toronto, Ontario, Canada
| | - Sandra E Black
- Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Research Program Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Bradley J MacIntosh
- Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Research Program Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Dean A Fergusson
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Steven Kleinman
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew D Demchuk
- Calgary Stroke Program, Department of Clinical Neurosciences, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Peter K Stys
- Calgary Stroke Program, Department of Clinical Neurosciences, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Eric E Smith
- Calgary Stroke Program, Department of Clinical Neurosciences, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Michael D Hill
- Calgary Stroke Program, Department of Clinical Neurosciences, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
3
|
Célestine M, Jacquier-Sarlin M, Borel E, Petit F, Lante F, Bousset L, Hérard AS, Buisson A, Dhenain M. Transmissible long-term neuroprotective and pro-cognitive effects of 1-42 beta-amyloid with A2T icelandic mutation in an Alzheimer's disease mouse model. Mol Psychiatry 2024:10.1038/s41380-024-02611-8. [PMID: 38871852 DOI: 10.1038/s41380-024-02611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024]
Abstract
The amyloid cascade hypothesis assumes that the development of Alzheimer's disease (AD) is driven by a self-perpetuating cycle, in which β-amyloid (Aβ) accumulation leads to Tau pathology and neuronal damages. A particular mutation (A673T) of the amyloid precursor protein (APP) was identified among Icelandic population. It provides a protective effect against Alzheimer- and age-related cognitive decline. This APP mutation leads to the reduced production of Aβ with A2T (position in peptide sequence) change (Aβice). In addition, Aβice has the capacity to form protective heterodimers in association with wild-type Aβ. Despite the emerging interest in Aβice during the last decade, the impact of Aβice on events associated with the amyloid cascade has never been reported. First, the effects of Aβice were evaluated in vitro by electrophysiology on hippocampal slices and by studying synapse morphology in cortical neurons. We showed that Aβice protects against endogenous Aβ-mediated synaptotoxicity. Second, as several studies have outlined that a single intracerebral administration of Aβ can worsen Aβ deposition and cognitive functions several months after the inoculation, we evaluated in vivo the long-term effects of a single inoculation of Aβice or Aβ-wild-type (Aβwt) in the hippocampus of transgenic mice (APPswe/PS1dE9) over-expressing Aβ1-42 peptide. Interestingly, we found that the single intra-hippocampal inoculation of Aβice to mice rescued synaptic density and spatial memory losses four months post-inoculation, compared with Aβwt inoculation. Although Aβ load was not modulated by Aβice infusion, the amount of Tau-positive neuritic plaques was significantly reduced. Finally, a lower phagocytosis by microglia of post-synaptic compounds was detected in Aβice-inoculated animals, which can partly explain the increased density of synapses in the Aβice animals. Thus, a single event as Aβice inoculation can improve the fate of AD-associated pathology and phenotype in mice several months after the event. These results open unexpected fields to develop innovative therapeutic strategies against AD.
Collapse
Affiliation(s)
- Marina Célestine
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, 18 Route du Panorama, F-92265, Fontenay-aux-Roses, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut de Biologie François Jacob, MIRCen, 18 Route du Panorama, F-92265, Fontenay-aux-Roses, France
| | - Muriel Jacquier-Sarlin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, 38000, Grenoble, France
| | - Eve Borel
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, 38000, Grenoble, France
| | - Fanny Petit
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, 18 Route du Panorama, F-92265, Fontenay-aux-Roses, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut de Biologie François Jacob, MIRCen, 18 Route du Panorama, F-92265, Fontenay-aux-Roses, France
| | - Fabien Lante
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, 38000, Grenoble, France
| | - Luc Bousset
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, 18 Route du Panorama, F-92265, Fontenay-aux-Roses, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut de Biologie François Jacob, MIRCen, 18 Route du Panorama, F-92265, Fontenay-aux-Roses, France
| | - Anne-Sophie Hérard
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, 18 Route du Panorama, F-92265, Fontenay-aux-Roses, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut de Biologie François Jacob, MIRCen, 18 Route du Panorama, F-92265, Fontenay-aux-Roses, France
| | - Alain Buisson
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, 38000, Grenoble, France
| | - Marc Dhenain
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, 18 Route du Panorama, F-92265, Fontenay-aux-Roses, France.
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut de Biologie François Jacob, MIRCen, 18 Route du Panorama, F-92265, Fontenay-aux-Roses, France.
| |
Collapse
|
4
|
Vazquez-Sanchez S, Tilkin B, Gasset-Rosa F, Zhang S, Piol D, McAlonis-Downes M, Artates J, Govea-Perez N, Verresen Y, Guo L, Cleveland DW, Shorter J, Da Cruz S. Frontotemporal dementia-like disease progression elicited by seeded aggregation and spread of FUS. Mol Neurodegener 2024; 19:46. [PMID: 38862967 PMCID: PMC11165889 DOI: 10.1186/s13024-024-00737-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
RNA binding proteins have emerged as central players in the mechanisms of many neurodegenerative diseases. In particular, a proteinopathy of fused in sarcoma (FUS) is present in some instances of familial Amyotrophic lateral sclerosis (ALS) and about 10% of sporadic Frontotemporal lobar degeneration (FTLD). Here we establish that focal injection of sonicated human FUS fibrils into brains of mice in which ALS-linked mutant or wild-type human FUS replaces endogenous mouse FUS is sufficient to induce focal cytoplasmic mislocalization and aggregation of mutant and wild-type FUS which with time spreads to distal regions of the brain. Human FUS fibril-induced FUS aggregation in the mouse brain of humanized FUS mice is accelerated by an ALS-causing FUS mutant relative to wild-type human FUS. Injection of sonicated human FUS fibrils does not induce FUS aggregation and subsequent spreading after injection into naïve mouse brains containing only mouse FUS, indicating a species barrier to human FUS aggregation and its prion-like spread. Fibril-induced human FUS aggregates recapitulate pathological features of FTLD including increased detergent insolubility of FUS and TAF15 and amyloid-like, cytoplasmic deposits of FUS that accumulate ubiquitin and p62, but not TDP-43. Finally, injection of sonicated FUS fibrils is shown to exacerbate age-dependent cognitive and behavioral deficits from mutant human FUS expression. Thus, focal seeded aggregation of FUS and further propagation through prion-like spread elicits FUS-proteinopathy and FTLD-like disease progression.
Collapse
Affiliation(s)
- Sonia Vazquez-Sanchez
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Britt Tilkin
- VIB-KU Leuven Center for Brain and Disease Research and Department of Neurosciences, KU Leuven, Leuven, 3000, Belgium
| | - Fatima Gasset-Rosa
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
- Present Address: Vividion Therapeutics, 5820 Nancy Ridge Dr, San Diego, 92121, USA
| | - Sitao Zhang
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Diana Piol
- VIB-KU Leuven Center for Brain and Disease Research and Department of Neurosciences, KU Leuven, Leuven, 3000, Belgium
| | - Melissa McAlonis-Downes
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Jonathan Artates
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Noe Govea-Perez
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Yana Verresen
- VIB-KU Leuven Center for Brain and Disease Research and Department of Neurosciences, KU Leuven, Leuven, 3000, Belgium
| | - Lin Guo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104-6059, USA
| | - Sandrine Da Cruz
- VIB-KU Leuven Center for Brain and Disease Research and Department of Neurosciences, KU Leuven, Leuven, 3000, Belgium.
| |
Collapse
|
5
|
Vazquez-Sanchez S, Tilkin B, Gasset-Rosa F, Zhang S, Piol D, McAlonis-Downes M, Artates J, Govea-Perez N, Verresen Y, Guo L, Cleveland DW, Shorter J, Da Cruz S. Frontotemporal dementia-like disease progression elicited by seeded aggregation and spread of FUS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.593639. [PMID: 38895337 PMCID: PMC11185515 DOI: 10.1101/2024.06.03.593639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
RNA binding proteins have emerged as central players in the mechanisms of many neurodegenerative diseases. In particular, a proteinopathy of fu sed in s arcoma (FUS) is present in some instances of familial Amyotrophic lateral sclerosis (ALS) and about 10% of sporadic FTLD. Here we establish that focal injection of sonicated human FUS fibrils into brains of mice in which ALS-linked mutant or wild-type human FUS replaces endogenous mouse FUS is sufficient to induce focal cytoplasmic mislocalization and aggregation of mutant and wild-type FUS which with time spreads to distal regions of the brain. Human FUS fibril-induced FUS aggregation in the mouse brain of humanized FUS mice is accelerated by an ALS-causing FUS mutant relative to wild-type human FUS. Injection of sonicated human FUS fibrils does not induce FUS aggregation and subsequent spreading after injection into naïve mouse brains containing only mouse FUS, indicating a species barrier to human FUS aggregation and its prion-like spread. Fibril-induced human FUS aggregates recapitulate pathological features of FTLD including increased detergent insolubility of FUS and TAF15 and amyloid-like, cytoplasmic deposits of FUS that accumulate ubiquitin and p62, but not TDP-43. Finally, injection of sonicated FUS fibrils is shown to exacerbate age-dependent cognitive and behavioral deficits from mutant human FUS expression. Thus, focal seeded aggregation of FUS and further propagation through prion-like spread elicits FUS-proteinopathy and FTLD-like disease progression.
Collapse
|
6
|
Balczon R, Lin MT, Voth S, Nelson AR, Schupp JC, Wagener BM, Pittet JF, Stevens T. Lung endothelium, tau, and amyloids in health and disease. Physiol Rev 2024; 104:533-587. [PMID: 37561137 PMCID: PMC11281824 DOI: 10.1152/physrev.00006.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sarah Voth
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Jonas C Schupp
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University, New Haven, Connecticut, United States
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
7
|
Fabjan M, Jurečič A, Jerala M, Oblak JP, Frol S. Recurrent Intracerebral Haematomas Due to Amyloid Angyopathy after Lyodura Transplantation in Childhood. Neurol Int 2024; 16:327-333. [PMID: 38525703 PMCID: PMC10961745 DOI: 10.3390/neurolint16020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
The number of published cases of presumed iatrogenic cerebral amyloid angiopathy (iCAA) due to the transmission of amyloid β during neurosurgery is slowly rising. One of the potential ways of transmission is through a cadaveric dura mater graft (LYODURA) exposure during neurosurgery. This is a case of a 46-year-old female patient with no chronic conditions who presented with recurrent intracerebral haemorrhages (ICHs) without underlying vessel pathology. Four decades prior, the patient had a neurosurgical procedure with documented LYODURA transplantation. Brain biopsy confirmed CAA. This is a rare case of histologically proven iCAA after a documented LYODURA transplantation in childhood. Our case and already published iCAA cases emphasize the need for considering neurosurgery procedure history as important data in patients who present with ICH possibly related to CAA.
Collapse
Affiliation(s)
- Maša Fabjan
- Department of Vascular Neurology, University Medical Center Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (M.F.); (A.J.); (J.P.O.)
| | - Ana Jurečič
- Department of Vascular Neurology, University Medical Center Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (M.F.); (A.J.); (J.P.O.)
| | - Miha Jerala
- Institute of Pathology, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Janja Pretnar Oblak
- Department of Vascular Neurology, University Medical Center Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (M.F.); (A.J.); (J.P.O.)
- Faculty of Medicine, University of Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia
| | - Senta Frol
- Department of Vascular Neurology, University Medical Center Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; (M.F.); (A.J.); (J.P.O.)
- Faculty of Medicine, University of Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Pikija S, Pretnar-Oblak J, Frol S, Malojcic B, Gattringer T, Rak-Frattner K, Staykov D, Salmaggi A, Milani R, Magdic J, Iglseder S, Trinka E, Kraus T, Toma A, DiFrancesco JC, Tabaee Damavandi P, Fabin N, Bersano A, de la Riva Juez P, Albajar Gomez I, Storti B, Fandler-Höfler S. Iatrogenic cerebral amyloid angiopathy: A multinational case series and individual patient data analysis of the literature. Int J Stroke 2024; 19:314-321. [PMID: 37700397 DOI: 10.1177/17474930231203133] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
BACKGROUND The transmission of amyloid β (Aβ) in humans leading to iatrogenic cerebral amyloid angiopathy (iCAA) is a novel concept with analogies to prion diseases. However, the number of published cases is low, and larger international studies are missing. AIMS We aimed to build a large multinational collaboration on iCAA to better understand the clinical spectrum of affected patients. METHODS We collected clinical data on patients with iCAA from Austria, Croatia, Italy, Slovenia, and Spain. Patients were included if they met the proposed Queen Square diagnostic criteria (QSC) for iCAA. In addition, we pooled data on disease onset, latency, and cerebrospinal fluid (CSF) biomarkers from previously published iCAA cases based on a systematic literature review. RESULTS Twenty-seven patients (22% women) were included in this study. Of these, 19 (70%) met the criteria for probable and 8 (30%) for possible iCAA. Prior neurosurgical procedures were performed in all patients (93% brain surgery, 7% spinal surgery) at median age of 8 (interquartile range (IQR) = 4-18, range = 0-26 years) years. The median symptom latency was 39 years (IQR = 34-41, range = 28-49). The median age at symptom onset was 49 years (IQR = 43-55, range = 32-70). Twenty-one patients (78%) presented with intracranial hemorrhage and 3 (11%) with seizures. CONCLUSIONS Our large international case series of patients with iCAA confirms a wide age boundary for the diagnosis of iCAA. Dissemination of awareness of this rare condition will help to identify more affected patients.
Collapse
Affiliation(s)
- Slaven Pikija
- Department of Neurology, Christian Doppler University Hospital, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria
| | - Janja Pretnar-Oblak
- Department of Vascular Neurology, Faculty of Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Senta Frol
- Department of Vascular Neurology, Faculty of Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Branko Malojcic
- Department of Neurology, Zagreb School of Medicine, University Hospital Center, Zagreb, Croatia
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Kinga Rak-Frattner
- Department of Neurology, Krankenhaus der Barmherzigen Brüder, Eisenstadt, Austria
| | - Dimitre Staykov
- Department of Neurology, Krankenhaus der Barmherzigen Brüder, Eisenstadt, Austria
| | - Andrea Salmaggi
- Department of Neurology, Alessandro Manzoni Hospital, Lecco, Italy
| | - Riccardo Milani
- Department of Neurology, Alessandro Manzoni Hospital, Lecco, Italy
| | - Jozef Magdic
- Division of Neurology, University Medical Centre Maribor, Maribor, Slovenia
| | - Sarah Iglseder
- Department of Vascular Neurology, University Medical Centre Innsbruck, Innsbruck, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler University Hospital, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria
- Karl Landsteiner Institute for Neurorehabilitation and Space Neurology, Salzburg, Austria
- Department of Public Health, Health Services Research, and Health Technology Assessment, Hall in Tirol, Austria
| | - Theo Kraus
- Department of Pathology, Paracelsus Medical University, Salzburg, Austria
| | - Andreea Toma
- Department of Neurology, Christian Doppler University Hospital, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria
| | | | | | - Natalia Fabin
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Anna Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Patricia de la Riva Juez
- Stroke Unit, Donostia University Hospital, Neurovascular Diseases, Biodonostia Institute, San Sebastián, Spain
| | - Ines Albajar Gomez
- Stroke Unit, Donostia University Hospital, Neurovascular Diseases, Biodonostia Institute, San Sebastián, Spain
| | - Benedetta Storti
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | |
Collapse
|
9
|
Kozin SA, Kechko OI, Adzhubei AA, Makarov AA, Mitkevich VA. Switching On/Off Amyloid Plaque Formation in Transgenic Animal Models of Alzheimer's Disease. Int J Mol Sci 2023; 25:72. [PMID: 38203242 PMCID: PMC10778642 DOI: 10.3390/ijms25010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
A hallmark of Alzheimer's disease (AD) are the proteinaceous aggregates formed by the amyloid-beta peptide (Aβ) that is deposited inside the brain as amyloid plaques. The accumulation of aggregated Aβ may initiate or enhance pathologic processes in AD. According to the amyloid hypothesis, any agent that has the capability to inhibit Aβ aggregation and/or destroy amyloid plaques represents a potential disease-modifying drug. In 2023, a humanized IgG1 monoclonal antibody (lecanemab) against the Aβ-soluble protofibrils was approved by the US FDA for AD therapy, thus providing compelling support to the amyloid hypothesis. To acquire a deeper insight on the in vivo Aβ aggregation, various animal models, including aged herbivores and carnivores, non-human primates, transgenic rodents, fish and worms were widely exploited. This review is based on the recent data obtained using transgenic animal AD models and presents experimental verification of the critical role in Aβ aggregation seeding of the interactions between zinc ions, Aβ with the isomerized Asp7 (isoD7-Aβ) and the α4β2 nicotinic acetylcholine receptor.
Collapse
Affiliation(s)
- Sergey A. Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.I.K.); (A.A.A.); (A.A.M.)
| | | | | | | | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.I.K.); (A.A.A.); (A.A.M.)
| |
Collapse
|
10
|
Célestine M, Jacquier-Sarlin M, Borel E, Petit F, Perot JB, Hérard AS, Bousset L, Buisson A, Dhenain M. Long term worsening of amyloid pathology, cerebral function, and cognition after a single inoculation of beta-amyloid seeds with Osaka mutation. Acta Neuropathol Commun 2023; 11:66. [PMID: 37087498 PMCID: PMC10122826 DOI: 10.1186/s40478-023-01559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/25/2023] [Indexed: 04/24/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by intracerebral deposition of abnormal proteinaceous assemblies made of amyloid-β (Aß) peptides or tau proteins. These peptides and proteins induce synaptic dysfunctions that are strongly correlated with cognitive decline. Intracerebral infusion of well-defined Aβ seeds from non-mutated Aβ1-40 or Aβ1-42 peptides can increase Aβ depositions several months after the infusion. Familial forms of AD are associated with mutations in the amyloid precursor protein (APP) that induce the production of Aβ peptides with different structures. The Aβ Osaka (Aβosa mutation (E693Δ)) is located within the Aβ sequence and thus the Aβosa peptides have different structures and properties as compared to non-mutated Aβ1-42 peptides (Aβwt). Here, we wondered if a single exposure to this mutated Aβ can worsen AD pathology as well as downstream events including cognition, cerebral connectivity and synaptic health several months after the inoculation. To answer this question we inoculated Aβ1-42-bearing Osaka mutation (Aβosa) in the dentate gyrus of APPswe/PS1dE9 mice at the age of two months. Their cognition and cerebral connectivity were analyzed at 4 months post-inoculation by behavioral evaluation and functional MRI. Aβ pathology as well as synaptic density were evaluated by histology. The impact of Aβosa peptides on synaptic health was also measured on primary cortical neurons. Remarkably, the intracerebral administration of Aβosa induced cognitive and synaptic impairments as well as a reduction of functional connectivity between different brain regions, 4 months post-inoculation. It increased Aβ plaque depositions and increased Aβ oligomers. This is the first study showing that a single, sporadic event as Aβosa inoculation can worsen the fate of the pathology and clinical outcome several months after the event. It suggests that a single inoculation of Aβ regulates a large cascade of events for a long time.
Collapse
Affiliation(s)
- Marina Célestine
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses, France
- Commissariat À L'Energie Atomique Et Aux Énergies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Muriel Jacquier-Sarlin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, 38000, Grenoble, France
| | - Eve Borel
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, 38000, Grenoble, France
| | - Fanny Petit
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses, France
- Commissariat À L'Energie Atomique Et Aux Énergies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Jean-Baptiste Perot
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses, France
- Commissariat À L'Energie Atomique Et Aux Énergies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Anne-Sophie Hérard
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses, France
- Commissariat À L'Energie Atomique Et Aux Énergies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Luc Bousset
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses, France
- Commissariat À L'Energie Atomique Et Aux Énergies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Alain Buisson
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, 38000, Grenoble, France
| | - Marc Dhenain
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses, France.
- Commissariat À L'Energie Atomique Et Aux Énergies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France.
| |
Collapse
|
11
|
Milani R, Mazzeo LA, Vismara D, Salemi I, Dainese E, Maderna E, Pellencin E, Catania M, Campanella N, Di Fede G, Giaccone G, Salmaggi A. Spontaneous intracerebral haemorrhage associated with early-onset cerebral amyloid angiopathy and Alzheimer's disease neuropathological changes five decades after cadaveric dura mater graft. Acta Neuropathol Commun 2023; 11:30. [PMID: 36829252 PMCID: PMC9960390 DOI: 10.1186/s40478-023-01528-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/11/2023] [Indexed: 02/26/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a small vessel disease, causing spontaneous intracerebral hemorrhage (ICH) in the elderly. It is strongly associated with Alzheimer disease (AD), as most CAA patients show deposition of Aβ-i.e. the basic component of parenchymal Alzheimer amyloid deposits-in the cerebral vessels. Iatrogenic early-onset CAA has been recently identified in patients with a history of traumatic brain injury or other cerebral as well as extra-cerebral lesions that led to neurosurgery or other medical procedures as intravascular embolization by cadaveric dura mater extracts many years before the first ICH event. In those patients, a transmission of Aβ seeds from neurosurgical instruments or from cadaveric dura mater exposure was suggested. We report a 51-year-old woman with unremarkable family history who presented abruptly with aphasia and right hemiparesis. A cerebral left lobar haemorrhagic stroke was documented by neuroimaging. Accurate anamnesis revealed a neurosurgical procedure with cadaveric dura mater graft at the age of 2 years for an arachnoid cyst. The neuropathological examination of the cerebral parietal biopsy showed severe amyloid angiopathy in many leptomeningeal and cortical vessels, as well as abundant parenchymal Aβ deposits, neurofibrillary tangles and neuropil threads. The mechanism involved in the human-to-human transmission of the Aβ proteinopathy remains to be clarified. In our patient the cadaver derived dura used for grafting is a very strong candidate as the source of the transmission. A systematic monitoring of individuals who have had neurosurgical procedures in early life, especially those involving cadaveric dural grafts, is required to determine the ratio of those affected by CAA many years later and unaffected. Moreover, our report confirms that in addition to vascular and parenchymal Aβ pathology, neurofibrillary changes indistinguishable from AD may develop in specific conditions with long latency period from the neurosurgical or embolization procedure.
Collapse
Affiliation(s)
| | | | | | - Ilaria Salemi
- Ospedale Alessandro Manzoni, ASST di Lecco, Lecco, Italy
| | | | - Emanuela Maderna
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 - Neuropathology, Milan, Italy
| | - Elisa Pellencin
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 - Neuropathology, Milan, Italy
| | - Marcella Catania
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 - Neuropathology, Milan, Italy
| | - Nicole Campanella
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 - Neuropathology, Milan, Italy
| | - Giuseppe Di Fede
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 - Neuropathology, Milan, Italy
| | - Giorgio Giaccone
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 - Neuropathology, Milan, Italy.
| | | |
Collapse
|
12
|
Flach M, Leu C, Martinisi A, Skachokova Z, Frank S, Tolnay M, Stahlberg H, Winkler DT. Trans-seeding of Alzheimer-related tau protein by a yeast prion. Alzheimers Dement 2022; 18:2481-2492. [PMID: 35142027 PMCID: PMC10078693 DOI: 10.1002/alz.12581] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 01/31/2023]
Abstract
Abnormal tau protein aggregates constitute a hallmark of Alzheimer's disease. The mechanisms underlying the initiation of tau aggregation in sporadic neurodegeneration remain unclear. Here we investigate whether a non-human prion can seed tau aggregation. Due to their structural similarity with tau aggregates, we chose Sup35NM yeast prion domain fibrils for explorative tau seedings. Upon in vitro incubation with tau monomers, Sup35NM fibrils promoted the formation of morphologically distinct tau fibril strains. In vivo, intrahippocampal inoculation of Sup35NM fibrils accentuated tau pathology in P301S tau transgenic mice. Thus, our results provide first in vivo evidence for heterotypic cross-species seeding of a neurodegenerative human prion-like protein by a yeast prion. This opens up the conceptual perspective that non-mammalian prions present in the human microbiome could be involved in the initiation of protein misfolding in neurodegenerative disorders, a mechanism for which we propose the term "trans-seeding."
Collapse
Affiliation(s)
- Martin Flach
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.,Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Cedric Leu
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Alfonso Martinisi
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.,Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Zhiva Skachokova
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Stephan Frank
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Markus Tolnay
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - David T Winkler
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.,Department of Neurology, University Hospital Basel, Basel, Switzerland.,Neurology, Medical University Clinic, Kantonsspital Baselland, Liestal, Switzerland
| |
Collapse
|
13
|
An D, Ban Q, Du H, Wang Q, Teng F, Li L, Xiao H. Nanofibrils of food-grade proteins: Formation mechanism, delivery systems, and application evaluation. Compr Rev Food Sci Food Saf 2022; 21:4847-4871. [PMID: 36201382 DOI: 10.1111/1541-4337.13028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 01/28/2023]
Abstract
Due to the high aspect ratio, appealing mechanical characteristics, and various adjustable functional groups on the surface proteins, food-grade protein nanofibrils have attracted great research interest in the field of food science. Fibrillation, known as a process of peptide self-assembly, is recognized as a common attribute for food-grade proteins. Converting food-grade proteins into nanofibrils is a promising strategy to broaden their functionality and applications, such as improvement of the properties of gelling and emulsifying, especially for constructing various delivery systems for bioactive compounds. Protein source and processing conditions have a great impact on the size, structure, and morphology of nanofibrils, resulting in extreme differences in functionality. With this feature, it is possible to engineer nanofibrils into four different delivery systems, including gels, microcapsules, emulsions, and complexes. Construction of nanofibril-based gels via multiple cross-linking methods can endow gels with special network structures to efficiently capture bioactive compounds and extra mechanical behavior. The adsorption behavior of nanofibrils at the interface is highly complex due to the influence of several intrinsic factors, which makes it challenging to form stabilized nanofibril-based emulsion systems. Based on electrostatic interactions, microcapsules and complexes prepared using nanofibrils and polysaccharides have combined functional properties, resulting in adjustable release behavior and higher encapsulation efficiency. The bioactive compounds delivery system based on nanofibrils is a potential solution to enhance their absorption in the gastrointestinal tract, improve their bioavailability, and deliver them to target organs. Although food-grade protein nanofibrils show unknown toxicity to humans, further research can contribute to broadening the application of nanofibrils in delivery systems.
Collapse
Affiliation(s)
- Di An
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Qingfeng Ban
- College of Food Science, Northeast Agricultural University, Harbin, China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Fei Teng
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
14
|
Lacoursiere SG, Safar J, Westaway D, Mohajerani MH, Sutherland RJ. The effect of Aβ seeding is dependent on the presence of knock-in genes in the App NL-G-F mice. FRONTIERS IN DEMENTIA 2022; 1:941879. [PMID: 39081481 PMCID: PMC11285652 DOI: 10.3389/frdem.2022.941879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/08/2022] [Indexed: 08/02/2024]
Abstract
Alzheimer's disease (AD) is characterized by the prion-like propagation of amyloid-β (Aβ). However, the role of Aβ in cognitive impairment is still unclear. To determine the causal role of Aβ in AD, we intracerebrally seeded the entorhinal cortex of a 2-month-old App NL-G-F mouse model with an Aβ peptide derived from patients who died from rapidly progressing AD. When the mice were 3 months of age or 1 month following seeding, spatial learning and memory were tested using the Morris water task. Immunohistochemical labeling showed seeding with the Aβ was found accelerate Aβ plaque deposition and microgliosis in the App NL-G-F mice, but this was dependent on the presence of the knocked-in genes. However, we found no correlation between pathology and spatial performance. The results of the present study show the seeding effects in the App NL-G-F knock-in model, and how these are dependent on the presence of a humanized App gene. But these pathological changes were not initially causal in memory impairment.
Collapse
Affiliation(s)
- Sean G. Lacoursiere
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Jiri Safar
- Departments of Pathology, Neurology, Psychiatry, and National Prion Disease Pathology Surveillance Center, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Majid H. Mohajerani
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J. Sutherland
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
15
|
Aires V, Ziegler-Waldkirch S, Friesen M, Reichardt W, Erny D, Loreth D, Harborne A, Kretz O, von Elverfeldt D, Meyer-Luehmann M. Seed-induced Aβ deposits in the corpus callosum disrupt white matter integrity in a mouse model of Alzheimer’s disease. Front Cell Neurosci 2022; 16:862918. [PMID: 36003141 PMCID: PMC9393256 DOI: 10.3389/fncel.2022.862918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropathologically, Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-beta peptide (Aβ) and subsequent formation of the so-called Aβ plaques. Along with neuronal loss, previous studies report white matter anomalies and corpus callosum (CC) atrophy in AD patients. Notably, perturbations in the white matter can be observed years before expected disease onset, suggesting that early stages of disease progression play a role in AD-associated loss of myelin integrity. Through seed-induced deposition of Aβ, we are able to examine alterations of central nervous system (CNS) integrity during the initial stages of plaque formation. In this study, we investigate the impact of Aβ seeding in the CC utilizing various imaging techniques as well as quantitative gene expression analysis and demonstrate that Aβ deposits result in an imbalance of glial cells in the CC. We found increased amounts of phagocytic microglia and reactive astrocytes, while oligodendrocyte progenitor cell (OPC) numbers were reduced. Moreover, white matter aberrations adjacent to the Aβ seeding were observed together with an overall decline in callosal myelination. This data indicate that the initial stages of plaque formation induce oligodendrocyte dysfunction, which might ultimately lead to myelin loss.
Collapse
Affiliation(s)
- Vanessa Aires
- Department of Neurology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Stephanie Ziegler-Waldkirch
- Department of Neurology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marina Friesen
- Department of Neurology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Wilfried Reichardt
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Freiburg, Germany
- German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Erny
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Desiree Loreth
- Department of Neurology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrew Harborne
- Department of Neurology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Kretz
- Department of Internal Medicine III, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik von Elverfeldt
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Freiburg, Germany
| | - Melanie Meyer-Luehmann
- Department of Neurology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- *Correspondence: Melanie Meyer-Luehmann,
| |
Collapse
|
16
|
Banerjee G, Samra K, Adams ME, Jaunmuktane Z, Parry-Jones AR, Grieve J, Toma AK, Farmer SF, Sylvester R, Houlden H, Rudge P, Mead S, Brandner S, Schott JM, Collinge J, Werring DJ. Iatrogenic cerebral amyloid angiopathy: an emerging clinical phenomenon. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2022-328792. [PMID: 35577510 DOI: 10.1136/jnnp-2022-328792] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/15/2022] [Indexed: 11/04/2022]
Abstract
In the last 6 years, following the first pathological description of presumed amyloid-beta (Aβ) transmission in humans (in 2015) and subsequent experimental confirmation (in 2018), clinical cases of iatrogenic cerebral amyloid angiopathy (CAA)-attributed to the transmission of Aβ seeds-have been increasingly recognised and reported. This newly described form of CAA is associated with early disease onset (typically in the third to fifth decade), and often presents with intracerebral haemorrhage, but also seizures and cognitive impairment. Although assumed to be rare, it is important that clinicians remain vigilant for potential cases, particularly as the optimal management, prognosis, true incidence and public health implications remain unknown. This review summarises our current understanding of the clinical spectrum of iatrogenic CAA and provides a diagnostic framework for clinicians. We provide clinical details for three patients with pathological evidence of iatrogenic CAA and present a summary of the published cases to date (n=20), identified following a systematic review. Our aims are: (1) To describe the clinical features of iatrogenic CAA, highlighting important similarities and differences between iatrogenic and sporadic CAA; and (2) To discuss potential approaches for investigation and diagnosis, including suggested diagnostic criteria for iatrogenic CAA.
Collapse
Affiliation(s)
- Gargi Banerjee
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Kiran Samra
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Matthew E Adams
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Zane Jaunmuktane
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Adrian Robert Parry-Jones
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Joan Grieve
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Ahmed K Toma
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Simon F Farmer
- Department of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Richard Sylvester
- Department of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Henry Houlden
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Peter Rudge
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Simon Mead
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Sebastian Brandner
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Jonathan M Schott
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - John Collinge
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
17
|
Microglial VPS35 deficiency impairs Aβ phagocytosis and Aβ-induced disease-associated microglia, and enhances Aβ associated pathology. J Neuroinflammation 2022; 19:61. [PMID: 35236374 PMCID: PMC8892702 DOI: 10.1186/s12974-022-02422-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
Background Vacuolar sorting protein 35 (VPS35), a key component of the retromer, plays an essential role in selectively retrieval of transmembrane proteins from endosomes to trans-Golgi networks. Dysfunctional retromer is a risk factor for neurodegenerative disorders, including Alzheimer’s disease (AD). Microglial VPS35 deficiency is found in AD patients’ brain; however, it remains unclear if and how microglial VPS35-loss contributes to AD development. Methods We used mice with VPS35 cKO (conditional knockout) in microglial cells in 5XFAD, an AD mouse model. The AD related brain pathology (Aβ and glial activation), behavior, and phagocytosis of Aβ were accessed by a combination of immunofluorescence staining analyses and neurological behavior tests. Results A decrease in learning and memory function, but increases in insoluble, fibrillar, and plaques of β-amyloids (Aβ), dystrophic neurites, and reactive astrocytes are observed in microglial VPS35 deficient 5XFAD mice. Further examining microglial phenotype demonstrates necessity of microglial VPS35 in disease-associated microglia (DAM) development and microglial uptake of Aβ, revealing a tight association of microglial Aβ uptake with DAM development. Conclusions Together, these results uncovered a mechanism by which microglial VPS35-deficiency precipitates AD pathology in 5XFAD mice likely by impairing DAM development and DAM mediated Aβ uptake and clearance, and thus accelerating the cognition decline. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02422-0.
Collapse
|
18
|
Chourrout M, Roux M, Boisvert C, Gislard C, Legland D, Arganda-Carreras I, Olivier C, Peyrin F, Boutin H, Rama N, Baron T, Meyronet D, Brun E, Rositi H, Wiart M, Chauveau F. Brain virtual histology with X-ray phase-contrast tomography Part II:3D morphologies of amyloid- β plaques in Alzheimer's disease models. BIOMEDICAL OPTICS EXPRESS 2022; 13:1640-1653. [PMID: 35414980 PMCID: PMC8973161 DOI: 10.1364/boe.438890] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 05/15/2023]
Abstract
While numerous transgenic mouse strains have been produced to model the formation of amyloid-β (Aβ) plaques in the brain, efficient methods for whole-brain 3D analysis of Aβ deposits have to be validated and standardized. Moreover, routine immunohistochemistry performed on brain slices precludes any shape analysis of Aβ plaques, or require complex procedures for serial acquisition and reconstruction. The present study shows how in-line (propagation-based) X-ray phase-contrast tomography (XPCT) combined with ethanol-induced brain sample dehydration enables hippocampus-wide detection and morphometric analysis of Aβ plaques. Performed in three distinct Alzheimer mouse strains, the proposed workflow identified differences in signal intensity and 3D shape parameters: 3xTg displayed a different type of Aβ plaques, with a larger volume and area, greater elongation, flatness and mean breadth, and more intense average signal than J20 and APP/PS1. As a label-free non-destructive technique, XPCT can be combined with standard immunohistochemistry. XPCT virtual histology could thus become instrumental in quantifying the 3D spreading and the morphological impact of seeding when studying prion-like properties of Aβ aggregates in animal models of Alzheimer's disease. This is Part II of a series of two articles reporting the value of in-line XPCT for virtual histology of the brain; Part I shows how in-line XPCT enables 3D myelin mapping in the whole rodent brain and in human autopsy brain tissue.
Collapse
Affiliation(s)
- Matthieu Chourrout
- Univ. Lyon, Lyon Neuroscience Research Center, CNRS UMR5292, Inserm U1028, Université Claude Bernard Lyon 1, Lyon, France
| | - Margaux Roux
- Univ. Lyon, Lyon Neuroscience Research Center, CNRS UMR5292, Inserm U1028, Université Claude Bernard Lyon 1, Lyon, France
| | - Carlie Boisvert
- Univ. Lyon, Lyon Neuroscience Research Center, CNRS UMR5292, Inserm U1028, Université Claude Bernard Lyon 1, Lyon, France
- Current affiliation: Faculty of Medicine, The Ottawa Hospital and University of Ottawa, Ottawa, Ontario, Canada
| | - Coralie Gislard
- Univ. Lyon, Lyon Neuroscience Research Center, CNRS UMR5292, Inserm U1028, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Ignacio Arganda-Carreras
- University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Donostia International Physics Center (DIPC), San Sebastian, Spain
| | - Cécile Olivier
- Univ. Lyon, CREATIS; CNRS UMR5220; INSERM U1044; INSA-Lyon; Univ. Lyon 1, Lyon, France
| | - Françoise Peyrin
- Univ. Lyon, CREATIS; CNRS UMR5220; INSERM U1044; INSA-Lyon; Univ. Lyon 1, Lyon, France
| | - Hervé Boutin
- Univ. Manchester, Faculty of Biology Medicine and Health, Wolfson Molecular Imaging Centre, Manchester, UK
| | - Nicolas Rama
- Univ. Lyon, CRCL; INSERM U1052; CNRS UMR5286; Univ. Lyon 1; Centre Léon Bérard, Lyon, France
| | | | | | - Emmanuel Brun
- Univ. Grenoble Alpes, Inserm UA07 Strobe Grenoble, France
| | - Hugo Rositi
- Univ. Clermont Auvergne, Institut Pascal; CNRS UMR 6602; SIGMA Clermont, Clermont-Ferrand, France
| | - Marlène Wiart
- Univ. Lyon, CarMeN Laboratory; INSERM U1060; INRA U1397; Hospices Civils de Lyon, Lyon, France
- CNRS, Lyon, France
- These authors contributed equally to this work
| | - Fabien Chauveau
- Univ. Lyon, Lyon Neuroscience Research Center, CNRS UMR5292, Inserm U1028, Université Claude Bernard Lyon 1, Lyon, France
- CNRS, Lyon, France
- These authors contributed equally to this work
| |
Collapse
|
19
|
Pelucchi S, Gardoni F, Di Luca M, Marcello E. Synaptic dysfunction in early phases of Alzheimer's Disease. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:417-438. [PMID: 35034752 DOI: 10.1016/b978-0-12-819410-2.00022-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The synapse is the locus of plasticity where short-term alterations in synaptic strength are converted to long-lasting memories. In addition to the presynaptic terminal and the postsynaptic compartment, a more holistic view of the synapse includes the astrocytes and the extracellular matrix to form a tetrapartite synapse. All these four elements contribute to synapse health and are crucial for synaptic plasticity events and, thereby, for learning and memory processes. Synaptic dysfunction is a common pathogenic trait of several brain disorders. In Alzheimer's Disease, the degeneration of synapses can be detected at the early stages of pathology progression before neuronal degeneration, supporting the hypothesis that synaptic failure is a major determinant of the disease. The synapse is the place where amyloid-β peptides are generated and is the target of the toxic amyloid-β oligomers. All the elements constituting the tetrapartite synapse are altered in Alzheimer's Disease and can synergistically contribute to synaptic dysfunction. Moreover, the two main hallmarks of Alzheimer's Disease, i.e., amyloid-β and tau, act in concert to cause synaptic deficits. Deciphering the mechanisms underlying synaptic dysfunction is relevant for the development of the next-generation therapeutic strategies aimed at modifying the disease progression.
Collapse
Affiliation(s)
- Silvia Pelucchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
20
|
Moore BD, Levites Y, Xu G, Hampton H, Adamo MF, Croft CL, Futch HS, Moran C, Fromholt S, Janus C, Prokop S, Dickson D, Lewis J, Giasson BI, Golde TE, Borchelt DR. Soluble brain homogenates from diverse human and mouse sources preferentially seed diffuse Aβ plaque pathology when injected into newborn mouse hosts. FREE NEUROPATHOLOGY 2022; 3. [PMID: 35494163 DOI: 10.17879/freeneuropathology-2022-3766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Seeding of pathology related to Alzheimer's disease (AD) and Lewy body disease (LBD) by tissue homogenates or purified protein aggregates in various model systems has revealed prion-like properties of these disorders. Typically, these homogenates are injected into adult mice stereotaxically. Injection of brain lysates into newborn mice represents an alternative approach of delivering seeds that could direct the evolution of amyloid-β (Aβ) pathology co-mixed with either tau or α-synuclein (αSyn) pathology in susceptible mouse models. Methods Homogenates of human pre-frontal cortex were injected into the lateral ventricles of newborn (P0) mice expressing a mutant humanized amyloid precursor protein (APP), human P301L tau, human wild type αSyn, or combinations thereof. The homogenates were prepared from AD and AD/LBD cases displaying variable degrees of Aβ pathology and co-existing tau and αSyn deposits. Behavioral assessments of APP transgenic mice injected with AD brain lysates were conducted. For comparison, homogenates of aged APP transgenic mice that preferentially exhibit diffuse or cored deposits were similarly injected into the brains of newborn APP mice. Results We observed that lysates from the brains with AD (Aβ+, tau+), AD/LBD (Aβ+, tau+, αSyn+), or Pathological Aging (Aβ+, tau-, αSyn-) efficiently seeded diffuse Aβ deposits. Moderate seeding of cerebral amyloid angiopathy (CAA) was also observed. No animal of any genotype developed discernable tau or αSyn pathology. Performance in fear-conditioning cognitive tasks was not significantly altered in APP transgenic animals injected with AD brain lysates compared to nontransgenic controls. Homogenates prepared from aged APP transgenic mice with diffuse Aβ deposits induced similar deposits in APP host mice; whereas homogenates from APP mice with cored deposits induced similar cored deposits, albeit at a lower level. Conclusions These findings are consistent with the idea that diffuse Aβ pathology, which is a common feature of human AD, AD/LBD, and PA brains, may arise from a distinct strain of misfolded Aβ that is highly transmissible to newborn transgenic APP mice. Seeding of tau or αSyn comorbidities was inefficient in the models we used, indicating that additional methodological refinement will be needed to efficiently seed AD or AD/LBD mixed pathologies by injecting newborn mice.
Collapse
Affiliation(s)
- Brenda D Moore
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Yona Levites
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Guilian Xu
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Hailey Hampton
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Munir F Adamo
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Cara L Croft
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Hunter S Futch
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Corey Moran
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Susan Fromholt
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Christopher Janus
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Pathology, University of Florida, Gainesville, FL 32610 USA.,Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Dennis Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Jada Lewis
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Todd E Golde
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Neurology, College of Medicine, University of Florida, Gainesville FL 32610, USA
| | - David R Borchelt
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
21
|
Abstract
The accumulation of neurotoxic amyloid-beta (Aβ) in the brain is one of the characteristic hallmarks of Alzheimer's disease (AD). Aβ-peptide brain homeostasis is governed by its production and various clearance mechanisms. The blood-brain barrier provides a large surface area for influx and efflux mechanisms into and out of the brain. Different transporters and receptors have been implicated to play crucial roles in Aβ clearance from brain. Besides Aβ transport, the blood-brain barrier tightly regulates the brain's microenvironment; however, vascular alterations have been shown in patients with AD. Here, we summarize how the blood-brain barrier changes during aging and in disease and focus on recent findings of how the ABC transporter P-glycoprotein (ABCB1/P-gp) and the receptor low-density lipoprotein receptor-related protein 1 (LRP1) play a role in Aβ clearance from brain.
Collapse
|
22
|
Nakano H, Hamaguchi T, Ikeda T, Watanabe‐Nakayama T, Ono K, Yamada M. Inactivation of seeding activity of amyloid β‐protein aggregates in vitro. J Neurochem 2021; 160:499-516. [DOI: 10.1111/jnc.15563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/25/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Hiroto Nakano
- Department of Neurology and Neurobiology of Aging Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
| | - Tsuyoshi Hamaguchi
- Department of Neurology and Neurobiology of Aging Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
| | - Tokuhei Ikeda
- Department of Neurology and Neurobiology of Aging Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
- Department of Neurology Ishikawa Prefectural Central Hospital Kanazawa Japan
| | - Takahiro Watanabe‐Nakayama
- World Premier International Research Center Initiative (WPI)‐Nano Life Science Institute Kanazawa University Kanazawa Japan
| | - Kenjiro Ono
- Division of Neurology Department of Internal Medicine Showa University Tokyo Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
- Department of Internal Medicine Department of Neurology Kudanzaka Hospital Tokyo Japan
| |
Collapse
|
23
|
Morales R, Bravo-Alegria J, Moreno-Gonzalez I, Duran-Aniotz C, Gamez N, Edwards Iii G, Soto C. Transmission of cerebral amyloid pathology by peripheral administration of misfolded Aβ aggregates. Mol Psychiatry 2021; 26:5690-5701. [PMID: 34002023 PMCID: PMC8595465 DOI: 10.1038/s41380-021-01150-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/02/2021] [Accepted: 04/26/2021] [Indexed: 02/02/2023]
Abstract
Previous reports showed that brain Aβ amyloidosis can be induced in animal models by exogenous administration of pre-formed aggregates. To date, only intra-peritoneal and intra-venous administrations are described as effective means to peripherally accelerate brain Aβ amyloidosis by seeding. Here, we show that cerebral accumulation of Aβ can be accelerated after exposing mouse models of Alzheimer's disease (AD) to Aβ seeds by different peripheral routes of administration, including intra-peritoneal and intra-muscular. Interestingly, animals receiving drops of brain homogenate laden with Aβ seeds in the eyes were efficiently induced. On the contrary, oral administration of large quantities of brain extracts from aged transgenic mice and AD patients did not have any effect in brain pathology. Importantly, pathological induction by peripheral administration of Aβ seeds generated a large proportion of aggregates in blood vessels, suggesting vascular transport. This information highlights the role of peripheral tissues and body fluids in AD-related pathological changes.
Collapse
Affiliation(s)
- Rodrigo Morales
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Centro integrativo de biología y química aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| | - Javiera Bravo-Alegria
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Universidad de los Andes, Facultad de Medicina, Santiago, Chile
| | - Ines Moreno-Gonzalez
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Centro integrativo de biología y química aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
- Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, University of Malaga-Instituto de Investigacion Biomedica-IBIMA, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Malaga, Malaga, Spain
| | - Claudia Duran-Aniotz
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Universidad de los Andes, Facultad de Medicina, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Nazaret Gamez
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, University of Malaga-Instituto de Investigacion Biomedica-IBIMA, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Malaga, Malaga, Spain
| | - George Edwards Iii
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Universidad de los Andes, Facultad de Medicina, Santiago, Chile.
| |
Collapse
|
24
|
Lupaescu AV, Mocanu CS, Drochioiu G, Ciobanu CI. Zinc Binding to NAP-Type Neuroprotective Peptides: Nuclear Magnetic Resonance Studies and Molecular Modeling. Pharmaceuticals (Basel) 2021; 14:ph14101011. [PMID: 34681235 PMCID: PMC8541368 DOI: 10.3390/ph14101011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Aggregation of amyloid-β peptides (Aβ) is a hallmark of Alzheimer’s disease (AD), which is affecting an increasing number of people. Hence, there is an urgent need to develop new pharmaceutical treatments which could be used to prevent the AD symptomatology. Activity-dependent neuroprotective protein (ADNP) was found to be deficient in AD, whereas NAP, an 8-amino-acid peptide (1NAPVSIPQ8) derived from ADNP, was shown to enhance cognitive function. The higher tendency of zinc ion to induce Aβ aggregation and formation of amorphous aggregates is also well-known in the scientific literature. Although zinc binding to Aβ peptides was extensively investigated, there is a shortage of knowledge regarding the relationship between NAP peptide and zinc ions. Therefore, here, we investigated the binding of zinc ions to the native NAP peptide and its analog obtained by replacing the serine residue in the NAP sequence with tyrosine (1NAPVYIPQ8) at various molar ratios and pH values by mass spectrometry (MS) and nuclear magnetic resonancespectroscopy (NMR). Matrix-assisted laser desorption/ionization time-of-flight (MALDI ToF) mass spectrometry confirmed the binding of zinc ions to NAP peptides, while the chemical shift of Asp1, observed in 1H-NMR spectra, provided direct evidence for the coordinating role of zinc in the N-terminal region. In addition, molecular modeling has also contributed largely to our understanding of Zn binding to NAP peptides.
Collapse
Affiliation(s)
- Ancuta-Veronica Lupaescu
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies and Distributed Systems for Fabrication and Control (MANSiD), Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | - Cosmin Stefan Mocanu
- Faculty of Chemistry, Alexandru Ioan Cuza University, 11 Carol I, 700506 Iasi, Romania; (C.S.M.); (G.D.)
| | - Gabi Drochioiu
- Faculty of Chemistry, Alexandru Ioan Cuza University, 11 Carol I, 700506 Iasi, Romania; (C.S.M.); (G.D.)
| | - Catalina-Ionica Ciobanu
- CERNESIM Centre, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
- Correspondence:
| |
Collapse
|
25
|
Spreading of Alzheimer tau seeds is enhanced by aging and template matching with limited impact of amyloid-β. J Biol Chem 2021; 297:101159. [PMID: 34480901 PMCID: PMC8477193 DOI: 10.1016/j.jbc.2021.101159] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
In Alzheimer's disease (AD), deposition of pathological tau and amyloid-β (Aβ) drive synaptic loss and cognitive decline. The injection of misfolded tau aggregates extracted from human AD brains drives templated spreading of tau pathology within WT mouse brain. Here, we assessed the impact of Aβ copathology, of deleting loci known to modify AD risk (Ptk2b, Grn, and Tmem106b) and of pharmacological intervention with an Fyn kinase inhibitor on tau spreading after injection of AD tau extracts. The density and spreading of tau inclusions triggered by human tau seed were unaltered in the hippocampus and cortex of APPswe/PSEN1ΔE9 transgenic and AppNL-F/NL-F knock-in mice. In mice with human tau sequence replacing mouse tau, template matching enhanced neuritic tau burden. Human AD brain tau-enriched preparations contained aggregated Aβ, and the Aβ coinjection caused a redistribution of Aβ aggregates in mutant AD model mice. The injection-induced Aβ phenotype was spatially distinct from tau accumulation and could be ameliorated by depleting Aβ from tau extracts. These data suggest that Aβ and tau pathologies propagate by largely independent mechanisms after their initial formation. Altering the activity of the Fyn and Pyk2 (Ptk2b) kinases involved in Aβ-oligomer–induced signaling, or deleting expression of the progranulin and TMEM106B lysosomal proteins, did not alter the somatic tau inclusion burden or spreading. However, mouse aging had a prominent effect to increase the accumulation of neuritic tau after injection of human AD tau seeds into WT mice. These studies refine our knowledge of factors capable of modulating tau spreading.
Collapse
|
26
|
Lau HHC, Ingelsson M, Watts JC. The existence of Aβ strains and their potential for driving phenotypic heterogeneity in Alzheimer's disease. Acta Neuropathol 2021; 142:17-39. [PMID: 32743745 DOI: 10.1007/s00401-020-02201-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022]
Abstract
Reminiscent of the human prion diseases, there is considerable clinical and pathological variability in Alzheimer's disease, the most common human neurodegenerative condition. As in prion disorders, protein misfolding and aggregation is a hallmark feature of Alzheimer's disease, where the initiating event is thought to be the self-assembly of Aβ peptide into aggregates that deposit in the central nervous system. Emerging evidence suggests that Aβ, similar to the prion protein, can polymerize into a conformationally diverse spectrum of aggregate strains both in vitro and within the brain. Moreover, certain types of Aβ aggregates exhibit key hallmarks of prion strains including divergent biochemical attributes and the ability to induce distinct pathological phenotypes when intracerebrally injected into mouse models. In this review, we discuss the evidence demonstrating that Aβ can assemble into distinct strains of aggregates and how such strains may be primary drivers of the phenotypic heterogeneity in Alzheimer's disease.
Collapse
|
27
|
Carlson GA, Prusiner SB. How an Infection of Sheep Revealed Prion Mechanisms in Alzheimer's Disease and Other Neurodegenerative Disorders. Int J Mol Sci 2021; 22:4861. [PMID: 34064393 PMCID: PMC8125442 DOI: 10.3390/ijms22094861] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Although it is not yet universally accepted that all neurodegenerative diseases (NDs) are prion disorders, there is little disagreement that Alzheimer's disease (AD), Parkinson's disease, frontotemporal dementia (FTD), and other NDs are a consequence of protein misfolding, aggregation, and spread. This widely accepted perspective arose from the prion hypothesis, which resulted from investigations on scrapie, a common transmissible disease of sheep and goats. The prion hypothesis argued that the causative infectious agent of scrapie was a novel proteinaceous pathogen devoid of functional nucleic acids and distinct from viruses, viroids, and bacteria. At the time, it seemed impossible that an infectious agent like the one causing scrapie could replicate and exist as diverse microbiological strains without nucleic acids. However, aggregates of a misfolded host-encoded protein, designated the prion protein (PrP), were shown to be the cause of scrapie as well as Creutzfeldt-Jakob disease (CJD) and Gerstmann-Sträussler-Scheinker syndrome (GSS), which are similar NDs in humans. This review discusses historical research on diseases caused by PrP misfolding, emphasizing principles of pathogenesis that were later found to be core features of other NDs. For example, the discovery that familial prion diseases can be caused by mutations in PrP was important for understanding prion replication and disease susceptibility not only for rare PrP diseases but also for far more common NDs involving other proteins. We compare diseases caused by misfolding and aggregation of APP-derived Aβ peptides, tau, and α-synuclein with PrP prion disorders and argue for the classification of NDs caused by misfolding of these proteins as prion diseases. Deciphering the molecular pathogenesis of NDs as prion-mediated has provided new approaches for finding therapies for these intractable, invariably fatal disorders and has revolutionized the field.
Collapse
Affiliation(s)
- George A. Carlson
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA;
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Stanley B. Prusiner
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA;
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
28
|
Yoshiki K, Hirose G, Kumahashi K, Kohda Y, Ido K, Shioya A, Misaki K, Kasuga K. Follow-up study of a patient with early onset cerebral amyloid angiopathy following childhood cadaveric dural graft. Acta Neurochir (Wien) 2021; 163:1451-1455. [PMID: 33586018 DOI: 10.1007/s00701-021-04751-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/31/2021] [Indexed: 01/07/2023]
Abstract
We retrospectively studied the T2 star (T2*)-weighted magnetic resonance imaging (MRI) of a 40-year-old patient diagnosed with symptomatic early-onset cerebral amyloid angiopathy (CAA), occurring 34 years following childhood neurosurgery using a cadaveric dural patch. Our findings revealed that CAA associated with cadaveric dural transplantation could progress rapidly, sometimes with bilateral bleeding. This microbleed evolution is suggestive of water-soluble amyloid-β transmission via cerebrospinal fluid alongside perivascular drainage pathways with deposition in the cerebral artery walls due to clearance disturbances. Multiple intracerebral hemorrhages associated with CAA with a childhood cadaveric dural graft should be considered a life-threatening medical complication.
Collapse
|
29
|
Michiels L, Van Weehaeghe D, Vandenberghe R, Demeestere J, Van Laere K, Lemmens R. The Role of Amyloid PET in Diagnosing Possible Transmissible Cerebral Amyloid Angiopathy in Young Adults with a History of Neurosurgery: A Case Series. Cerebrovasc Dis 2021; 50:356-360. [PMID: 33744891 DOI: 10.1159/000514139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/21/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is a common cause of cerebrovascular disease in the elderly. There is accumulating evidence suggestive of transmissibility of β-amyloid resulting in amyloid pathology at younger age. According to the Boston criteria, defining CAA in patients <55 years requires histological evidence which may hamper diagnosis. We explored the role of amyloid PET in the diagnosis of possible transmissible CAA in young adults. CASES We report 4 young adults (<55 years) presenting with clinical and neuroimaging features suggestive of CAA but without genetic evidence of hereditary CAA explaining the young onset. A common factor in all cases was a medical history of neurosurgery during childhood. All patients underwent amyloid PET to support the diagnosis of an amyloid-related pathology and the result was positive in all 4. CONCLUSION Combining the clinical presentation and imaging findings of the 4 cases, we postulate transmissible CAA as the possible diagnosis. Further epidemiological studies are required to gain more insight in the prevalence of this novel entity. Amyloid PET may be a useful, non-invasive tool in these analyses especially since pathological evidence will be lacking in most of these studies.
Collapse
Affiliation(s)
- Laura Michiels
- Department of Neurosciences, Experimental Neurology, KU Leuven, Leuven, Belgium, .,Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven, Belgium, .,Neurology, UZ Leuven, Leuven, Belgium,
| | - Donatienne Van Weehaeghe
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Leuven, Belgium.,Nuclear Medicine, UZ Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- Neurology, UZ Leuven, Leuven, Belgium.,Department of Neurosciences, Laboratory for Cognitive Neurology, KU Leuven, Leuven, Belgium
| | - Jelle Demeestere
- Department of Neurosciences, Experimental Neurology, KU Leuven, Leuven, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven, Belgium.,Neurology, UZ Leuven, Leuven, Belgium
| | - Koen Van Laere
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Leuven, Belgium.,Nuclear Medicine, UZ Leuven, Leuven, Belgium
| | - Robin Lemmens
- Department of Neurosciences, Experimental Neurology, KU Leuven, Leuven, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven, Belgium.,Neurology, UZ Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Asher DM, Belay E, Bigio E, Brandner S, Brubaker SA, Caughey B, Clark B, Damon I, Diamond M, Freund M, Hyman BT, Jucker M, Keene CD, Lieberman AP, Mackiewicz M, Montine TJ, Morgello S, Phelps C, Safar J, Schneider JA, Schonberger LB, Sigurdson C, Silverberg N, Trojanowski JQ, Frosch MP. Risk of Transmissibility From Neurodegenerative Disease-Associated Proteins: Experimental Knowns and Unknowns. J Neuropathol Exp Neurol 2021; 79:1141-1146. [PMID: 33000167 PMCID: PMC7577514 DOI: 10.1093/jnen/nlaa109] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent studies in animal models demonstrate that certain misfolded proteins associated with neurodegenerative diseases can support templated misfolding of cognate native proteins, to propagate across neural systems, and to therefore have some of the properties of classical prion diseases like Creutzfeldt-Jakob disease. The National Institute of Aging convened a meeting to discuss the implications of these observations for research priorities. A summary of the discussion is presented here, with a focus on limitations of current knowledge, highlighting areas that appear to require further investigation in order to guide scientific practice while minimizing potential exposure or risk in the laboratory setting. The committee concluded that, based on all currently available data, although neurodegenerative disease-associated aggregates of several different non-prion proteins can be propagated from humans to experimental animals, there is currently insufficient evidence to suggest more than a negligible risk, if any, of a direct infectious etiology for the human neurodegenerative disorders defined in part by these proteins. Given the importance of this question, the potential for noninvasive human transmission of proteopathic disorders is deserving of further investigation.
Collapse
Affiliation(s)
- David M Asher
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Ermias Belay
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Eileen Bigio
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology Queen Square, London
| | - Scott A Brubaker
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Brychan Clark
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Inger Damon
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Marc Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michelle Freund
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mathias Jucker
- Hertie Institute for Clinical Brain Research, University of Tübingen and German Center for Neurodegenerative Diseases (DZNE), Tübingen
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, Washington
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Miroslaw Mackiewicz
- National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - Thomas J Montine
- Department of Pathology, Stanford University, Stanford, California
| | - Susan Morgello
- Departments of Neurology, Neuroscience, and Pathology, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Creighton Phelps
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Jiri Safar
- Departments of Pathology and Neurology, Case Western Reserve University, Cleveland, Ohio
| | - Julie A Schneider
- Department of Neurological Sciences, Rush Alzheimer Disease Center, Rush University Medical Center, Chicago, Illinois
| | - Lawrence B Schonberger
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Christina Sigurdson
- Department of Pathology, University of California - San Diego, San Diego, California
| | - Nina Silverberg
- National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew P Frosch
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Pathology, University of Washington, Seattle, Washington.,C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
31
|
Ulm BS, Borchelt DR, Moore BD. Remodeling Alzheimer-amyloidosis models by seeding. Mol Neurodegener 2021; 16:8. [PMID: 33588898 PMCID: PMC7885558 DOI: 10.1186/s13024-021-00429-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/01/2021] [Indexed: 11/27/2022] Open
Abstract
Alzheimer’s disease (AD) is among the most prevalent neurodegenerative diseases, with brain pathology defined by extracellular amyloid beta deposits and intracellular tau aggregates. To aid in research efforts to improve understanding of this disease, transgenic murine models have been developed that replicate aspects of AD pathology. Familial AD is associated with mutations in the amyloid precursor protein and in the presenilins (associated with amyloidosis); transgenic amyloid models feature one or more of these mutant genes. Recent advances in seeding methods provide a means to alter the morphology of resultant amyloid deposits and the age that pathology develops. In this review, we discuss the variety of factors that influence the seeding of amyloid beta pathology, including the source of seed, the time interval after seeding, the nature of the transgenic host, and the preparation of the seeding inoculum.
Collapse
Affiliation(s)
- Brittany S Ulm
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - David R Borchelt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Brenda D Moore
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
32
|
Ritchie DL, Barria MA. Prion Diseases: A Unique Transmissible Agent or a Model for Neurodegenerative Diseases? Biomolecules 2021; 11:biom11020207. [PMID: 33540845 PMCID: PMC7912988 DOI: 10.3390/biom11020207] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
The accumulation and propagation in the brain of misfolded proteins is a pathological hallmark shared by many neurodegenerative diseases such as Alzheimer's disease (Aβ and tau), Parkinson's disease (α-synuclein), and prion disease (prion protein). Currently, there is no epidemiological evidence to suggest that neurodegenerative disorders are infectious, apart from prion diseases. However, there is an increasing body of evidence from experimental models to suggest that other pathogenic proteins such as Aβ and tau can propagate in vivo and in vitro in a prion-like mechanism, inducing the formation of misfolded protein aggregates such as amyloid plaques and neurofibrillary tangles. Such similarities have raised concerns that misfolded proteins, other than the prion protein, could potentially transmit from person-to-person as rare events after lengthy incubation periods. Such concerns have been heightened following a number of recent reports of the possible inadvertent transmission of Aβ pathology via medical and surgical procedures. This review will provide a historical perspective on the unique transmissible nature of prion diseases, examining their impact on public health and the ongoing concerns raised by this rare group of disorders. Additionally, this review will provide an insight into current evidence supporting the potential transmissibility of other pathogenic proteins associated with more common neurodegenerative disorders and the potential implications for public health.
Collapse
|
33
|
Padilla-Zambrano HS, García-Ballestas E, Quiñones-Ossa GA, Sibaja-Perez AE, Agrawal A, Moscote-Salazar LR, Menéndez-González M. The Prion-like Properties of Amyloid-beta Peptide and Tau: Is there Any Risk of Transmitting Alzheimer's Disease During Neurosurgical Interventions? Curr Alzheimer Res 2021; 17:781-789. [PMID: 33280597 DOI: 10.2174/1567205017666201204164220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 11/22/2022]
Abstract
Recent studies have recognized similarities between the peptides involved in the neuropathology of Alzheimer's disease and prions. The Tau protein and the Amyloid β peptide represent the theoretical pillars of Alzheimer's disease development. It is probable that there is a shared mechanism for the transmission of these substances and the prion diseases development; this presumption is based on the presentation of several cases of individuals without risk factors who developed dementia decades after a neurosurgical procedure. This article aims to present the role of Aβ and Tau, which underlie the pathophysiologic mechanisms involved in the AD and their similarities with the prion diseases infective mechanisms by means of the presentation of the available evidence at molecular (in-vitro), animal, and human levels that support the controversy on whether these diseases might be transmitted in neurosurgical interventions, which may constitute a wide public health issue.
Collapse
Affiliation(s)
- Huber S Padilla-Zambrano
- Center for Biomedical Research (CIB), Faculty of Medicine, University of Cartagena, Cartagena, Colombia
| | - Ezequiel García-Ballestas
- Center for Biomedical Research (CIB), Faculty of Medicine, University of Cartagena, Cartagena, Colombia
| | | | - Andrés E Sibaja-Perez
- Center for Biomedical Research (CIB), Faculty of Medicine, University of Cartagena, Cartagena, Colombia
| | - Amit Agrawal
- Department of Neurosurgery, Narayana Medical College, Nellore, Andhra Pradesh, India
| | - Luis R Moscote-Salazar
- Neurosurgeon-Critical Care, Center for Biomedical Research (CIB), Faculty of Medicine, University of Cartagena, Cartagena de Indias, Bolivar, Colombia
| | | |
Collapse
|
34
|
Gomez-Gutierrez R, Morales R. The prion-like phenomenon in Alzheimer's disease: Evidence of pathology transmission in humans. PLoS Pathog 2020; 16:e1009004. [PMID: 33119726 PMCID: PMC7595341 DOI: 10.1371/journal.ppat.1009004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ruben Gomez-Gutierrez
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Malaga, Malaga, Spain
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
- * E-mail:
| |
Collapse
|
35
|
Abstract
Prions were initially discovered in studies of scrapie, a transmissible neurodegenerative disease (ND) of sheep and goats thought to be caused by slow viruses. Once scrapie was transmitted to rodents, it was discovered that the scrapie pathogen resisted inactivation by procedures that modify nucleic acids. Eventually, this novel pathogen proved to be a protein of 209 amino acids, which is encoded by a chromosomal gene. After the absence of a nucleic acid within the scrapie agent was established, the mechanism of infectivity posed a conundrum and eliminated a hypothetical virus. Subsequently, the infectious scrapie prion protein (PrPSc) enriched for β-sheet was found to be generated from the cellular prion protein (PrPC) that is predominantly α-helical. The post-translational process that features in nascent prion formation involves a templated conformational change in PrPC that results in an infectious copy of PrPSc. Thus, prions are proteins that adopt alternative conformations, which are self-propagating and found in organisms ranging from yeast to humans. Prions have been found in both Alzheimer's (AD) and Parkinson's (PD) diseases. Mutations in APP and α-synuclein genes have been shown to cause familial AD and PD. Recently, AD was found to be a double prion disorder: both Aβ and tau prions feature in this ND. Increasing evidence argues for α-synuclein prions as the cause of PD, multiple system atrophy, and Lewy body dementia.
Collapse
|
36
|
Gentile F, Doneddu PE, Riva N, Nobile-Orazio E, Quattrini A. Diet, Microbiota and Brain Health: Unraveling the Network Intersecting Metabolism and Neurodegeneration. Int J Mol Sci 2020; 21:E7471. [PMID: 33050475 PMCID: PMC7590163 DOI: 10.3390/ijms21207471] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence gives support for the idea that extra-neuronal factors may affect brain physiology and its predisposition to neurodegenerative diseases. Epidemiological and experimental studies show that nutrition and metabolic disorders such as obesity and type 2 diabetes increase the risk of Alzheimer's and Parkinson's diseases after midlife, while the relationship with amyotrophic lateral sclerosis is uncertain, but suggests a protective effect of features of metabolic syndrome. The microbiota has recently emerged as a novel factor engaging strong interactions with neurons and glia, deeply affecting their function and behavior in these diseases. In particular, recent evidence suggested that gut microbes are involved in the seeding of prion-like proteins and their spreading to the central nervous system. Here, we present a comprehensive review of the impact of metabolism, diet and microbiota in neurodegeneration, by affecting simultaneously several aspects of health regarding energy metabolism, immune system and neuronal function. Advancing technologies may allow researchers in the future to improve investigations in these fields, allowing the buildup of population-based preventive interventions and development of targeted therapeutics to halt progressive neurologic disability.
Collapse
Affiliation(s)
- Francesco Gentile
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; (F.G.); (N.R.)
- Neuromuscular and Neuroimmunology Service, Humanitas Clinical and Research Institute IRCCS, 20089 Milan, Italy; (P.E.D.); (E.N.-O.)
| | - Pietro Emiliano Doneddu
- Neuromuscular and Neuroimmunology Service, Humanitas Clinical and Research Institute IRCCS, 20089 Milan, Italy; (P.E.D.); (E.N.-O.)
| | - Nilo Riva
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; (F.G.); (N.R.)
- Department of Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Eduardo Nobile-Orazio
- Neuromuscular and Neuroimmunology Service, Humanitas Clinical and Research Institute IRCCS, 20089 Milan, Italy; (P.E.D.); (E.N.-O.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; (F.G.); (N.R.)
| |
Collapse
|
37
|
Jaunmuktane Z, Brandner S. Invited Review: The role of prion-like mechanisms in neurodegenerative diseases. Neuropathol Appl Neurobiol 2020; 46:522-545. [PMID: 31868945 PMCID: PMC7687189 DOI: 10.1111/nan.12592] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/30/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
The prototype of transmissible neurodegenerative proteinopathies is prion diseases, characterized by aggregation of abnormally folded conformers of the native prion protein. A wealth of mechanisms has been proposed to explain the conformational conversion from physiological protein into misfolded, pathological form, mode of toxicity, propagation from cell-to-cell and regional spread. There is increasing evidence that other neurodegenerative diseases, most notably Alzheimer's disease (Aβ and tau), Parkinson's disease (α-synuclein), frontotemporal dementia (TDP43, tau or FUS) and motor neurone disease (TDP43), exhibit at least some of the misfolded prion protein properties. In this review, we will discuss to what extent each of the properties of misfolded prion protein is known to occur for Aβ, tau, α-synuclein and TDP43, with particular focus on self-propagation through seeding, conformational strains, selective cellular and regional vulnerability, stability and resistance to inactivation, oligomers, toxicity and summarize the most recent literature on transmissibility of neurodegenerative disorders.
Collapse
Affiliation(s)
- Z. Jaunmuktane
- Division of NeuropathologyNational Hospital for Neurology and NeurosurgeryUniversity College London NHS Foundation Trust
- Department of Clinical and Movement Neurosciences and Queen Square Brain Bank for Neurological Disorders
| | - S. Brandner
- Division of NeuropathologyNational Hospital for Neurology and NeurosurgeryUniversity College London NHS Foundation Trust
- Department of Neurodegenerative diseaseQueen Square Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
38
|
Intracisternal injection of beta-amyloid seeds promotes cerebral amyloid angiopathy. Brain Behav Immun 2020; 89:628-640. [PMID: 32739364 DOI: 10.1016/j.bbi.2020.07.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/19/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Beta amyloid (Aβ) is a key component of parenchymal Aβ plaques and vascular Aβ fibrils, which lead to cerebral amyloid angiopathy (CAA) in Alzheimer's disease (AD). Recent studies have revealed that Aβ contained in the cerebrospinal fluid (CSF) can re-enter into brain through paravascular spaces. However, whether Aβ in CSF may act as a constant source of pathogenic Aβ in AD is still unclear. This study aimed to examine whether Aβ pathology could be worsened when CSF Aβ level was enhanced by intra-cisternal infusion of aged brain extract containing abundant Aβ in TgCRND8 host mice. TgCRND8 mouse is an AD animal model which develops predominant parenchymal Aβ plaques in the brain at as early as 3 months of age. Here, we showed that single intracisternal injection of Aβ seeds into TgCRND8 mice before the presence of Aβ pathology induced robust prion-like propagation of CAA within 90 days. The induced CAA is mainly distributed in the cerebral cortex, hippocampus and thalamus of TgCRND8 mice. Surprisingly, despite the robust increase in CAA levels, the TgCRND8 mice had a marked decrease in parenchymal Aβ plaques and the plaques related neuroinflammation in the brains compared with the control mice. These results amply indicate that Aβ in CSF may act as a source of Aβ contributing to the growth of vascular Aβ deposits in CAA. Our findings provide experimental evidence to unravel the mechanisms of CAA formation and the potential of targeting CSF Aβ for CAA.
Collapse
|
39
|
Lauwers E, Lalli G, Brandner S, Collinge J, Compernolle V, Duyckaerts C, Edgren G, Haïk S, Hardy J, Helmy A, Ivinson AJ, Jaunmuktane Z, Jucker M, Knight R, Lemmens R, Lin IC, Love S, Mead S, Perry VH, Pickett J, Poppy G, Radford SE, Rousseau F, Routledge C, Schiavo G, Schymkowitz J, Selkoe DJ, Smith C, Thal DR, Theys T, Tiberghien P, van den Burg P, Vandekerckhove P, Walton C, Zaaijer HL, Zetterberg H, De Strooper B. Potential human transmission of amyloid β pathology: surveillance and risks. Lancet Neurol 2020; 19:872-878. [PMID: 32949547 DOI: 10.1016/s1474-4422(20)30238-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 01/05/2023]
Abstract
Studies in experimental animals show transmissibility of amyloidogenic proteins associated with prion diseases, Alzheimer's disease, Parkinson's disease, and other neurodegenerative diseases. Although these data raise potential concerns for public health, convincing evidence for human iatrogenic transmission only exists for prions and amyloid β after systemic injections of contaminated growth hormone extracts or dura mater grafts derived from cadavers. Even though these procedures are now obsolete, some reports raise the possibility of iatrogenic transmission of amyloid β through putatively contaminated neurosurgical equipment. Iatrogenic transmission of amyloid β might lead to amyloid deposition in the brain parenchyma and blood vessel walls, potentially resulting in cerebral amyloid angiopathy after several decades. Cerebral amyloid angiopathy can cause life-threatening brain haemorrhages; yet, there is no proof that the transmission of amyloid β can also lead to Alzheimer's dementia. Large, long-term epidemiological studies and sensitive, cost-efficient tools to detect amyloid are needed to better understand any potential routes of amyloid β transmission and to clarify whether other similar proteopathic seeds, such as tau or α-synuclein, can also be transferred iatrogenically.
Collapse
Affiliation(s)
- Elsa Lauwers
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Giovanna Lalli
- UK Dementia Research Institute, University College London, London, UK
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK; Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London National Health Service Foundation Trust, London, UK
| | - John Collinge
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK
| | - Veerle Compernolle
- Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Charles Duyckaerts
- Institut du Cerveau et de la Moelle épinière, Sorbonne University, INSERM, CNRS UMR, Paris, France; Laboratoire de Neuropathologie Raymond Escourolle, Hôpital de la Pitié-Salpêtrière, Assistance Publique- Hôpitaux de Paris, Paris, France
| | - Gustaf Edgren
- Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Södersjukhuset, Stockholm, Sweden
| | - Stéphane Haïk
- Institut du Cerveau et de la Moelle épinière, Sorbonne University, INSERM, CNRS UMR, Paris, France; Laboratoire de Neuropathologie Raymond Escourolle, Hôpital de la Pitié-Salpêtrière, Assistance Publique- Hôpitaux de Paris, Paris, France; Cellule Nationale de Référence des maladies de Creutzfeldt-Jakob, Hôpital de la Pitié-Salpêtrière, Assistance Publique- Hôpitaux de Paris, Paris, France
| | - John Hardy
- UK Dementia Research Institute, University College London, London, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London, UK; National Institute for Health Research University College London Hospitals Biomedical Research Centre, London, UK; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, China
| | - Adel Helmy
- Department of Clinical Neuroscience, Division of Neurosurgery, University of Cambridge, Cambridge, UK
| | - Adrian J Ivinson
- UK Dementia Research Institute, University College London, London, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; Queen Square Brain Bank for Neurological Disorders, Queen Square Institute of Neurology, University College London, London, UK; Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London National Health Service Foundation Trust, London, UK
| | - Mathias Jucker
- Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Richard Knight
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK; National Creutzfeldt-Jakob Disease Research and Surveillance Unit, Western General Hospital, Edinburgh, UK
| | - Robin Lemmens
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium; Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - I-Chun Lin
- UK Dementia Research Institute, University College London, London, UK
| | - Seth Love
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Simon Mead
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK
| | - V Hugh Perry
- UK Dementia Research Institute, University College London, London, UK
| | - James Pickett
- Alzheimer's Society, London, London, UK; Epilepsy Research UK, London, UK
| | - Guy Poppy
- Biological Sciences, University of Southampton, Southampton, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Frederic Rousseau
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | - Giampietro Schiavo
- UK Dementia Research Institute, University College London, London, UK; Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Joost Schymkowitz
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Dietmar R Thal
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium; Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Tom Theys
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Pierre Tiberghien
- Etablissement Français du Sang, La Plaine St Denis, France; Unité Mixte de Recherche, INSERM, Université de Franche-Comté, Besançon, France
| | - Peter van den Burg
- European Blood Alliance, Brussels, Belgium; Department of Transfusion Medicine, Sanquin, Amsterdam, Netherlands
| | - Philippe Vandekerckhove
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium; Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Clare Walton
- Alzheimer's Society, London, London, UK; Multiple Sclerosis International Federation, London, UK
| | - Hans L Zaaijer
- Department of Blood-borne Infections, Sanquin, Amsterdam, Netherlands
| | - Henrik Zetterberg
- UK Dementia Research Institute, University College London, London, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK; Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium; UK Dementia Research Institute, University College London, London, UK.
| |
Collapse
|
40
|
Walsh DM, Selkoe DJ. Amyloid β-protein and beyond: the path forward in Alzheimer's disease. Curr Opin Neurobiol 2020; 61:116-124. [PMID: 32197217 DOI: 10.1016/j.conb.2020.02.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Basic research on the biological mechanism of Alzheimer's disease has focused for decades on the age-related aggregation of the amyloid β-protein and its apparent downstream effects on microglia, astrocytes and neurons, including the posttranslational modification of the tau protein that seems necessary for symptom expression. Here, we discuss the highly challenging process of developing disease-modifying therapies and highlight several key areas of current research that are progressing in exciting directions. We conclude that further deep molecular analyses of the disease, including the mechanisms of β-amyloidosis, will enable more effective clinical trials and ultimately achieve the progress that our patients so deserve.
Collapse
Affiliation(s)
- Dominic M Walsh
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States; Alzheimer's Disease and Dementia Research Unit, Biogen Inc., 115 Broadway, Cambridge, MA 02142, United States.
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
41
|
Catania M, Di Fede G. One or more β-amyloid(s)? New insights into the prion-like nature of Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:213-237. [PMID: 32958234 DOI: 10.1016/bs.pmbts.2020.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Misfolding and aggregation of proteins play a central role in the pathogenesis of several neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's and Lewy Body diseases, Frontotemporal Lobar Degeneration and prion diseases. Increasing evidence supports the view that Aβ and tau, which are the two main molecular players in AD, share with the prion protein several "prion-like" features that can be relevant for disease pathogenesis. These features essentially include structural/conformational/biochemical variations, resistance to degradation by endogenous proteases, seeding ability, attitude to form neurotoxic assemblies, spreading and propagation of toxic aggregates, transmissibility of tau- and Aβ-related pathology to animal models. Following this view, part of the recent scientific literature has generated a new reading frame for AD pathophysiology, based on the application of the prion paradigm to the amyloid cascade hypothesis in an attempt to definitely explain the key events causing the disease and inducing its occurrence under different clinical phenotypes.
Collapse
Affiliation(s)
- Marcella Catania
- Neurology 5 / Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Di Fede
- Neurology 5 / Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| |
Collapse
|
42
|
d'Errico P, Meyer-Luehmann M. Mechanisms of Pathogenic Tau and Aβ Protein Spreading in Alzheimer's Disease. Front Aging Neurosci 2020; 12:265. [PMID: 33061903 PMCID: PMC7481386 DOI: 10.3389/fnagi.2020.00265] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) is pathologically defined by extracellular accumulation of amyloid-β (Aβ) peptides generated by the cleavage of amyloid precursor protein (APP), strings of hyperphosphorylated Tau proteins accumulating inside neurons known as neurofibrillary tangles (NFTs) and neuronal loss. The association between the two hallmarks and cognitive decline has been known since the beginning of the 20th century when the first description of the disease was carried out by Alois Alzheimer. Today, more than 40 million people worldwide are affected by AD that represents the most common cause of dementia and there is still no effective treatment available to cure the disease. In general, the aggregation of Aβ is considered an essential trigger in AD pathogenesis that gives rise to NFTs, neuronal dysfunction and dementia. During the process leading to AD, tau and Aβ first misfold and form aggregates in one brain region, from where they spread to interconnected areas of the brain thereby inducing its gradual morphological and functional deterioration. In this mini-review article, we present an overview of the current literature on the spreading mechanisms of Aβ and tau pathology in AD since a more profound understanding is necessary to design therapeutic approaches aimed at preventing or halting disease progression.
Collapse
Affiliation(s)
- Paolo d'Errico
- Department of Neurology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Meyer-Luehmann
- Department of Neurology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
43
|
Gill ON, Spencer Y, Richard-Loendt A, Kelly C, Brown D, Sinka K, Andrews N, Dabaghian R, Simmons M, Edwards P, Bellerby P, Everest DJ, McCall M, McCardle LM, Linehan J, Mead S, Hilton DA, Ironside JW, Brandner S. Prevalence in Britain of abnormal prion protein in human appendices before and after exposure to the cattle BSE epizootic. Acta Neuropathol 2020; 139:965-976. [PMID: 32232565 PMCID: PMC7244468 DOI: 10.1007/s00401-020-02153-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
Abstract
Widespread dietary exposure of the population of Britain to bovine spongiform encephalopathy (BSE) prions in the 1980s and 1990s led to the emergence of variant Creutzfeldt-Jakob Disease (vCJD) in humans. Two previous appendectomy sample surveys (Appendix-1 and -2) estimated the prevalence of abnormal prion protein (PrP) in the British population exposed to BSE to be 237 per million and 493 per million, respectively. The Appendix-3 survey was recommended to measure the prevalence of abnormal PrP in population groups thought to have been unexposed to BSE. Immunohistochemistry for abnormal PrP was performed on 29,516 samples from appendices removed between 1962 and 1979 from persons born between 1891 through 1965, and from those born after 1996 that had been operated on from 2000 through 2014. Seven appendices were positive for abnormal PrP, of which two were from the pre-BSE-exposure era and five from the post BSE-exposure period. None of the seven positive samples were from appendices removed before 1977, or in patients born after 2000 and none came from individuals diagnosed with vCJD. There was no statistical difference in the prevalence of abnormal PrP across birth and exposure cohorts. Two interpretations are possible. Either there is a low background prevalence of abnormal PrP in human lymphoid tissues that may not progress to vCJD. Alternatively, all positive specimens are attributable to BSE exposure, a finding that would necessitate human exposure having begun in the late 1970s and continuing through the late 1990s.
Collapse
Affiliation(s)
- O Noel Gill
- STI and HIV Department and CJD Section' Blood Safety, Hepatitis, STIs and HIV Division Public Health England National Infection Service, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom
| | - Yvonne Spencer
- Pathology and Animal Sciences Department Science Directorate Animal and Plant Health Agency Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Angela Richard-Loendt
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology Queen Square, London, WC1N 3BG, United Kingdom
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust Queen Square, London, WC1N 3BG, United Kingdom
| | - Carole Kelly
- STI and HIV Department and CJD Section' Blood Safety, Hepatitis, STIs and HIV Division Public Health England National Infection Service, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom
| | - David Brown
- Virus Reference Department Public, Health England National Infection Service, 61 Colindale Avenue, London, NW9 5HT, United Kingdom
| | - Katy Sinka
- STI and HIV Department and CJD Section' Blood Safety, Hepatitis, STIs and HIV Division Public Health England National Infection Service, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom
| | - Nick Andrews
- STI and HIV Department and CJD Section' Blood Safety, Hepatitis, STIs and HIV Division Public Health England National Infection Service, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom
| | - Reza Dabaghian
- Virus Reference Department Public, Health England National Infection Service, 61 Colindale Avenue, London, NW9 5HT, United Kingdom
| | - Marion Simmons
- Pathology and Animal Sciences Department Science Directorate Animal and Plant Health Agency Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Philip Edwards
- Department of Cellular and Anatomical, Pathology University Hospitals Plymouth, Plymouth, PL6 8DH, United Kingdom
| | - Peter Bellerby
- Pathology and Animal Sciences Department Science Directorate Animal and Plant Health Agency Addlestone, Surrey, KT15 3NB, United Kingdom
| | - David J Everest
- Pathology and Animal Sciences Department Science Directorate Animal and Plant Health Agency Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Mark McCall
- STI and HIV Department and CJD Section' Blood Safety, Hepatitis, STIs and HIV Division Public Health England National Infection Service, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom
| | - Linda M McCardle
- National Creutzfeldt-Jakob Disease Research and Surveillance Unit Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, United Kingdom
| | - Jacqueline Linehan
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases Courtauld Building, 33 Cleveland Street, London, W1W 7FF, United Kingdom
| | - Simon Mead
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases Courtauld Building, 33 Cleveland Street, London, W1W 7FF, United Kingdom
| | - David A Hilton
- Department of Cellular and Anatomical, Pathology University Hospitals Plymouth, Plymouth, PL6 8DH, United Kingdom
| | - James W Ironside
- National Creutzfeldt-Jakob Disease Research and Surveillance Unit Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, United Kingdom
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology Queen Square, London, WC1N 3BG, United Kingdom.
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust Queen Square, London, WC1N 3BG, United Kingdom.
| |
Collapse
|
44
|
Rodin S, Kozin SA, Kechko OI, Mitkevich VA, Makarov AA. Aberrant interactions between amyloid-beta and alpha5 laminins as possible driver of neuronal disfunction in Alzheimer's disease. Biochimie 2020; 174:44-48. [PMID: 32311425 DOI: 10.1016/j.biochi.2020.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/12/2020] [Accepted: 04/12/2020] [Indexed: 12/28/2022]
Abstract
It has been widely accepted that laminins are involved in pathogenesis of Alzheimer's disease (AD). Amyloid plaques in AD patients are associated with immunostaining using antibodies raised against laminin-111, and laminin-111 has been shown to prevent aggregation of amyloid peptides. Although numerous articles describe small peptides from laminin-111 that are capable to disaggregate amyloid buildups and reduce neurotoxicity in in vitro and in vivo models, there is no approved laminin-111-based therapeutic approaches for treatment of AD. Also, it has been shown that immunoreactivity to laminin-111 appears late in development of cerebral amyloidosis. Based on the published data, we hypothesize that aberrant interaction between amyloid-beta and α5-laminins such as laminin-511 prevents the necessary laminin signaling into neurons leading to neurodegeneration and contributing to the early development of AD. Laminin-511 is the key extracellular protein that protects neurons from anoikis, inhibits excitoxicity and provides signaling that stabilizes dendritic spines and synapses in the developed brain. Absence of the signaling from laminin-511 leads to behavioral defects in mice. Laminin-511 and hippocampal neurons are in direct contact and accumulation of amyloid-beta that has been shown to avidly bind laminin-511 may physically decouple the interaction between α5-laminins and the neuronal membrane receptors inhibiting the signaling. Under this hypothesis, protein domains and peptides from laminin α5 chain may have a therapeutic potential in treatment of AD and the appearance of laminin-111 in the amyloid plaques is simply a consequence of the disease.
Collapse
Affiliation(s)
- Sergey Rodin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia; Department of Surgical Sciences, Ångström Laboratory, Uppsala University, 752 37, Uppsala, Sweden.
| | - Sergey A Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Olga I Kechko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
45
|
Kong W, Zheng Y, Xu W, Gu H, Wu J. Biomarkers of Alzheimer's disease in severe obstructive sleep apnea-hypopnea syndrome in the Chinese population. Eur Arch Otorhinolaryngol 2020; 278:865-872. [PMID: 32303882 DOI: 10.1007/s00405-020-05948-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/26/2020] [Indexed: 02/05/2023]
Abstract
PURPOSE Patients with severe obstructive sleep apnea-hypopnea syndrome are often accompanied by symptoms such as decreased cognitive function and daytime sleepiness, while cognitive function is often associated with biomarkers of Alzheimer's disease. Therefore, this study aims to explore the level of Alzheimer's disease biomarkers in the plasma of obstructive sleep apnea-hypopnea syndrome patients as well as the relationship between cognitive function and daytime sleepiness. METHODS Between May and July 2019, 35 patients requiring hospitalization for severe obstructive sleep apnea-hypopnea syndrome and 16 normal control patients were selected from West China Hospital. Alzheimer's disease biomarkers (Aβ40, Aβ42, t-tau, p-tau) in plasma were detected by ELISA in all 51 subjects. The differences in Alzheimer's disease biomarkers between the two groups were compared. In addition, a correlation analysis of disease-related indicators and univariate analysis of the risk factors of obstructive sleep apnea-hypopnea syndrome was conducted using the logistic regression model. RESULTS The plasma levels of Alzheimer's disease biomarkers (Aβ40, t-tau, p-tau) in patients with severe obstructive sleep apnea-hypopnea syndrome were significantly higher than those in the control group (29.24 ± 32.52, 13.18 ± 10.78, p = 0.049; 11.88 ± 7.05, 7.64 ± 4.17, p = 0.037; 26.31 ± 14.41, 17.34 ± 9.12, p = 0.027). Aβ42, Aβ40, t-tau, and p-tau were significantly negatively correlated with mean oxygen saturation, low oxygen saturation and Mini-Mental State examination scale scores, and positively correlated with oxygen desaturation index and Epworth Sleepiness Scale scores. T-tau and p-tau can be used as new risk factors for obstructive sleep apnea-hypopnea syndrome. CONCLUSION Alzheimer's disease biomarkers in the plasma of obstructive sleep apnea-hypopnea syndrome patients are higher than those in the control group, and the mechanism of action may be related to sleep disorders and night hypoxia. The Alzheimer's disease biomarkers deposited in plasma may also cause the decline of patients' cognitive function, increased daytime sleepiness and accelerate the progression of obstructive sleep apnea-hypopnea syndrome.
Collapse
Affiliation(s)
- Weili Kong
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, 37 Guo Xue Lane, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yun Zheng
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, 37 Guo Xue Lane, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre and Dalla Lana School of Public Health, University of Toronto, Toronto, ON, M5G2M9, Canada.
| | - Hailing Gu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, 37 Guo Xue Lane, Chengdu, 610041, Sichuan, People's Republic of China
| | - Junhao Wu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, 37 Guo Xue Lane, Chengdu, 610041, Sichuan, People's Republic of China
| |
Collapse
|
46
|
Abstract
Most neurodegenerative diseases are characterized by the intracellular or extracellular aggregation of misfolded proteins such as amyloid-β and tau in Alzheimer disease, α-synuclein in Parkinson disease, and TAR DNA-binding protein 43 in amyotrophic lateral sclerosis. Accumulating evidence from both human studies and disease models indicates that intercellular transmission and the subsequent templated amplification of these misfolded proteins are involved in the onset and progression of various neurodegenerative diseases. The misfolded proteins that are transferred between cells are referred to as 'pathological seeds'. Recent studies have made exciting progress in identifying the characteristics of different pathological seeds, particularly those isolated from diseased brains. Advances have also been made in our understanding of the molecular mechanisms that regulate the transmission process, and the influence of the host cell on the conformation and properties of pathological seeds. The aim of this Review is to summarize our current knowledge of the cell-to-cell transmission of pathological proteins and to identify key questions for future investigation.
Collapse
|
47
|
Barilar JO, Knezovic A, Perhoc AB, Homolak J, Riederer P, Salkovic-Petrisic M. Shared cerebral metabolic pathology in non-transgenic animal models of Alzheimer's and Parkinson's disease. J Neural Transm (Vienna) 2020; 127:231-250. [PMID: 32030485 PMCID: PMC7035309 DOI: 10.1007/s00702-020-02152-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/24/2020] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) and Alzheimer's disease (AD) are the most common chronic neurodegenerative disorders, characterized by motoric dysfunction or cognitive decline in the early stage, respectively, but often by both symptoms in the advanced stage. Among underlying molecular pathologies that PD and AD patients have in common, more attention is recently paid to the central metabolic dysfunction presented as insulin resistant brain state (IRBS) and altered cerebral glucose metabolism, both also explored in animal models of these diseases. This review aims to compare IRBS and alterations in cerebral glucose metabolism in representative non-transgenic animal PD and AD models. The comparison is based on the selectivity of the neurotoxins which cause experimental PD and AD, towards the cellular membrane and intracellular molecular targets as well as towards the selective neurons/non-neuronal cells, and the particular brain regions. Mitochondrial damage and co-expression of insulin receptors, glucose transporter-2 and dopamine transporter on the membrane of particular neurons as well as astrocytes seem to be the key points which are further discussed in a context of alterations in insulin signalling in the brain and its interaction with dopaminergic transmission, particularly regarding the time frame of the experimental AD/PD pathology appearance and the correlation with cognitive and motor symptoms. Such a perspective provides evidence on IRBS being a common underlying metabolic pathology and a contributor to neurodegenerative processes in representative non-transgenic animal PD and AD models, instead of being a direct cause of a particular neurodegenerative disorder.
Collapse
Affiliation(s)
- Jelena Osmanovic Barilar
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Peter Riederer
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Würzburg, Füchsleinstrasse 15, 97080, Würzburg, Germany
- Department and Research Unit of Psychiatry, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia.
- Institute of Fundamental Clinical and Translational Neuroscience, Research Centre of Excellence, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 12, 10 000, Zagreb, Croatia.
| |
Collapse
|
48
|
McAllister BB, Lacoursiere SG, Sutherland RJ, Mohajerani MH. Intracerebral seeding of amyloid-β and tau pathology in mice: Factors underlying prion-like spreading and comparisons with α-synuclein. Neurosci Biobehav Rev 2020; 112:1-27. [PMID: 31996301 DOI: 10.1016/j.neubiorev.2020.01.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is characterized neuropathologically by progressive neurodegeneration and by the presence of amyloid plaques and neurofibrillary tangles. These plaques and tangles are composed, respectively, of amyloid-beta (Aβ) and tau proteins. While long recognized as hallmarks of AD, it remains unclear what causes the formation of these insoluble deposits. One theory holds that prion-like templated misfolding of Aβ and tau induces these proteins to form pathological aggregates, and propagation of this misfolding causes the stereotyped progression of pathology commonly seen in AD. Supporting this theory, numerous studies have been conducted in which aggregated Aβ, tau, or α-synuclein is injected intracerebrally into pathology-free host animals, resulting in robust formation of pathology. Here, we review this literature, focusing on in vivo intracerebral seeding of Aβ and tau in mice. We compare the results of these experiments to what is known about the seeding and spread of α-synuclein pathology, and we discuss how this research informs our understanding of the factors underlying the onset, progression, and outcomes of proteinaceous pathologies.
Collapse
Affiliation(s)
- Brendan B McAllister
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Sean G Lacoursiere
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Robert J Sutherland
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW This study, taking the example of Alzheimer's and Parkinson's diseases, presents the experimental and human data that support the hypothesis that Aβ, tau, and α-synuclein may seed and propagate the pathology and consider the potential clinical consequences. RECENT FINDINGS Aβ aggregates transmit Aβ pathology to experimental animals. Interhuman transmission of Aβ pathology has also been observed in iatrogenic Creutzfeldt-Jakob disease, or after dural graft. Tau aggregates also transmit the pathology to mice when injected in the brain and propagates along neuronal pathways. Evidence of interhuman transmission is weak. Finally α-synuclein aggregates, when injected in specific areas of the brain may recapitulate Lewy pathology of Parkinson's disease but there is currently no hint of human to human transmission. SUMMARY Since the first evidence that at least Aβ pathology of Alzheimer's disease could be transmitted to the animal, data have accumulated indicating that misfolded proteins characteristic of neurodegenerative diseases may seed and propagate pathology in a prion-like manner. The term propagon has been proposed to describe those proteins that act as prions at different levels. Taking the example of Alzheimer's and Parkinson's diseases, the experimental and human data supporting the hypothesis that Aβ, tau, and α-synuclein are indeed propagons are presented with their clinical consequences.
Collapse
|
50
|
Zhao Y, Zhang Y, Zhang J, Zhang X, Yang G. Molecular Mechanism of Autophagy: Its Role in the Therapy of Alzheimer's Disease. Curr Neuropharmacol 2020; 18:720-739. [PMID: 31934838 PMCID: PMC7536828 DOI: 10.2174/1570159x18666200114163636] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/04/2019] [Accepted: 01/11/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder of progressive dementia that is characterized by the accumulation of beta-amyloid (Aβ)-containing neuritic plaques and intracellular Tau protein tangles. This distinctive pathology indicates that the protein quality control is compromised in AD. Autophagy functions as a "neuronal housekeeper" that eliminates aberrant protein aggregates by wrapping then into autophagosomes and delivering them to lysosomes for degradation. Several studies have suggested that autophagy deficits in autophagy participate in the accumulation and propagation of misfolded proteins (including Aβ and Tau). In this review, we summarize current knowledge of autophagy in the pathogenesis of AD, as well as some pathways targeting the restoration of autophagy. Moreover, we discuss how these aspects can contribute to the development of disease-modifying therapies in AD.
Collapse
Affiliation(s)
| | | | | | | | - Guofeng Yang
- Address correspondence to this author at the Department of Geriatrics, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, China; Tel: +86-311-66636243; E-mail:
| |
Collapse
|