1
|
Yang Z, Xie L, Zhang B, Hu S, Liu C, Wu Z, Yang C. Neural circuits and therapeutic mechanisms of empathic pain. Neuropharmacology 2025; 265:110268. [PMID: 39674400 DOI: 10.1016/j.neuropharm.2024.110268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Empathy is the capacity to understand and share the experiences of others. This ability fosters connections between individuals, enriching the fabric of our shared world. One notable example is empathy for the pain of others. Such experiences facilitate the identification of potential dangers, both for oneself and for others. Neuroimaging studies have helped to pinpoint brain regions that modulate empathic pain. Recently, there has also been a surge in studies exploring the neural mechanisms of empathic pain in rodent models. Neuropsychiatric disorders such as autism, psychosis, and schizophrenia often exhibit empathy deficits. Targeting the modulation of empathic pain holds potential for alleviating core symptoms in these patients. Interestingly, empathy research may also benefit pain management, leading to new approaches for understanding the negative emotions associated with pain. This review summarizes recent advances in neuroimaging for the study of empathic pain, outlines the underlying neurocircuit mechanisms, describes therapeutic strategies, and explores promising avenues for future research. This article is part of the Special Issue on "Empathic Pain".
Collapse
Affiliation(s)
- Zonghan Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Li Xie
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Anesthesiology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing 210031, China
| | - Bingyuan Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Anesthesiology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou 225300, China
| | - Suwan Hu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Cunming Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zifeng Wu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
2
|
Scheliga S, Dohrn MF, Kellermann T, Lampert A, Rolke R, Namer B, Peschke GZ, van den Braak N, Lischka A, Spehr M, Jo H, Habel U. Painful stimulation increases functional connectivity between supplementary motor area and thalamus in patients with small fibre neuropathy. Eur J Pain 2025; 29:e4720. [PMID: 39193929 PMCID: PMC11671338 DOI: 10.1002/ejp.4720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND The lead symptom of small fibre neuropathy (SFN) is neuropathic pain. Recent functional magnetic resonance imaging (fMRI) studies have indicated central changes in SFN patients of different etiologies. However, less is known about brain functional connectivity during acute pain processing in idiopathic SFN. METHODS We conducted fMRI with thermal heat pain application (left volar forearm) in 32 idiopathic SFN patients and 31 healthy controls. We performed functional connectivity analyses with right supplementary motor area (SMA), left insula, and left caudate nucleus (CN) as seed regions, respectively. Since pathogenic gain-of-function variants in voltage gated sodium channels (Nav) have been linked to SFN pathophysiology, explorative connectivity analyses were performed in a homogenous subsample of patients carrying rare heterozygous missense variants. RESULTS For right SMA, we found significantly higher connectivity with the right thalamus in SFN patients compared to controls. This connectivity correlated significantly with intraepidermal nerve fibre density, suggesting a link between peripheral and central pain processing. We found significantly reduced connections between right SMA and right middle frontal gyrus in patients with Nav variants. Likewise, connectivity between left CN and right frontal pole was decreased. CONCLUSIONS Aberrant functional connectivity in SFN is in line with previous research on other chronic pain syndromes. Functional connectivity changes may be linked to SFN, highlighting the need to determine if they result from peripheral changes causing abnormal somatosensory processing. This understanding may be crucial for assessing their impact on painful symptoms and therapy response. SIGNIFICANCE STATEMENT We found increased functional connectivity between SMA and thalamus during painful stimulation in patients with idiopathic SFN. Connectivity correlated significantly with intraepidermal nerve fibre density, suggesting a link between peripheral and central pain processing. Our findings emphasize the importance of investigating functional connectivity changes as a potential feature of SFN.
Collapse
Affiliation(s)
- Sebastian Scheliga
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
- Scientific Center for Neuropathic Pain Aachen, SCNAachenUniklinik RWTH Aachen UniversityAachenGermany
| | - Maike F. Dohrn
- Scientific Center for Neuropathic Pain Aachen, SCNAachenUniklinik RWTH Aachen UniversityAachenGermany
- Department of Neurology, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Thilo Kellermann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
- Scientific Center for Neuropathic Pain Aachen, SCNAachenUniklinik RWTH Aachen UniversityAachenGermany
- Institute of Neuroscience and Medicine: JARA‐Institute Brain Structure Function Relationship (INM 10)Research Center Jülich, Wilhelm‐Johnen‐StraβeJülichGermany
| | - Angelika Lampert
- Scientific Center for Neuropathic Pain Aachen, SCNAachenUniklinik RWTH Aachen UniversityAachenGermany
- Institute of Neurophysiology, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Roman Rolke
- Scientific Center for Neuropathic Pain Aachen, SCNAachenUniklinik RWTH Aachen UniversityAachenGermany
- Department of Palliative Medicine, Medical Faculty RWTHAachen UniversityAachenGermany
| | - Barbara Namer
- Scientific Center for Neuropathic Pain Aachen, SCNAachenUniklinik RWTH Aachen UniversityAachenGermany
- Institute of Neurophysiology, Medical FacultyRWTH Aachen UniversityAachenGermany
- Research Group Neuroscience, Interdisciplinary Centre for Clinical Research, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Greta Z. Peschke
- Scientific Center for Neuropathic Pain Aachen, SCNAachenUniklinik RWTH Aachen UniversityAachenGermany
- Department of Neurology, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Nortje van den Braak
- Scientific Center for Neuropathic Pain Aachen, SCNAachenUniklinik RWTH Aachen UniversityAachenGermany
- Department of Neurology, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Annette Lischka
- Scientific Center for Neuropathic Pain Aachen, SCNAachenUniklinik RWTH Aachen UniversityAachenGermany
- Institute for Human Genetics and Genomic Medicine, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Marc Spehr
- Scientific Center for Neuropathic Pain Aachen, SCNAachenUniklinik RWTH Aachen UniversityAachenGermany
- Department of ChemosensationRWTH Aachen University, Institute for Biology IIAachenGermany
| | - Han‐Gue Jo
- Scientific Center for Neuropathic Pain Aachen, SCNAachenUniklinik RWTH Aachen UniversityAachenGermany
- School of Computer Science & EngineeringKunsan National UniversityGunsanRepublic of Korea
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
- Scientific Center for Neuropathic Pain Aachen, SCNAachenUniklinik RWTH Aachen UniversityAachenGermany
- Institute of Neuroscience and Medicine: JARA‐Institute Brain Structure Function Relationship (INM 10)Research Center Jülich, Wilhelm‐Johnen‐StraβeJülichGermany
| |
Collapse
|
3
|
Lang-Illievich K, Klivinyi C, Ranftl J, Elhelali A, Hammer S, Szilagyi IS, Bornemann-Cimenti H. Change in Endogenous Pain Modulation Depending on Emotional States in Healthy Subjects: A Randomized Controlled Trial. Pain Ther 2024; 13:1287-1298. [PMID: 39102098 PMCID: PMC11393222 DOI: 10.1007/s40122-024-00642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/19/2024] [Indexed: 08/06/2024] Open
Abstract
INTRODUCTION Chronic pain is a public health issue, leading to substantial healthcare costs and diminished quality of life for sufferers. While the role of anxiety in pain modulation has been extensively studied, the effects of other emotional states on the body's pain control mechanisms remain less understood. This study sought to explore how different emotions (happiness, anger, sadness, and interest) affect conditioned pain modulation (CPM) and the wind-up phenomenon in healthy adults. METHODS This randomized controlled, cross-over trial involved 28 healthy participants aged 18-60. Participants watched video clips designed to induce specific emotions: happiness, anger, sadness, and interest. Emotional states were assessed using a 7-point Likert scale. Pain modulation was measured using CPM and the wind-up phenomenon. CPM was assessed with a hot water bath as the conditioning stimulus and pressure pain tolerance as the test stimulus. Wind-up was measured using pinprick needle stimulators and a visual analog scale. Data were analyzed using paired t tests to compare pre- and post-emotion induction values. RESULTS Significant changes in emotional self-assessment values were observed for all emotions. Happiness increased CPM (4.6 ± 11.4, p = 0.04277), while sadness - 9.9 ± 23.1, p = 0.03211) and anger - 9.1 ± 23.3, p = 0.04804) decreased it. Interest did not significantly alter CPM (- 5.1 ± 25.8, p = 0.31042). No significant effects were found for the wind-up phenomenon across any emotional states. CONCLUSION This study shows that emotional states significantly affect the body's ability to modulate pain. Positive emotions like happiness enhance pain inhibition, while negative emotions such as sadness and anger impair it. These findings suggest that emotional modulation techniques could be integrated into pain management strategies to improve patient outcomes. Further research should explore a broader range of emotions and include objective measures to validate these results.
Collapse
Affiliation(s)
- Kordula Lang-Illievich
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
- Department of Anaesthesia and Intensive Care Medicine, State Hospital Güssing, Güssing, Austria
| | - Christoph Klivinyi
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Julia Ranftl
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Ala Elhelali
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Sascha Hammer
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
- Department of Psychiatry, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Istvan S Szilagyi
- Department of Psychiatry, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Helmar Bornemann-Cimenti
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria.
| |
Collapse
|
4
|
Zidda F, Lyu Y, Nees F, Radev ST, Sitges C, Montoya P, Flor H, Andoh J. Neural dynamics of pain modulation by emotional valence. Cereb Cortex 2024; 34:bhae358. [PMID: 39245849 DOI: 10.1093/cercor/bhae358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/10/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024] Open
Abstract
Definitions of human pain acknowledge at least two dimensions of pain, affective and sensory, described as separable and thus potentially differentially modifiable. Using electroencephalography, we investigated perceptual and neural changes of emotional pain modulation in healthy individuals. Painful electrical stimuli were applied after presentation of priming emotional pictures (negative, neutral, positive) and followed by pain intensity and unpleasantness ratings. We found that perceptual and neural event-related potential responses to painful stimulation were significantly modulated by emotional valence. Specifically, pain unpleasantness but not pain intensity ratings were increased when pain was preceded by negative compared to neutral or positive pictures. Amplitudes of N2 were higher when pain was preceded by neutral compared to negative and positive pictures, and P2 amplitudes were higher for negative compared to neutral and positive pictures. In addition, a hierarchical regression analysis revealed that P2 alone and not N2, predicted pain perception. Finally, source analysis showed the anterior cingulate cortex and the thalamus as main spatial clusters accounting for the neural changes in pain processing. These findings provide evidence for a separation of the sensory and affective dimensions of pain and open new perspectives for mechanisms of pain modulation.
Collapse
Affiliation(s)
- Francesca Zidda
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, J5, Mannheim 68159, Mannheim, Germany
| | - Yuanyuan Lyu
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, J5, Mannheim 68159, Mannheim, Germany
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Frauke Nees
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, J5, Mannheim 68159, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, 24105, Kiel, Germany
| | - Stefan T Radev
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, J5, Mannheim 68159, Mannheim, Germany
| | - Carolina Sitges
- Department of Psychology, Research Institute of Health Sciences (IUNICS), Health Research Institute of the Balearic Islands (IdISBa), University of the Balearic Islands, 07122, Palma, Spain
| | - Pedro Montoya
- Department of Psychology, Research Institute of Health Sciences (IUNICS), Health Research Institute of the Balearic Islands (IdISBa), University of the Balearic Islands, 07122, Palma, Spain
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, J5, Mannheim 68159, Mannheim, Germany
| | - Jamila Andoh
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, J5, Mannheim 68159, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, J5, 68159, Mannheim, Germany
| |
Collapse
|
5
|
Cheng L, Zhang J, Xi H, Li M, Hu S, Yuan W, Wang P, Chen L, Zhan L, Jia X. Abnormalities of brain structure and function in cervical spondylosis: a multi-modal voxel-based meta-analysis. Front Neurosci 2024; 18:1415411. [PMID: 38948928 PMCID: PMC11211609 DOI: 10.3389/fnins.2024.1415411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Background Previous neuroimaging studies have revealed structural and functional brain abnormalities in patients with cervical spondylosis (CS). However, the results are divergent and inconsistent. Therefore, the present study conducted a multi-modal meta-analysis to investigate the consistent structural and functional brain alterations in CS patients. Methods A comprehensive literature search was conducted in five databases to retrieve relevant resting-state functional magnetic resonance imaging (rs-fMRI), structural MRI and diffusion tensor imaging (DTI) studies that measured brain functional and structural differences between CS patients and healthy controls (HCs). Separate and multimodal meta-analyses were implemented, respectively, by employing Anisotropic Effect-size Signed Differential Mapping software. Results 13 rs-fMRI studies that used regional homogeneity, amplitude of low-frequency fluctuations (ALFF) and fractional ALFF, seven voxel-based morphometry (VBM) studies and one DTI study were finally included in the present research. However, no studies on surface-based morphometry (SBM) analysis were included in this research. Due to the insufficient number of SBM and DTI studies, only rs-fMRI and VBM meta-analyses were conducted. The results of rs-fMRI meta-analysis showed that compared to HCs, CS patients demonstrated decreased regional spontaneous brain activities in the right lingual gyrus, right middle temporal gyrus (MTG), left inferior parietal gyrus and right postcentral gyrus (PoCG), while increased activities in the right medial superior frontal gyrus, bilateral middle frontal gyrus and right precuneus. VBM meta-analysis detected increased GMV in the right superior temporal gyrus (STG) and right paracentral lobule (PCL), while decreased GMV in the left supplementary motor area and left MTG in CS patients. The multi-modal meta-analysis revealed increased GMV together with decreased regional spontaneous brain activity in the left PoCG, right STG and PCL among CS patients. Conclusion This meta-analysis revealed that compared to HCs, CS patients had significant alterations in GMV and regional spontaneous brain activity. The altered brain regions mainly included the primary visual cortex, the default mode network and the sensorimotor area, which may be associated with CS patients' symptoms of sensory deficits, blurred vision, cognitive impairment and motor dysfunction. The findings may contribute to understanding the underlying pathophysiology of brain dysfunction and provide references for early diagnosis and treatment of CS. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, CRD42022370967.
Collapse
Affiliation(s)
- Lulu Cheng
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, China
- Shanghai Center for Research in English Language Education, Shanghai International Studies University, Shanghai, China
| | - Jianxin Zhang
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, China
| | - Hongyu Xi
- School of Western Studies, Heilongjiang University, Harbin, China
| | - Mengting Li
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Su Hu
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Wenting Yuan
- School of Western Studies, Heilongjiang University, Harbin, China
- English Department, Heilongjiang International University, Harbin, China
| | - Peng Wang
- Department of Language, Literature and Communication, Faculty of Humanities, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Psychology, Education, and Child Studies, Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Lanfen Chen
- School of Medical Imaging, Shandong Second Medical University, Weifang, Shandong, China
| | - Linlin Zhan
- School of Western Studies, Heilongjiang University, Harbin, China
| | - Xize Jia
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
6
|
Toledo TA, Vore CN, Huber FA, Rhudy JL. The effect of emotion regulation on the emotional modulation of pain and nociceptive flexion reflex. Pain 2024; 165:1266-1277. [PMID: 38227556 DOI: 10.1097/j.pain.0000000000003127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/10/2023] [Indexed: 01/18/2024]
Abstract
ABSTRACT Positive emotions inhibit pain, whereas negative emotions facilitate pain. Thus, many psychosocial interventions capitalize on this emotion-pain relationship to improve patients' abilities to regulate emotion (ie, reduce negative emotion, increase positive emotion), influence nociception, and manage pain. This study extended the existing literature to examine whether emotion regulation procedures could influence emotional modulation of the nociceptive flexion reflex (NFR), a marker of spinal nociception. To elicit emotion, 2 blocks of pleasant, neutral, and unpleasant pictures were presented. In block 1, participants were asked to passively view pictures during which painful electric stimulations were delivered to evoke pain and the NFR. Valence, arousal, corrugator electromyogram, and skin conductance response were used to measure emotional responses to pictures. To manipulate emotion regulation, participants were randomized to either suppress (downregulate) or enhance (upregulate) their emotion during block 2 (other procedures same as block 1). Instructions to suppress decreased subjective and physiological responding to emotional pictures, reduced emotional modulation of pain, and generally decreased NFR magnitude (regardless of picture content). Instructions to enhance emotion increased subjective responding to emotional pictures but did not alter physiological responding to pictures or emotional modulation of pain/NFR in predictable ways. Results imply that downregulation/suppression of negative emotions may work best to reduce pain facilitation. Furthermore, this study contributes to the existing literature that shows that pain and pain signaling is tightly coupled with emotional states and that emotion regulation can impact pain perception.
Collapse
Affiliation(s)
- Tyler A Toledo
- Department of Psychology, The University of Tulsa, Tulsa, OK, United States
| | | | | | | |
Collapse
|
7
|
Guekos A, Saxer J, Salinas Gallegos D, Schweinhardt P. Healthy women show more experimentally induced central sensitization compared with men. Pain 2024; 165:1413-1424. [PMID: 38231588 PMCID: PMC11090033 DOI: 10.1097/j.pain.0000000000003144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 01/18/2024]
Abstract
ABSTRACT Women more often experience chronic pain conditions than men. Central sensitization (CS) is one key mechanism in chronic pain that can differ between the sexes. It is unknown whether CS processes are already more pronounced in healthy women than in men. In 66 subjects (33 women), a thermal CS induction protocol was applied to the dorsum of one foot and a sham protocol to the other. Spatial extent [cm 2 ] of secondary mechanical hyperalgesia (SMH) and dynamic mechanical allodynia were assessed as subjective CS proxy measures, relying on verbal feedback. Changes in nociceptive withdrawal reflex magnitude (NWR-M) and response rate (NWR-RR) recorded through surface electromyography at the biceps and rectus femoris muscles were used as objective CS proxies. The effect of the CS induction protocol on SMH was higher in women than in men (effect size 2.11 vs 1.68). Nociceptive withdrawal reflex magnitude results were statistically meaningful for women (effect size 0.31-0.36) but not for men (effect size 0.12-0.29). Differences between men and women were not meaningful. Nociceptive withdrawal reflex response rate at the rectus femoris increased in women after CS induction and was statistically different from NWR-RR in men (median differences of 13.7 and 8.4% for 120 and 140% reflex threshold current). The objective CS proxy differences indicate that dorsal horn CS processes are more pronounced in healthy women. The even larger sex differences in subjective CS proxies potentially reflect greater supraspinal influence in women. This study shows that sex differences are present in experimentally induced CS in healthy subjects, which might contribute to women's vulnerability for chronic pain.
Collapse
Affiliation(s)
- Alexandros Guekos
- Integrative Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Decision Neuroscience Lab, Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Janis Saxer
- Integrative Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Diego Salinas Gallegos
- Integrative Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- IQVIA AG, Rotkreuz, Switzerland
| | - Petra Schweinhardt
- Integrative Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Picard ME, Kunz M, Chen JI, Coll MP, Vachon-Presseau É, Wager TD, Rainville P. A distributed brain response predicting the facial expression of acute nociceptive pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.26.550504. [PMID: 37547018 PMCID: PMC10402001 DOI: 10.1101/2023.07.26.550504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Pain is a private experience observable through various verbal and non-verbal behavioural manifestations, each of which may relate to different pain-related functions. Despite the importance of understanding the cerebral mechanisms underlying those manifestations, there is currently limited knowledge on the neural correlates of the facial expression of pain. In this functional magnetic resonance imaging (fMRI) study, noxious heat stimulation was applied in healthy volunteers and we tested if previously published brain signatures of pain were sensitive to pain expression. We then applied a multivariate pattern analysis to the fMRI data to predict the facial expression of pain. Results revealed the inability of previously developed pain neurosignatures to predict the facial expression of pain. We thus propose a Facial Expression of Pain Signature (FEPS) conveying distinctive information about the brain response to nociceptive stimulations with minimal or no overlap with other pain-relevant brain signatures associated with nociception, pain ratings, thermal pain aversiveness, or pain valuation. The FEPS may provide a distinctive functional characterization of the distributed cerebral response to nociceptive pain associated with the socio-communicative role of non-verbal pain expression. This underscores the complexity of pain phenomenology by reinforcing the view that neurosignatures conceived as biomarkers must be interpreted in relation to the specific pain manifestation(s) predicted and their underlying function(s). Future studies should explore other pain-relevant manifestations and assess the specificity of the FEPS against simulated pain expressions and other types of aversive or emotional states.
Collapse
Affiliation(s)
- Marie-Eve Picard
- Department of psychology, Université de Montréal, Montreal, Quebec, Canada
- Centre de recherche de l’institut universitaire de gériatrie de Montréal, Montreal, Quebec, Canada
| | - Miriam Kunz
- Department of medical psychology and sociology, Medical faculty, University of Augsburg, Augsburg, Germany
| | - Jen-I Chen
- Department of psychology, Université de Montréal, Montreal, Quebec, Canada
- Centre de recherche de l’institut universitaire de gériatrie de Montréal, Montreal, Quebec, Canada
| | | | - Étienne Vachon-Presseau
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
- Department of Anesthesia, McGill University, Montreal, Quebec, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - Tor D. Wager
- Department of psychological and brain sciences, Dartmouth College, Hanover, New Hampshire, United States
| | - Pierre Rainville
- Centre de recherche de l’institut universitaire de gériatrie de Montréal, Montreal, Quebec, Canada
- Stomatology department, Faculté de médecine dentaire, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Zhang H, Zhao L, Lu X, Peng W, Zhang L, Zhang Z, Hu L, Cao J, Tu Y. Multimodal covarying brain patterns mediate genetic and psychological contributions to individual differences in pain sensitivity. Pain 2024; 165:1074-1085. [PMID: 37943083 DOI: 10.1097/j.pain.0000000000003103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/20/2023] [Indexed: 11/10/2023]
Abstract
ABSTRACT Individuals vary significantly in their pain sensitivity, with contributions from the brain, genes, and psychological factors. However, a multidimensional model integrating these factors is lacking due to their complex interactions. To address this, we measured pain sensitivity (ie, pain threshold and pain tolerance) using the cold pressor test, collected magnetic resonance imaging (MRI) data and genetic data, and evaluated psychological factors (ie, pain catastrophizing, pain-related fear, and pain-related anxiety) from 450 healthy participants with both sexes (160 male, 290 female). Using multimodal MRI fusion methods, we identified 2 pairs of covarying structural and functional brain patterns associated with pain threshold and tolerance, respectively. These patterns primarily involved regions related to self-awareness, sensory-discriminative, cognitive-evaluative, motion preparation and execution, and emotional aspects of pain. Notably, pain catastrophizing was negatively correlated with pain tolerance, and this relationship was mediated by the multimodal covarying brain patterns in male participants only. Furthermore, we identified an association between the single-nucleotide polymorphism rs4141964 within the fatty acid amide hydrolase gene and pain threshold, mediated by the identified multimodal covarying brain patterns across all participants. In summary, we suggested a model that integrates the brain, genes, and psychological factors to elucidate their role in shaping interindividual variations in pain sensitivity, highlighting the important contribution of the multimodal covarying brain patterns as important biological mediators in the associations between genes/psychological factors and pain sensitivity.
Collapse
Affiliation(s)
- Huijuan Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xuejing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Li Zhang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China
| | - Zhiguo Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jin Cao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yiheng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Zhu K, Chang J, Zhang S, Li Y, Zuo J, Ni H, Xie B, Yao J, Xu Z, Bian S, Yan T, Wu X, Chen S, Jin W, Wang Y, Xu P, Song P, Wu Y, Shen C, Zhu J, Yu Y, Dong F. The enhanced connectivity between the frontoparietal, somatomotor network and thalamus as the most significant network changes of chronic low back pain. Neuroimage 2024; 290:120558. [PMID: 38437909 DOI: 10.1016/j.neuroimage.2024.120558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
The prolonged duration of chronic low back pain (cLBP) inevitably leads to changes in the cognitive, attentional, sensory and emotional processing brain regions. Currently, it remains unclear how these alterations are manifested in the interplay between brain functional and structural networks. This study aimed to predict the Oswestry Disability Index (ODI) in cLBP patients using multimodal brain magnetic resonance imaging (MRI) data and identified the most significant features within the multimodal networks to aid in distinguishing patients from healthy controls (HCs). We constructed dynamic functional connectivity (dFC) and structural connectivity (SC) networks for all participants (n = 112) and employed the Connectome-based Predictive Modeling (CPM) approach to predict ODI scores, utilizing various feature selection thresholds to identify the most significant network change features in dFC and SC outcomes. Subsequently, we utilized these significant features for optimal classifier selection and the integration of multimodal features. The results revealed enhanced connectivity among the frontoparietal network (FPN), somatomotor network (SMN) and thalamus in cLBP patients compared to HCs. The thalamus transmits pain-related sensations and emotions to the cortical areas through the dorsolateral prefrontal cortex (dlPFC) and primary somatosensory cortex (SI), leading to alterations in whole-brain network functionality and structure. Regarding the model selection for the classifier, we found that Support Vector Machine (SVM) best fit these significant network features. The combined model based on dFC and SC features significantly improved classification performance between cLBP patients and HCs (AUC=0.9772). Finally, the results from an external validation set support our hypotheses and provide insights into the potential applicability of the model in real-world scenarios. Our discovery of enhanced connectivity between the thalamus and both the dlPFC (FPN) and SI (SMN) provides a valuable supplement to prior research on cLBP.
Collapse
Affiliation(s)
- Kun Zhu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Jianchao Chang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Siya Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; School of Basic Medical Sciences, Anhui Medical University, Hefei, PR China
| | - Yan Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Junxun Zuo
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Haoyu Ni
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Bingyong Xie
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Jiyuan Yao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Zhibin Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Sicheng Bian
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Tingfei Yan
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Xianyong Wu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Department of Orthopedics, Anqing First People's Hospital of Anhui Medical University, Anqing, PR China
| | - Senlin Chen
- Department of Orthopedics, Dongcheng branch of The First Affiliated Hospital of Anhui Medical University (Feidong People's Hospital), Hefei, PR China
| | - Weiming Jin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Ying Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Peng Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Peiwen Song
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Yuanyuan Wu
- Department of Medical Imaging, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Cailiang Shen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Fulong Dong
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; School of Basic Medical Sciences, Anhui Medical University, Hefei, PR China.
| |
Collapse
|
11
|
Meng J, Zhang T, Hao T, Xie X, Zhang M, Zhang L, Wan X, Zhu C, Li Q, Wang K. Functional and Structural Abnormalities in the Pain Network of Generalized Anxiety Disorder Patients with Pain Symptoms. Neuroscience 2024; 543:28-36. [PMID: 38382693 DOI: 10.1016/j.neuroscience.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Pain symptoms significantly impact the well-being and work capacity of individuals with generalized anxiety disorder (GAD), and hinder treatment and recovery. Despite existing literature focusing on the neural substrate of pain and anxiety separately, further exploration is needed to understand the possible neuroimaging mechanisms of the pain symptoms in GAD patients. We recruited 73 GAD patients and 75 matched healthy controls (HC) for clinical assessments, as well as resting-state functional and structural magnetic resonance imaging scans. We defined a pain-related network through a published meta-analysis, including the insula, thalamus, periaqueductal gray, prefrontal cortex, anterior cingulate cortex, amygdala, and hippocampus. Subsequently, we conducted the regional homogeneity (ReHo) and the gray matter volume (GMV) within the pain-related network. Correlation analysis was then employed to explore associations between abnormal regions and self-reported outcomes, assessed using the Patient Health Questionnaire-15 (PHQ-15) and pain scores. We observed significantly increased ReHo in the bilateral insula but decreased GMV in the bilateral thalamus of GAD compared to HC. Further correlation analysis revealed a positive correlation between ReHo of the left anterior insula and pain scores in GAD patients, while a respective negative correlation between GMV of the bilateral thalamus and PHQ-15 scores. In summary, GAD patients exhibit structural and functional abnormalities in pain-related networks. The enhanced ReHo in the left anterior insula is correlated with pain symptoms, which might be a crucial brain region of pain symptoms in GAD.
Collapse
Affiliation(s)
- Jie Meng
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Ting Zhang
- Department of Psychiatry, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Tong Hao
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Xiaohui Xie
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Mengdan Zhang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Lei Zhang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Xingsong Wan
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Chunyan Zhu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China; Institute of Artificial Intelligence, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Qianqian Li
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China.
| | - Kai Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China; Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China; Institute of Artificial Intelligence, University of Science and Technology of China, Hefei, Anhui Province, China.
| |
Collapse
|
12
|
Johansson E, Xiong HY, Polli A, Coppieters I, Nijs J. Towards a Real-Life Understanding of the Altered Functional Behaviour of the Default Mode and Salience Network in Chronic Pain: Are People with Chronic Pain Overthinking the Meaning of Their Pain? J Clin Med 2024; 13:1645. [PMID: 38541870 PMCID: PMC10971341 DOI: 10.3390/jcm13061645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 11/12/2024] Open
Abstract
Chronic pain is a source of substantial physical and psychological suffering, yet a clear understanding of the pathogenesis of chronic pain is lacking. Repeated studies have reported an altered behaviour of the salience network (SN) and default mode network (DMN) in people with chronic pain, and a majority of these studies report an altered behaviour of the dorsal ventromedial prefrontal cortex (vmPFC) within the anterior DMN. In this topical review, we therefore focus specifically on the role of the dorsal vmPFC in chronic pain to provide an updated perspective on the cortical mechanisms of chronic pain. We suggest that increased activity in the dorsal vmPFC may reflect maladaptive overthinking about the meaning of pain for oneself and one's actions. We also suggest that such overthinking, if negative, may increase the personal "threat" of a given context, as possibly reflected by increased activity in, and functional connectivity to, the anterior insular cortex within the SN.
Collapse
Affiliation(s)
- Elin Johansson
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (E.J.); (H.-Y.X.); (A.P.); (I.C.)
- Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Flanders Research Foundation-FWO, 1000 Brussels, Belgium
| | - Huan-Yu Xiong
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (E.J.); (H.-Y.X.); (A.P.); (I.C.)
| | - Andrea Polli
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (E.J.); (H.-Y.X.); (A.P.); (I.C.)
- Flanders Research Foundation-FWO, 1000 Brussels, Belgium
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Iris Coppieters
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (E.J.); (H.-Y.X.); (A.P.); (I.C.)
- Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- The Experimental Health Psychology Research Group, Faculty of Psychology and Neuroscience, Maastricht University, 6200 Maastricht, The Netherlands
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (E.J.); (H.-Y.X.); (A.P.); (I.C.)
- Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussel, Belgium
- Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
13
|
Horn-Hofmann C, Jablonowski L, Madden M, Kunz M, Lautenbacher S. Is conditioned pain modulation (CPM) affected by negative emotional state? Eur J Pain 2024; 28:421-433. [PMID: 37837611 DOI: 10.1002/ejp.2192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Conditioned pain modulation (CPM) is an experimental paradigm, which describes the inhibition of responses to a noxious or strong-innocuous stimulus, the test stimulus (TS), by the additional application of a second noxious or strong-innocuous stimulus, the conditioning stimulus (CS). As inadequate CPM efficiency has been assumed to be predisposing for clinical pain, the search for moderating factors explaining inter-individual variations in CPM is ongoing. Psychological factors have received credits in this context. However, research concerning associations between CPM and trait factors relating to negative emotions has yielded disappointing results. Yet, the influence of anxious or fearful states on CPM has not attracted much interest despite ample evidence that negative affective states enhance pain. Our study aimed at investigating the effect of fear induction by symbolic threat on CPM. METHODS Thirty-seven healthy participants completed two experimental blocks: one presenting aversive pictures showing burn wounds (high-threat block) and one presenting neutral pictures (low-threat block). Both blocks contained a CPM paradigm with contact heat as TS and hot water as CS; subjective numerical ratings as well as contact-heat evoked potentials (CHEPs) were assessed. RESULTS We detected an overall inhibitory CPM effect for CHEPs amplitudes but not for pain ratings. However, we found no evidence for a modulation of CPM by threat despite threat ratings indicating that our manipulation was successful. DISCUSSION These results suggest that heat/thermal CPM is resistant to this specific type of symbolic threat induction and further research is necessary to examine whether it is resistant to fearful states in general. SIGNIFICANCE The attempt of modulating heat conditioned pain modulation (CPM) by emotional threat (fear/anxiety state) failed. Thus, heat CPM inhibition again appeared resistant to emotional influences. Pain-related brain potentials proved to be more sensitive for CPM effects than subjective ratings.
Collapse
Affiliation(s)
| | - Lena Jablonowski
- Department of Physiological Psychology, University of Bamberg, Bamberg, Germany
| | - Melanie Madden
- Department of Physiological Psychology, University of Bamberg, Bamberg, Germany
| | - Miriam Kunz
- Medical Psychology and Sociology, University of Augsburg, Augsburg, Germany
| | - Stefan Lautenbacher
- Department of Physiological Psychology, University of Bamberg, Bamberg, Germany
| |
Collapse
|
14
|
Huang C, van Wijnen AJ, Im HJ. Serotonin Transporter (5-Hydroxytryptamine Transporter, SERT, SLC6A4) and Sodium-dependent Reuptake Inhibitors as Modulators of Pain Behaviors and Analgesic Responses. THE JOURNAL OF PAIN 2024; 25:618-631. [PMID: 37852405 PMCID: PMC11781314 DOI: 10.1016/j.jpain.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
The serotonin transporter (5-hydroxytryptamine transporter [5-HTT], Serotonin Transporter (SERT), SLC6A4) modulates the activity of serotonin via sodium-dependent reuptake. Given the established importance of serotonin in the control of pain, 5-HTT has received much interest in studies of pain states and as a pharmacological target for serotonin reuptake inhibitors (SRIs). Animal models expressing varying levels of 5-HTT activity show marked differences in pain behaviors and analgesic responses, as well as many serotonin-related physiological effects. In humans, functional nucleotide variations in the SLC6A4 gene, which encodes the serotonin transporter 5-HTT, are associated with certain pathologic pain conditions and differences in responses to pharmacological therapy. These findings collectively reflect the importance of 5-HTT in the intricate physiology and management of pain, as well as the scientific and clinical challenges that need to be considered for the optimization of 5-HTT-related analgesic therapies. PERSPECTIVE: The serotonin transporter 5-HTT/SCL6A4 is sensitive to pharmacological SRIs. Experimental studies on the physiological functions of serotonin, as well as genetic mouse models and clinical phenotype/genotype correlations of nucleotide variation in the human 5-HTT/SCL6A4 gene, provide new insights for the use of SRIs in chronic pain management.
Collapse
Affiliation(s)
- Cary Huang
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois; Department of Anesthesiology, NewYork-Presbyterian/Weill Cornell Medical Center, New York, New York.
| | - Andre J van Wijnen
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois; Department of Biochemistry, University of Vermont, Burlington, Vermont.
| | - Hee-Jeong Im
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, Illinois.
| |
Collapse
|
15
|
Kadakia F, Khadka A, Yazell J, Davidson S. Chemogenetic Modulation of Posterior Insula CaMKIIa Neurons Alters Pain and Thermoregulation. THE JOURNAL OF PAIN 2024; 25:766-780. [PMID: 37832899 PMCID: PMC10922377 DOI: 10.1016/j.jpain.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
The posterior insular cortex (PIC) is well positioned to perform somatosensory-limbic integration; yet, the function of neuronal subsets within the PIC in processing the sensory and affective dimensions of pain remains unclear. Here, we employ bidirectional chemogenetic modulation to characterize the function of PIC CaMKIIa-expressing excitatory neurons in a comprehensive array of sensory, affective, and thermoregulatory behaviors. Excitatory pyramidal neurons in the PIC were found to be sensitized under inflammatory pain conditions. Chemogenetic activation of excitatory CaMKIIa-expressing PIC neurons in non-injured conditions produced an increase in reflexive and affective pain- and anxiety-like behaviors. Moreover, activation of PIC CaMKIIa-expressing neurons during inflammatory pain conditions exacerbated hyperalgesia and decreased pain tolerance. However, Chemogenetic activation did not alter heat nociception via hot plate latency or body temperature. Conversely, inhibiting CaMKIIa-expressing neurons did not alter either sensory or affective pain-like behaviors in non-injured or under inflammatory pain conditions, but it did decrease body temperature and decreased hot plate latency. Our findings reveal that PIC CaMKIIa-expressing neurons are a critical hub for producing both sensory and affective pain-like behaviors and important for thermoregulatory processing. PERSPECTIVE: The present study reveals that activation of the posterior insula produces hyperalgesia and negative affect, and has a role in thermal tolerance and thermoregulation. These findings highlight the insula as a key player in contributing to the multidimensionality of pain.
Collapse
Affiliation(s)
- Feni Kadakia
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Akansha Khadka
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Jake Yazell
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Steve Davidson
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
16
|
Bemani S, Sarrafzadeh J, Dehkordi SN, Talebian S, Salehi R, Zarei J. Effect of multidimensional physiotherapy on non-specific chronic low back pain: a randomized controlled trial. Adv Rheumatol 2023; 63:57. [PMID: 38049905 DOI: 10.1186/s42358-023-00329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/27/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Many people with non-specific chronic low back pain (NSCLBP) do not recover with current conventional management. Systematic reviews show multidimensional treatment improves pain better than usual active interventions. It is unclear whether multidimensional physiotherapy improves pain better than usual physiotherapy. This study determines the effectiveness of this treatment to reduce pain and disability and improve quality of life, pain cognitions, and electroencephalographic pattern in individuals with NSCLBP. METHODS 70 eligible participants aged 18 to 50 years with NSCLBP were randomized into either the experimental group (multidimensional physiotherapy) or the active control group (usual physiotherapy). Pain intensity was measured as the primary outcome. Disability, quality of life, pain Catastrophizing, kinesiophobia, fear Avoidance Beliefs, active lumbar range of motion, and brain function were measured as secondary outcomes. The outcomes were measured at pre-treatment, post-treatment, 10, and 22 weeks. Data were analyzed using intention-to-treat approaches. RESULTS There were 17 men and 18 women in the experimental group (mean [SD] age, 34.57 [6.98] years) and 18 men and 17 women in the active control group (mean [SD] age, 35.94 [7.51] years). Multidimensional physiotherapy was not more effective than usual physiotherapy at reducing pain intensity at the end of treatment. At the 10 weeks and 22 weeks follow-up, there were statistically significant differences between multidimensional physiotherapy and usual physiotherapy (mean difference at 10 weeks, -1.54; 95% CI, -2.59 to -0.49 and mean difference at 22 weeks, -2.20; 95% CI, - 3.25 to - 1.15). The standardized mean difference and their 95% confidence intervals (Cohen's d) revealed a large effect of pain at 22 weeks: (Cohen's d, -0.89; 95% CI (-1.38 to-0.39)). There were no statistically significant differences in secondary outcomes. CONCLUSIONS In this randomized controlled trial, multidimensional physiotherapy resulted in statistically and clinically significant improvements in pain compared to usual physiotherapy in individuals with NSCLBP at 10 and 22 weeks. TRIAL REGISTRATION ClinicalTrials.gov NCT04270422; IRCT IRCT20140810018754N11.
Collapse
Affiliation(s)
- Sanaz Bemani
- Department of Physiotherapy, Iranian Center of Excellence in Physiotherapy, Rehabilitation Research Center, School of Rehabilitation Sciences, Iran University of Medical Sciences, Madadkaran St, Shahnazari St, Madar Sq. Mirdamad Blvd., Tehran, Iran
| | - Javad Sarrafzadeh
- Department of Physiotherapy, Iranian Center of Excellence in Physiotherapy, Rehabilitation Research Center, School of Rehabilitation Sciences, Iran University of Medical Sciences, Madadkaran St, Shahnazari St, Madar Sq. Mirdamad Blvd., Tehran, Iran.
| | - Shohreh Noorizadeh Dehkordi
- Department of Physiotherapy, Iranian Center of Excellence in Physiotherapy, Rehabilitation Research Center, School of Rehabilitation Sciences, Iran University of Medical Sciences, Madadkaran St, Shahnazari St, Madar Sq. Mirdamad Blvd., Tehran, Iran
| | - Saeed Talebian
- Department of Physiotherapy, School of Rehabilitation Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Salehi
- Department of Physiotherapy, Iranian Center of Excellence in Physiotherapy, Rehabilitation Research Center, School of Rehabilitation Sciences, Iran University of Medical Sciences, Madadkaran St, Shahnazari St, Madar Sq. Mirdamad Blvd., Tehran, Iran
- Department of Rehabilitation Management, Rehabilitation Research Center, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
- Geriatric Mental Health Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Jamileh Zarei
- Department of Health Psychology, School of Behavioral Sciences and Mental Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Borbély É, Kecskés A, Kun J, Kepe E, Fülöp B, Kovács-Rozmer K, Scheich B, Renner É, Palkovits M, Helyes Z. Hemokinin-1 is a mediator of chronic restraint stress-induced pain. Sci Rep 2023; 13:20030. [PMID: 37973885 PMCID: PMC10654722 DOI: 10.1038/s41598-023-46402-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
The Tac4 gene-derived hemokinin-1 (HK-1) binds to the NK1 receptor, similarly to Substance P, and plays a role in acute stress reactions and pain transmission in mice. Here we investigated Tac4 mRNA expression in stress and pain-related regions and its involvement in chronic restraint stress-evoked behavioral changes and pain using Tac4 gene-deleted (Tac4-/-) mice compared to C57Bl/6 wildtypes (WT). Tac4 mRNA was detected by in situ hybridization RNAscope technique. Touch sensitivity was assessed by esthesiometry, cold tolerance by paw withdrawal latency from 0°C water. Anxiety was evaluated in the light-dark box (LDB) and open field test (OFT), depression-like behavior in the tail suspension test (TST). Adrenal and thymus weights were measured at the end of the experiment. We found abundant Tac4 expression in the hypothalamic-pituitary-adrenal axis, but Tac4 mRNA was also detected in the hippocampus, amygdala, somatosensory and piriform cortices in mice, and in the frontal regions and the amygdala in humans. In Tac4-/- mice of both sexes, stress-induced mechanical, but not cold hyperalgesia was significantly decreased compared to WTs. Stress-induced behavioral alterations were mild or absent in male WT animals, while significant changes of these parameters could be detected in females. Thymus weight decrease can be observed in both sexes. Higher baseline anxiety and depression-like behaviors were detected in male but not in female HK-1-deficient mice, highlighting the importance of investigating both sexes in preclinical studies. We provided the first evidence for the potent nociceptive and stress regulating effects of HK-1 in chronic restraint stress paradigm. Identification of its targets might open new perspectives for therapy of stress-induced pain.
Collapse
Affiliation(s)
- Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary.
- Centre for Neuroscience, University of Pécs, Pécs, Hungary.
| | - Angéla Kecskés
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - József Kun
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Eszter Kepe
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Barbara Fülöp
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Katalin Kovács-Rozmer
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Chronic Pain Research Group, Hungarian Research Network, University of Pécs, Pécs, Hungary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Bálint Scheich
- Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Éva Renner
- Human Brain Tissue Bank, Semmelweis University, Budapest, Hungary
| | - Miklós Palkovits
- Human Brain Tissue Bank, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
- PharmInVivo Ltd, Pécs, Hungary
- Chronic Pain Research Group, Hungarian Research Network, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2, Budapest, 1117, Hungary
| |
Collapse
|
18
|
Párraga JP, Castellanos A. A Manifesto in Defense of Pain Complexity: A Critical Review of Essential Insights in Pain Neuroscience. J Clin Med 2023; 12:7080. [PMID: 38002692 PMCID: PMC10672144 DOI: 10.3390/jcm12227080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Chronic pain has increasingly become a significant health challenge, not just as a symptomatic manifestation but also as a pathological condition with profound socioeconomic implications. Despite the expansion of medical interventions, the prevalence of chronic pain remains remarkably persistent, prompting a turn towards non-pharmacological treatments, such as therapeutic education, exercise, and cognitive-behavioral therapy. With the advent of cognitive neuroscience, pain is often presented as a primary output derived from the brain, aligning with Engel's Biopsychosocial Model that views disease not solely from a biological perspective but also considering psychological and social factors. This paradigm shift brings forward potential misconceptions and over-simplifications. The current review delves into the intricacies of nociception and pain perception. It questions long-standing beliefs like the cerebral-centric view of pain, the forgotten role of the peripheral nervous system in pain chronification, misconceptions around central sensitization syndromes, the controversy about the existence of a dedicated pain neuromatrix, the consciousness of the pain experience, and the possible oversight of factors beyond the nervous system. In re-evaluating these aspects, the review emphasizes the critical need for understanding the complexity of pain, urging the scientific and clinical community to move beyond reductionist perspectives and consider the multifaceted nature of this phenomenon.
Collapse
Affiliation(s)
- Javier Picañol Párraga
- Laboratory of Neurophysiology, Biomedicine Department, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
| | | |
Collapse
|
19
|
Zillig AL, Pauli P, Wieser M, Reicherts P. Better safe than sorry?-On the influence of learned safety on pain perception. PLoS One 2023; 18:e0289047. [PMID: 37934741 PMCID: PMC10629634 DOI: 10.1371/journal.pone.0289047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 07/10/2023] [Indexed: 11/09/2023] Open
Abstract
The experience of threat was found to result-mostly-in increased pain, however it is still unclear whether the exact opposite, namely the feeling of safety may lead to a reduction of pain. To test this hypothesis, we conducted two between-subject experiments (N = 94; N = 87), investigating whether learned safety relative to a neutral control condition can reduce pain, while threat should lead to increased pain compared to a neutral condition. Therefore, participants first underwent either threat or safety conditioning, before entering an identical test phase, where the previously conditioned threat or safety cue and a newly introduced visual cue were presented simultaneously with heat pain stimuli. Methodological changes were performed in experiment 2 to prevent safety extinction and to facilitate conditioning in the first place: We included additional verbal instructions, increased the maximum length of the ISI and raised CS-US contingency in the threat group from 50% to 75%. In addition to pain ratings and ratings of the visual cues (threat, safety, arousal, valence, and contingency), in both experiments, we collected heart rate and skin conductance. Analysis of the cue ratings during acquisition indicate successful threat and safety induction, however results of the test phase, when also heat pain was administered, demonstrate rapid safety extinction in both experiments. Results suggest rather small modulation of subjective and physiological pain responses following threat or safety cues relative to the neutral condition. However, exploratory analysis revealed reduced pain ratings in later trials of the experiment in the safety group compared to the threat group in both studies, suggesting different temporal dynamics for threat and safety learning and extinction, respectively. Perspective: The present results demonstrate the challenge to maintain safety in the presence of acute pain and suggest more research on the interaction of affective learning mechanism and pain processing.
Collapse
Affiliation(s)
- Anna-Lena Zillig
- Department of Psychology, University of Würzburg, Würzburg, Germany
| | - Paul Pauli
- Department of Psychology, University of Würzburg, Würzburg, Germany
| | - Matthias Wieser
- Department of Clinical Psychology, Erasmus University of Rotterdam, Rotterdam, Netherlands
| | - Philipp Reicherts
- Department of Medical Psychology and Sociology, University of Augsburg, Augsburg, Germany
| |
Collapse
|
20
|
Latypov TH, So MC, Hung PSP, Tsai P, Walker MR, Tohyama S, Tawfik M, Rudzicz F, Hodaie M. Brain imaging signatures of neuropathic facial pain derived by artificial intelligence. Sci Rep 2023; 13:10699. [PMID: 37400574 DOI: 10.1038/s41598-023-37034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
Advances in neuroimaging have permitted the non-invasive examination of the human brain in pain. However, a persisting challenge is in the objective differentiation of neuropathic facial pain subtypes, as diagnosis is based on patients' symptom descriptions. We use artificial intelligence (AI) models with neuroimaging data to distinguish subtypes of neuropathic facial pain and differentiate them from healthy controls. We conducted a retrospective analysis of diffusion tensor and T1-weighted imaging data using random forest and logistic regression AI models on 371 adults with trigeminal pain (265 classical trigeminal neuralgia (CTN), 106 trigeminal neuropathic pain (TNP)) and 108 healthy controls (HC). These models distinguished CTN from HC with up to 95% accuracy, and TNP from HC with up to 91% accuracy. Both classifiers identified gray and white matter-based predictive metrics (gray matter thickness, surface area, and volume; white matter diffusivity metrics) that significantly differed across groups. Classification of TNP and CTN did not show significant accuracy (51%) but highlighted two structures that differed between pain groups-the insula and orbitofrontal cortex. Our work demonstrates that AI models with brain imaging data alone can differentiate neuropathic facial pain subtypes from healthy data and identify regional structural indicates of pain.
Collapse
Affiliation(s)
- Timur H Latypov
- Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Collaborative Program in Neuroscience, University of Toronto, Toronto, ON, Canada
| | - Matthew C So
- Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Peter Shih-Ping Hung
- Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Collaborative Program in Neuroscience, University of Toronto, Toronto, ON, Canada
| | - Pascale Tsai
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Matthew R Walker
- Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Sarasa Tohyama
- A.A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA
| | - Marina Tawfik
- Collaborative Program in Neuroscience, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| | - Frank Rudzicz
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| | - Mojgan Hodaie
- Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, ON, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
21
|
Labrakakis C. The Role of the Insular Cortex in Pain. Int J Mol Sci 2023; 24:ijms24065736. [PMID: 36982807 PMCID: PMC10056254 DOI: 10.3390/ijms24065736] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The transition from normal to chronic pain is believed to involve alterations in several brain areas that participate in the perception of pain. These plastic changes are then responsible for aberrant pain perception and comorbidities. The insular cortex is consistently found activated in pain studies of normal and chronic pain patients. Functional changes in the insula contribute to chronic pain; however, the complex mechanisms by which the insula is involved in pain perception under normal and pathological conditions are still not clear. In this review, an overview of the insular function is provided and findings on its role in pain from human studies are summarized. Recent progress on the role of the insula in pain from preclinical experimental models is reviewed, and the connectivity of the insula with other brain regions is examined to shed new light on the neuronal mechanisms of the insular cortex’s contribution to normal and pathological pain sensation. This review underlines the need for further studies on the mechanisms underlying the involvement of the insula in the chronicity of pain and the expression of comorbid disorders.
Collapse
Affiliation(s)
- Charalampos Labrakakis
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece;
- Institute of Biosciences, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
22
|
Khatibi A, Roy M, Chen JI, Gill LN, Piche M, Rainville P. Brain responses to the vicarious facilitation of pain by facial expressions of pain and fear. Soc Cogn Affect Neurosci 2023; 18:6750003. [PMID: 36201353 PMCID: PMC9949570 DOI: 10.1093/scan/nsac056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/25/2022] [Accepted: 10/05/2022] [Indexed: 11/12/2022] Open
Abstract
Observing pain in others facilitates self-pain in the observer. Vicarious pain facilitation mechanisms are poorly understood. We scanned 21 subjects while they observed pain, fear and neutral dynamic facial expressions. In 33% of the trials, a noxious electrical stimulus was delivered. The nociceptive flexion reflex (NFR) and pain ratings were recorded. Both pain and fear expressions increased self-pain ratings (fear > pain) and the NFR amplitude. Enhanced response to self-pain following pain and fear observation involves brain regions including the insula (INS) (pain > fear in anterior part), amygdala, mid-cingulate cortex (MCC), paracentral lobule, precuneus, supplementary motor area and pre-central gyrus. These results are consistent with the motivational priming account where vicarious pain facilitation involves a global enhancement of pain-related responses by negatively valenced stimuli. However, a psychophysiological interaction analysis centered on the left INS revealed increased functional connectivity with the aMCC in response to the painful stimulus following pain observation compared to fear. The opposite connectivity pattern (fear > pain) was observed in the fusiform gyrus, cerebellum (I-IV), lingual gyrus and thalamus, suggesting that pain and fear expressions influence pain-evoked brain responses differentially. Distinctive connectivity patterns demonstrate a stronger effect of pain observation in the cingulo-insular network, which may reflect partly overlapping networks underlying the representation of pain in self and others.
Collapse
Affiliation(s)
- Ali Khatibi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.,Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK.,Research Centre of the Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC H3W 1W5, Canada
| | - Mathieu Roy
- Research Centre of the Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC H3W 1W5, Canada.,Department of Psychology, McGill University, Montréal, QC H3A 1G1, Canada.,Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 0G1, Canada
| | - Jen-I Chen
- Research Centre of the Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC H3W 1W5, Canada.,Department of Stomatology, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Louis-Nascan Gill
- Research Centre of the Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC H3W 1W5, Canada
| | - Mathieu Piche
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - Pierre Rainville
- Research Centre of the Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC H3W 1W5, Canada.,Department of Stomatology, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
23
|
Mechanistic perspective on conditioned pain modulation. Pain 2023; 164:e1-e2. [PMID: 36538576 DOI: 10.1097/j.pain.0000000000002717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 01/09/2023]
|
24
|
Sitsen E, Khalili-Mahani N, de Rover M, Dahan A, Niesters M. Effect of spinal anesthesia-induced deafferentation on pain processing in healthy male volunteers: A task-related fMRI study. FRONTIERS IN PAIN RESEARCH 2022; 3:1001148. [PMID: 36530772 PMCID: PMC9748364 DOI: 10.3389/fpain.2022.1001148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/04/2022] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Spinal anesthesia causes short-term deafferentation and alters the crosstalk among brain regions involved in pain perception and pain modulation. In the current study, we examined the effect of spinal anesthesia on pain response to noxious thermal stimuli in non-deafferented skin areas using a functional magnetic resonance imaging (fMRI) paradigm. METHODS Twenty-two healthy subjects participated in the study. We performed a task-based fMRI study using a randomized crossover design. Subjects were scanned under two conditions (spinal anesthesia or control) at two-time points: before and after spinal anesthesia. Spinal anesthesia resulted in sensory loss up to dermatome Th6. Calibrated heat-pain stimuli were administered to the right forearm (C8-Th1) using a box-car design (blocks of 10s on/25s off) during MRI scanning. Pain perception was measured using a visual analogue scale (1-100) at the beginning and the end of each session. Generalized estimating equations were used to examine the effect of intervention by time by order on pain scores. Similarly, higher-level effects were tested with appropriate general linear models (accounting for within-subject variations in session and time) to examine: (1) Differences in BOLD response to pain stimulus under spinal anesthesia versus control; and (2) Effects of spinal anesthesia on pain-related modulation of the cerebral activation. RESULTS Complete fMRI data was available for eighteen participants. Spinal anesthesia was associated with moderate pain score increase. Significant differences in brain response to noxious thermal stimuli were present in comparison of spinal versus control condition (post-pre). Spinal condition was associated with higher BOLD signal in the bilateral inferior parietal lobule and lower BOLD signal in bilateral postcentral and precentral gyrus. Within the angular regions, we observed a positive correlation between pain scores and BOLD signal. These observations were independent from order effect (whether the spinal anesthesia was administered in the first or the second visit). However, we did observe order effect on brain regions including medial prefrontal regions, possibly related to anticipation of the experience of spinal anesthesia. CONCLUSIONS The loss of sensory and motor activity caused by spinal anesthesia has a significant impact on brain regions involved in the sensorimotor and cognitive processing of noxious heat pain stimuli. Our results indicate that the anticipation or experience of a strong somatosensory response to the spinal intervention might confound and contribute to increased sensitivity to cognitive pain processing. Future studies must account for individual differences in subjective experience of pain sensation within the experimental context.
Collapse
Affiliation(s)
- Elske Sitsen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - Najmeh Khalili-Mahani
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mischa de Rover
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, Netherlands
- Leiden Institute of Brain and Cognition, Leiden, Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - Marieke Niesters
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
25
|
Baudic S, Poindessous‐Jazat F, Bouhassira D. Pain and masochistic behaviour: The role of descending modulation. Eur J Pain 2022; 26:2227-2237. [PMID: 36094743 PMCID: PMC9826249 DOI: 10.1002/ejp.2037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND The mechanisms of pain perception in individuals with masochistic behaviour (MB) remain poorly documented. We hypothesized that MB is associated with context-specific changes in descending pain modulation. METHODS We compared the effects of four standardized sets of images with positive (erotic), negative (mutilations), masochistic or neutral emotional valences on the RIII nociceptive reflex evoked by electrical stimulation of the sural nerve and recorded on the ipsilateral biceps femoris in 15 controls and 15 men routinely engaging in MB. We systematically assessed the RIII reflex threshold and recruitment curves (up to the tolerance threshold), thermal (heat and cold) pain thresholds measured on the upper and lower limbs and responses to the pain sensitivity questionnaire, to compare basal pain perception between our two groups of participants. We also assessed anxiety, depression, empathy, alexithymia, high sensation seeking and catastrophizing, to investigate their potential influence on the emotional modulation of pain. RESULTS Thermal pain thresholds, RIII reflex recruitment curves, and responses to the psychological and pain sensitivity questionnaires were similar in the two groups. Neutral, positive and negative images modulated the RIII reflex similarly in the two groups. By contrast, masochistic images induced a significant (p < 0.01) decrease in RIII reflex responses in subjects with MB, whereas it tended to increase these responses in control subjects. CONCLUSIONS Our data suggest that psychological profile, basal pain sensitivity and the emotional modulation of pain are normal in individuals with MB but that these subjects selectively engage descending pain inhibition in the masochistic context. SIGNIFICANCE Decrease pain perception related to masochistic behaviours is associated with specific activation of descending pain inhibition.
Collapse
Affiliation(s)
- Sophie Baudic
- Inserm U987, APHP, UVSQ, Paris‐Saclay University, CHU Ambroise ParéBoulogne‐BillancourtFrance
| | | | - Didier Bouhassira
- Inserm U987, APHP, UVSQ, Paris‐Saclay University, CHU Ambroise ParéBoulogne‐BillancourtFrance
| |
Collapse
|
26
|
Kell PA, Huber FA, Street EN, Shadlow JO, Rhudy JL. Sleep Problems Mediate the Relationship Between Psychosocial Stress and Pain Facilitation in Native Americans: A Structural Equation Modeling Analysis from the Oklahoma Study of Native American Pain Risk. Ann Behav Med 2022; 56:1116-1130. [PMID: 35775809 PMCID: PMC9924047 DOI: 10.1093/abm/kaac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Native Americans (NAs) are more likely to experience chronic pain than non-Hispanic Whites (NHWs); however, the proximate causes predisposing NAs to chronic pain remain elusive. Likely due to centuries of adversity, discrimination, and marginalization, NAs report greater psychological stress than NHWs, which may place them at risk for sleep problems, a well-established risk factor for chronic pain onset. PURPOSE This study examined the effects of psychological stress and sleep problems on subjective and physiological measures of pain processing in NAs and NHWs. METHODS Structural equation modeling was used to determine whether ethnicity (NA or NHW) was associated with psychological stress or sleep problems and whether these variables were related to conditioned pain modulation of pain perception (CPM-pain) and the nociceptive flexion reflex (CPM-NFR), temporal summation of pain (TS-pain) and NFR (TS-NFR), and pain tolerance in a sample of 302 (153 NAs) pain-free participants. RESULTS NAs experienced more psychological stress (Estimate = 0.027, p = .009) and sleep problems (Estimate = 1.375, p = .015) than NHWs. When controlling for age, sex, physical activity, BMI, and general health, NA ethnicity was no longer related to greater sleep problems. Psychological stress was also related to sleep problems (Estimate = 30.173, p = <.001) and psychological stress promoted sleep problems in NAs (indirect effect = 0.802, p = .014). In turn, sleep problems were associated with greater TS-pain (Estimate = 0.714, p = .004), but not other pain measures. CONCLUSIONS Sleep problems may contribute to chronic pain risk by facilitating pain perception without affecting facilitation of spinal neurons or endogenous inhibition of nociceptive processes. Since psychological stress promoted pain facilitation via enhanced sleep problems, efforts to reduce psychological stress and sleep problems among NAs may improve health outcomes.
Collapse
Affiliation(s)
- Parker A Kell
- Department of Psychology, The University of Tulsa, Tulsa, OK, USA
| | | | - Erin N Street
- Department of Psychology, The University of Tulsa, Tulsa, OK, USA
| | - Joanna O Shadlow
- Department of Psychology, The University of Tulsa, Tulsa, OK, USA
| | | |
Collapse
|
27
|
Common and stimulus-type-specific brain representations of negative affect. Nat Neurosci 2022; 25:760-770. [DOI: 10.1038/s41593-022-01082-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/25/2022] [Indexed: 01/16/2023]
|
28
|
Huber FA, Toledo TA, Newsom G, Rhudy JL. The relationship between sleep quality and emotional modulation of spinal, supraspinal, and perceptual measures of pain. Biol Psychol 2022; 171:108352. [DOI: 10.1016/j.biopsycho.2022.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 04/18/2022] [Accepted: 05/08/2022] [Indexed: 11/02/2022]
|
29
|
Bai Y, Tan J, Liu X, Cui X, Li D, Yin H. Resting-state functional connectivity of the sensory/somatomotor network associated with sleep quality: evidence from 202 young male samples. Brain Imaging Behav 2022; 16:1832-1841. [PMID: 35381969 PMCID: PMC8982909 DOI: 10.1007/s11682-022-00654-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/27/2022]
Abstract
Previous neuroimaging studies have demonstrated that sleep is associated with brain functional changes in some specific brain regions. However, few studies have examined the relationship between all possible functional connectivities (FCs) within the sensory/somatomotor network (SSN) and the sleep quality of young male samples. The SSN consists of two motor cortices and is known to play a critical role in sleep. Poor sleep quality may be associated with increased sensory/somatomotor functional connectivity during rest. Hence, 202 young male participants underwent a resting-state functional magnetic resonance imaging (fMRI) scan and completed the Pittsburgh Sleep Quality Index (PSQI). Results indicated that increased functional connectivity within the SSN was associated with poor sleep quality. Specifically, the total PSQI score was positively correlated with the increased functional connectivity of the left paracentral lobule (PCL), bilateral precentral gyrus (PreCG), supplementary motor area (SMA) and bilateral postcentral gyrus (PoCG). Additionally, our findings also exhibited that (a) the subjective sleep quality factor of PSQI was positively correlated with FC between the bilateral PoCG and the bilateral PCL as well as between the left PreCG and the right SMA; (b) the sleep latency factor of PSQI was positively correlated with FC between the left PoCG and the right precuneus (PCUN); (c) the sleep disturbances factor of PSQI was positively correlated with FC between the left PCL and the right PoCG, and (d) the daytime dysfunction factor of PSQI was positively correlated with FC between the bilateral PoCG and the left PCL as well as between the bilateral PreCG and the SMA. In short, our findings can be comprehensively understood as neural mechanisms of intrinsic SSN connectivity are associated with sleep quality of man. Meanwhile, it may expand our knowledge and provide new insight into a deeper understanding of the neurobiological mechanisms of sleep or sleep problems.
Collapse
Affiliation(s)
- Youling Bai
- School of Education Science, Hunan Normal University, Chang Sha, 410081, China.,Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Chang Sha, 410081, China
| | - Jiawen Tan
- School of art and education, Chizhou University, Chizhou, 247000, China
| | - Xiaoyi Liu
- School of Education Science, Hunan Normal University, Chang Sha, 410081, China.,Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Chang Sha, 410081, China
| | - Xiaobing Cui
- School of Education Science, Hunan Normal University, Chang Sha, 410081, China.,Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Chang Sha, 410081, China
| | - Dan Li
- School of Education Science, Hunan Normal University, Chang Sha, 410081, China. .,Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Chang Sha, 410081, China.
| | - Huazhan Yin
- School of Education Science, Hunan Normal University, Chang Sha, 410081, China. .,Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Chang Sha, 410081, China.
| |
Collapse
|
30
|
Henrich MC, Steffen Frahm K, Coghill RC, Kæseler Andersen O. Spinal nociception is facilitated during cognitive distraction. Neuroscience 2022; 491:134-145. [DOI: 10.1016/j.neuroscience.2022.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/25/2022]
|
31
|
Spinieli RL, Cazuza RA, Sales AJ, Carolino ROG, Martinez D, Anselmo-Franci J, Tajerian M, Leite-Panissi CR. Persistent inflammatory pain is linked with anxiety-like behaviors, increased blood corticosterone, and reduced global DNA methylation in the rat amygdala. Mol Pain 2022; 18:17448069221121307. [PMID: 35974687 PMCID: PMC9393577 DOI: 10.1177/17448069221121307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chronic pain increases the risk of developing anxiety, with limbic areas being likely neurological substrates. Despite high clinical relevance, little is known about the precise behavioral, hormonal, and brain neuroplastic correlates of anxiety in the context of persistent pain. Previous studies have shown that decreased nociceptive thresholds in chronic pain models are paralleled by anxiety-like behavior in rats, but there are conflicting ideas regarding its effects on the stress response and circulating corticosterone levels. Even less is known about the molecular mechanisms through which the brain encodes pain-related anxiety. This study examines how persistent inflammatory pain in a rat model would impact anxiety-like behaviors and corticosterone release, and whether these changes would be reflected in levels of global DNA methylation in brain areas involved in stress regulation. Complete Freund's adjuvant (CFA) or saline was administered in the right hindpaw of adult male Wistar rats. Behavioral testing included the measurement of nociceptive thresholds (digital anesthesiometer), motor function (open field test), and anxiety-like behaviors (elevated plus maze and the dark-light box test). Corticosterone was measured via radioimmunoassay. Global DNA methylation (enzyme immunoassay) as well as DNMT3a levels (western blotting) were quantified in the amygdala, prefrontal cortex, and ventral hippocampus. CFA administration resulted in persistent reduction in nociceptive threshold in the absence of locomotor abnormalities. Increased anxiety-like behaviors were observed in the elevated plus maze and were accompanied by increased blood corticosterone levels 10 days after pain induction. Global DNA methylation was decreased in the amygdala, with no changes in DNMT3a abundance in any of the regions examined. Persistent inflammatory pain promotes anxiety -like behaviors, HPA axis activation, and epigenetic regulation through DNA methylation in the amygdala. These findings describe a molecular mechanism that links pain and stress in a well-characterized rodent model.
Collapse
Affiliation(s)
- Richard L Spinieli
- Department of Psychology, School of Philosophy, Science and Literature of Ribeirão Preto, 28133University of São Paulo, São Paulo, Brazil
| | - Rafael Alves Cazuza
- Department of Psychology, School of Philosophy, Science and Literature of Ribeirão Preto, 28133University of São Paulo, São Paulo, Brazil
| | - Amanda Juliana Sales
- Department of Pharmacology, Medical School of Ribeirão Preto, 28133University of São Paulo, São Paulo, Brazil
| | | | - Diana Martinez
- Department of Biomedical Sciences, 363994Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Janete Anselmo-Franci
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto, 28133University of São Paulo, São Paulo, Brazil
| | - Maral Tajerian
- Department of Biology, Queens College, City University of New York, Flushing, NY, USA.,The Graduate Center, City University of New York, New York, NY, USA
| | - Christie Ra Leite-Panissi
- Department of Psychology, School of Philosophy, Science and Literature of Ribeirão Preto, 28133University of São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Late responses in the anterior insula reflect the cognitive component of pain: evidence of nonpain processing. Pain Rep 2022; 7:e984. [PMID: 35187379 PMCID: PMC8812601 DOI: 10.1097/pr9.0000000000000984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. Distinguishing sensory and cognitive aspects of pain-related insular activity and the temporal profile of anterior insula activity suggested a key role of cognitive modulation. Introduction: Pain is a complex experience influenced by sensory and psychological factors. The insula is considered to be a core part of the pain network in the brain. Previous studies have suggested a relationship between the posterior insula (PI) and sensory processing, and between the anterior insula (AI) and cognitive–affective factors. Objectives: Our aim was to distinguish sensory and cognitive responses in pain-related insular activities. Methods: We recorded spatiotemporal insular activation patterns of healthy participants (n = 20) during pain or tactile processing with painful or nonpainful movie stimuli, using a magnetoencephalography. We compared the peak latency between PI and AI activities in each stimulus condition, and between pain and tactile processing in each response. The peak latency and amplitude between different movies were then examined to explore the effects of cognitive influence. A visual analogue scale was used to assess subjective perception. Results: The results revealed one clear PI activity and 2 AI activities (early and late) in insular responses induced by pain/tactile stimulation. The early response transmitted from the PI to AI was observed during sensory-associated brain activity, whereas the late AI response was observed during cognitive-associated activity. In addition, we found that painful movie stimuli had a significant influence on both late AI activity and subjective perception, caused by nonpainful actual stimulation. Conclusions: The current findings suggested that late AI activation reflects the processing of cognitive pain information, whereas the PI and early AI responses reflect sensory processing.
Collapse
|
33
|
Alba G, Vila J, Miranda JGV, Montoya P, Muñoz MA. Tonic pain reduces autonomic responses and EEG functional connectivity elicited by affective stimuli. Psychophysiology 2022; 59:e14018. [PMID: 35128683 PMCID: PMC9285073 DOI: 10.1111/psyp.14018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/23/2021] [Accepted: 01/13/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Guzmán Alba
- Brain, Mind and Behavior Research Center at University of Granada (CIMCYC‐UGR) Spain
| | - Jaime Vila
- Brain, Mind and Behavior Research Center at University of Granada (CIMCYC‐UGR) Spain
| | - José G. V. Miranda
- Institute of Physics, Laboratory of Biosystems Federal University of Bahia Salvador Brazil
| | - Pedro Montoya
- Research Institute of Health Sciences (IUNICS) University of Balearic Islands Palma Spain
| | - Miguel A. Muñoz
- Brain, Mind and Behavior Research Center at University of Granada (CIMCYC‐UGR) Spain
| |
Collapse
|
34
|
Koberskaya NN, Tabeeva GR. [A role of cognitive and emotional factors in formation of pain]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:111-118. [PMID: 34932296 DOI: 10.17116/jnevro2021121111111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pain is influenced by multiple emotional and cognitive factors. This paper provides an overview of the most important emotional and cognitive factors affecting pain, which has been confirmed in experimental and clinical studies. Emotional factors that increase pain perception include anxiety, depression, and other negative emotions. Positive emotions lead to a decrease in pain. Cognitive factors such as attention, expectation anxiety, and pain assessment can both increase and decrease pain sensations, depending on their specific focus. It becomes clear that pain is not just a reflection of nociceptive irritation, but also a feeling formed by psychological factors that can be individual in each case.
Collapse
Affiliation(s)
- N N Koberskaya
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - G R Tabeeva
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
35
|
Makovac E, Venezia A, Hohenschurz-Schmidt D, Dipasquale O, Jackson JB, Medina S, O'Daly O, Williams SCR, McMahon SB, Howard MA. The association between pain-induced autonomic reactivity and descending pain control is mediated by the periaqueductal grey. J Physiol 2021; 599:5243-5260. [PMID: 34647321 DOI: 10.1113/jp282013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/28/2021] [Indexed: 11/08/2022] Open
Abstract
There is a strict interaction between the autonomic nervous system (ANS) and pain, which might involve descending pain modulatory mechanisms. The periaqueductal grey (PAG) is involved both in descending pain modulation and ANS, but its role in mediating this relationship has not yet been explored. Here, we sought to determine brain regions mediating ANS and descending pain control associations. Thirty participants underwent conditioned pain modulation (CPM) assessments, in which they rated painful pressure stimuli applied to their thumbnail, either alone or with a painful cold contralateral stimulation. Differences in pain ratings between 'pressure-only' and 'pressure + cold' stimuli provided a measure of descending pain control. In 18 of the 30 participants, structural scans and two functional MRI assessments, one pain-free and one during cold-pain were acquired. Heart rate variability (HRV) was simultaneously recorded. Normalised low-frequency HRV (LF-HRVnu) and the CPM score were negatively correlated; individuals with higher LF-HRVnu during pain reported reductions in pain during CPM. PAG-ventro-medial prefrontal cortex (vmPFC) and PAG-rostral ventromedial medulla (RVM) functional connectivity correlated negatively with the CPM. Importantly, PAG-vmPFC functional connectivity mediated the strength of the LF-HRVnu-CPM association. CPM response magnitude was also negatively correlated with vmPFC GM volume. Our multi-modal approach, using behavioural, physiological and MRI measures, provides important new evidence of interactions between ANS and descending pain mechanisms. ANS dysregulation and dysfunctional descending pain modulation are characteristics of chronic pain. We suggest that further investigation of body-brain interactions in chronic pain patients may catalyse the development of new treatments. KEY POINTS: Heart rate variability (HRV) is associated with descending pain modulation as measured by the conditioned pain modulation protocol (CPM). There is an association between CPM scores and the functional connectivity between the periaqueductal grey (PAG) and ventro-medial prefrontal cortex (vmPFC). CPM scores are also associated with vmPFC grey matter volume. The strength of functional connectivity between the PAG and vmPFC mediates the association between HRV and CPM. Our data provide new evidence of interactions between the autonomic nervous system and descending pain mechanisms.
Collapse
Affiliation(s)
- Elena Makovac
- Department of Neuroimaging, King's College London, London, UK.,Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | | | - David Hohenschurz-Schmidt
- Department of Neuroimaging, King's College London, London, UK.,Pain Research, Department Surgery & Cancer, Faculty of Medicine, Imperial College, London, UK
| | | | - Jade B Jackson
- Department of Neuroimaging, King's College London, London, UK.,MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Sonia Medina
- Department of Neuroimaging, King's College London, London, UK.,Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | - Owen O'Daly
- Department of Neuroimaging, King's College London, London, UK
| | | | - Stephen B McMahon
- Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | | |
Collapse
|
36
|
Henrich MC, Frahm KS, Andersen OK. Spinal spatial integration of nociception and its functional role assessed via the nociceptive withdrawal reflex and psychophysical measures in healthy humans. Physiol Rep 2021; 8:e14648. [PMID: 33217191 PMCID: PMC7679129 DOI: 10.14814/phy2.14648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Animal studies have previously shown that deep dorsal horn neurons play a role in the processing of spatial characteristics of nociceptive information in mammals. Human studies have supported the role of the spinal neurons; however, the mechanisms involved, and its significance, remain to be clarified. The aim of this study was to investigate spatial aspects of the spinal integration of concurrent nociceptive electrical stimuli in healthy humans using the Nociceptive Withdrawal Reflex (NWR) as an objective indication of spinal nociceptive processing. Fifteen healthy volunteers participated in the study. Electrical stimuli were delivered, using five electrodes located across the sole of the foot in a mediolateral disposition, as a single or double simultaneous stimuli with varying Inter-Electrode Distances (IEDs). The stimulation intensity was set at 1.5× NWR threshold (TA muscle). The size of the NWR was quantified in the 60-180 ms poststimulus window as a primary outcome measure. Psychophysical measures were secondary outcomes. Single stimulation elicited significantly smaller NWRs and perceived intensity than double stimulation (p < .01), suggesting the presence of spatial summation occurring within the spinal processing. During double stimulation, increasing the inter-electrode distance produced significantly smaller NWR sizes (p < .05) but larger pain intensity ratings (p < .05). By the NWR, spatial summation was shown to affect the nociceptive processing within the spinal cord. The inhibited motor response obtained when simultaneously stimulating the medial and lateral side of the sole of the foot suggests the presence of an inhibitory mechanism with a functional, behaviorally oriented function.
Collapse
Affiliation(s)
- Mauricio Carlos Henrich
- Integrative Neuroscience, Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg Ø, Denmark
| | - Ken Steffen Frahm
- Integrative Neuroscience, Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg Ø, Denmark
| | - Ole Kaeseler Andersen
- Integrative Neuroscience, Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg Ø, Denmark
| |
Collapse
|
37
|
Zhe X, Chen L, Zhang D, Tang M, Gao J, Ai K, Liu W, Lei X, Zhang X. Cortical Areas Associated With Multisensory Integration Showing Altered Morphology and Functional Connectivity in Relation to Reduced Life Quality in Vestibular Migraine. Front Hum Neurosci 2021; 15:717130. [PMID: 34483869 PMCID: PMC8415788 DOI: 10.3389/fnhum.2021.717130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/26/2021] [Indexed: 01/21/2023] Open
Abstract
Background: Increasing evidence suggests that the temporal and parietal lobes are associated with multisensory integration and vestibular migraine. However, temporal and parietal lobe structural and functional connectivity (FC) changes related to vestibular migraine need to be further investigated. Methods: Twenty-five patients with vestibular migraine (VM) and 27 age- and sex- matched healthy controls participated in this study. Participants completed standardized questionnaires assessing migraine and vertigo-related clinical features. Cerebral cortex characteristics [i.e., thickness (CT), fractal dimension (FD), sulcus depth (SD), and the gyrification index (GI)] were evaluated using an automated Computational Anatomy Toolbox (CAT12). Regions with significant differences were used in a seed-based comparison of resting-state FC conducted with DPABI. The relationship between changes in cortical characteristics or FC and clinical features was also analyzed in the patients with VM. Results: Relative to controls, patients with VM showed significantly thinner CT in the bilateral inferior temporal gyrus, left middle temporal gyrus, and the right superior parietal lobule. A shallower SD was observed in the right superior and inferior parietal lobule. FD and GI did not differ significantly between the two groups. A negative correlation was found between CT in the right inferior temporal gyrus, as well as the left middle temporal gyrus, and the Dizziness Handicap Inventory (DHI) score in VM patients. Furthermore, patients with VM exhibited weaker FC between the left inferior/middle temporal gyrus and the left medial superior frontal gyrus, supplementary motor area. Conclusion: Our data revealed cortical structural and resting-state FC abnormalities associated with multisensory integration, contributing to a lower quality of life. These observations suggest a role for multisensory integration in patients with VM pathophysiology. Future research should focus on using a task-based fMRI to measure multisensory integration.
Collapse
Affiliation(s)
- Xia Zhe
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Li Chen
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Dongsheng Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Min Tang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jie Gao
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Kai Ai
- Department of Clinical Science, Philips Healthcare, Xi'an, China
| | - Weijun Liu
- Consumables and Reagents Department, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoyan Lei
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoling Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
38
|
Jo HG, Wudarczyk O, Leclerc M, Regenbogen C, Lampert A, Rothermel M, Habel U. Effect of odor pleasantness on heat-induced pain: An fMRI study. Brain Imaging Behav 2021; 15:1300-1312. [PMID: 32770446 DOI: 10.1007/s11682-020-00328-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Odor modulates the experience of pain, but the neural basis of how the two sensory modalities, olfaction and pain, are linked in the central nervous system is far from clear. In this study, we investigated the mechanisms by which the brain modulates the pain experience under concurrent odorant stimulation. We conducted an fMRI study using a 2 × 3 factorial design, in which one of two temperatures (warm, hot) and one of three types of odors (pleasant, unpleasant, no odor) were presented simultaneously. "Hot" temperatures were individually determined as those perceived as painful (mean temperature = 46.9 °C). The non-painful "warm" temperature was set to 40 °C. Participants rated hot compared to warm stimuli as more intense and unpleasant, especially in the presence of an unpleasant odor. Parametric modeling on the intensity ratings activated the pain network, covering brain regions activated by the hot stimuli. The presence of an odor, irrespective of its valence, activated the amygdalae. In addition, the amygdalae showed stimulus-dependent functional couplings with the right supramarginal gyrus and with the left superior frontal gyrus. The coupling between the right amygdala and the left superior frontal gyrus was related to the intensity and unpleasantness ratings of the pain experience. Our results suggest that these functional connections may reflect the integrating process of the two sensory modalities, enabling olfactory influence on the pain experience.
Collapse
Affiliation(s)
- Han-Gue Jo
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany. .,JARA-Institute Brain Structure Function Relationship (INM-10), Research Center Jülich and RWTH Aachen University, Jülich, Germany. .,School of Computer, Information and Communication Engineering, Kunsan National University, Gunsan, South Korea.
| | - Olga Wudarczyk
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.,Cluster of Excellence Science of Intelligence, Technische Universität Berlin and Humboldt Universität zu Berlin, 10587, Berlin, Germany
| | - Marcel Leclerc
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Christina Regenbogen
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,JARA-Institute Brain Structure Function Relationship (INM-10), Research Center Jülich and RWTH Aachen University, Jülich, Germany.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Angelika Lampert
- Institute of Physiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Markus Rothermel
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,JARA-Institute Brain Structure Function Relationship (INM-10), Research Center Jülich and RWTH Aachen University, Jülich, Germany
| |
Collapse
|
39
|
Analysis of the differences in brain function response after acupuncture and moxibustion at Zúsānlĭ (足三里ST36) in the patients with functional dyspepsia based on fractional amplitude of low frequency fluctuation of rest functional magnetic resonance imaging. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2021. [DOI: 10.1016/j.wjam.2021.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
40
|
The dynamics of pain reappraisal: the joint contribution of cognitive change and mental load. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 20:276-293. [PMID: 31950439 PMCID: PMC7105446 DOI: 10.3758/s13415-020-00768-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study was designed to investigate the neural mechanism of cognitive modulation of pain via a reappraisal strategy with high temporal resolution. The EEG signal was recorded from 29 participants who were instructed to down-regulate, up-regulate, or maintain their pain experience. The L2 minimum norm source reconstruction method was used to localize areas in which a significant effect of the instruction was present. Down-regulating pain by reappraisal exerted a robust effect on pain processing from as early as ~100 ms that diminished the activity of limbic brain regions: the anterior cingulate cortex, right orbitofrontal cortex, left anterior temporal region, and left insula. However, compared with the no-regulation condition, the neural activity was similarly attenuated in the up- and down-regulation conditions. We suggest that this effect could be ascribed to the cognitive load that was associated with the execution of a cognitively demanding reappraisal task that could have produced a general attenuation of pain-related areas regardless of the aim of the reappraisal task (i.e., up- or down-regulation attempts). These findings indicate that reappraisal effects reflect the joint influence of both reappraisal-specific (cognitive change) and unspecific (cognitive demand) factors, thus pointing to the importance of cautiously selected control conditions that allow the modulating impact of both processes to be distinguished.
Collapse
|
41
|
Wang S, Song P, Ma R, Wang Y, Yu B, Wang M, Wang M, Shen J, Dai Y, Wang Y, Xie W. Research on Characteristic of Chronic Spontaneous Urticaria Based on Multiscale Entropy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6691356. [PMID: 34122619 PMCID: PMC8172304 DOI: 10.1155/2021/6691356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/21/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022]
Abstract
Chronic spontaneous urticaria (CSU) is a common skin disease which symptom is local pruritus and pain. In medicine, researchers take a certain point that the brain is the control center of CSU, but in previous experiments, the researchers found that cerebellum also had a certain effect on CSU. In order to find out the influence of CSU in the brain and cerebellum, we collected the brain resting-state fMRI data from 40 healthy controls and 32 CSU patients and used DPABI to preprocess. We calculated the entropy values of five scales by using multiscale entropy (MSE) and the average entropy values of two groups' BOLD signals; 15 regions with significant differences were found which not only had a more detailed impact in the brain but also had an impact in the cerebellum, such as precentral gyrus, lenticular putamen, and vermis of cerebellum. In addition, we found that compared with the healthy controls, the entropy values of CSU patients showed two trends which need further study. The advantage of our experiment is that the multiscale entropy value is used to get more influence regions of CSU in the brain and cerebellum. The results of this paper may provide some help for the pathological study of CSU.
Collapse
Affiliation(s)
- Shujuan Wang
- College of Mathematical Sciences, Harbin Engineering University, Harbin 150001, China
| | - Ping Song
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Rong Ma
- College of Mathematical Sciences, Harbin Engineering University, Harbin 150001, China
| | - Yanzhong Wang
- School of Population Health & Environmental Sciences, Faculty of Life Science and Medicine, King's College London, London, UK
- Suzhou Fanhan Information Technology Co., Ltd, China
| | - Bin Yu
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Min Wang
- College of Mathematical Sciences, Harbin Engineering University, Harbin 150001, China
| | - Meiqi Wang
- College of Mathematical Sciences, Harbin Engineering University, Harbin 150001, China
| | - Jihong Shen
- College of Mathematical Sciences, Harbin Engineering University, Harbin 150001, China
| | - Yuntao Dai
- College of Mathematical Sciences, Harbin Engineering University, Harbin 150001, China
| | - Yuming Wang
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Wanqing Xie
- College of Mathematical Sciences, Harbin Engineering University, Harbin 150001, China
- Suzhou Fanhan Information Technology Co., Ltd, China
| |
Collapse
|
42
|
Comparison between Two Low Doses of Amitriptyline in the Management of Chronic Neck Pain: A Randomized, Double-Blind, Comparative Study. Pain Res Manag 2021; 2021:8810178. [PMID: 33532013 PMCID: PMC7837778 DOI: 10.1155/2021/8810178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/10/2021] [Indexed: 12/28/2022]
Abstract
Chronic neck pain (CNP) is a major concern for pain therapists. Many drugs including antidepressants such as amitriptyline have been used in the management of CNP. This study compared the efficacy and safety of 2 different doses of amitriptyline (5 mg and 10 mg at bedtime) in patients with CNP. A total of 80 patients of both sexes with idiopathic CNP, ranging in age from 18 to 75 years, were divided into 2 groups that received 5 or 10 mg oral amitriptyline at bedtime for 120 days. The primary outcome measure was neck pain disability index (NPDI). Neck pain intensity, Athens Insomnia Scale score, Hospital Anxiety and Depression Scale (HADS), side effects of the drug, and patient satisfaction were secondary outcome measures. NPDI decreased by 71.9% ± 13.4% in the 10 mg group compared to 47.3% ± 17.3% in the 5 mg group, representing a statistically significant difference (95% confidence interval: 27.3–12.6). Additionally, the 10 mg group showed greater mean reductions in pain score and HADS scores (both the anxiety and depression subscales), as well as improvement in sleep disturbance compared to the 5 mg group. A higher dose (10 mg) of amitriptyline at bedtime significantly reduced neck pain intensity, sleep disturbance, and anxiety and depression compared to a lower dose (5 mg) in patients with idiopathic and nontraumatic CNP after 120 days of treatment, with no significant difference between groups in the rate of side effects.
Collapse
|
43
|
Lee JJ, Kim HJ, Čeko M, Park BY, Lee SA, Park H, Roy M, Kim SG, Wager TD, Woo CW. A neuroimaging biomarker for sustained experimental and clinical pain. Nat Med 2021; 27:174-182. [PMID: 33398159 DOI: 10.1038/s41591-020-1142-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022]
Abstract
Sustained pain is a major characteristic of clinical pain disorders, but it is difficult to assess in isolation from co-occurring cognitive and emotional features in patients. In this study, we developed a functional magnetic resonance imaging signature based on whole-brain functional connectivity that tracks experimentally induced tonic pain intensity and tested its sensitivity, specificity and generalizability to clinical pain across six studies (total n = 334). The signature displayed high sensitivity and specificity to tonic pain across three independent studies of orofacial tonic pain and aversive taste. It also predicted clinical pain severity and classified patients versus controls in two independent studies of clinical low back pain. Tonic and clinical pain showed similar network-level representations, particularly in somatomotor, frontoparietal and dorsal attention networks. These patterns were distinct from representations of experimental phasic pain. This study identified a brain biomarker for sustained pain with high potential for clinical translation.
Collapse
Affiliation(s)
- Jae-Joong Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Hong Ji Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Marta Čeko
- Institute of Cognitive Science, University of Colorado, Boulder CO, USA.,Department of Psychology and Neuroscience, University of Colorado, Boulder CO, USA
| | - Bo-Yong Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea.,McConnell Brain Imaging Centre, Montreal Neurological institute and Hospital, McGill University, Montreal, QC, Canada
| | - Soo Ahn Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea.,School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Mathieu Roy
- Department of Psychology, McGill University, Montreal, QC, Canada.,Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover NH, USA.
| | - Choong-Wan Woo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea. .,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea. .,Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, South Korea. .,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea.
| |
Collapse
|
44
|
Papadopoulos T. Commentary on: A Randomized Controlled Trial of Three Noninvasive Analgesic Techniques for the Prevention of Pain During Facial Injections. Aesthet Surg J 2021; 41:80-85. [PMID: 32401305 DOI: 10.1093/asj/sjaa044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tim Papadopoulos
- Department of Plastic and Reconstructive Surgery, Westmead Private Hospital, Westmead NSW, Australia
| |
Collapse
|
45
|
Slepian PM, France CR, Rhudy JL, Clark BC. Transcranial Direct Current Stimulation of the Dorsolateral Prefrontal Cortex Alters Emotional Modulation of Spinal Nociception. THE JOURNAL OF PAIN 2020; 22:509-519. [PMID: 33253818 DOI: 10.1016/j.jpain.2020.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/28/2020] [Accepted: 10/17/2020] [Indexed: 11/16/2022]
Abstract
Emotion has a strong modulatory effect on pain perception and spinal nociception. Pleasure inhibits pain and nociception, whereas displeasure facilitates pain and nociception. Dysregulation of this system has been implicated in development and maintenance of chronic pain. The current study sought to examine whether emotional modulation of pain could be altered through the use of transcranial direct current stimulation (tDCS) to enhance (via anodal stimulation) or depress (via cathodal stimulation) cortical excitability in the dorsolateral prefrontal cortex. Thirty-two participants (15 female, 17 male) received anodal, cathodal, and sham tDCS on three separate occasions, followed immediately by testing to examine the impact of pleasant and unpleasant images on pain and nociceptive flexion reflex (NFR) responses to electrocutaneous stimulation. Results indicated that tDCS modulated the effect of image content on NFR, F(2, 2175.06) = 3.20, P= .04, with the expected linear slope following anodal stimulation (ie, pleasant < neutral < unpleasant) but not cathodal stimulation. These findings provide novel evidence that the dorsolateral prefrontal cortex is critical to emotional modulation of spinal nociception. Moreover, the results suggest a physiological basis for a previously identified phenotype associated with risk for chronic pain and thus a potentially new target for chronic pain prevention efforts. PERSPECTIVE: This study demonstrated that reduction of dorsolateral prefrontal cortical excitability by transcranial direct current stimulation attenuates the impact of emotional image viewing on nociceptive reflex activity during painful electrocutaneous stimulation. This result confirms there is cortical involvement in emotional modulation of spinal nociception and opens avenues for future clinical research.
Collapse
Affiliation(s)
- Peter Maxwell Slepian
- Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Department of Psychology, York University, Toronto, Ontario, Canada; Department of Psychology, Ohio University, Porter Hall, Athens, Ohio.
| | | | - Jamie L Rhudy
- Department of Psychology, University of Tulsa, Lorton Hall, Tulsa, Oklahoma
| | - Brian C Clark
- Department of Biomedical Sciences, Ohio University, Grosvenor Hall, Athens, Ohio
| |
Collapse
|
46
|
Tinnermann A, Büchel C, Cohen-Adad J. Cortico-spinal imaging to study pain. Neuroimage 2020; 224:117439. [PMID: 33039624 DOI: 10.1016/j.neuroimage.2020.117439] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Functional magnetic resonance imaging of the brain has helped to reveal mechanisms of pain perception in health and disease. Recently, imaging approaches have been developed that allow recording neural activity simultaneously in the brain and in the spinal cord. These approaches offer the possibility to examine pain perception in the entire central pain system and in addition, to investigate cortico-spinal interactions during pain processing. Although cortico-spinal imaging is a promising technique, it bears challenges concerning data acquisition and data analysis strategies. In this review, we discuss studies that applied simultaneous imaging of the brain and spinal cord to explore central pain processing. Furthermore, we describe different MR-related acquisition techniques, summarize advantages and disadvantages of approaches that have been implemented so far and present software that has been specifically developed for the analysis of spinal fMRI data to address challenges of spinal data analysis.
Collapse
Affiliation(s)
- Alexandra Tinnermann
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Max Planck School of Cognition, Leipzig, Germany.
| | - Christian Büchel
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Max Planck School of Cognition, Leipzig, Germany
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
47
|
Rustamov N, Wagenaar-Tison A, Doyer E, Piché M. Electrophysiological investigation of the contribution of attention to altered pain inhibition processes in patients with irritable bowel syndrome. J Physiol Sci 2020; 70:46. [PMID: 33023474 PMCID: PMC10717774 DOI: 10.1186/s12576-020-00774-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/22/2020] [Indexed: 11/10/2022]
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder associated with chronic abdominal pain and altered pain processing. The aim of this study was to examine whether attentional processes contribute to altered pain inhibition processes in patients with IBS. Nine female patients with IBS and nine age-/sex-matched controls were included in a pain inhibition paradigm using counter-stimulation and distraction with electroencephalography. Patients with IBS showed no inhibition of pain-related brain activity by heterotopic noxious counter-stimulation (HNCS) or selective attention. In the control group, HNCS and selective attention decreased the N100, P260 and high-gamma oscillation power. In addition, pain-related high-gamma power in sensorimotor, anterior cingulate and left dorsolateral prefrontal cortex was decreased by HNCS and selective attention in the control group, but not in patients with IBS. These results indicate that the central pain inhibition deficit in IBS reflects interactions between several brain processes related to pain and attention.
Collapse
Affiliation(s)
- Nabi Rustamov
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
| | - Alice Wagenaar-Tison
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
| | - Elysa Doyer
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
| | - Mathieu Piché
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada.
- CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada.
| |
Collapse
|
48
|
Abstract
Pain and depressive mood commonly exhibit a comorbid relationship. Yet, the brain mechanisms that moderate the relationship between dysphoric mood and pain remain unknown. An exploratory analysis of functional magnetic resonance imaging, behavioral, and psychophysical data was collected from a previous study in 76 healthy, nondepressed, and pain-free individuals. Participants completed the Beck Depression Inventory-II (BDI), a measure of negative mood/depressive symptomology, and provided pain intensity and pain unpleasantness ratings in response to noxious heat (49°C) during perfusion-based, arterial spin-labeled functional magnetic resonance imaging. Moderation analyses were conducted to determine neural mechanisms involved in facilitating the hypothesized relationship between depressive mood and pain sensitivity. Higher BDI-II scores were positively associated with pain intensity (R = 0.10; P = 0.006) and pain unpleasantness (R = 0.12; P = 0.003) ratings. There was a high correlation between pain intensity and unpleasantness ratings (r = 0.94; P < 0.001); thus, brain moderation analyses were focused on pain intensity ratings. Individuals with higher levels of depressive mood exhibited heightened sensitivity to experimental pain. Greater activation in regions supporting the evaluation of pain (ventrolateral prefrontal cortex; anterior insula) and sensory-discrimination (secondary somatosensory cortex; posterior insula) moderated the relationship between higher BDI-II scores and pain intensity ratings. This study demonstrates that executive-level and sensory-discriminative brain mechanisms play a multimodal role in facilitating the bidirectional relationship between negative mood and pain.
Collapse
|
49
|
Sun J, Yan W, Zhang XN, Lin X, Li H, Gong YM, Zhu XM, Zheng YB, Guo XY, Ma YD, Liu ZY, Liu L, Gao JH, Vitiello MV, Chang SH, Liu XG, Lu L. Polygenic evidence and overlapped brain functional connectivities for the association between chronic pain and sleep disturbance. Transl Psychiatry 2020; 10:252. [PMID: 32709872 PMCID: PMC7381677 DOI: 10.1038/s41398-020-00941-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic pain and sleep disturbance are highly comorbid disorders, which leads to barriers to treatment and significant healthcare costs. Understanding the underlying genetic and neural mechanisms of the interplay between sleep disturbance and chronic pain is likely to lead to better treatment. In this study, we combined 1206 participants with phenotype data, resting-state functional magnetic resonance imaging (rfMRI) data and genotype data from the Human Connectome Project and two large sample size genome-wide association studies (GWASs) summary data from published studies to identify the genetic and neural bases for the association between pain and sleep disturbance. Pittsburgh sleep quality index (PSQI) score was used for sleep disturbance, pain intensity was measured by Pain Intensity Survey. The result showed chronic pain was significantly correlated with sleep disturbance (r = 0.171, p-value < 0.001). Their genetic correlation was rg = 0.598 using linkage disequilibrium (LD) score regression analysis. Polygenic score (PGS) association analysis showed PGS of chronic pain was significantly associated with sleep and vice versa. Nine shared functional connectivity (FCs) were identified involving prefrontal cortex, temporal cortex, precentral/postcentral cortex, anterior cingulate cortex, fusiform gyrus and hippocampus. All these FCs mediated the effect of sleep disturbance on pain and seven FCs mediated the effect of pain on sleep disturbance. The chronic pain PGS was positively associated with the FC between middle temporal gyrus and hippocampus, which further mediated the effect of chronic pain PGS on PSQI score. Mendelian randomization analysis implied a possible causal relationship from chronic pain to sleep disturbance was stronger than that of sleep disturbance to chronic pain. The results provided genetic and neural evidence for the association between pain and sleep disturbance, which may inform future treatment approaches for comorbid chronic pain states and sleep disturbance.
Collapse
Affiliation(s)
- Jie Sun
- grid.411642.40000 0004 0605 3760Center for Pain Medicine, Peking University Third Hospital, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China ,grid.411642.40000 0004 0605 3760Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191 China
| | - Wei Yan
- grid.11135.370000 0001 2256 9319Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Xing-Nan Zhang
- grid.11135.370000 0001 2256 9319Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Xiao Lin
- grid.11135.370000 0001 2256 9319Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Hui Li
- grid.11135.370000 0001 2256 9319Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Yi-Miao Gong
- grid.11135.370000 0001 2256 9319Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Xi-Mei Zhu
- grid.11135.370000 0001 2256 9319Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Yong-Bo Zheng
- grid.11135.370000 0001 2256 9319Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Xiang-Yang Guo
- grid.411642.40000 0004 0605 3760Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191 China
| | - Yun-Dong Ma
- grid.11135.370000 0001 2256 9319Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Zeng-Yi Liu
- grid.11135.370000 0001 2256 9319Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Lin Liu
- grid.11135.370000 0001 2256 9319Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Jia-Hong Gao
- grid.11135.370000 0001 2256 9319Center for MRI Research, Peking University, Beijing, 100871 China
| | - Michael V. Vitiello
- grid.34477.330000000122986657Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195 USA
| | - Su-Hua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China. .,Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191, China.
| | - Xiao-Guang Liu
- Center for Pain Medicine, Peking University Third Hospital, Beijing, 100191, China. .,Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China. .,Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, 100191, China.
| |
Collapse
|
50
|
Kwong KCL, Yeoh SC, Balasubramaniam R. Is oral dysaesthesia a somatic symptom disorder? J Oral Pathol Med 2020; 49:499-504. [PMID: 32531871 DOI: 10.1111/jop.13064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
Abstract
Oral dysaesthesia is a condition characterised by persistent alteration to oral sensation, perceived by the patient to be abnormal and unpleasant, in the absence of mucosal pathology. Its aetiology remains uncertain. The condition was attributed as a psychosomatic disease for much of the 20th century, but with newer technologies, recent literature has mostly focused on a possible peripheral or central neuropathic aetiology to oral dysaesthesia. Despite this, psychotropic medications and psychological treatments remain forefront in the armamentarium for the management of oral dysaesthesia. This article aims to review the literature surrounding the pathogenesis of oral dysaesthesia and explore whether oral dysaesthesia is a somatic symptom disorder.
Collapse
Affiliation(s)
- Kenelm Chun Lam Kwong
- Department of Oral Medicine, Oral Pathology and Special Needs Dentistry, Westmead Hospital, Westmead, NSW, Australia
| | | | | |
Collapse
|