1
|
Streit JO, Bukvin IV, Chan SHS, Bashir S, Woodburn LF, Włodarski T, Figueiredo AM, Jurkeviciute G, Sidhu HK, Hornby CR, Waudby CA, Cabrita LD, Cassaignau AME, Christodoulou J. The ribosome lowers the entropic penalty of protein folding. Nature 2024; 633:232-239. [PMID: 39112704 PMCID: PMC11374706 DOI: 10.1038/s41586-024-07784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 07/04/2024] [Indexed: 08/17/2024]
Abstract
Most proteins fold during biosynthesis on the ribosome1, and co-translational folding energetics, pathways and outcomes of many proteins have been found to differ considerably from those in refolding studies2-10. The origin of this folding modulation by the ribosome has remained unknown. Here we have determined atomistic structures of the unfolded state of a model protein on and off the ribosome, which reveal that the ribosome structurally expands the unfolded nascent chain and increases its solvation, resulting in its entropic destabilization relative to the peptide chain in isolation. Quantitative 19F NMR experiments confirm that this destabilization reduces the entropic penalty of folding by up to 30 kcal mol-1 and promotes formation of partially folded intermediates on the ribosome, an observation that extends to other protein domains and is obligate for some proteins to acquire their active conformation. The thermodynamic effects also contribute to the ribosome protecting the nascent chain from mutation-induced unfolding, which suggests a crucial role of the ribosome in supporting protein evolution. By correlating nascent chain structure and dynamics to their folding energetics and post-translational outcomes, our findings establish the physical basis of the distinct thermodynamics of co-translational protein folding.
Collapse
Affiliation(s)
- Julian O Streit
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Ivana V Bukvin
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Sammy H S Chan
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK.
| | - Shahzad Bashir
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Lauren F Woodburn
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Tomasz Włodarski
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Angelo Miguel Figueiredo
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Gabija Jurkeviciute
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Haneesh K Sidhu
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Charity R Hornby
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Christopher A Waudby
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Lisa D Cabrita
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Anaïs M E Cassaignau
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK.
| | - John Christodoulou
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK.
- Department of Biological Sciences, Birkbeck College, London, UK.
| |
Collapse
|
2
|
Masse MM, Guzman-Luna V, Varela AE, Mahfuza Shapla U, Hutchinson RB, Srivastava A, Wei W, Fuchs AM, Cavagnero S. Nascent chains derived from a foldable protein sequence interact with specific ribosomal surface sites near the exit tunnel. Sci Rep 2024; 14:12324. [PMID: 38811604 PMCID: PMC11137106 DOI: 10.1038/s41598-024-61274-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
In order to become bioactive, proteins must be translated and protected from aggregation during biosynthesis. The ribosome and molecular chaperones play a key role in this process. Ribosome-bound nascent chains (RNCs) of intrinsically disordered proteins and RNCs bearing a signal/arrest sequence are known to interact with ribosomal proteins. However, in the case of RNCs bearing foldable protein sequences, not much information is available on these interactions. Here, via a combination of chemical crosslinking and time-resolved fluorescence-anisotropy, we find that nascent chains of the foldable globin apoHmp1-140 interact with ribosomal protein L23 and have a freely-tumbling non-interacting N-terminal compact region comprising 63-94 residues. Longer RNCs (apoHmp1-189) also interact with an additional yet unidentified ribosomal protein, as well as with chaperones. Surprisingly, the apparent strength of RNC/r-protein interactions does not depend on nascent-chain sequence. Overall, foldable nascent chains establish and expand interactions with selected ribosomal proteins and chaperones, as they get longer. These data are significant because they reveal the interplay between independent conformational sampling and nascent-protein interactions with the ribosomal surface.
Collapse
Affiliation(s)
- Meranda M Masse
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Valeria Guzman-Luna
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Angela E Varela
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ummay Mahfuza Shapla
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Rachel B Hutchinson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Aniruddha Srivastava
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- McGaw Medical Center, Northwestern University, Chicago, IL, 60611, USA
| | - Wanting Wei
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- AIDS Vaccine Research Laboratory, University of Wisconsin-Madison, Madison, WI, 53711, USA
| | - Andrew M Fuchs
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
3
|
McDonnell RT, Elcock AH. AutoRNC: An automated modeling program for building atomic models of ribosome-nascent chain complexes. Structure 2024; 32:621-629.e5. [PMID: 38428431 PMCID: PMC11073581 DOI: 10.1016/j.str.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/29/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
The interpretation of experimental studies of co-translational protein folding often benefits from the use of computational methods that seek to model or simulate the nascent chain and its interactions with the ribosome. Building realistic 3D models of ribosome-nascent chain (RNC) constructs often requires expert knowledge, so to circumvent this issue, we describe here AutoRNC, an automated modeling program capable of constructing large numbers of plausible atomic models of RNCs within minutes. AutoRNC takes input from the user specifying any regions of the nascent chain that contain secondary or tertiary structure and attempts to build conformations compatible with those specifications-and with the constraints imposed by the ribosome-by sampling and progressively piecing together dipeptide conformations extracted from the Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB). Despite using only modest computational resources, we show here that AutoRNC can build plausible conformations for a wide range of RNC constructs for which experimental data have already been reported.
Collapse
Affiliation(s)
- Robert T McDonnell
- Department of Biochemistry & Molecular Biology, University of Iowa, Iowa City, IA, USA
| | - Adrian H Elcock
- Department of Biochemistry & Molecular Biology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
4
|
McDonnell RT, Elcock AH. AutoRNC: an automated modeling program for building atomic models of ribosome-nascent chain complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544999. [PMID: 37398297 PMCID: PMC10312685 DOI: 10.1101/2023.06.14.544999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The interpretation of experimental studies of co-translational protein folding often benefits from the use of computational methods that seek to model the nascent chain and its interactions with the ribosome. Ribosome-nascent chain (RNC) constructs studied experimentally can vary significantly in size and the extent to which they contain secondary and tertiary structure, and building realistic 3D models of them therefore often requires expert knowledge. To circumvent this issue, we describe here AutoRNC, an automated modeling program capable of constructing large numbers of plausible atomic models of RNCs within minutes. AutoRNC takes input from the user specifying any regions of the nascent chain that contain secondary or tertiary structure and attempts to build conformations compatible with those specifications - and with the constraints imposed by the ribosome - by sampling and progressively piecing together dipeptide conformations extracted from the RCSB. We first show that conformations of completely unfolded proteins built by AutoRNC in the absence of the ribosome have radii of gyration that match well with the corresponding experimental data. We then show that AutoRNC can build plausible conformations for a wide range of RNC constructs for which experimental data have already been reported. Since AutoRNC requires only modest computational resources, we anticipate that it will prove to be a useful hypothesis generator for experimental studies, for example, in providing indications of whether designed constructs are likely to be capable of folding, as well as providing useful starting points for downstream atomic or coarse-grained simulations of the conformational dynamics of RNCs.
Collapse
|
5
|
Modulating co-translational protein folding by rational design and ribosome engineering. Nat Commun 2022; 13:4243. [PMID: 35869078 PMCID: PMC9307626 DOI: 10.1038/s41467-022-31906-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/08/2022] [Indexed: 12/23/2022] Open
Abstract
Co-translational folding is a fundamental process for the efficient biosynthesis of nascent polypeptides that emerge through the ribosome exit tunnel. To understand how this process is modulated by the shape and surface of the narrow tunnel, we have rationally engineered three exit tunnel protein loops (uL22, uL23 and uL24) of the 70S ribosome by CRISPR/Cas9 gene editing, and studied the co-translational folding of an immunoglobulin-like filamin domain (FLN5). Our thermodynamics measurements employing 19F/15N/methyl-TROSY NMR spectroscopy together with cryo-EM and molecular dynamics simulations reveal how the variations in the lengths of the loops present across species exert their distinct effects on the free energy of FLN5 folding. A concerted interplay of the uL23 and uL24 loops is sufficient to alter co-translational folding energetics, which we highlight by the opposite folding outcomes resulting from their extensions. These subtle modulations occur through a combination of the steric effects relating to the shape of the tunnel, the dynamic interactions between the ribosome surface and the unfolded nascent chain, and its altered exit pathway within the vestibule. These results illustrate the role of the exit tunnel structure in co-translational folding, and provide principles for how to remodel it to elicit a desired folding outcome. The narrow exit tunnel of the ribosome is important for cotranslational protein folding. Here, authors show that their rationally designed and engineered exit tunnel protein loops modulate the free energy of nascent chain dynamics and folding.
Collapse
|
6
|
The ribosome stabilizes partially folded intermediates of a nascent multi-domain protein. Nat Chem 2022; 14:1165-1173. [PMID: 35927328 PMCID: PMC7613651 DOI: 10.1038/s41557-022-01004-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/20/2022] [Indexed: 12/13/2022]
Abstract
Co-translational folding is crucial to ensure the production of biologically active proteins. The ribosome can alter the folding pathways of nascent polypeptide chains, yet a structural understanding remains largely inaccessible experimentally. We have developed site-specific labelling of nascent chains to detect and measure, using 19F nuclear magnetic resonance (NMR) spectroscopy, multiple states accessed by an immunoglobulin-like domain within a tandem repeat protein during biosynthesis. By examining ribosomes arrested at different stages during translation of this common structural motif, we observe highly broadened NMR resonances attributable to two previously unidentified intermediates, which are stably populated across a wide folding transition. Using molecular dynamics simulations and corroborated by cryo-electron microscopy, we obtain models of these partially folded states, enabling experimental verification of a ribosome-binding site that contributes to their high stabilities. We thus demonstrate a mechanism by which the ribosome could thermodynamically regulate folding and other co-translational processes. ![]()
Most proteins must fold co-translationally on the ribosome to adopt biologically active conformations, yet structural, mechanistic descriptions are lacking. Using 19F NMR spectroscopy to study a nascent multi-domain protein has now enabled the identification of two co-translational folding intermediates that are significantly more stable than intermediates formed off the ribosome, suggesting that the ribosome may thermodynamically regulate folding.
Collapse
|
7
|
Thermodynamics of co-translational folding and ribosome-nascent chain interactions. Curr Opin Struct Biol 2022; 74:102357. [PMID: 35390638 DOI: 10.1016/j.sbi.2022.102357] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 11/03/2022]
Abstract
Proteins can begin the conformational search for their native structure in parallel with biosynthesis on the ribosome, in a process termed co-translational folding. In contrast to the reversible folding of isolated domains, as a nascent chain emerges from the ribosome exit tunnel during translation the free energy landscape it explores also evolves as a function of chain length. While this presents a substantially more complex measurement problem, this review will outline the progress that has been made recently in understanding, quantitatively, the process by which a nascent chain attains its full native stability, as well as the mechanisms through which interactions with the nearby ribosome surface can perturb or modulate this process.
Collapse
|
8
|
Plessa E, Chu LP, Chan SHS, Thomas OL, Cassaignau AME, Waudby CA, Christodoulou J, Cabrita LD. Nascent chains can form co-translational folding intermediates that promote post-translational folding outcomes in a disease-causing protein. Nat Commun 2021; 12:6447. [PMID: 34750347 PMCID: PMC8576036 DOI: 10.1038/s41467-021-26531-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/01/2021] [Indexed: 01/16/2023] Open
Abstract
During biosynthesis, proteins can begin folding co-translationally to acquire their biologically-active structures. Folding, however, is an imperfect process and in many cases misfolding results in disease. Less is understood of how misfolding begins during biosynthesis. The human protein, alpha-1-antitrypsin (AAT) folds under kinetic control via a folding intermediate; its pathological variants readily form self-associated polymers at the site of synthesis, leading to alpha-1-antitrypsin deficiency. We observe that AAT nascent polypeptides stall during their biosynthesis, resulting in full-length nascent chains that remain bound to ribosome, forming a persistent ribosome-nascent chain complex (RNC) prior to release. We analyse the structure of these RNCs, which reveals compacted, partially-folded co-translational folding intermediates possessing molten-globule characteristics. We find that the highly-polymerogenic mutant, Z AAT, forms a distinct co-translational folding intermediate relative to wild-type. Its very modest structural differences suggests that the ribosome uniquely tempers the impact of deleterious mutations during nascent chain emergence. Following nascent chain release however, these co-translational folding intermediates guide post-translational folding outcomes thus suggesting that Z's misfolding is initiated from co-translational structure. Our findings demonstrate that co-translational folding intermediates drive how some proteins fold under kinetic control, and may thus also serve as tractable therapeutic targets for human disease.
Collapse
Affiliation(s)
- Elena Plessa
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Lien P Chu
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Sammy H S Chan
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Oliver L Thomas
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Anaïs M E Cassaignau
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Christopher A Waudby
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK. .,School of Crystallography, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK.
| | - Lisa D Cabrita
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
9
|
Huang CT, Lai YC, Chen SY, Ho MR, Chiang YW, Hsu ST. Structural polymorphism and substrate promiscuity of a ribosome-associated molecular chaperone. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:375-386. [PMID: 37904759 PMCID: PMC10539794 DOI: 10.5194/mr-2-375-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/02/2021] [Indexed: 11/01/2023]
Abstract
Trigger factor (TF) is a highly conserved multi-domain molecular chaperone that exerts its chaperone activity at the ribosomal tunnel exit from which newly synthesized nascent chains emerge. TF also displays promiscuous substrate binding for a large number of cytosolic proteins independent of ribosome binding. We asked how TF recognizes a variety of substrates while existing in a monomer-dimer equilibrium. Paramagnetic nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy were used to show that dimeric TF displays a high degree of structural polymorphism in solution. A series of peptides has been generated to quantify their TF binding affinities in relation with their sequence compositions. The results confirmed a previous predication that TF preferentially binds to peptide fragments that are rich in aromatic and positively charged amino acids. NMR paramagnetic relaxation enhancement analysis showed that TF utilizes multiple binding sites, located in the chaperone domain and part of the prolyl trans-cis isomerization domain, to interact with these peptides. Dimerization of TF effectively sequesters most of the substrate binding sites, which are expected to become accessible upon binding to the ribosome as a monomer. As TF lacks ATPase activity, which is commonly used to trigger conformational changes within molecular chaperones in action, the ribosome-binding-associated disassembly and conformational rearrangements may be the underlying regulatory mechanism of its chaperone activity.
Collapse
Affiliation(s)
- Chih-Ting Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yei-Chen Lai
- Department of Chemistry, National Tsing Hua University, Hsichu 30013, Taiwan
| | - Szu-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsichu 30013, Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
10
|
Cotranslational Translocation and Folding of a Periplasmic Protein Domain in Escherichia coli. J Mol Biol 2021; 433:167047. [PMID: 33989648 DOI: 10.1016/j.jmb.2021.167047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/13/2021] [Accepted: 05/04/2021] [Indexed: 01/26/2023]
Abstract
In Gram-negative bacteria, periplasmic domains in inner membrane proteins are cotranslationally translocated across the inner membrane through the SecYEG translocon. To what degree such domains also start to fold cotranslationally is generally difficult to determine using currently available methods. Here, we apply Force Profile Analysis (FPA) - a method where a translational arrest peptide is used to detect folding-induced forces acting on the nascent polypeptide - to follow the cotranslational translocation and folding of the large periplasmic domain of the E. coli inner membrane protease LepB in vivo. Membrane insertion of LepB's two N-terminal transmembrane helices is initiated when their respective N-terminal ends reach 45-50 residues away from the peptidyl transferase center (PTC) in the ribosome. The main folding transition in the periplasmic domain involves all but the ~15 most C-terminal residues of the protein and happens when the C-terminal end of the folded part is ~70 residues away from the PTC; a smaller putative folding intermediate is also detected. This implies that wildtype LepB folds post-translationally in vivo, and shows that FPA can be used to study both co- and post-translational protein folding in the periplasm.
Collapse
|
11
|
Waudby CA, Burridge C, Christodoulou J. Optimal design of adaptively sampled NMR experiments for measurement of methyl group dynamics with application to a ribosome-nascent chain complex. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 326:106937. [PMID: 33706222 PMCID: PMC7613274 DOI: 10.1016/j.jmr.2021.106937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 05/14/2023]
Abstract
NMR measurements of cross-correlated nuclear spin relaxation provide powerful probes of polypeptide dynamics and rotational diffusion, free from contributions due to chemical exchange or interactions with external spins. Here, we report on the development of a sensitivity-optimized pulse sequence for the analysis of the differential relaxation of transitions within isolated 13CH3 spin systems, in order to characterise rotational diffusion and side chain order through the product S2τc. We describe the application of optimal design theory to implement a real-time 'on-the-fly' adaptive sampling scheme that maximizes the accuracy of the measured parameters. The increase in sensitivity obtained using this approach enables quantitative measurements of rotational diffusion within folded states of translationally-arrested ribosome-nascent chain complexes of the FLN5 filamin domain, and can be used to place strong limits on interactions between the domain and the ribosome surface.
Collapse
Affiliation(s)
- Christopher A Waudby
- Department of Structural and Molecular Biology, UCL, Gower St, London WC1E 6BT, UK.
| | - Charles Burridge
- Department of Structural and Molecular Biology, UCL, Gower St, London WC1E 6BT, UK
| | - John Christodoulou
- Department of Structural and Molecular Biology, UCL, Gower St, London WC1E 6BT, UK.
| |
Collapse
|
12
|
Bui PT, Hoang TX. Protein escape at the ribosomal exit tunnel: Effect of the tunnel shape. J Chem Phys 2021; 153:045105. [PMID: 32752708 DOI: 10.1063/5.0008292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study the post-translational escape of nascent proteins at the ribosomal exit tunnel with the consideration of a real shape atomistic tunnel based on the Protein Data Bank structure of the large ribosome subunit of archeon Haloarcula marismortui. Molecular dynamics simulations employing the Go-like model for the proteins show that at intermediate and high temperatures, including a presumable physiological temperature, the protein escape process at the atomistic tunnel is quantitatively similar to that at a cylinder tunnel of length L = 72 Å and diameter d = 16 Å. At low temperatures, the atomistic tunnel, however, yields an increased probability of protein trapping inside the tunnel, while the cylinder tunnel does not cause the trapping. All-β proteins tend to escape faster than all-α proteins, but this difference is blurred on increasing the protein's chain length. A 29-residue zinc-finger domain is shown to be severely trapped inside the tunnel. Most of the single-domain proteins considered, however, can escape efficiently at the physiological temperature with the escape time distribution following the diffusion model proposed in our previous works. An extrapolation of the simulation data to a realistic value of the friction coefficient for amino acids indicates that the escape times of globular proteins are at the sub-millisecond scale. It is argued that this time scale is short enough for the smooth functioning of the ribosome by not allowing nascent proteins to jam the ribosome tunnel.
Collapse
Affiliation(s)
- Phuong Thuy Bui
- Institute of Theoretical and Applied Research, Duy Tan University, Hanoi 100000, Vietnam
| | - Trinh Xuan Hoang
- Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi 11108, Vietnam
| |
Collapse
|
13
|
Schulte L, Mao J, Reitz J, Sreeramulu S, Kudlinzki D, Hodirnau VV, Meier-Credo J, Saxena K, Buhr F, Langer JD, Blackledge M, Frangakis AS, Glaubitz C, Schwalbe H. Cysteine oxidation and disulfide formation in the ribosomal exit tunnel. Nat Commun 2020; 11:5569. [PMID: 33149120 PMCID: PMC7642426 DOI: 10.1038/s41467-020-19372-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
Understanding the conformational sampling of translation-arrested ribosome nascent chain complexes is key to understand co-translational folding. Up to now, coupling of cysteine oxidation, disulfide bond formation and structure formation in nascent chains has remained elusive. Here, we investigate the eye-lens protein γB-crystallin in the ribosomal exit tunnel. Using mass spectrometry, theoretical simulations, dynamic nuclear polarization-enhanced solid-state nuclear magnetic resonance and cryo-electron microscopy, we show that thiol groups of cysteine residues undergo S-glutathionylation and S-nitrosylation and form non-native disulfide bonds. Thus, covalent modification chemistry occurs already prior to nascent chain release as the ribosome exit tunnel provides sufficient space even for disulfide bond formation which can guide protein folding.
Collapse
Affiliation(s)
- Linda Schulte
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University of Frankfurt, Frankfurt, Germany
| | - Jiafei Mao
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt, Germany
| | - Julian Reitz
- Institute for Biophysics, Buchmann Institute for Molecular Life Science, Goethe University Frankfurt, Frankfurt, Germany
| | - Sridhar Sreeramulu
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University of Frankfurt, Frankfurt, Germany
| | - Denis Kudlinzki
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University of Frankfurt, Frankfurt, Germany
| | - Victor-Valentin Hodirnau
- Institute for Biophysics, Buchmann Institute for Molecular Life Science, Goethe University Frankfurt, Frankfurt, Germany.,Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Krishna Saxena
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University of Frankfurt, Frankfurt, Germany
| | - Florian Buhr
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University of Frankfurt, Frankfurt, Germany.,Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | | | | | - Achilleas S Frangakis
- Institute for Biophysics, Buchmann Institute for Molecular Life Science, Goethe University Frankfurt, Frankfurt, Germany.
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt, Germany.
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University of Frankfurt, Frankfurt, Germany.
| |
Collapse
|
14
|
Mechanisms of Disulfide Bond Formation in Nascent Polypeptides Entering the Secretory Pathway. Cells 2020; 9:cells9091994. [PMID: 32872499 PMCID: PMC7565403 DOI: 10.3390/cells9091994] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022] Open
Abstract
Disulfide bonds are an abundant feature of proteins across all domains of life that are important for structure, stability, and function. In eukaryotic cells, a major site of disulfide bond formation is the endoplasmic reticulum (ER). How cysteines correctly pair during polypeptide folding to form the native disulfide bond pattern is a complex problem that is not fully understood. In this paper, the evidence for different folding mechanisms involved in ER-localised disulfide bond formation is reviewed with emphasis on events that occur during ER entry. Disulfide formation in nascent polypeptides is discussed with focus on (i) its mechanistic relationship with conformational folding, (ii) evidence for its occurrence at the co-translational stage during ER entry, and (iii) the role of protein disulfide isomerase (PDI) family members. This review highlights the complex array of cellular processes that influence disulfide bond formation and identifies key questions that need to be addressed to further understand this fundamental process.
Collapse
|
15
|
Shishido H, Yoon JS, Yang Z, Skach WR. CFTR trafficking mutations disrupt cotranslational protein folding by targeting biosynthetic intermediates. Nat Commun 2020; 11:4258. [PMID: 32848127 PMCID: PMC7450043 DOI: 10.1038/s41467-020-18101-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/04/2020] [Indexed: 02/03/2023] Open
Abstract
Protein misfolding causes a wide spectrum of human disease, and therapies that target misfolding are transforming the clinical care of cystic fibrosis. Despite this success, however, very little is known about how disease-causing mutations affect the de novo folding landscape. Here we show that inherited, disease-causing mutations located within the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) have distinct effects on nascent polypeptides. Two of these mutations (A455E and L558S) delay compaction of the nascent NBD1 during a critical window of synthesis. The observed folding defect is highly dependent on nascent chain length as well as its attachment to the ribosome. Moreover, restoration of the NBD1 cotranslational folding defect by second site suppressor mutations also partially restores folding of full-length CFTR. These findings demonstrate that nascent folding intermediates can play an important role in disease pathogenesis and thus provide potential targets for pharmacological correction.
Collapse
Affiliation(s)
- Hideki Shishido
- CFFT Lab, Cystic Fibrosis Foundation, 44 Hartwell Ave, Lexington, MA, 02421, USA
| | - Jae Seok Yoon
- CFFT Lab, Cystic Fibrosis Foundation, 44 Hartwell Ave, Lexington, MA, 02421, USA
| | - Zhongying Yang
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - William R Skach
- Cystic Fibrosis Foundation, 4550 Montgomery Ave., Suite 1100N, Bethesda, MD, 20814, USA.
| |
Collapse
|
16
|
Effect of Protein Structure on Evolution of Cotranslational Folding. Biophys J 2020; 119:1123-1134. [PMID: 32857962 DOI: 10.1016/j.bpj.2020.06.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/14/2020] [Accepted: 06/23/2020] [Indexed: 12/31/2022] Open
Abstract
Cotranslational folding depends on the folding speed and stability of the nascent protein. It remains difficult, however, to predict which proteins cotranslationally fold. Here, we simulate evolution of model proteins to investigate how native structure influences evolution of cotranslational folding. We developed a model that connects protein folding during and after translation to cellular fitness. Model proteins evolved improved folding speed and stability, with proteins adopting one of two strategies for folding quickly. Low contact order proteins evolve to fold cotranslationally. Such proteins adopt native conformations early on during the translation process, with each subsequently translated residue establishing additional native contacts. On the other hand, high contact order proteins tend not to be stable in their native conformations until the full chain is nearly extruded. We also simulated evolution of slowly translating codons, finding that slower translation speeds at certain positions enhances cotranslational folding. Finally, we investigated real protein structures using a previously published data set that identified evolutionarily conserved rare codons in Escherichia coli genes and associated such codons with cotranslational folding intermediates. We found that protein substructures preceding conserved rare codons tend to have lower contact orders, in line with our finding that lower contact order proteins are more likely to fold cotranslationally. Our work shows how evolutionary selection pressure can cause proteins with local contact topologies to evolve cotranslational folding.
Collapse
|
17
|
Pellowe G, Findlay HE, Lee K, Gemeinhardt TM, Blackholly LR, Reading E, Booth PJ. Capturing Membrane Protein Ribosome Nascent Chain Complexes in a Native-like Environment for Co-translational Studies. Biochemistry 2020; 59:2764-2775. [PMID: 32627541 PMCID: PMC7551657 DOI: 10.1021/acs.biochem.0c00423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/02/2020] [Indexed: 01/02/2023]
Abstract
Co-translational folding studies of membrane proteins lag behind cytosolic protein investigations largely due to the technical difficulty in maintaining membrane lipid environments for correct protein folding. Stalled ribosome-bound nascent chain complexes (RNCs) can give snapshots of a nascent protein chain as it emerges from the ribosome during biosynthesis. Here, we demonstrate how SecM-facilitated nascent chain stalling and native nanodisc technologies can be exploited to capture in vivo-generated membrane protein RNCs within their native lipid compositions. We reveal that a polytopic membrane protein can be successfully stalled at various stages during its synthesis and the resulting RNC extracted within either detergent micelles or diisobutylene-maleic acid co-polymer native nanodiscs. Our approaches offer tractable solutions for the structural and biophysical interrogation of nascent membrane proteins of specified lengths, as the elongating nascent chain emerges from the ribosome and inserts into its native lipid milieu.
Collapse
Affiliation(s)
- Grant
A. Pellowe
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Heather E. Findlay
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Karen Lee
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Tim M. Gemeinhardt
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Laura R. Blackholly
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Eamonn Reading
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Paula J. Booth
- King’s College London, Department of Chemistry, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| |
Collapse
|
18
|
Pritišanac I, Alderson TR, Güntert P. Automated assignment of methyl NMR spectra from large proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 118-119:54-73. [PMID: 32883449 DOI: 10.1016/j.pnmrs.2020.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 05/05/2023]
Abstract
As structural biology trends towards larger and more complex biomolecular targets, a detailed understanding of their interactions and underlying structures and dynamics is required. The development of methyl-TROSY has enabled NMR spectroscopy to provide atomic-resolution insight into the mechanisms of large molecular assemblies in solution. However, the applicability of methyl-TROSY has been hindered by the laborious and time-consuming resonance assignment process, typically performed with domain fragmentation, site-directed mutagenesis, and analysis of NOE data in the context of a crystal structure. In response, several structure-based automatic methyl assignment strategies have been developed over the past decade. Here, we present a comprehensive analysis of all available methods and compare their input data requirements, algorithmic strategies, and reported performance. In general, the methods fall into two categories: those that primarily rely on inter-methyl NOEs, and those that utilize methyl PRE- and PCS-based restraints. We discuss their advantages and limitations, and highlight the potential benefits from standardizing and combining different methods.
Collapse
Affiliation(s)
- Iva Pritišanac
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - T Reid Alderson
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Güntert
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany; Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland; Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
19
|
Kramer G, Shiber A, Bukau B. Mechanisms of Cotranslational Maturation of Newly Synthesized Proteins. Annu Rev Biochem 2019; 88:337-364. [DOI: 10.1146/annurev-biochem-013118-111717] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The timely production of functional proteins is of critical importance for the biological activity of cells. To reach the functional state, newly synthesized polypeptides have to become enzymatically processed, folded, and assembled into oligomeric complexes and, for noncytosolic proteins, translocated across membranes. Key activities of these processes occur cotranslationally, assisted by a network of machineries that transiently engage nascent polypeptides at distinct phases of translation. The sequence of events is tuned by intrinsic features of the nascent polypeptides and timely association of factors with the translating ribosome. Considering the dynamics of translation, the heterogeneity of cellular proteins, and the diversity of interaction partners, it is a major cellular achievement that these processes are temporally and spatially so precisely coordinated, minimizing the generation of damaged proteins. This review summarizes the current progress we have made toward a comprehensive understanding of the cotranslational interactions of nascent chains, which pave the way to their functional state.
Collapse
Affiliation(s)
- Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;,
| | - Ayala Shiber
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;,
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;,
| |
Collapse
|
20
|
CAT tails drive degradation of stalled polypeptides on and off the ribosome. Nat Struct Mol Biol 2019; 26:450-459. [PMID: 31133701 PMCID: PMC6554034 DOI: 10.1038/s41594-019-0230-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022]
Abstract
Stalled translation produces incomplete, ribosome-tethered polypeptides that the Ribosome-associated Quality Control (RQC) pathway targets for degradation via the E3 ubiquitin ligase Ltn1. During this process, the protein Rqc2 and the large ribosomal subunit elongate stalled polypeptides with carboxy-terminal alanine and threonine residues (CAT tails). Failure to degrade CAT-tailed proteins disrupts global protein homeostasis, as CAT-tailed proteins can aggregate and sequester chaperones. Why cells employ such a potentially toxic process during RQC is unclear. Here, we developed quantitative techniques to assess how CAT tails affect stalled polypeptide degradation in Saccharomyces cerevisiae. We found that CAT tails enhance Ltn1’s efficiency in targeting structured polypeptides, which are otherwise poor Ltn1 substrates. If Ltn1 fails to ubiquitylate those stalled polypeptides or becomes limiting, CAT tails act as degrons, marking proteins for proteasomal degradation off the ribosome. Thus, CAT tails functionalize the carboxy-termini of stalled polypeptides to drive their degradation on and off the ribosome.
Collapse
|
21
|
Kemp G, Kudva R, de la Rosa A, von Heijne G. Force-Profile Analysis of the Cotranslational Folding of HemK and Filamin Domains: Comparison of Biochemical and Biophysical Folding Assays. J Mol Biol 2019; 431:1308-1314. [DOI: 10.1016/j.jmb.2019.01.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 12/31/2022]
|
22
|
Increased freedom of movement in the nascent chain results in dynamic changes in the structure of the SecM arrest motif. Biosci Rep 2019; 39:BSR20181246. [PMID: 30563926 PMCID: PMC6340945 DOI: 10.1042/bsr20181246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022] Open
Abstract
Ribosomes are responsible for the synthesis of all cellular proteins. Due to the diversity of sequence and properties, it was initially believed that translating nascent chains would travel unhindered through the ribosome exit tunnel, however a small but increasing number of proteins have been identified that interact with the exit tunnel to induce translational arrest, Escherichia coli (E. coli) secretion monitor (SecM) is one such stalling peptide. How and why these peptides interact with the exit tunnel is not fully understood, however key features required for stalling appear to be an essential peptide arrest motif at the C-terminus and compaction of the nascent chain within the exit tunnel upon stalling. Mutagenesis of the SecM arrest sequence has identified three conservative point mutations that can retain a degree of stalling in this highly conserved sequence. This level of stalling is further increased when coupled with mutation of a non-essential arrest motif residue P153A. Further analysis of these mutants by pegylation assays indicates that this increase in stalling activity during translation is due to the ability of the P153A mutation to reintroduce compaction of the nascent chain within the exit tunnel possibly due to the improved flexibility of the nascent chain provided by the removal of a restrictive proline residue. The data presented here suggest that arrest sequences may be more prevalent and less highly conserved than previously thought, and highlight the significance of the interactions between the nascent chain and the exit tunnel to affecting translation arrest.
Collapse
|
23
|
Kaiser CM, Liu K. Folding up and Moving on-Nascent Protein Folding on the Ribosome. J Mol Biol 2018; 430:4580-4591. [PMID: 29981746 PMCID: PMC6384192 DOI: 10.1016/j.jmb.2018.06.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 01/01/2023]
Abstract
All cellular proteins are synthesized by the ribosome, an intricate molecular machine that translates the information of protein coding genes into the amino acid alphabet. The linear polypeptides synthesized by the ribosome must generally fold into specific three-dimensional structures to become biologically active. Folding has long been recognized to begin before synthesis is complete. Recently, biochemical and biophysical studies have shed light onto how the ribosome shapes the folding pathways of nascent proteins. Here, we discuss recent progress that is beginning to define the role of the ribosome in the folding of newly synthesized polypeptides.
Collapse
Affiliation(s)
- Christian M Kaiser
- Department of Biology, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA; Department of Biophysics, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA.
| | - Kaixian Liu
- Department of Biology, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA; CMDB Graduate Program, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
24
|
Hanazono Y, Takeda K, Miki K. Co-translational folding of α-helical proteins: structural studies of intermediate-length variants of the λ repressor. FEBS Open Bio 2018; 8:1312-1321. [PMID: 30087834 PMCID: PMC6070647 DOI: 10.1002/2211-5463.12480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/17/2018] [Accepted: 06/14/2018] [Indexed: 11/17/2022] Open
Abstract
Nascent polypeptide chains fold cotranslationally, but the atomic‐level details of this process remain unknown. Here, we report crystallographic, de novo modeling, and spectroscopic studies of intermediate‐length variants of the λ repressor N‐terminal domain. Although the ranges of helical regions of the half‐length variant were almost identical to those of the full‐length protein, the relative orientations of these helices in the intermediate‐length variants differed. Our results suggest that cotranslational folding of the λ repressor initially forms a helical structure with a transient conformation, as in the case of a molten globule state. This conformation subsequently matures during the course of protein synthesis. Database Structural data are available in the PDB under the accession numbers http://www.rcsb.org/pdb/search/structidSearch.do?structureId=5ZCA and http://www.rcsb.org/pdb/search/structidSearch.do?structureId=3WOA.
Collapse
Affiliation(s)
- Yuya Hanazono
- Department of Chemistry Graduate School of Science Kyoto University Japan.,Present address: Graduate School of Information Sciences Tohoku University Aoba-ku, Sendai 980-8579 Japan
| | - Kazuki Takeda
- Department of Chemistry Graduate School of Science Kyoto University Japan
| | - Kunio Miki
- Department of Chemistry Graduate School of Science Kyoto University Japan
| |
Collapse
|
25
|
Martin EM, Jackson MP, Gamerdinger M, Gense K, Karamonos TK, Humes JR, Deuerling E, Ashcroft AE, Radford SE. Conformational flexibility within the nascent polypeptide-associated complex enables its interactions with structurally diverse client proteins. J Biol Chem 2018; 293:8554-8568. [PMID: 29650757 PMCID: PMC5986199 DOI: 10.1074/jbc.ra117.001568] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/07/2018] [Indexed: 12/12/2022] Open
Abstract
As newly synthesized polypeptides emerge from the ribosome, it is crucial that they fold correctly. To prevent premature aggregation, nascent chains interact with chaperones that facilitate folding or prevent misfolding until protein synthesis is complete. Nascent polypeptide-associated complex (NAC) is a ribosome-associated chaperone that is important for protein homeostasis. However, how NAC binds its substrates remains unclear. Using native electrospray ionization MS (ESI-MS), limited proteolysis, NMR, and cross-linking, we analyzed the conformational properties of NAC from Caenorhabditis elegans and studied its ability to bind proteins in different conformational states. Our results revealed that NAC adopts an array of compact and expanded conformations and binds weakly to client proteins that are unfolded, folded, or intrinsically disordered, suggestive of broad substrate compatibility. Of note, we found that this weak binding retards aggregation of the intrinsically disordered protein α-synuclein both in vitro and in vivo These findings provide critical insights into the structure and function of NAC. Specifically, they reveal the ability of NAC to exploit its conformational plasticity to bind a repertoire of substrates with unrelated sequences and structures, independently of actively translating ribosomes.
Collapse
Affiliation(s)
- Esther M Martin
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Matthew P Jackson
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Martin Gamerdinger
- the Department of Biology, Institute of Molecular Microbiology, University of Konstanz, 78454 Konstanz, Germany
| | - Karina Gense
- the Department of Biology, Institute of Molecular Microbiology, University of Konstanz, 78454 Konstanz, Germany
| | - Theodoros K Karamonos
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Julia R Humes
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Elke Deuerling
- the Department of Biology, Institute of Molecular Microbiology, University of Konstanz, 78454 Konstanz, Germany
| | - Alison E Ashcroft
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Sheena E Radford
- From the Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| |
Collapse
|
26
|
Komar AA. Unraveling co-translational protein folding: Concepts and methods. Methods 2017; 137:71-81. [PMID: 29221924 DOI: 10.1016/j.ymeth.2017.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/13/2017] [Indexed: 12/26/2022] Open
Abstract
Advances in techniques such as nuclear magnetic resonance spectroscopy, cryo-electron microscopy, and single-molecule and time-resolved fluorescent approaches are transforming our ability to study co-translational protein folding both in vivo in living cells and in vitro in reconstituted cell-free translation systems. These approaches provide comprehensive information on the spatial organization and dynamics of nascent polypeptide chains and the kinetics of co-translational protein folding. This information has led to an improved understanding of the process of protein folding in living cells and should allow remaining key questions in the field, such as what structures are formed within nascent chains during protein synthesis and when, to be answered. Ultimately, studies using these techniques will facilitate development of a unified concept of protein folding, a process that is essential for proper cell function and organism viability. This review describes current methods for analysis of co-translational protein folding with an emphasis on some of the recently developed techniques that allow monitoring of co-translational protein folding in real-time.
Collapse
Affiliation(s)
- Anton A Komar
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA; Department of Biochemistry and the Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
27
|
Javed A, Christodoulou J, Cabrita LD, Orlova EV. The ribosome and its role in protein folding: looking through a magnifying glass. Acta Crystallogr D Struct Biol 2017; 73:509-521. [PMID: 28580913 PMCID: PMC5458493 DOI: 10.1107/s2059798317007446] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/19/2017] [Indexed: 11/21/2022] Open
Abstract
Protein folding, a process that underpins cellular activity, begins co-translationally on the ribosome. During translation, a newly synthesized polypeptide chain enters the ribosomal exit tunnel and actively interacts with the ribosome elements - the r-proteins and rRNA that line the tunnel - prior to emerging into the cellular milieu. While understanding of the structure and function of the ribosome has advanced significantly, little is known about the process of folding of the emerging nascent chain (NC). Advances in cryo-electron microscopy are enabling visualization of NCs within the exit tunnel, allowing early glimpses of the interplay between the NC and the ribosome. Once it has emerged from the exit tunnel into the cytosol, the NC (still attached to its parent ribosome) can acquire a range of conformations, which can be characterized by NMR spectroscopy. Using experimental restraints within molecular-dynamics simulations, the ensemble of NC structures can be described. In order to delineate the process of co-translational protein folding, a hybrid structural biology approach is foreseeable, potentially offering a complete atomic description of protein folding as it occurs on the ribosome.
Collapse
Affiliation(s)
- Abid Javed
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England
- Institute of Structural and Molecular Biology, University College London (UCL), Gower Street, London WC1E 6BT, England
| | - John Christodoulou
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England
- Institute of Structural and Molecular Biology, University College London (UCL), Gower Street, London WC1E 6BT, England
| | - Lisa D. Cabrita
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England
- Institute of Structural and Molecular Biology, University College London (UCL), Gower Street, London WC1E 6BT, England
| | - Elena V. Orlova
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England
| |
Collapse
|
28
|
Zhuravleva A, Korzhnev DM. Protein folding by NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 100:52-77. [PMID: 28552172 DOI: 10.1016/j.pnmrs.2016.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 06/07/2023]
Abstract
Protein folding is a highly complex process proceeding through a number of disordered and partially folded nonnative states with various degrees of structural organization. These transiently and sparsely populated species on the protein folding energy landscape play crucial roles in driving folding toward the native conformation, yet some of these nonnative states may also serve as precursors for protein misfolding and aggregation associated with a range of devastating diseases, including neuro-degeneration, diabetes and cancer. Therefore, in vivo protein folding is often reshaped co- and post-translationally through interactions with the ribosome, molecular chaperones and/or other cellular components. Owing to developments in instrumentation and methodology, solution NMR spectroscopy has emerged as the central experimental approach for the detailed characterization of the complex protein folding processes in vitro and in vivo. NMR relaxation dispersion and saturation transfer methods provide the means for a detailed characterization of protein folding kinetics and thermodynamics under native-like conditions, as well as modeling high-resolution structures of weakly populated short-lived conformational states on the protein folding energy landscape. Continuing development of isotope labeling strategies and NMR methods to probe high molecular weight protein assemblies, along with advances of in-cell NMR, have recently allowed protein folding to be studied in the context of ribosome-nascent chain complexes and molecular chaperones, and even inside living cells. Here we review solution NMR approaches to investigate the protein folding energy landscape, and discuss selected applications of NMR methodology to studying protein folding in vitro and in vivo. Together, these examples highlight a vast potential of solution NMR in providing atomistic insights into molecular mechanisms of protein folding and homeostasis in health and disease.
Collapse
Affiliation(s)
- Anastasia Zhuravleva
- Astbury Centre for Structural Molecular Biology and Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
29
|
Houwman JA, van Mierlo CPM. Folding of proteins with a flavodoxin-like architecture. FEBS J 2017; 284:3145-3167. [PMID: 28380286 DOI: 10.1111/febs.14077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/13/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022]
Abstract
The flavodoxin-like fold is a protein architecture that can be traced back to the universal ancestor of the three kingdoms of life. Many proteins share this α-β parallel topology and hence it is highly relevant to illuminate how they fold. Here, we review experiments and simulations concerning the folding of flavodoxins and CheY-like proteins, which share the flavodoxin-like fold. These polypeptides tend to temporarily misfold during unassisted folding to their functionally active forms. This susceptibility to frustration is caused by the more rapid formation of an α-helix compared to a β-sheet, particularly when a parallel β-sheet is involved. As a result, flavodoxin-like proteins form intermediates that are off-pathway to native protein and several of these species are molten globules (MGs). Experiments suggest that the off-pathway species are of helical nature and that flavodoxin-like proteins have a nonconserved transition state that determines the rate of productive folding. Folding of flavodoxin from Azotobacter vinelandii has been investigated extensively, enabling a schematic construction of its folding energy landscape. It is the only flavodoxin-like protein of which cotranslational folding has been probed. New insights that emphasize differences between in vivo and in vitro folding energy landscapes are emerging: the ribosome modulates MG formation in nascent apoflavodoxin and forces this polypeptide toward the native state.
Collapse
Affiliation(s)
- Joseline A Houwman
- Laboratory of Biochemistry, Wageningen University and Research, The Netherlands
| | | |
Collapse
|
30
|
Kempf N, Remes C, Ledesch R, Züchner T, Höfig H, Ritter I, Katranidis A, Fitter J. A Novel Method to Evaluate Ribosomal Performance in Cell-Free Protein Synthesis Systems. Sci Rep 2017; 7:46753. [PMID: 28436469 PMCID: PMC5402277 DOI: 10.1038/srep46753] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/21/2017] [Indexed: 02/08/2023] Open
Abstract
Cell-free protein synthesis (CFPS) systems were designed to produce proteins with a minimal set of purified components, thus offering the possibility to follow translation as well as protein folding. In order to characterize the performance of the ribosomes in such a system, it is crucial to separately quantify the two main components of productivity, namely the fraction of active ribosomes and the number of synthesizing cycles. Here, we provide a direct and highly reliable measure of ribosomal activity in any given CFPS system, introducing an enhanced-arrest peptide variant. We observe an almost complete stalling of ribosomes that produce GFPem (~95%), as determined by common centrifugation techniques and fluorescence correlation spectroscopy (FCS). Moreover, we thoroughly study the effect of different ribosomal modifications independently on activity and number of synthesizing cycles. Finally, employing two-colour coincidence detection and two-colour colocalisation microscopy, we demonstrate real-time access to key productivity parameters with minimal sample consumption on a single ribosome level.
Collapse
Affiliation(s)
- Noémie Kempf
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Cristina Remes
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Ralph Ledesch
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Tina Züchner
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Henning Höfig
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, 52428 Jülich, Germany.,Physikalisches Institut (IA), RWTH Aachen, 52062 Aachen, Germany
| | - Ilona Ritter
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, 52428 Jülich, Germany
| | | | - Jörg Fitter
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, 52428 Jülich, Germany.,Physikalisches Institut (IA), RWTH Aachen, 52062 Aachen, Germany
| |
Collapse
|
31
|
Houwman JA, André E, Westphal AH, van Berkel WJH, van Mierlo CPM. The Ribosome Restrains Molten Globule Formation in Stalled Nascent Flavodoxin. J Biol Chem 2016; 291:25911-25920. [PMID: 27784783 PMCID: PMC5207065 DOI: 10.1074/jbc.m116.756205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/13/2016] [Indexed: 11/06/2022] Open
Abstract
Folding of proteins usually involves intermediates, of which an important type is the molten globule (MG). MGs are ensembles of interconverting conformers that contain (non-)native secondary structure and lack the tightly packed tertiary structure of natively folded globular proteins. Whereas MGs of various purified proteins have been probed to date, no data are available on their presence and/or effect during protein synthesis. To study whether MGs arise during translation, we use ribosome-nascent chain (RNC) complexes of the electron transfer protein flavodoxin. Full-length isolated flavodoxin, which contains a non-covalently bound flavin mononucleotide (FMN) as cofactor, acquires its native α/β parallel topology via a folding mechanism that contains an off-pathway intermediate with molten globular characteristics. Extensive population of this MG state occurs at physiological ionic strength for apoflavodoxin variant F44Y, in which a phenylalanine at position 44 is changed to a tyrosine. Here, we show for the first time that ascertaining the binding rate of FMN as a function of ionic strength can be used as a tool to determine the presence of the off-pathway MG on the ribosome. Application of this methodology to F44Y apoflavodoxin RNCs shows that at physiological ionic strength the ribosome influences formation of the off-pathway MG and forces the nascent chain toward the native state.
Collapse
Affiliation(s)
- Joseline A Houwman
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Estelle André
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Adrie H Westphal
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Willem J H van Berkel
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Carlo P M van Mierlo
- From the Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
32
|
Structural studies of the N-terminal fragments of the WW domain: Insights into co-translational folding of a beta-sheet protein. Sci Rep 2016; 6:34654. [PMID: 27698466 PMCID: PMC5048162 DOI: 10.1038/srep34654] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/16/2016] [Indexed: 11/22/2022] Open
Abstract
Nascent proteins fold co-translationally because the folding speed and folding pathways are limited by the rate of ribosome biosynthesis in the living cell. In addition, though full-length proteins can fold all their residues during the folding process, nascent proteins initially fold only with the N-terminal residues. However, the transient structure and the co-translational folding pathway are not well understood. Here we report the atomic structures of a series of N-terminal fragments of the WW domain with increasing amino acid length. Unexpectedly, the structures indicate that the intermediate-length fragments take helical conformations even though the full-length protein has no helical regions. The circular dichroism spectra and theoretical calculations also support the crystallographic results. This suggests that the short-range interactions are more decisive in the structure formation than the long-range interactions for short nascent proteins. In the course of the peptide extension, the helical structure change to the structure mediated by the long-range interactions at a particular polypeptide length. Our results will provide unique information for elucidating the nature of co-translational folding.
Collapse
|
33
|
Cassaignau AME, Launay HMM, Karyadi ME, Wang X, Waudby CA, Deckert A, Robertson AL, Christodoulou J, Cabrita LD. A strategy for co-translational folding studies of ribosome-bound nascent chain complexes using NMR spectroscopy. Nat Protoc 2016; 11:1492-507. [PMID: 27466710 DOI: 10.1038/nprot.2016.101] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
During biosynthesis on the ribosome, an elongating nascent polypeptide chain can begin to fold, in a process that is central to all living systems. Detailed structural studies of co-translational protein folding are now beginning to emerge; such studies were previously limited, at least in part, by the inherently dynamic nature of emerging nascent chains, which precluded most structural techniques. NMR spectroscopy is able to provide atomic-resolution information for ribosome-nascent chain complexes (RNCs), but it requires large quantities (≥10 mg) of homogeneous, isotopically labeled RNCs. Further challenges include limited sample working concentration and stability of the RNC sample (which contribute to weak NMR signals) and resonance broadening caused by attachment to the large (2.4-MDa) ribosomal complex. Here, we present a strategy to generate isotopically labeled RNCs in Escherichia coli that are suitable for NMR studies. Uniform translational arrest of the nascent chains is achieved using a stalling motif, and isotopically labeled RNCs are produced at high yield using high-cell-density E. coli growth conditions. Homogeneous RNCs are isolated by combining metal affinity chromatography (to isolate ribosome-bound species) with sucrose density centrifugation (to recover intact 70S monosomes). Sensitivity-optimized NMR spectroscopy is then applied to the RNCs, combined with a suite of parallel NMR and biochemical analyses to cross-validate their integrity, including RNC-optimized NMR diffusion measurements to report on ribosome attachment in situ. Comparative NMR studies of RNCs with the analogous isolated proteins permit a high-resolution description of the structure and dynamics of a nascent chain during its progressive biosynthesis on the ribosome.
Collapse
Affiliation(s)
- Anaïs M E Cassaignau
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, University of London, London, UK
| | - Hélène M M Launay
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, University of London, London, UK
| | - Maria-Evangelia Karyadi
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, University of London, London, UK
| | - Xiaolin Wang
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, University of London, London, UK
| | - Christopher A Waudby
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, University of London, London, UK
| | - Annika Deckert
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, University of London, London, UK
| | - Amy L Robertson
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, University of London, London, UK
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, University of London, London, UK
| | - Lisa D Cabrita
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, University of London, London, UK
| |
Collapse
|
34
|
A Multidisciplinary Approach to High Throughput Nuclear Magnetic Resonance Spectroscopy. SENSORS 2016; 16:s16060850. [PMID: 27294925 PMCID: PMC4934276 DOI: 10.3390/s16060850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/30/2016] [Accepted: 06/02/2016] [Indexed: 02/03/2023]
Abstract
Nuclear Magnetic Resonance (NMR) is a non-contact, powerful structure-elucidation technique for biochemical analysis. NMR spectroscopy is used extensively in a variety of life science applications including drug discovery. However, existing NMR technology is limited in that it cannot run a large number of experiments simultaneously in one unit. Recent advances in micro-fabrication technologies have attracted the attention of researchers to overcome these limitations and significantly accelerate the drug discovery process by developing the next generation of high-throughput NMR spectrometers using Complementary Metal Oxide Semiconductor (CMOS). In this paper, we examine this paradigm shift and explore new design strategies for the development of the next generation of high-throughput NMR spectrometers using CMOS technology. A CMOS NMR system consists of an array of high sensitivity micro-coils integrated with interfacing radio-frequency circuits on the same chip. Herein, we first discuss the key challenges and recent advances in the field of CMOS NMR technology, and then a new design strategy is put forward for the design and implementation of highly sensitive and high-throughput CMOS NMR spectrometers. We thereafter discuss the functionality and applicability of the proposed techniques by demonstrating the results. For microelectronic researchers starting to work in the field of CMOS NMR technology, this paper serves as a tutorial with comprehensive review of state-of-the-art technologies and their performance levels. Based on these levels, the CMOS NMR approach offers unique advantages for high resolution, time-sensitive and high-throughput bimolecular analysis required in a variety of life science applications including drug discovery.
Collapse
|
35
|
Deckert A, Waudby CA, Wlodarski T, Wentink AS, Wang X, Kirkpatrick JP, Paton JFS, Camilloni C, Kukic P, Dobson CM, Vendruscolo M, Cabrita LD, Christodoulou J. Structural characterization of the interaction of α-synuclein nascent chains with the ribosomal surface and trigger factor. Proc Natl Acad Sci U S A 2016; 113:5012-7. [PMID: 27092002 PMCID: PMC4983817 DOI: 10.1073/pnas.1519124113] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ribosome is increasingly becoming recognized as a key hub for integrating quality control processes associated with protein biosynthesis and cotranslational folding (CTF). The molecular mechanisms by which these processes take place, however, remain largely unknown, in particular in the case of intrinsically disordered proteins (IDPs). To address this question, we studied at a residue-specific level the structure and dynamics of ribosome-nascent chain complexes (RNCs) of α-synuclein (αSyn), an IDP associated with Parkinson's disease (PD). Using solution-state nuclear magnetic resonance (NMR) spectroscopy and coarse-grained molecular dynamics (MD) simulations, we find that, although the nascent chain (NC) has a highly disordered conformation, its N-terminal region shows resonance broadening consistent with interactions involving specific regions of the ribosome surface. We also investigated the effects of the ribosome-associated molecular chaperone trigger factor (TF) on αSyn structure and dynamics using resonance broadening to define a footprint of the TF-RNC interactions. We have used these data to construct structural models that suggest specific ways by which emerging NCs can interact with the biosynthesis and quality control machinery.
Collapse
Affiliation(s)
- Annika Deckert
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom; Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| | - Christopher A Waudby
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom; Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| | - Tomasz Wlodarski
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom; Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| | - Anne S Wentink
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom; Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| | - Xiaolin Wang
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom; Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| | - John P Kirkpatrick
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom; Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| | - Jack F S Paton
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom; Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| | - Carlo Camilloni
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Predrag Kukic
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Lisa D Cabrita
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom; Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom;
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom; Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom;
| |
Collapse
|
36
|
A structural ensemble of a ribosome-nascent chain complex during cotranslational protein folding. Nat Struct Mol Biol 2016; 23:278-285. [PMID: 26926436 PMCID: PMC5405865 DOI: 10.1038/nsmb.3182] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 02/02/2016] [Indexed: 12/18/2022]
Abstract
Although detailed pictures of ribosome structures are emerging, little is known about the structural and cotranslational folding properties of nascent polypeptide chains at the atomic level. Here we used solution-state NMR spectroscopy to define a structural ensemble of a ribosome-nascent chain complex (RNC) formed during protein biosynthesis in Escherichia coli, in which a pair of immunoglobulin-like domains adopts a folded N-terminal domain (FLN5) and a disordered but compact C-terminal domain (FLN6). To study how FLN5 acquires its native structure cotranslationally, we progressively shortened the RNC constructs. We found that the ribosome modulates the folding process, because the complete sequence of FLN5 emerged well beyond the tunnel before acquiring native structure, whereas FLN5 in isolation folded spontaneously, even when truncated. This finding suggests that regulating structure acquisition during biosynthesis can reduce the probability of misfolding, particularly of homologous domains.
Collapse
|
37
|
Chan SHS, Waudby CA, Cassaignau AME, Cabrita LD, Christodoulou J. Increasing the sensitivity of NMR diffusion measurements by paramagnetic longitudinal relaxation enhancement, with application to ribosome-nascent chain complexes. JOURNAL OF BIOMOLECULAR NMR 2015; 63:151-163. [PMID: 26253948 PMCID: PMC4924603 DOI: 10.1007/s10858-015-9968-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/13/2015] [Indexed: 05/27/2023]
Abstract
The translational diffusion of macromolecules can be examined non-invasively by stimulated echo (STE) NMR experiments to accurately determine their molecular sizes. These measurements can be important probes of intermolecular interactions and protein folding and unfolding, and are crucial in monitoring the integrity of large macromolecular assemblies such as ribosome-nascent chain complexes (RNCs). However, NMR studies of these complexes can be severely constrained by their slow tumbling, low solubility (with maximum concentrations of up to 10 μM), and short lifetimes resulting in weak signal, and therefore continuing improvements in experimental sensitivity are essential. Here we explore the use of the paramagnetic longitudinal relaxation enhancement (PLRE) agent NiDO2A on the sensitivity of (15)N XSTE and SORDID heteronuclear STE experiments, which can be used to monitor the integrity of these unstable complexes. We exploit the dependence of the PLRE effect on the gyromagnetic ratio and electronic relaxation time to accelerate recovery of (1)H magnetization without adversely affecting storage on N z during diffusion delays or introducing significant transverse relaxation line broadening. By applying the longitudinal relaxation-optimized SORDID pulse sequence together with NiDO2A to 70S Escherichia coli ribosomes and RNCs, NMR diffusion sensitivity enhancements of up to 4.5-fold relative to XSTE are achieved, alongside ~1.9-fold improvements in two-dimensional NMR sensitivity, without compromising the sample integrity. We anticipate these results will significantly advance the use of NMR to probe dynamic regions of ribosomes and other large, unstable macromolecular assemblies.
Collapse
Affiliation(s)
- Sammy H S Chan
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1E 6BT, UK
| | - Christopher A Waudby
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1E 6BT, UK
| | - Anaïs M E Cassaignau
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1E 6BT, UK
| | - Lisa D Cabrita
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1E 6BT, UK
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1E 6BT, UK
| |
Collapse
|
38
|
Houwman JA, Westphal AH, van Berkel WJH, van Mierlo CPM. Stalled flavodoxin binds its cofactor while fully exposed outside the ribosome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1317-24. [PMID: 26073784 DOI: 10.1016/j.bbapap.2015.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/26/2015] [Accepted: 06/10/2015] [Indexed: 01/10/2023]
Abstract
Correct folding of proteins is crucial for cellular homeostasis. More than thirty percent of proteins contain one or more cofactors, but the impact of these cofactors on co-translational folding remains largely unknown. Here, we address the binding of flavin mononucleotide (FMN) to nascent flavodoxin, by generating ribosome-arrested nascent chains that expose either the entire protein or C-terminally truncated segments thereof. The native α/β parallel fold of flavodoxin is among the most ancestral and widely distributed folds in nature and exploring its co-translational folding is thus highly relevant. In Escherichia coli (strain BL21(DE3) Δtig::kan) FMN turns out to be limiting for saturation of this flavoprotein on time-scales vastly exceeding those of flavodoxin synthesis. Because the ribosome affects protein folding, apoflavodoxin cannot bind FMN during its translation. As a result, binding of cofactor to released protein is the last step in production of this flavoprotein in the cell. We show that once apoflavodoxin is entirely synthesized and exposed outside the ribosome to which it is stalled by an artificial linker containing the SecM sequence, the protein is natively folded and capable of binding FMN.
Collapse
Affiliation(s)
- Joseline A Houwman
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands
| | - Carlo P M van Mierlo
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands.
| |
Collapse
|
39
|
Kim SJ, Yoon JS, Shishido H, Yang Z, Rooney LA, Barral JM, Skach WR. Translational tuning optimizes nascent protein folding in cells. Science 2015; 348:444-8. [DOI: 10.1126/science.aaa3974] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
|
41
|
Krobath H, Shakhnovich EI, Faísca PFN. Structural and energetic determinants of co-translational folding. J Chem Phys 2014; 138:215101. [PMID: 23758397 DOI: 10.1063/1.4808044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We performed extensive lattice Monte Carlo simulations of ribosome-bound stalled nascent chains (RNCs) to explore the relative roles of native topology and non-native interactions in co-translational folding of small proteins. We found that the formation of a substantial part of the native structure generally occurs towards the end of protein synthesis. However, multi-domain structures, which are rich in local interactions, are able to develop gradually during chain elongation, while those with proximate chain termini require full protein synthesis to fold. A detailed assessment of the conformational ensembles populated by RNCs with different lengths reveals that the directionality of protein synthesis has a fine-tuning effect on the probability to populate low-energy conformations. In particular, if the participation of non-native interactions in folding energetics is mild, the formation of native-like conformations is majorly determined by the properties of the contact map around the tethering terminus. Likewise, a pair of RNCs differing by only 1-2 residues can populate structurally well-resolved low energy conformations with significantly different probabilities. An interesting structural feature of these low-energy conformations is that, irrespective of native structure, their non-native interactions are always long-ranged and marginally stabilizing. A comparison between the conformational spectra of RNCs and chain fragments folding freely in the bulk reveals drastic changes amongst the two set-ups depending on the native structure. Furthermore, they also show that the ribosome may enhance (up to 20%) the population of low energy conformations for chains folding to native structures dominated by local interactions. In contrast, a RNC folding to a non-local topology is forced to remain largely unstructured but can attain low energy conformations in bulk.
Collapse
Affiliation(s)
- Heinrich Krobath
- Centro de Física da Matéria Condensada and Departamento de Física, Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal
| | | | | |
Collapse
|
42
|
O’Brien EP, Vendruscolo M, Dobson CM. Kinetic modelling indicates that fast-translating codons can coordinate cotranslational protein folding by avoiding misfolded intermediates. Nat Commun 2014; 5:2988. [DOI: 10.1038/ncomms3988] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 11/21/2013] [Indexed: 11/10/2022] Open
|
43
|
Recent advances in protein NMR spectroscopy and their implications in protein therapeutics research. Anal Bioanal Chem 2013; 406:2279-88. [DOI: 10.1007/s00216-013-7518-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/13/2013] [Accepted: 11/16/2013] [Indexed: 01/04/2023]
|
44
|
Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU. Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 2013; 82:323-55. [PMID: 23746257 DOI: 10.1146/annurev-biochem-060208-092442] [Citation(s) in RCA: 1014] [Impact Index Per Article: 92.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The biological functions of proteins are governed by their three-dimensional fold. Protein folding, maintenance of proteome integrity, and protein homeostasis (proteostasis) critically depend on a complex network of molecular chaperones. Disruption of proteostasis is implicated in aging and the pathogenesis of numerous degenerative diseases. In the cytosol, different classes of molecular chaperones cooperate in evolutionarily conserved folding pathways. Nascent polypeptides interact cotranslationally with a first set of chaperones, including trigger factor and the Hsp70 system, which prevent premature (mis)folding. Folding occurs upon controlled release of newly synthesized proteins from these factors or after transfer to downstream chaperones such as the chaperonins. Chaperonins are large, cylindrical complexes that provide a central compartment for a single protein chain to fold unimpaired by aggregation. This review focuses on recent advances in understanding the mechanisms of chaperone action in promoting and regulating protein folding and on the pathological consequences of protein misfolding and aggregation.
Collapse
Affiliation(s)
- Yujin E Kim
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
45
|
Waudby CA, Launay H, Cabrita LD, Christodoulou J. Protein folding on the ribosome studied using NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 74:57-75. [PMID: 24083462 PMCID: PMC3991860 DOI: 10.1016/j.pnmrs.2013.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 07/17/2013] [Accepted: 07/17/2013] [Indexed: 05/11/2023]
Abstract
NMR spectroscopy is a powerful tool for the investigation of protein folding and misfolding, providing a characterization of molecular structure, dynamics and exchange processes, across a very wide range of timescales and with near atomic resolution. In recent years NMR methods have also been developed to study protein folding as it might occur within the cell, in a de novo manner, by observing the folding of nascent polypeptides in the process of emerging from the ribosome during synthesis. Despite the 2.3 MDa molecular weight of the bacterial 70S ribosome, many nascent polypeptides, and some ribosomal proteins, have sufficient local flexibility that sharp resonances may be observed in solution-state NMR spectra. In providing information on dynamic regions of the structure, NMR spectroscopy is therefore highly complementary to alternative methods such as X-ray crystallography and cryo-electron microscopy, which have successfully characterized the rigid core of the ribosome particle. However, the low working concentrations and limited sample stability associated with ribosome-nascent chain complexes means that such studies still present significant technical challenges to the NMR spectroscopist. This review will discuss the progress that has been made in this area, surveying all NMR studies that have been published to date, and with a particular focus on strategies for improving experimental sensitivity.
Collapse
|
46
|
Affiliation(s)
| | - V. Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; ,
| |
Collapse
|
47
|
Gelis I, Vitzthum V, Dhimole N, Caporini MA, Schedlbauer A, Carnevale D, Connell SR, Fucini P, Bodenhausen G. Solid-state NMR enhanced by dynamic nuclear polarization as a novel tool for ribosome structural biology. JOURNAL OF BIOMOLECULAR NMR 2013; 56:85-93. [PMID: 23689811 DOI: 10.1007/s10858-013-9721-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/07/2013] [Indexed: 06/02/2023]
Abstract
The impact of Nuclear Magnetic Resonance (NMR) on studies of large macromolecular complexes hinges on improvements in sensitivity and resolution. Dynamic nuclear polarization (DNP) in the solid state can offer improved sensitivity, provided sample preparation is optimized to preserve spectral resolution. For a few nanomoles of intact ribosomes and an 800 kDa ribosomal complex we demonstrate that the combination of DNP and magic-angle spinning NMR (MAS-NMR) allows one to overcome current sensitivity limitations so that homo- and heteronuclear (13)C and (15)N NMR correlation spectra can be recorded. Ribosome particles, directly pelleted and frozen into an NMR rotor, yield DNP signal enhancements on the order of ~25-fold and spectra that exhibit narrow linewidths, suitable for obtaining site-specific information. We anticipate that the same approach is applicable to other high molecular weight complexes.
Collapse
Affiliation(s)
- Ioannis Gelis
- Buchmann Institute for Molecular Life Sciences, Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
The how’s and why’s of protein folding intermediates. Arch Biochem Biophys 2013; 531:14-23. [DOI: 10.1016/j.abb.2012.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/05/2012] [Accepted: 10/11/2012] [Indexed: 12/13/2022]
|
49
|
Kosuri P, Alegre-Cebollada J, Feng J, Kaplan A, Inglés-Prieto A, Badilla CL, Stockwell BR, Sanchez-Ruiz JM, Holmgren A, Fernández JM. Protein folding drives disulfide formation. Cell 2013; 151:794-806. [PMID: 23141538 DOI: 10.1016/j.cell.2012.09.036] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 07/03/2012] [Accepted: 09/05/2012] [Indexed: 11/25/2022]
Abstract
PDI catalyzes the oxidative folding of disulfide-containing proteins. However, the sequence of reactions leading to a natively folded and oxidized protein remains unknown. Here we demonstrate a technique that enables independent measurements of disulfide formation and protein folding. We find that non-native disulfides are formed early in the folding pathway and can trigger misfolding. In contrast, a PDI domain favors native disulfides by catalyzing oxidation at a late stage of folding. We propose a model for cotranslational oxidative folding wherein PDI acts as a placeholder that is relieved by the pairing of cysteines caused by substrate folding. This general mechanism can explain how PDI catalyzes oxidative folding in a variety of structurally unrelated substrates.
Collapse
Affiliation(s)
- Pallav Kosuri
- Graduate Program in Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10027, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | | | - Jason Feng
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Anna Kaplan
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Alvaro Inglés-Prieto
- Facultad de Ciencias, Departamento de Química-Fisica, Universidad de Granada, 18071 Granada, Spain
| | - Carmen L Badilla
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Chemistry, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Jose M Sanchez-Ruiz
- Facultad de Ciencias, Departamento de Química-Fisica, Universidad de Granada, 18071 Granada, Spain
| | - Arne Holmgren
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Julio M Fernández
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
50
|
Loksztejn A, Scholl Z, Marszalek PE. Atomic force microscopy captures folded ribosome bound nascent chains. Chem Commun (Camb) 2012; 48:11727-9. [PMID: 23051696 DOI: 10.1039/c2cc35551e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct visualization of co-translational folding of nascent polypeptide chains is challenging. Here we present, for the first time, AFM images of large protein constructs based on the membrane binding domain of ankyrin-R, complexed with the ribosome. The characteristic "horse-shoe" shape of ankyrin-R emerging from the ribosome was captured.
Collapse
Affiliation(s)
- Anna Loksztejn
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA.
| | | | | |
Collapse
|