1
|
Kubagawa H, Mahmoudi Aliabadi P, Al-Qaisi K, Jani PK, Honjo K, Izui S, Radbruch A, Melchers F. Functions of IgM fc receptor (FcµR) related to autoimmunity. Autoimmunity 2024; 57:2323563. [PMID: 38465789 DOI: 10.1080/08916934.2024.2323563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
Unlike Fc receptors for switched immunoglobulin (Ig) isotypes, Fc receptor for IgM (FcµR) is selectively expressed by lymphocytes. The ablation of the FcµR gene in mice impairs B cell tolerance as evidenced by concomitant production of autoantibodies of IgM and IgG isotypes. In this essay, we reiterate the autoimmune phenotypes observed in mutant mice, ie IgM homeostasis, dysregulated humoral immune responses including autoantibodies, and Mott cell formation. We also propose the potential phenotypes in individuals with FCMR deficiency and the model for FcµR-mediated regulation of self-reactive B cells.
Collapse
Affiliation(s)
| | | | | | - Peter K Jani
- Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| | - Kazuhito Honjo
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shozo Izui
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Fritz Melchers
- Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| |
Collapse
|
2
|
Štefan U, Brázda V, Plavec J, Marušič M. The influence of G-tract and loop length on the topological variability of putative five and six G-quartet DNA structures in the human genome. Int J Biol Macromol 2024; 280:136008. [PMID: 39326605 DOI: 10.1016/j.ijbiomac.2024.136008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Local variation of DNA structure and its dynamic nature play an essential role in the regulation of important biological processes. One of the most prominent noncanonical structures are G-quadruplexes, which form in vivo within guanine-rich regions and have been demonstrated to be involved in the regulation of transcription, translation and telomere maintenance. We provide an analysis of G-quadruplex formation in sequences with five and six guanine residues long G-tracts, which have emerged from the investigation of the gapless human genome and are associated with genes related to cancer and neurodegenerative diseases. We systematically explored the effect of G-tract and loop elongations by means of NMR and CD spectroscopy and polyacrylamide electrophoresis. Despite both types of elongation leading up to structural polymorphism, we successfully determined the topologies of four out of eight examined sequences, one of which contributes to a very scarce selection of currently known intramolecular four G-quartet structures in potassium solutions. We demonstrate that examined sequences are incompatible with five or six G-quartet structures with propeller loops, although the compatibility with other loop types cannot be factored out. Lastly, we propose a novel approach towards specific G-quadruplex targeting that could be implemented in structures with more than four G-quartets.
Collapse
Affiliation(s)
- Urša Štefan
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic
| | - Janez Plavec
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia; Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; EN-FIST Center of Excellence, SI-1000 Ljubljana, Slovenia
| | - Maja Marušič
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
3
|
Wu JW, Liu Y, Dai XJ, Liu HM, Zheng YC, Liu HM. CD155 as an emerging target in tumor immunotherapy. Int Immunopharmacol 2024; 131:111896. [PMID: 38518596 DOI: 10.1016/j.intimp.2024.111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/08/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
CD155 is an immunoglobulin-like protein overexpressed in almost all the tumor cells, which not only promotes proliferation, adhesion, invasion, and migration of tumor cells, but also regulates immune responses by interacting with TIGIT, CD226 or CD96 receptors expressed on several immune cells, thereby modulating the functionality of these cellular subsets. As a novel immune checkpoint, the inhibition of CD155/TIGIT, either as a standalone treatment or in conjunction with other immune checkpoint inhibitors, has demonstrated efficacy in managing advanced solid malignancies. In this review, we summarize the intricate relationship between on tumor surface CD155 and its receptors, with further discussion on how they regulate the occurrence of tumor immune escape. In addition, novel therapeutic strategies and clinical trials targeting CD155 and its receptors are summarized, providing a strong rationale and way forward for the development of next-generation immunotherapies.
Collapse
Affiliation(s)
- Jiang-Wan Wu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ying Liu
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Xing-Jie Dai
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Hui-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
4
|
Zhang S, Yu Q, Li Z, Zhao Y, Sun Y. Protein neddylation and its role in health and diseases. Signal Transduct Target Ther 2024; 9:85. [PMID: 38575611 PMCID: PMC10995212 DOI: 10.1038/s41392-024-01800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
NEDD8 (Neural precursor cell expressed developmentally downregulated protein 8) is an ubiquitin-like protein that is covalently attached to a lysine residue of a protein substrate through a process known as neddylation, catalyzed by the enzyme cascade, namely NEDD8 activating enzyme (E1), NEDD8 conjugating enzyme (E2), and NEDD8 ligase (E3). The substrates of neddylation are categorized into cullins and non-cullin proteins. Neddylation of cullins activates CRLs (cullin RING ligases), the largest family of E3 ligases, whereas neddylation of non-cullin substrates alters their stability and activity, as well as subcellular localization. Significantly, the neddylation pathway and/or many neddylation substrates are abnormally activated or over-expressed in various human diseases, such as metabolic disorders, liver dysfunction, neurodegenerative disorders, and cancers, among others. Thus, targeting neddylation becomes an attractive strategy for the treatment of these diseases. In this review, we first provide a general introduction on the neddylation cascade, its biochemical process and regulation, and the crystal structures of neddylation enzymes in complex with cullin substrates; then discuss how neddylation governs various key biological processes via the modification of cullins and non-cullin substrates. We further review the literature data on dysregulated neddylation in several human diseases, particularly cancer, followed by an outline of current efforts in the discovery of small molecule inhibitors of neddylation as a promising therapeutic approach. Finally, few perspectives were proposed for extensive future investigations.
Collapse
Affiliation(s)
- Shizhen Zhang
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Qing Yu
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, 310022, China
| | - Zhijian Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yongchao Zhao
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang University Cancer Center, Hangzhou, 310029, China.
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang University Cancer Center, Hangzhou, 310029, China.
- Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang, Hangzhou, 310024, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
5
|
Naidu A, Lulu S. S. Systems and computational analysis of gene expression datasets reveals GRB-2 suppression as an acute immunomodulatory response against enteric infections in endemic settings. Front Immunol 2024; 15:1285785. [PMID: 38433833 PMCID: PMC10906661 DOI: 10.3389/fimmu.2024.1285785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/05/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction Enteric infections are a major cause of under-5 (age) mortality in low/middle-income countries. Although vaccines against these infections have already been licensed, unwavering efforts are required to boost suboptimalefficacy and effectiveness in regions that are highly endemic to enteric pathogens. The role of baseline immunological profiles in influencing vaccine-induced immune responses is increasingly becoming clearer for several vaccines. Hence, for the development of advanced and region-specific enteric vaccines, insights into differences in immune responses to perturbations in endemic and non-endemic settings become crucial. Materials and methods For this reason, we employed a two-tiered system and computational pipeline (i) to study the variations in differentially expressed genes (DEGs) associated with immune responses to enteric infections in endemic and non-endemic study groups, and (ii) to derive features (genes) of importance that keenly distinguish between these two groups using unsupervised machine learning algorithms on an aggregated gene expression dataset. The derived genes were further curated using topological analysis of the constructed STRING networks. The findings from these two tiers are validated using multilayer perceptron classifier and were further explored using correlation and regression analysis for the retrieval of associated gene regulatory modules. Results Our analysis reveals aggressive suppression of GRB-2, an adaptor molecule integral for TCR signaling, as a primary immunomodulatory response against S. typhi infection in endemic settings. Moreover, using retrieved correlation modules and multivariant regression models, we found a positive association between regulators of activated T cells and mediators of Hedgehog signaling in the endemic population, which indicates the initiation of an effector (involving differentiation and homing) rather than an inductive response upon infection. On further exploration, we found STAT3 to be instrumental in designating T-cell functions upon early responses to enteric infections in endemic settings. Conclusion Overall, through a systems and computational biology approach, we characterized distinct molecular players involved in immune responses to enteric infections in endemic settings in the process, contributing to the mounting evidence of endemicity being a major determiner of pathogen/vaccine-induced immune responses. The gained insights will have important implications in the design and development of region/endemicity-specific vaccines.
Collapse
Affiliation(s)
- Akshayata Naidu
- Integrative Multi-omics Lab, Department of Biotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | |
Collapse
|
6
|
Choi S, Hatzihristidis T, Gaud G, Dutta A, Lee J, Arya A, Clubb LM, Stamos DB, Markovics A, Mikecz K, Love P. GRB2 promotes thymocyte positive selection by facilitating THEMIS-mediated inactivation of SHP1. J Exp Med 2023; 220:e20221649. [PMID: 37067793 PMCID: PMC10114920 DOI: 10.1084/jem.20221649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/25/2023] [Accepted: 03/24/2023] [Indexed: 04/18/2023] Open
Abstract
The T-lineage restricted protein THEMIS has been shown to play a critical role in T cell development. THEMIS, via its distinctive CABIT domains, inhibits the catalytic activity of the tyrosine phosphatase SHP1 (PTPN6). SHP1 and THEMIS bind to the ubiquitous cytosolic adapter GRB2, and the purported formation of a tri-molecular THEMIS-GRB2-SHP1 complex facilitates inactivation of SHP1 by THEMIS. The importance of this function of GRB2 among its numerous documented activities is unclear as GRB2 binds to multiple proteins and participates in several signaling responses in thymocytes. Here, we show that similar to Themis-/- thymocytes, the primary molecular defect in GRB2-deficient thymocytes is increased catalytically active SHP1 and the developmental block in GRB2-deficient thymocytes is alleviated by deletion or inhibition of SHP1 and is exacerbated by SHP1 overexpression. Thus, the principal role of GRB2 during T cell development is to promote THEMIS-mediated inactivation of SHP1 thereby enhancing the sensitivity of TCR signaling in CD4+CD8+ thymocytes to low affinity positively selecting self-ligands.
Collapse
Affiliation(s)
- Seeyoung Choi
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Teri Hatzihristidis
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Guillaume Gaud
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Avik Dutta
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Jan Lee
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Awadhesh Arya
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Lauren M. Clubb
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Daniel B. Stamos
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Adrienn Markovics
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Katalin Mikecz
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Paul Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD, USA
| |
Collapse
|
7
|
Ruminski K, Celis-Gutierrez J, Jarmuzynski N, Maturin E, Audebert S, Malissen M, Camoin L, Voisinne G, Malissen B, Roncagalli R. Mapping the SLP76 interactome in T cells lacking each of the GRB2-family adaptors reveals molecular plasticity of the TCR signaling pathway. Front Immunol 2023; 14:1139123. [PMID: 37006259 PMCID: PMC10057548 DOI: 10.3389/fimmu.2023.1139123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
The propagation and diversification of signals downstream of the T cell receptor (TCR) involve several adaptor proteins that control the assembly of multimolecular signaling complexes (signalosomes). The global characterization of changes in protein-protein interactions (PPI) following genetic perturbations is critical to understand the resulting phenotypes. Here, by combining genome editing techniques in T cells and interactomics studies based on affinity purification coupled to mass spectrometry (AP-MS) analysis, we determined and quantified the molecular reorganization of the SLP76 interactome resulting from the ablation of each of the three GRB2-family adaptors. Our data showed that the absence of GADS or GRB2 induces a major remodeling of the PPI network associated with SLP76 following TCR engagement. Unexpectedly, this PPI network rewiring minimally affects proximal molecular events of the TCR signaling pathway. Nevertheless, during prolonged TCR stimulation, GRB2- and GADS-deficient cells displayed a reduced level of activation and cytokine secretion capacity. Using the canonical SLP76 signalosome, this analysis highlights the plasticity of PPI networks and their reorganization following specific genetic perturbations.
Collapse
Affiliation(s)
- Kilian Ruminski
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Javier Celis-Gutierrez
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Nicolas Jarmuzynski
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Emilie Maturin
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Stephane Audebert
- Institut Paoli-Calmettes, CRCM, Aix Marseille Université, CNRS, INSERM, Marseille Protóomique, Marseille, France
| | - Marie Malissen
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Luc Camoin
- Institut Paoli-Calmettes, CRCM, Aix Marseille Université, CNRS, INSERM, Marseille Protóomique, Marseille, France
| | - Guillaume Voisinne
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Bernard Malissen
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
- *Correspondence: Romain Roncagalli, ; Bernard Malissen,
| | - Romain Roncagalli
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- *Correspondence: Romain Roncagalli, ; Bernard Malissen,
| |
Collapse
|
8
|
Sandouk A, Xu Z, Baruah S, Tremblay M, Hopkins JB, Chakravarthy S, Gakhar L, Schnicker NJ, Houtman JCD. GRB2 dimerization mediated by SH2 domain-swapping is critical for T cell signaling and cytokine production. Sci Rep 2023; 13:3505. [PMID: 36864087 PMCID: PMC9981690 DOI: 10.1038/s41598-023-30562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
GRB2 is an adaptor protein required for facilitating cytoplasmic signaling complexes from a wide array of binding partners. GRB2 has been reported to exist in either a monomeric or dimeric state in crystal and solution. GRB2 dimers are formed by the exchange of protein segments between domains, otherwise known as "domain-swapping". Swapping has been described between SH2 and C-terminal SH3 domains in the full-length structure of GRB2 (SH2/C-SH3 domain-swapped dimer), as well as between α-helixes in isolated GRB2 SH2 domains (SH2/SH2 domain-swapped dimer). Interestingly, SH2/SH2 domain-swapping has not been observed within the full-length protein, nor have the functional influences of this novel oligomeric conformation been explored. We herein generated a model of full-length GRB2 dimer with an SH2/SH2 domain-swapped conformation supported by in-line SEC-MALS-SAXS analyses. This conformation is consistent with the previously reported truncated GRB2 SH2/SH2 domain-swapped dimer but different from the previously reported, full-length SH2/C-terminal SH3 (C-SH3) domain-swapped dimer. Our model is also validated by several novel full-length GRB2 mutants that favor either a monomeric or a dimeric state through mutations within the SH2 domain that abrogate or promote SH2/SH2 domain-swapping. GRB2 knockdown and re-expression of selected monomeric and dimeric mutants in a T cell lymphoma cell line led to notable defects in clustering of the adaptor protein LAT and IL-2 release in response to TCR stimulation. These results mirrored similarly-impaired IL-2 release in GRB2-deficient cells. These studies show that a novel dimeric GRB2 conformation with domain-swapping between SH2 domains and monomer/dimer transitions are critical for GRB2 to facilitate early signaling complexes in human T cells.
Collapse
Affiliation(s)
- Aline Sandouk
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Zhen Xu
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Sankar Baruah
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Mikaela Tremblay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Jesse B Hopkins
- Biophysics Collaborative Access Team, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Lokesh Gakhar
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
- Department of Biochemistry and Molecular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Nicholas J Schnicker
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Jon C D Houtman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
9
|
Genetic association and single-cell transcriptome analyses reveal distinct features connecting autoimmunity with cancers. iScience 2022; 25:104631. [PMID: 35800769 PMCID: PMC9254016 DOI: 10.1016/j.isci.2022.104631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/08/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Autoimmune diseases (ADs) are at a significantly higher risk of cancers with unclear mechanism. By searching GWAS catalog database and Medline, susceptible genes for five common ADs, including systemic lupus erythematosus (SLE), rheumatoid arthritis, Sjögren syndrome, systemic sclerosis, and idiopathic inflammatory myopathies, were collected and then were overlapped with cancer driver genes. Single-cell transcriptome analysis was performed in the comparation between SLE and related cancer. We identified 45 carcinogenic autoimmune disease risk (CAD) genes, which were mainly enriched in T cell signaling pathway and B cell signaling pathway. Integrated single-cell analysis revealed immune cell signaling was significantly downregulated in renal cancer compared with SLE, while stemness signature was significantly enriched in both renal cancer or lymphoma and SLE in specific subpopulations. Drugs targeting CAD genes were shared between ADs and cancer. Our study highlights the common and specific features between ADs and related cancers, and sheds light on a new discovery of treatments.
Collapse
|
10
|
Wu B, Zhong C, Lang Q, Liang Z, Zhang Y, Zhao X, Yu Y, Zhang H, Xu F, Tian Y. Poliovirus receptor (PVR)-like protein cosignaling network: new opportunities for cancer immunotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:267. [PMID: 34433460 PMCID: PMC8390200 DOI: 10.1186/s13046-021-02068-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022]
Abstract
Immune checkpoint molecules, also known as cosignaling molecules, are pivotal cell-surface molecules that control immune cell responses by either promoting (costimulatory molecules) or inhibiting (coinhibitory molecules) a signal. These molecules have been studied for many years. The application of immune checkpoint drugs in the clinic provides hope for cancer patients. Recently, the poliovirus receptor (PVR)-like protein cosignaling network, which involves several immune checkpoint receptors, i.e., DNAM-1 (DNAX accessory molecule-1, CD226), TIGIT (T-cell immunoglobulin (Ig) and immunoreceptor tyrosine-based inhibitory motif (ITIM)), CD96 (T cell activation, increased late expression (TACLILE)), and CD112R (PVRIG), which interact with their ligands CD155 (PVR/Necl-5), CD112 (PVRL2/nectin-2), CD111 (PVRL1/nectin-1), CD113 (PVRL3/nectin-3), and Nectin4, was discovered. As important components of the immune system, natural killer (NK) and T cells play a vital role in eliminating and killing foreign pathogens and abnormal cells in the body. Recently, increasing evidence has suggested that this novel cosignaling network axis costimulates and coinhibits NK and T cell activation to eliminate cancer cells after engaging with ligands, and this activity may be effectively targeted for cancer immunotherapy. In this article, we review recent advances in research on this novel cosignaling network. We also briefly outline the structure of this cosignaling network, the signaling cascades and mechanisms involved after receptors engage with ligands, and how this novel cosignaling network costimulates and coinhibits NK cell and T cell activation for cancer immunotherapy. Additionally, this review comprehensively summarizes the application of this new network in preclinical trials and clinical trials. This review provides a new immunotherapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Chongli Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Qi Lang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Zhiyun Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Yizhou Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Xin Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Yang Yu
- Department of Surgery, Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
| | - Heming Zhang
- Department of College of Medical and Biological Information Engineering, Northeastern University, Shenyang, 110819, Liaoning Province, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
11
|
Diaz-Muñoz MD, Osma-Garcia IC. The RNA regulatory programs that govern lymphocyte development and function. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1683. [PMID: 34327847 DOI: 10.1002/wrna.1683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/25/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
Lymphocytes require of constant and dynamic changes in their transcriptome for timely activation and production of effector molecules to combat external pathogens. Synthesis and translation of messenger (m)RNAs into these effector proteins is controlled both quantitatively and qualitatively by RNA binding proteins (RBPs). RBP-dependent regulation of RNA editing, subcellular location, stability, and translation shapes immune cell development and immunity. Extensive evidences have now been gathered from few model RBPs, HuR, PTBP1, ZFP36, and Roquin. However, recently developed methodologies for global characterization of protein:RNA interactions suggest the existence of complex RNA regulatory networks in which RBPs co-ordinately regulate the fate of sets of RNAs controlling cellular pathways and functions. In turn, RNA can also act as scaffolding of functionally related proteins modulating their activation and function. Here we review current knowledge about how RBP-dependent regulation of RNA shapes our immune system and discuss about the existence of a hidden immune cell epitranscriptome. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Manuel D Diaz-Muñoz
- Toulouse Institute for Infectious and Inflammatory Diseases, Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, Toulouse, France
| | - Ines C Osma-Garcia
- Toulouse Institute for Infectious and Inflammatory Diseases, Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, Toulouse, France
| |
Collapse
|
12
|
LRCH1 deficiency enhances LAT signalosome formation and CD8 + T cell responses against tumors and pathogens. Proc Natl Acad Sci U S A 2020; 117:19388-19398. [PMID: 32727906 DOI: 10.1073/pnas.2000970117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
CD8+ T cells play pivotal roles in eradicating pathogens and tumor cells. T cell receptor (TCR) signaling is vital for the optimal activation of CD8+ T cells. Upon TCR engagement, the transmembrane adapter protein LAT (linker for activation of T cells) recruits other key signaling molecules and forms the "LAT signalosome" for downstream signal transduction. However, little is known about which functional partners could restrain the formation of the LAT signalosome and inhibit CD8+ cytotoxic T lymphocyte (CTL)-mediated cytotoxicity. Here we have demonstrated that LRCH1 (leucine-rich repeats and calponin homology domain containing 1) directly binds LAT, reduces LAT phosphorylation and interaction with GRB2, and also promotes the endocytosis of LAT. Lrch1 -/- mice display better protection against influenza virus and Listeria infection, with enhanced CD8+ T cell proliferation and cytotoxicity. Adoptive transfer of Lrch1 -/- CD8+ CTLs leads to increased B16-MO5 tumor clearance in vivo. Furthermore, knockout of LRCH1 in human chimeric antigen receptor (CAR) T cells that recognize the liver tumor-associated antigen glypican-3 could improve CAR T cell migration and proliferation in vitro. These findings suggest LRCH1 as a potential translational target to improve T cell immunotherapy against infection and tumors.
Collapse
|
13
|
Chiang EY, de Almeida PE, de Almeida Nagata DE, Bowles KH, Du X, Chitre AS, Banta KL, Kwon Y, McKenzie B, Mittman S, Cubas R, Anderson KR, Warming S, Grogan JL. CD96 functions as a co-stimulatory receptor to enhance CD8 + T cell activation and effector responses. Eur J Immunol 2020; 50:891-902. [PMID: 32043568 DOI: 10.1002/eji.201948405] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/16/2019] [Accepted: 02/07/2020] [Indexed: 12/29/2022]
Abstract
CD96 is a member of the poliovirus receptor (PVR, CD155)-nectin family that includes T cell Ig and ITIM domain (TIGIT) and CD226. While CD96, TIGIT, and CD226 have important roles in regulating NK cell activity, and TIGIT and CD226 have also been shown to regulate T cell responses, it is unclear whether CD96 has inhibitory or stimulatory function in CD8+ T cells. Here, we demonstrate that CD96 has co-stimulatory function on CD8+ T cells. Crosslinking of CD96 on human or mouse CD8+ T cells induced activation, effector cytokine production, and proliferation. CD96 was found to transduce its activating signal through the MEK-ERK pathway. CD96-mediated signaling led to increased frequencies of NUR77- and T-bet-expressing CD8+ T cells and enhanced cytotoxic effector activity, indicating that CD96 can modulate effector T cell differentiation. Antibody blockade of CD96 or genetic ablation of CD96 expression on CD8+ T cells impaired expression of transcription factors and proinflammatory cytokines associated with CD8+ T cell activation in in vivo models. Taken together, CD96 has a co-stimulatory role in CD8+ T cell activation and effector function.
Collapse
Affiliation(s)
- Eugene Y Chiang
- Department of Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080
| | - Patricia E de Almeida
- Department of Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080
| | | | - Kristin Harden Bowles
- Department of Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080
| | - Xiangnan Du
- Department of Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080
| | - Avantika S Chitre
- Department of Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080
| | - Karl L Banta
- Department of Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080
| | - Youngsu Kwon
- Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080
| | - Brent McKenzie
- Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080
| | - Stephanie Mittman
- Department of Translational Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080
| | - Rafael Cubas
- Department of Translational Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080
| | - Keith R Anderson
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080
| | - Søren Warming
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080
| | - Jane L Grogan
- Department of Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080
| |
Collapse
|
14
|
Jun JE, Kulhanek KR, Chen H, Chakraborty A, Roose JP. Alternative ZAP70-p38 signals prime a classical p38 pathway through LAT and SOS to support regulatory T cell differentiation. Sci Signal 2019; 12:12/591/eaao0736. [PMID: 31337738 DOI: 10.1126/scisignal.aao0736] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
T cell receptor (TCR) stimulation activates diverse kinase pathways, which include the mitogen-activated protein kinases (MAPKs) ERK and p38, the phosphoinositide 3-kinases (PI3Ks), and the kinase mTOR. Although TCR stimulation activates the p38 pathway through a "classical" MAPK cascade that is mediated by the adaptor protein LAT, it also stimulates an "alternative" pathway in which p38 is activated by the kinase ZAP70. Here, we used dual-parameter, phosphoflow cytometry and in silico computation to investigate how both classical and alternative p38 pathways contribute to T cell activation. We found that basal ZAP70 activation in resting T cell lines reduced the threshold ("primed") TCR-stimulated activation of the classical p38 pathway. Classical p38 signals were reduced after T cell-specific deletion of the guanine nucleotide exchange factors Sos1 and Sos2, which are essential LAT signalosome components. As a consequence of Sos1/2 deficiency, production of the cytokine IL-2 was impaired, differentiation into regulatory T cells was reduced, and the autoimmune disease EAE was exacerbated in mice. These data suggest that the classical and alternative p38 activation pathways exist to generate immune balance.
Collapse
Affiliation(s)
- Jesse E Jun
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kayla R Kulhanek
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hang Chen
- Departments of Chemical Engineering, Chemistry, and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Arup Chakraborty
- Departments of Chemical Engineering, Chemistry, and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
15
|
Zhou L, Jiang Y, Luo Q, Li L, Jia L. Neddylation: a novel modulator of the tumor microenvironment. Mol Cancer 2019; 18:77. [PMID: 30943988 PMCID: PMC6446326 DOI: 10.1186/s12943-019-0979-1] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
Neddylation, a post-translational modification that adds an ubiquitin-like protein NEDD8 to substrate proteins, modulates many important biological processes, including tumorigenesis. The process of protein neddylation is overactivated in multiple human cancers, providing a sound rationale for its targeting as an attractive anticancer therapeutic strategy, as evidence by the development of NEDD8-activating enzyme (NAE) inhibitor MLN4924 (also known as pevonedistat). Neddylation inhibition by MLN4924 exerts significantly anticancer effects mainly by triggering cell apoptosis, senescence and autophagy. Recently, intensive evidences reveal that inhibition of neddylation pathway, in addition to acting on tumor cells, also influences the functions of multiple important components of the tumor microenvironment (TME), including immune cells, cancer-associated fibroblasts (CAFs), cancer-associated endothelial cells (CAEs) and some factors, all of which are crucial for tumorigenesis. Here, we briefly summarize the latest progresses in this field to clarify the roles of neddylation in the TME, thus highlighting the overall anticancer efficacy of neddylaton inhibition.
Collapse
Affiliation(s)
- Lisha Zhou
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China. .,Department of Biochemistry, Medical College, Taizhou University, Taizhou, 317000, Zhejiang, China.
| | - Yanyu Jiang
- Department of Oncology, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qin Luo
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lihui Li
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
16
|
Abstract
T cells are central to the vertebrate immune system. Two distinct types of T cells, αβT and γδT cells, express different types of T cell antigen receptors (TCRs), αβTCR and γδTCR, respectively, that are composed of different sets of somatically rearranged TCR chains and CD3 subunits. γδT cells have recently attracted considerable attention due to their ability to produce abundant cytokines and versatile roles in host defense, tissue regeneration, inflammation, and autoimmune diseases. Both αβT and γδT cells develop in the thymus. Unlike the development of αβT cells, which depends on αβTCR-mediated positive and negative selection, the development of γδT cells, including the requirement of γδTCR, has been less well understood. αβT cells differentiate into effector cells in the peripheral tissues, whereas γδT cells acquire effector functions during their development in the thymus. In this review, we will discuss the current state of knowledge of the molecular mechanism of TCR signal transduction and its role in the thymic development of γδT cells, particularly highlighting a newly discovered mechanism that controls proinflammatory γδT cell development.
Collapse
|
17
|
Zhao Y, Jhamb D, Shu L, Arneson D, Rajpal DK, Yang X. Multi-omics integration reveals molecular networks and regulators of psoriasis. BMC SYSTEMS BIOLOGY 2019; 13:8. [PMID: 30642337 PMCID: PMC6332659 DOI: 10.1186/s12918-018-0671-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Psoriasis is a complex multi-factorial disease, involving both genetic susceptibilities and environmental triggers. Genome-wide association studies (GWAS) and epigenome-wide association studies (EWAS) have been carried out to identify genetic and epigenetic variants that are associated with psoriasis. However, these loci cannot fully explain the disease pathogenesis. METHODS To achieve a comprehensive mechanistic understanding of psoriasis, we conducted a systems biology study, integrating multi-omics datasets including GWAS, EWAS, tissue-specific transcriptome, expression quantitative trait loci (eQTLs), gene networks, and biological pathways to identify the key genes, processes, and networks that are genetically and epigenetically associated with psoriasis risk. RESULTS This integrative genomics study identified both well-characterized (e.g., the IL17 pathway in both GWAS and EWAS) and novel biological processes (e.g., the branched chain amino acid catabolism process in GWAS and the platelet and coagulation pathway in EWAS) involved in psoriasis. Finally, by utilizing tissue-specific gene regulatory networks, we unraveled the interactions among the psoriasis-associated genes and pathways in a tissue-specific manner and detected potential key regulatory genes in the psoriasis networks. CONCLUSIONS The integration and convergence of multi-omics signals provide deeper and comprehensive insights into the biological mechanisms associated with psoriasis susceptibility.
Collapse
Affiliation(s)
- Yuqi Zhao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Dr. East, Los Angeles, CA, 90095, USA
| | - Deepali Jhamb
- Target Sciences, Computational Biology (US) GSK, 1250 South Collegeville Road, Collegeville, PA, 19426, USA
| | - Le Shu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Dr. East, Los Angeles, CA, 90095, USA
| | - Douglas Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Dr. East, Los Angeles, CA, 90095, USA
| | - Deepak K Rajpal
- Target Sciences, Computational Biology (US) GSK, 1250 South Collegeville Road, Collegeville, PA, 19426, USA.
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Dr. East, Los Angeles, CA, 90095, USA. .,Institute for Quantitative and Computational Biosciences, University of California , 610 Charles E. Young Dr. East, Los Angeles, CA, 90095, USA. .,Molecular Biology Institute, University of California, 610 Charles E. Young Dr. East, Los Angeles, CA, 90095, USA. .,Bioinformatics Interdepartmental Program, University of California, 10 Charles E. Young Dr. East, Los Angeles, CA, 90095, USA.
| |
Collapse
|
18
|
McLinden JH, Bhattarai N, Stapleton JT, Chang Q, Kaufman TM, Cassel SL, Sutterwala FS, Haim H, Houtman JC, Xiang J. Yellow Fever Virus, but Not Zika Virus or Dengue Virus, Inhibits T-Cell Receptor-Mediated T-Cell Function by an RNA-Based Mechanism. J Infect Dis 2017; 216:1164-1175. [PMID: 28968905 PMCID: PMC5853456 DOI: 10.1093/infdis/jix462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/13/2017] [Indexed: 01/03/2023] Open
Abstract
The Flavivirus genus within the Flaviviridae family is comprised of many important human pathogens including yellow fever virus (YFV), dengue virus (DENV), and Zika virus (ZKV), all of which are global public health concerns. Although the related flaviviruses hepatitis C virus and human pegivirus (formerly named GBV-C) interfere with T-cell receptor (TCR) signaling by novel RNA and protein-based mechanisms, the effect of other flaviviruses on TCR signaling is unknown. Here, we studied the effect of YFV, DENV, and ZKV on TCR signaling. Both YFV and ZKV replicated in human T cells in vitro; however, only YFV inhibited TCR signaling. This effect was mediated at least in part by the YFV envelope (env) protein coding RNA. Deletion mutagenesis studies demonstrated that expression of a short, YFV env RNA motif (vsRNA) was required and sufficient to inhibit TCR signaling. Expression of this vsRNA and YFV infection of T cells reduced the expression of a Src-kinase regulatory phosphatase (PTPRE), while ZKV infection did not. YFV infection in mice resulted in impaired TCR signaling and PTPRE expression, with associated reduction in murine response to experimental ovalbumin vaccination. Together, these data suggest that viruses within the flavivirus genus inhibit TCR signaling in a species-dependent manner.
Collapse
Affiliation(s)
- James H McLinden
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
| | - Nirjal Bhattarai
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
| | - Jack T Stapleton
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
- Department of Microbiology, University of Iowa, Iowa City
| | - Qing Chang
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
| | - Thomas M Kaufman
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
| | - Suzanne L Cassel
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
| | - Fayyaz S Sutterwala
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
| | - Hillel Haim
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
| | - Jon C Houtman
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
- Department of Microbiology, University of Iowa, Iowa City
| | - Jinhua Xiang
- Research Service, Iowa City Veterans Affairs Medical Center
- Department of Internal Medicine, University of Iowa, Iowa City
| |
Collapse
|
19
|
Garreau A, Blaize G, Argenty J, Rouquié N, Tourdès A, Wood SA, Saoudi A, Lesourne R. Grb2-Mediated Recruitment of USP9X to LAT Enhances Themis Stability following Thymic Selection. THE JOURNAL OF IMMUNOLOGY 2017; 199:2758-2766. [PMID: 28877990 DOI: 10.4049/jimmunol.1700566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/10/2017] [Indexed: 11/19/2022]
Abstract
Themis is a new component of the TCR signaling machinery that plays a critical role during T cell development. The positive selection of immature CD4+CD8+ double-positive thymocytes and their commitment to the CD4+CD8- single-positive stage are impaired in Themis-/- mice, suggesting that Themis might be important to sustain TCR signals during these key developmental processes. However, the analysis of Themis mRNA levels revealed that Themis gene expression is rapidly extinguished during positive selection. We show in this article that Themis protein expression is increased in double-positive thymocytes undergoing positive selection and is sustained in immature single-positive thymocytes, despite the strong decrease in Themis mRNA levels in these subsets. We found that Themis stability is controlled by the ubiquitin-specific protease USP9X, which removes ubiquitin K48-linked chains on Themis following TCR engagement. Biochemical analyses indicate that USP9X binds directly to the N-terminal CABIT domain of Themis and indirectly to the adaptor protein Grb2, with the latter interaction enabling recruitment of Themis/USP9X complexes to LAT, thereby sustaining Themis expression following positive selection. Together, these data suggest that TCR-mediated signals enhance Themis stability upon T cell development and identify USP9X as a key regulator of Themis protein turnover.
Collapse
Affiliation(s)
- Anne Garreau
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France; and
| | - Gaëtan Blaize
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France; and
| | - Jérémy Argenty
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France; and
| | - Nelly Rouquié
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France; and
| | - Audrey Tourdès
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France; and
| | - Stephen A Wood
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Abdelhadi Saoudi
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France; and
| | - Renaud Lesourne
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France; and
| |
Collapse
|
20
|
Choi S, Warzecha C, Zvezdova E, Lee J, Argenty J, Lesourne R, Aravind L, Love PE. THEMIS enhances TCR signaling and enables positive selection by selective inhibition of the phosphatase SHP-1. Nat Immunol 2017; 18:433-441. [PMID: 28250424 PMCID: PMC5807080 DOI: 10.1038/ni.3692] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/25/2017] [Indexed: 12/11/2022]
Abstract
THEMIS, a T cell-specific protein with high expression in CD4+CD8+ thymocytes, has a crucial role in positive selection and T cell development. THEMIS lacks defined catalytic domains but contains two tandem repeats of a distinctive module of unknown function (CABIT). Here we found that THEMIS directly regulated the catalytic activity of the tyrosine phosphatase SHP-1. This action was mediated by the CABIT modules, which bound to the phosphatase domain of SHP-1 and promoted or stabilized oxidation of SHP-1's catalytic cysteine residue, which inhibited the tyrosine-phosphatase activity of SHP-1. Deletion of SHP-1 alleviated the developmental block in Themis-/- thymocytes. Thus, THEMIS facilitates thymocyte positive selection by enhancing the T cell antigen receptor signaling response to low-affinity ligands.
Collapse
Affiliation(s)
- Seeyoung Choi
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Claude Warzecha
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Ekaterina Zvezdova
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Jan Lee
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Jérémy Argenty
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; and Institut National de la Santé et de la Recherche Médicale, U1043, Centre National de la Recherche Scientifique, U5282, and Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - Renaud Lesourne
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; and Institut National de la Santé et de la Recherche Médicale, U1043, Centre National de la Recherche Scientifique, U5282, and Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - L. Aravind
- National Library of Medicine, National Institutes of Health, Bethesda, MD, 20892
| | - Paul E. Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
21
|
Zvezdova E, Mikolajczak J, Garreau A, Marcellin M, Rigal L, Lee J, Choi S, Blaize G, Argenty J, Familiades J, Li L, Gonzalez de Peredo A, Burlet-Schiltz O, Love PE, Lesourne R. Themis1 enhances T cell receptor signaling during thymocyte development by promoting Vav1 activity and Grb2 stability. Sci Signal 2016; 9:ra51. [PMID: 27188442 DOI: 10.1126/scisignal.aad1576] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The T cell signaling protein Themis1 is essential for the positive and negative selection of thymocytes in the thymus. Although the developmental defect that results from the loss of Themis1 suggests that it enhances T cell receptor (TCR) signaling, Themis1 also recruits Src homology 2 domain-containing phosphatase-1 (SHP-1) to the vicinity of TCR signaling complexes, suggesting that it has an inhibitory role in TCR signaling. We used TCR signaling reporter mice and quantitative proteomics to explore the role of Themis1 in developing T cells. We found that Themis1 acted mostly as a positive regulator of TCR signaling in vivo when receptors were activated by positively selecting ligands. Proteomic analysis of the Themis1 interactome identified SHP-1, the TCR-associated adaptor protein Grb2, and the guanine nucleotide exchange factor Vav1 as the principal interacting partners of Themis1 in isolated mouse thymocytes. Analysis of TCR signaling in Themis1-deficient and Themis1-overexpressing mouse thymocytes demonstrated that Themis1 promoted Vav1 activity both in vitro and in vivo. The reduced activity of Vav1 and the impaired T cell development in Themis1(-/-) mice were due in part to increased degradation of Grb2, which suggests that Themis1 is required to maintain the steady-state abundance of Grb2 in thymocytes. Together, these data suggest that Themis1 acts as a positive regulator of TCR signaling in developing T cells, and identify a mechanism by which Themis1 regulates thymic selection.
Collapse
Affiliation(s)
- Ekaterina Zvezdova
- Section on Cellular and Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Judith Mikolajczak
- Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France. Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France. Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France. Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - Anne Garreau
- Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France. Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France. Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France. Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - Marlène Marcellin
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse F-31077, France
| | - Lise Rigal
- Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France. Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France. Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France. Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - Jan Lee
- Section on Cellular and Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seeyoung Choi
- Section on Cellular and Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gaëtan Blaize
- Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France. Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France. Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France. Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - Jérémy Argenty
- Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France. Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France. Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France. Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - Julien Familiades
- Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France. Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France. Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France. Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - Liqi Li
- Section on Cellular and Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse F-31077, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse F-31077, France
| | - Paul E Love
- Section on Cellular and Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Renaud Lesourne
- Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France. Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France. Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France. Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France.
| |
Collapse
|
22
|
Radtke D, Lacher SM, Szumilas N, Sandrock L, Ackermann J, Nitschke L, Zinser E. Grb2 Is Important for T Cell Development, Th Cell Differentiation, and Induction of Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2016; 196:2995-3005. [PMID: 26921310 DOI: 10.4049/jimmunol.1501764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/25/2016] [Indexed: 11/19/2022]
Abstract
The small adaptor protein growth factor receptor-bound protein 2 (Grb2) modulates and integrates signals from receptors on cellular surfaces in inner signaling pathways. In murine T cells, Grb2 is crucial for amplification of TCR signaling. T cell-specific Grb2(fl/fl) Lckcre(tg) Grb2-deficient mice show reduced T cell numbers due to impaired negative and positive selection. In this study, we found that T cell numbers in Grb2(fl/fl) CD4cre(tg) mice were normal in the thymus and were only slightly affected in the periphery. Ex vivo analysis of CD4(+) Th cell populations revealed an increased amount of Th1 cells within the CD4(+) population of Grb2(fl/fl) CD4cre(tg) mice. Additionally, Grb2-deficient T cells showed a greater potential to differentiate into Th17 cells in vitro. To test whether these changes in Th cell differentiation potential rendered Grb2(fl/fl) CD4cre(tg) mice more prone to inflammatory diseases, we used the murine Th1 cell- and Th17 cell-driven model of experimental autoimmune encephalomyelitis (EAE). In contrast to our expectations, Grb2(fl/fl) CD4cre(tg) mice developed a milder form of EAE. The impaired EAE disease can be explained by the reduced proliferation rate of Grb2-deficient CD4(+) T cells upon stimulation with IL-2 or upon activation by allogeneic dendritic cells, because the activation of T cells by dendritic cells and the subsequent T cell proliferation are known to be crucial factors for the induction of EAE. In summary, Grb2-deficient T cells show defects in T cell development, increased Th1 and Th17 cell differentiation capacities, and impaired proliferation after activation by dendritic cells, which likely reduce the clinical symptoms of EAE.
Collapse
Affiliation(s)
- Daniel Radtke
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany; and
| | - Sonja M Lacher
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany; and
| | - Nadine Szumilas
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany; and
| | - Lena Sandrock
- Department of Immune Modulation, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Jochen Ackermann
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany; and
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany; and
| | - Elisabeth Zinser
- Department of Immune Modulation, University Hospital Erlangen, 91052 Erlangen, Germany
| |
Collapse
|
23
|
Conserved Motifs within Hepatitis C Virus Envelope (E2) RNA and Protein Independently Inhibit T Cell Activation. PLoS Pathog 2015; 11:e1005183. [PMID: 26421924 PMCID: PMC4589396 DOI: 10.1371/journal.ppat.1005183] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/02/2015] [Indexed: 01/07/2023] Open
Abstract
T cell receptor (TCR) signaling is required for T-cell activation, proliferation, differentiation, and effector function. Hepatitis C virus (HCV) infection is associated with impaired T-cell function leading to persistent viremia, delayed and inconsistent antibody responses, and mild immune dysfunction. Although multiple factors appear to contribute to T-cell dysfunction, a role for HCV particles in this process has not been identified. Here, we show that incubation of primary human CD4+ and CD8+ T-cells with HCV RNA-containing serum, HCV-RNA containing extracellular vesicles (EVs), cell culture derived HCV particles (HCVcc) and HCV envelope pseudotyped retrovirus particles (HCVpp) inhibited TCR-mediated signaling. Since HCVpp’s contain only E1 and E2, we examined the effect of HCV E2 on TCR signaling pathways. HCV E2 expression recapitulated HCV particle-induced TCR inhibition. A highly conserved, 51 nucleotide (nt) RNA sequence was sufficient to inhibit TCR signaling. Cells expressing the HCV E2 coding RNA contained a short, virus-derived RNA predicted to be a Dicer substrate, which targeted a phosphatase involved in Src-kinase signaling (PTPRE). T-cells and hepatocytes containing HCV E2 RNA had reduced PTPRE protein levels. Mutation of 6 nts abolished the predicted Dicer interactions and restored PTPRE expression and proximal TCR signaling. HCV RNA did not inhibit distal TCR signaling induced by PMA and Ionomycin; however, HCV E2 protein inhibited distal TCR signaling. This inhibition required lymphocyte-specific tyrosine kinase (Lck). Lck phosphorylated HCV E2 at a conserved tyrosine (Y613), and phospho-E2 inhibited nuclear translocation of NFAT. Mutation of Y613 restored distal TCR signaling, even in the context of HCVpps. Thus, HCV particles delivered viral RNA and E2 protein to T-cells, and these inhibited proximal and distal TCR signaling respectively. These effects of HCV particles likely aid in establishing infection and contribute to viral persistence. Globally, approximately 200 million people are persistently infected with Hepatitis C virus (HCV). Mechanisms by which HCV establishes persistent infection are complex, and several host and viral factors appear to contribute to the ability of HCV to evade immune clearance. T cell activation through the T cell receptor (TCR) is an essential first step in the generation of an adaptive immune response. Although HCV infection is associated with impaired T cell function, the mechanisms for this dysfunction are poorly understood. Here, we demonstrate that HCV particles inhibit T cell activation by interfering with proximal and distal signals that are triggered by activation through the TCR. First, HCV envelope (E2) RNA was processed into a small RNA that targeted a regulatory phosphatase, inhibiting proximal TCR signaling. Second, the lymphocyte specific Src kinase (Lck) phosphorylated HCV E2 at tyrosine 613 (Y613), and phospho-E2 inhibited nuclear translocation of activated NFAT, reducing distal TCR activation signals. The RNA and protein motifs involved are highly conserved among all HCV isolates, and mutation restored TCR signaling. Thus, HCV particles interfere with TCR signaling and impair T cell activation using two distinct mechanisms. This may contribute to HCV persistence and T cell dysfunction during HCV infection.
Collapse
|
24
|
Balagopalan L, Kortum RL, Coussens NP, Barr VA, Samelson LE. The linker for activation of T cells (LAT) signaling hub: from signaling complexes to microclusters. J Biol Chem 2015; 290:26422-9. [PMID: 26354432 DOI: 10.1074/jbc.r115.665869] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Since the cloning of the critical adapter, LAT (linker for activation of T cells), more than 15 years ago, a combination of multiple scientific approaches and techniques continues to provide valuable insights into the formation, composition, regulation, dynamics, and function of LAT-based signaling complexes. In this review, we will summarize current views on the assembly of signaling complexes nucleated by LAT. LAT forms numerous interactions with other signaling molecules, leading to cooperativity in the system. Furthermore, oligomerization of LAT by adapter complexes enhances intracellular signaling and is physiologically relevant. These results will be related to data from super-resolution microscopy studies that have revealed the smallest LAT-based signaling units and nanostructure.
Collapse
Affiliation(s)
- Lakshmi Balagopalan
- From the Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892-4256
| | - Robert L Kortum
- the Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, and
| | - Nathan P Coussens
- the Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Valarie A Barr
- From the Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892-4256
| | - Lawrence E Samelson
- From the Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892-4256,
| |
Collapse
|
25
|
Giotis ES, Rothwell L, Scott A, Hu T, Talbot R, Todd D, Burt DW, Glass EJ, Kaiser P. Transcriptomic Profiling of Virus-Host Cell Interactions following Chicken Anaemia Virus (CAV) Infection in an In Vivo Model. PLoS One 2015; 10:e0134866. [PMID: 26244502 PMCID: PMC4526643 DOI: 10.1371/journal.pone.0134866] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/14/2015] [Indexed: 12/18/2022] Open
Abstract
Chicken Anaemia Virus (CAV) is an economically important virus that targets lymphoid and erythroblastoid progenitor cells leading to immunosuppression. This study aimed to investigate the interplay between viral infection and the host's immune response to better understand the pathways that lead to CAV-induced immunosuppression. To mimic vertical transmission of CAV in the absence of maternally-derived antibody, day-old chicks were infected and their responses measured at various time-points post-infection by qRT-PCR and gene expression microarrays. The kinetics of mRNA expression levels of signature cytokines of innate and adaptive immune responses were determined by qRT-PCR. The global gene expression profiles of mock-infected (control) and CAV-infected chickens at 14 dpi were also compared using a chicken immune-related 5K microarray. Although in the thymus there was evidence of induction of an innate immune response following CAV infection, this was limited in magnitude. There was little evidence of a Th1 adaptive immune response in any lymphoid tissue, as would normally be expected in response to viral infection. Most cytokines associated with Th1, Th2 or Treg subsets were down-regulated, except IL-2, IL-13, IL-10 and IFNγ, which were all up-regulated in thymus and bone marrow. From the microarray studies, genes that exhibited significant (greater than 1.5-fold, false discovery rate <0.05) changes in expression in thymus and bone marrow on CAV infection were mainly associated with T-cell receptor signalling, immune response, transcriptional regulation, intracellular signalling and regulation of apoptosis. Expression levels of a number of adaptor proteins, such as src-like adaptor protein (SLA), a negative regulator of T-cell receptor signalling and the transcription factor Special AT-rich Binding Protein 1 (SATB1), were significantly down-regulated by CAV infection, suggesting potential roles for these genes as regulators of viral infection or cell defence. These results extend our understanding of CAV-induced immunosuppression and suggest a global immune dysregulation following CAV infection.
Collapse
Affiliation(s)
- Efstathios S. Giotis
- Agri-Food and Biosciences Institute, Belfast, United Kingdom
- Queen’s University Belfast, Belfast, United Kingdom
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - Lisa Rothwell
- Institute for Animal Health, Compton, United Kingdom
| | | | - Tuanjun Hu
- Institute for Animal Health, Compton, United Kingdom
| | - Richard Talbot
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel Todd
- Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - David W. Burt
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - Elizabeth J. Glass
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - Pete Kaiser
- Institute for Animal Health, Compton, United Kingdom
| |
Collapse
|
26
|
Optimization of methods for the genetic modification of human T cells. Immunol Cell Biol 2015; 93:896-908. [PMID: 26027856 PMCID: PMC4659746 DOI: 10.1038/icb.2015.59] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/06/2015] [Accepted: 05/13/2015] [Indexed: 12/18/2022]
Abstract
CD4+ T cells are critical in the fight against parasitic, bacterial, and viral infections, but are also involved in many autoimmune and pathological disorders. Studies of protein function in human T cells are confined to techniques such as RNAi due to ethical reasons and relative simplicity of these methods. However, introduction of RNAi or genes into primary human T cells is often hampered by toxic effects from transfection or transduction methods that yield cell numbers inadequate for downstream assays. Additionally, the efficiency of recombinant DNA expression is frequently low due to multiple factors including efficacy of the method and strength of the targeting RNAs. Here, we describe detailed protocols that will aid in the study of primary human CD4+ T cells. First, we describe a method for development of effective microRNA/shRNAs using available online algorithms. Second, we illustrate an optimized protocol for high efficacy retroviral or lentiviral transduction of human T cell lines. Importantly, we demonstrate that activated primary human CD4+ T cells can be transduced efficiently with lentiviruses, with a highly activated population of T cells receiving the largest number of copies of integrated DNA. We also illustrate a method for efficient lentiviral transduction of hard-to-transduce un-activated primary human CD4+ T cells. These protocols will significantly assist in understanding the activation and function of human T cells and will ultimately aid in the development or improvement of current drugs that target human CD4+ T cells.
Collapse
|
27
|
Bilal MY, Houtman JCD. GRB2 Nucleates T Cell Receptor-Mediated LAT Clusters That Control PLC-γ1 Activation and Cytokine Production. Front Immunol 2015; 6:141. [PMID: 25870599 PMCID: PMC4378308 DOI: 10.3389/fimmu.2015.00141] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/14/2015] [Indexed: 12/16/2022] Open
Abstract
GRB2 is a ubiquitously expressed adaptor protein required for signaling downstream of multiple receptors. To address the role of GRB2 in receptor-mediated signaling, the expression of GRB2 was suppressed in human CD4+ T cells and its role downstream of the T cell receptor (TCR) was examined. Interestingly, GRB2 deficient T cells had enhanced signaling from complexes containing the TCR. However, GRB2 deficient T cells had substantially reduced production of IL-2 and IFN-γ. This defect was attributed to diminished formation of linker for activation of T cells (LAT) signaling clusters, which resulted in reduced MAP kinase activation, calcium flux, and PLC-γ1 recruitment to LAT signaling clusters. Add back of wild-type GRB2, but not a novel N-terminal SH3 domain mutant, rescued LAT microcluster formation, calcium mobilization, and cytokine release, providing the first direct evidence that GRB2, and its ability to bind to SH3 domain ligands, is required for establishing LAT microclusters. Our data demonstrate that the ability of GRB2 to facilitate protein clusters is equally important in regulating TCR-mediated functions as its capacity to recruit effector proteins. This highlights that GRB2 regulates signaling downstream of adaptors and receptors by both recruiting effector proteins and regulating the formation of signaling complexes.
Collapse
Affiliation(s)
- Mahmood Yousif Bilal
- Interdisciplinary Graduate Program in Immunology, University of Iowa , Iowa City, IA , USA
| | - Jon C D Houtman
- Interdisciplinary Graduate Program in Immunology, University of Iowa , Iowa City, IA , USA ; Department of Microbiology, Carver College of Medicine, University of Iowa , Iowa City, IA , USA
| |
Collapse
|
28
|
THEMIS is required for pathogenesis of cerebral malaria and protection against pulmonary tuberculosis. Infect Immun 2014; 83:759-68. [PMID: 25452553 DOI: 10.1128/iai.02586-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We identify an N-ethyl-N-nitrosourea (ENU)-induced I23N mutation in the THEMIS protein that causes protection against experimental cerebral malaria (ECM) caused by infection with Plasmodium berghei ANKA. Themis(I23N) homozygous mice show reduced CD4(+) and CD8(+) T lymphocyte numbers. ECM resistance in P. berghei ANKA-infected Themis(I23N) mice is associated with decreased cerebral cellular infiltration, retention of blood-brain barrier integrity, and reduced proinflammatory cytokine production. THEMIS(I23N) protein expression is absent from mutant mice, concurrent with the decreased THEMIS(I23N) stability observed in vitro. Biochemical studies in vitro and functional complementation in vivo in Themis(I23N/+):Lck(-/+) doubly heterozygous mice demonstrate that functional coupling of THEMIS to LCK tyrosine kinase is required for ECM pathogenesis. Damping of proinflammatory responses in Themis(I23N) mice causes susceptibility to pulmonary tuberculosis. Thus, THEMIS is required for the development and ultimately the function of proinflammatory T cells. Themis(I23N) mice can be used to study the newly discovered association of THEMIS (6p22.33) with inflammatory bowel disease and multiple sclerosis.
Collapse
|
29
|
Fu G, Rybakin V, Brzostek J, Paster W, Acuto O, Gascoigne NRJ. Fine-tuning T cell receptor signaling to control T cell development. Trends Immunol 2014; 35:311-8. [PMID: 24951034 PMCID: PMC4119814 DOI: 10.1016/j.it.2014.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/24/2014] [Accepted: 05/12/2014] [Indexed: 01/23/2023]
Abstract
T cell development from immature CD4(+)CD8(+) double-positive (DP) thymocytes to the mature CD4 or CD8 single-positive (SP) stage requires proper T cell receptor (TCR) signaling. The current working model of thymocyte development is that the strength of the TCR-mediated signal - from little-or-none, through intermediate, to strong - received by the immature cells determines whether they will undergo death by neglect, positive selection, or negative selection, respectively. In recent years, several developmentally regulated, stage-specifically expressed proteins and miRNAs have been found that act like fine-tuners for signal transduction and propagation downstream of the TCR. This allows them to govern thymocyte positive selection. Here, we summarize recent findings on these molecules and suggest new concepts of TCR positive-selection signaling.
Collapse
Affiliation(s)
- Guo Fu
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Vasily Rybakin
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597
| | - Joanna Brzostek
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597
| | - Wolfgang Paster
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Nicholas R J Gascoigne
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597.
| |
Collapse
|
30
|
Okada T, Nitta T, Kaji K, Takashima A, Oda H, Tamehiro N, Goto M, Okamura T, Patrick MS, Suzuki H. Differential function of Themis CABIT domains during T cell development. PLoS One 2014; 9:e89115. [PMID: 24586531 PMCID: PMC3931654 DOI: 10.1371/journal.pone.0089115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/15/2014] [Indexed: 11/18/2022] Open
Abstract
Themis (also named Gasp) is a newly identified Grb2-binding protein that is essential for thymocyte positive selection. Despite the possible involvement of Themis in TCR-mediated signal transduction, its function remains unresolved and controversial. Themis contains two functionally uncharacterized regions called CABIT (cysteine-containing, all-β in Themis) domains, a nuclear localization signal (NLS), and a proline-rich sequence (PRS). To elucidate the role of these motifs in Themis’s function in vivo, we established a series of mutant Themis transgenic mice on a Themis−/− background. Deletion of the highly conserved Core motif of CABIT1 or CABIT2 (Core1 or Core2, respectively), the NLS, or the PRS abolished Grb2-association, as well as TCR-dependent tyrosine-phosphorylation and the ability to induce positive selection in the thymus. The NLS and Core1 motifs were required for the nuclear localization of Themis, whereas Core2 and PRS were not. Furthermore, expression of ΔCore1- but not ΔCore2-Themis conferred dominant negative-type inhibition on T cell development. Collectively, our current results indicate that PRS, NLS, CABIT1, and CABIT2 are all required for positive selection, and that each of the CABIT domains exerts distinct functions during positive selection.
Collapse
Affiliation(s)
- Toshiyuki Okada
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
| | - Takeshi Nitta
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
| | - Kentaro Kaji
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
| | - Akiko Takashima
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
| | - Hiroyo Oda
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
| | - Norimasa Tamehiro
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
| | - Motohito Goto
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Michael S. Patrick
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
| | - Harumi Suzuki
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
- * E-mail:
| |
Collapse
|
31
|
Dütting S, Vögtle T, Morowski M, Schiessl S, Schäfer CM, Watson SK, Hughes CE, Ackermann JA, Radtke D, Hermanns HM, Watson SP, Nitschke L, Nieswandt B. Growth factor receptor-bound protein 2 contributes to (hem)immunoreceptor tyrosine-based activation motif-mediated signaling in platelets. Circ Res 2013; 114:444-453. [PMID: 24265393 DOI: 10.1161/circresaha.114.302670] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RATIONALE Platelets are anuclear cell fragments derived from bone marrow megakaryocytes (MKs) that safeguard vascular integrity but may also cause pathological vessel occlusion. One major pathway of platelet activation is triggered by 2 receptors that signal through an (hem)immunoreceptor tyrosine-based activation motif (ITAM), the activating collagen receptor glycoprotein (GP) VI and the C-type lectin-like receptor 2 (CLEC-2). Growth factor receptor-bound protein 2 (Grb2) is a ubiquitously expressed adapter molecule involved in signaling processes of numerous receptors in different cell types, but its function in platelets and MKs is unknown. OBJECTIVE We tested the hypothesis that Grb2 is a crucial adapter protein in (hem)immunoreceptor tyrosine-based activation motif signaling in platelets. METHODS AND RESULTS Here, we show that genetic ablation of Grb2 in MKs and platelets did not interfere with MK differentiation or platelet production. However, Grb2-deficiency severely impaired glycoprotein VI-mediated platelet activation because of defective stabilization of the linker of activated T-cell (LAT) signalosome and activation of downstream signaling proteins that resulted in reduced adhesion, aggregation, and coagulant activity on collagen in vitro. Similarly, CLEC-2-mediated signaling was impaired in Grb2-deficient platelets, whereas the cells responded normally to stimulation of G protein-coupled receptors. In vivo, this selective (hem)immunoreceptor tyrosine-based activation motif signaling defect resulted in prolonged bleeding times but affected arterial thrombus formation only after concomitant treatment with acetylsalicylic acid, indicating that defective glycoprotein VI signaling in the absence of Grb2 can be compensated through thromboxane A2-induced G protein-coupled receptor signaling pathways. CONCLUSIONS These results reveal an important contribution of Grb2 in (hem)immunoreceptor tyrosine-based activation motif signaling in platelets in hemostasis and thrombosis by stabilizing the LAT signalosome.
Collapse
Affiliation(s)
- Sebastian Dütting
- Department of Experimental Biomedicine, University Hospital Würzburg (S.D., T.V., M.M., S.S., B.N.) and Rudolf Virchow Center for Experimental Biomedicine (S.D., T.V., C.M.S., H.M.H., B.N.), University of Würzburg, Würzburg, Germany; Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.K.W., C.E.H., S.P.W.); and Department of Biology, Division of Genetics, University of Erlangen, Erlangen, Germany (J.A.A., D.R., L.N.)
| | - Timo Vögtle
- Department of Experimental Biomedicine, University Hospital Würzburg (S.D., T.V., M.M., S.S., B.N.) and Rudolf Virchow Center for Experimental Biomedicine (S.D., T.V., C.M.S., H.M.H., B.N.), University of Würzburg, Würzburg, Germany; Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.K.W., C.E.H., S.P.W.); and Department of Biology, Division of Genetics, University of Erlangen, Erlangen, Germany (J.A.A., D.R., L.N.)
| | - Martina Morowski
- Department of Experimental Biomedicine, University Hospital Würzburg (S.D., T.V., M.M., S.S., B.N.) and Rudolf Virchow Center for Experimental Biomedicine (S.D., T.V., C.M.S., H.M.H., B.N.), University of Würzburg, Würzburg, Germany; Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.K.W., C.E.H., S.P.W.); and Department of Biology, Division of Genetics, University of Erlangen, Erlangen, Germany (J.A.A., D.R., L.N.)
| | - Sarah Schiessl
- Department of Experimental Biomedicine, University Hospital Würzburg (S.D., T.V., M.M., S.S., B.N.) and Rudolf Virchow Center for Experimental Biomedicine (S.D., T.V., C.M.S., H.M.H., B.N.), University of Würzburg, Würzburg, Germany; Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.K.W., C.E.H., S.P.W.); and Department of Biology, Division of Genetics, University of Erlangen, Erlangen, Germany (J.A.A., D.R., L.N.)
| | - Carmen M Schäfer
- Department of Experimental Biomedicine, University Hospital Würzburg (S.D., T.V., M.M., S.S., B.N.) and Rudolf Virchow Center for Experimental Biomedicine (S.D., T.V., C.M.S., H.M.H., B.N.), University of Würzburg, Würzburg, Germany; Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.K.W., C.E.H., S.P.W.); and Department of Biology, Division of Genetics, University of Erlangen, Erlangen, Germany (J.A.A., D.R., L.N.)
| | - Stephanie K Watson
- Department of Experimental Biomedicine, University Hospital Würzburg (S.D., T.V., M.M., S.S., B.N.) and Rudolf Virchow Center for Experimental Biomedicine (S.D., T.V., C.M.S., H.M.H., B.N.), University of Würzburg, Würzburg, Germany; Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.K.W., C.E.H., S.P.W.); and Department of Biology, Division of Genetics, University of Erlangen, Erlangen, Germany (J.A.A., D.R., L.N.)
| | - Craig E Hughes
- Department of Experimental Biomedicine, University Hospital Würzburg (S.D., T.V., M.M., S.S., B.N.) and Rudolf Virchow Center for Experimental Biomedicine (S.D., T.V., C.M.S., H.M.H., B.N.), University of Würzburg, Würzburg, Germany; Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.K.W., C.E.H., S.P.W.); and Department of Biology, Division of Genetics, University of Erlangen, Erlangen, Germany (J.A.A., D.R., L.N.)
| | - Jochen A Ackermann
- Department of Experimental Biomedicine, University Hospital Würzburg (S.D., T.V., M.M., S.S., B.N.) and Rudolf Virchow Center for Experimental Biomedicine (S.D., T.V., C.M.S., H.M.H., B.N.), University of Würzburg, Würzburg, Germany; Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.K.W., C.E.H., S.P.W.); and Department of Biology, Division of Genetics, University of Erlangen, Erlangen, Germany (J.A.A., D.R., L.N.)
| | - Daniel Radtke
- Department of Experimental Biomedicine, University Hospital Würzburg (S.D., T.V., M.M., S.S., B.N.) and Rudolf Virchow Center for Experimental Biomedicine (S.D., T.V., C.M.S., H.M.H., B.N.), University of Würzburg, Würzburg, Germany; Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.K.W., C.E.H., S.P.W.); and Department of Biology, Division of Genetics, University of Erlangen, Erlangen, Germany (J.A.A., D.R., L.N.)
| | - Heike M Hermanns
- Department of Experimental Biomedicine, University Hospital Würzburg (S.D., T.V., M.M., S.S., B.N.) and Rudolf Virchow Center for Experimental Biomedicine (S.D., T.V., C.M.S., H.M.H., B.N.), University of Würzburg, Würzburg, Germany; Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.K.W., C.E.H., S.P.W.); and Department of Biology, Division of Genetics, University of Erlangen, Erlangen, Germany (J.A.A., D.R., L.N.)
| | - Steve P Watson
- Department of Experimental Biomedicine, University Hospital Würzburg (S.D., T.V., M.M., S.S., B.N.) and Rudolf Virchow Center for Experimental Biomedicine (S.D., T.V., C.M.S., H.M.H., B.N.), University of Würzburg, Würzburg, Germany; Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.K.W., C.E.H., S.P.W.); and Department of Biology, Division of Genetics, University of Erlangen, Erlangen, Germany (J.A.A., D.R., L.N.)
| | - Lars Nitschke
- Department of Experimental Biomedicine, University Hospital Würzburg (S.D., T.V., M.M., S.S., B.N.) and Rudolf Virchow Center for Experimental Biomedicine (S.D., T.V., C.M.S., H.M.H., B.N.), University of Würzburg, Würzburg, Germany; Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.K.W., C.E.H., S.P.W.); and Department of Biology, Division of Genetics, University of Erlangen, Erlangen, Germany (J.A.A., D.R., L.N.)
| | - Bernhard Nieswandt
- Department of Experimental Biomedicine, University Hospital Würzburg (S.D., T.V., M.M., S.S., B.N.) and Rudolf Virchow Center for Experimental Biomedicine (S.D., T.V., C.M.S., H.M.H., B.N.), University of Würzburg, Würzburg, Germany; Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.K.W., C.E.H., S.P.W.); and Department of Biology, Division of Genetics, University of Erlangen, Erlangen, Germany (J.A.A., D.R., L.N.)
| |
Collapse
|
32
|
Grb2 promotes integrin-induced focal adhesion kinase (FAK) autophosphorylation and directs the phosphorylation of protein tyrosine phosphatase α by the Src-FAK kinase complex. Mol Cell Biol 2013; 34:348-61. [PMID: 24248601 DOI: 10.1128/mcb.00825-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The integrin-activated Src-focal adhesion kinase (FAK) kinase complex phosphorylates PTPα at Tyr789, initiating PTPα-mediated signaling that promotes cell migration. Recruitment of the BCAR3-Cas complex by PTPα-phospho-Tyr789 at focal adhesions is one mechanism of PTPα signaling. The adaptor protein Grb2 is also recruited by PTPα-phospho-Tyr789, although the role of the PTPα-Grb2 complex in integrin signaling is unknown. We show that silencing Grb2 expression in fibroblasts abolishes PTPα-Tyr789 phosphorylation and that this is due to two unexpected actions of Grb2. First, Grb2 promotes integrin-induced autophosphorylation of FAK-Tyr397. This is impaired in Grb2-depleted cells and prohibits FAK activation and formation of the Src-FAK complex. Grb2-depleted cells contain less paxillin, and paxillin overexpression rescues FAK-Tyr397 phosphorylation, suggesting that the FAK-activating action of Grb2 involves paxillin. A second distinct role for Grb2 in PTPα-Tyr789 phosphorylation involves Grb2-mediated coupling of Src-FAK and PTPα. This requires two phosphosites, FAK-Tyr925 and PTPα-Tyr789, for Grb2-Src homology 2 (SH2) binding. We propose that a Grb2 dimer links FAK and PTPα, and this positions active Src-FAK in proximity with other, perhaps integrin-clustered, molecules of PTPα to enable maximal PTPα-Tyr789 phosphorylation. These findings identify Grb2 as a new FAK activator and reveal its essential role in coordinating PTPα tyrosine phosphorylation to enable downstream integrin signaling and migration.
Collapse
|
33
|
Jun JE, Rubio I, Roose JP. Regulation of ras exchange factors and cellular localization of ras activation by lipid messengers in T cells. Front Immunol 2013; 4:239. [PMID: 24027568 PMCID: PMC3762125 DOI: 10.3389/fimmu.2013.00239] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 08/02/2013] [Indexed: 11/17/2022] Open
Abstract
The Ras-MAPK signaling pathway is highly conserved throughout evolution and is activated downstream of a wide range of receptor stimuli. Ras guanine nucleotide exchange factors (RasGEFs) catalyze GTP loading of Ras and play a pivotal role in regulating receptor-ligand induced Ras activity. In T cells, three families of functionally important RasGEFs are expressed: RasGRF, RasGRP, and Son of Sevenless (SOS)-family GEFs. Early on it was recognized that Ras activation is critical for T cell development and that the RasGEFs play an important role herein. More recent work has revealed that nuances in Ras activation appear to significantly impact T cell development and selection. These nuances include distinct biochemical patterns of analog versus digital Ras activation, differences in cellular localization of Ras activation, and intricate interplays between the RasGEFs during distinct T cell developmental stages as revealed by various new mouse models. In many instances, the exact nature of these nuances in Ras activation or how these may result from fine-tuning of the RasGEFs is not understood. One large group of biomolecules critically involved in the control of RasGEFs functions are lipid second messengers. Multiple, yet distinct lipid products are generated following T cell receptor (TCR) stimulation and bind to different domains in the RasGRP and SOS RasGEFs to facilitate the activation of the membrane-anchored Ras GTPases. In this review we highlight how different lipid-based elements are generated by various enzymes downstream of the TCR and other receptors and how these dynamic and interrelated lipid products may fine-tune Ras activation by RasGEFs in developing T cells.
Collapse
Affiliation(s)
- Jesse E Jun
- Department of Anatomy, University of California San Francisco , San Francisco, CA , USA
| | | | | |
Collapse
|
34
|
Kortum RL, Rouquette-Jazdanian AK, Samelson LE. Ras and extracellular signal-regulated kinase signaling in thymocytes and T cells. Trends Immunol 2013; 34:259-68. [PMID: 23506953 DOI: 10.1016/j.it.2013.02.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/04/2013] [Accepted: 02/12/2013] [Indexed: 12/22/2022]
Abstract
Extracellular signal-regulated kinase (ERK) activation is important for both thymocyte development and T cell function. Classically, signal transduction from the T cell antigen receptor (TCR) to ERK is thought to be regulated by signaling from Ras guanine nucleotide exchange factors (GEFs), through the small G protein Ras, to the three-tiered Raf-MAPK/ERK kinase (MEK)-ERK kinase cascade. Developing and mature T cells express four members of two RasGEF families, RasGRP1, RasGRP4, son of sevenless 1 (Sos1), and Sos2, and several models describing combined signaling from these RasGEFs have been proposed. However, recent studies suggest that existing models need revision to include both distinct and overlapping roles of multiple RasGEFs during thymocyte development and novel, Ras-independent signals to ERK that have been identified in peripheral T cells.
Collapse
Affiliation(s)
- Robert L Kortum
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
35
|
Paster W, Brockmeyer C, Fu G, Simister PC, de Wet B, Martinez-Riaño A, Hoerter JAH, Feller SM, Wülfing C, Gascoigne NRJ, Acuto O. GRB2-mediated recruitment of THEMIS to LAT is essential for thymocyte development. THE JOURNAL OF IMMUNOLOGY 2013; 190:3749-56. [PMID: 23460737 DOI: 10.4049/jimmunol.1203389] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thymocyte-expressed molecule involved in selection (THEMIS) is a recently identified regulator of thymocyte positive selection. THEMIS's mechanism of action is unknown, and whether it has a role in TCR-proximal signaling is controversial. In this article, we show that THEMIS and the adapter molecule growth factor receptor-bound protein 2 (GRB2) associate constitutively through binding of a conserved PxRPxK motif within the proline-rich region 1 of THEMIS to the C-terminal SH3-domain of GRB2. This association is indispensable for THEMIS recruitment to the immunological synapse via the transmembrane adapter linker for activation of T cells (LAT) and for THEMIS phosphorylation by Lck and ZAP-70. Two major sites of tyrosine phosphorylation were mapped to a YY-motif close to proline-rich region 1. The YY-motif was crucial for GRB2 binding, suggesting that this region of THEMIS might control local phosphorylation-dependent conformational changes important for THEMIS function. Finally, THEMIS binding to GRB2 was required for thymocyte development. Our data firmly assign THEMIS to the TCR-proximal signaling cascade as a participant in the LAT signalosome and suggest that the THEMIS-GRB2 complex might be involved in shaping the nature of Ras signaling, thereby governing thymic selection.
Collapse
Affiliation(s)
- Wolfgang Paster
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
TCR-mediated Erk activation does not depend on Sos and Grb2 in peripheral human T cells. EMBO Rep 2012; 13:386-91. [PMID: 22344067 DOI: 10.1038/embor.2012.17] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 02/07/2023] Open
Abstract
Sos proteins are ubiquitously expressed activators of Ras. Lymphoid cells also express RasGRP1, another Ras activator. Sos and RasGRP1 are thought to cooperatively control full Ras activation upon T-cell receptor triggering. Using RNA interference, we evaluated whether this mechanism operates in primary human T cells. We found that T-cell antigen receptor (TCR)-mediated Erk activation requires RasGRP1, but not Grb2/Sos. Conversely, Grb2/Sos—but not RasGRP1—are required for IL2-mediated Erk activation. Thus, RasGRP1 and Grb2/Sos are insulators of signals that lead to Ras activation induced by different stimuli, rather than cooperating downstream of the TCR.
Collapse
|
37
|
Besin G, Yousefi M, Saba I, Klinck R, Pandolfi PP, Duplay P. Dok-1 overexpression promotes development of γδ natural killer T cells. Eur J Immunol 2012; 42:2491-504. [PMID: 22736313 DOI: 10.1002/eji.201242421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/18/2012] [Accepted: 05/24/2012] [Indexed: 11/07/2022]
Abstract
In T cells, two members of the Dok family, Dok-1 and Dok-2, are predominantly expressed. Recent evidence suggests that they play a negative role in T-cell signaling. In order to define whether Dok proteins regulate T-cell development, we have generated transgenic mice overexpressing Dok-1 in thymocytes and peripheral T cells. We show that overexpression of Dok-1 retards the transition from the CD4(-) CD8(-) to CD4(+) CD8(+) stage. Moreover, there is a specific expansion of PLZF-expressing Vγ1.1(+) Vδ6.3(+) T cells. This subset of γδ T cells acquires innate characteristics including rapid IL-4 production following stimulation and requiring SLAM-associated adaptor protein (SAP) for their development. Moreover, Dok-1 overexpression promotes the generation of an innate-like CD8(+) T-cell population that expresses Eomesodermin. Altogether, these findings identify a novel role for Dok-1 in the regulation of thymic differentiation and in particular, in the development of PLZF(+) γδ T cells.
Collapse
Affiliation(s)
- Gilles Besin
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Lesourne R, Zvezdova E, Song KD, El-Khoury D, Uehara S, Barr VA, Samelson LE, Love PE. Interchangeability of Themis1 and Themis2 in thymocyte development reveals two related proteins with conserved molecular function. THE JOURNAL OF IMMUNOLOGY 2012; 189:1154-61. [PMID: 22732588 DOI: 10.4049/jimmunol.1200123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Themis1, a recently identified T cell protein, has a critical function in the generation of mature CD4(+)CD8(-) and CD4(-)CD8(+) (CD4 and CD8 single-positive [SP]) thymocytes and T cells. Although Themis1 has been shown to bind to the adaptor proteins LAT and Grb2, previous studies have yielded conflicting results regarding whether thymocytes from Themis1(-/-) mice exhibit TCR-mediated signaling defects. In this study, we demonstrate that, in the absence of Themis1, TCR-mediated signaling is selectively impaired in CD4 SP and CD8 SP thymocytes but is not affected in CD4(+)CD8(+) double-positive thymocytes despite high expression of Themis1 in double-positive thymocytes. Like Themis1, Themis2, a related member of the Themis family, which is expressed in B cells and macrophages, contains two conserved cysteine-based domains, a proline-rich region, and a nuclear localization signal. To determine whether Themis1 and Themis2 can perform similar functions in vivo, we analyzed T cell development and TCR-mediated signaling in Themis1(-/-) mice reconstituted with either Themis1 or Themis2 transgenes. Notably, Themis1 and Themis2 exhibited the same potential to restore T cell development and TCR-mediated signaling in Themis1(-/-) mice. Both proteins were tyrosine phosphorylated and were recruited within Grb2 signaling complexes to LAT following TCR engagement. These results suggest that conserved molecular features of the Themis1 and Themis2 proteins are important for their biological activity and predict that Themis1 and Themis2 may perform similar functions in T and B cells, respectively.
Collapse
Affiliation(s)
- Renaud Lesourne
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
The transmembrane adaptor protein SIT inhibits TCR-mediated signaling. PLoS One 2011; 6:e23761. [PMID: 21957439 PMCID: PMC3177817 DOI: 10.1371/journal.pone.0023761] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 07/25/2011] [Indexed: 12/15/2022] Open
Abstract
Transmembrane adaptor proteins (TRAPs) organize signaling complexes at the plasma membrane, and thus function as critical linkers and integrators of signaling cascades downstream of antigen receptors. We have previously shown that the transmembrane adaptor protein SIT regulates the threshold for thymocyte selection. Moreover, T cells from SIT-deficient mice are hyperresponsive to CD3 stimulation and undergo enhanced lymphopenia-induced homeostatic proliferation, thus indicating that SIT inhibits TCR-mediated signaling. Here, we have further addressed how SIT regulates signaling cascades in T cells. We demonstrate that the loss of SIT enhances TCR-mediated Akt activation and increased phosphorylation/inactivation of Foxo1, a transcription factor of the Forkhead family that inhibits cell cycle progression and regulates T-cell homeostasis. We have also shown that CD4+ T cells from SIT-deficient mice display increased CD69 and CD40L expression indicating an altered activation status. Additional biochemical analyses further revealed that suppression of SIT expression by RNAi in human T cells resulted in an enhanced proximal TCR signaling. In summary, the data identify SIT as an important modulator of TCR-mediated signaling that regulates T-cell activation, homeostasis and tolerance.
Collapse
|
41
|
Targeted Sos1 deletion reveals its critical role in early T-cell development. Proc Natl Acad Sci U S A 2011; 108:12407-12. [PMID: 21746917 DOI: 10.1073/pnas.1104295108] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Activation of the small G protein Ras is required for thymocyte differentiation. In thymocytes, Ras is activated by the Ras guanine exchange factors (RasGEFs) Sos1, Sos2, and RasGRP1. We report the development of a floxed allele of sos1 to assess the role of Sos1 during thymocyte development. Sos1 was required for pre-T-cell receptor (pre-TCR)- but not TCR-stimulated developmental signals. Sos1 deletion led to a partial block at the DN-to-DP transition. Sos1-deficient thymocytes showed reduced pre-TCR-stimulated proliferation, differentiation, and ERK phosphorylation. In contrast, TCR-stimulated positive selection, and negative selection under strong stimulatory conditions, remained intact in Sos1-deficient mice. Comparison of RasGEF expression at different developmental stages showed that relative to Sos2 and RasGRP1, Sos1 is most abundant in DN thymocytes, but least abundant in DP thymocytes. These data reveal that Sos1 is uniquely positioned to affect signal transduction early in thymocyte development.
Collapse
|
42
|
Grecco HE, Schmick M, Bastiaens PIH. Signaling from the living plasma membrane. Cell 2011; 144:897-909. [PMID: 21414482 DOI: 10.1016/j.cell.2011.01.029] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 12/10/2010] [Accepted: 01/17/2011] [Indexed: 02/06/2023]
Abstract
Our understanding of the plasma membrane, once viewed simply as a static barrier, has been revolutionized to encompass a complex, dynamic organelle that integrates the cell with its extracellular environment. Here, we discuss how bidirectional signaling across the plasma membrane is achieved by striking a delicate balance between restriction and propagation of information over different scales of time and space and how underlying dynamic mechanisms give rise to rich, context-dependent signaling responses. In this Review, we show how computer simulations can generate counterintuitive predictions about the spatial organization of these complex processes.
Collapse
Affiliation(s)
- Hernán E Grecco
- Max Planck Institute for Molecular Physiology, Department of Systemic Cell Biology, Otto-Hahn-Str. 11, D-44227 Dortmund, Germany
| | | | | |
Collapse
|
43
|
Growth-factor receptor-bound protein-2 (Grb2) signaling in B cells controls lymphoid follicle organization and germinal center reaction. Proc Natl Acad Sci U S A 2011; 108:7926-31. [PMID: 21508326 DOI: 10.1073/pnas.1016451108] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Grb2 (growth-factor receptor-bound protein-2) is a signaling adaptor that interacts with numerous receptors and intracellular signaling molecules. However, its role in B-cell development and function remains unknown. Here we show that ablation of Grb2 in B cells results in enhanced B-cell receptor signaling; however, mutant B cells do not form germinal centers in the spleen after antigen stimulation. Furthermore, mutant mice exhibit defects in splenic architecture resembling that observed in B-cell-specific lymphotoxin-β-deficient mice, including disruption of marginal zone and follicular dendritic cell networks. We find that grb2(-/-) B cells are defective in lymphotoxin-β expression. Although lymphotoxin can be up-regulated by chemokine CXCL13 and CD40 ligand stimulation in wild-type B cells, elevation of lymphotoxin expression in grb2(-/-) B cells is only induced by anti-CD40 but not by CXCL13. Our results thus define Grb2 as a nonredundant regulator that controls lymphoid follicle organization and germinal center reaction. Loss of Grb2 has no effect on B-cell chemotaxis to CXCL13, indicating that Grb2 executes this function by connecting the CXCR5 signaling pathway to lymphotoxin expression but not to chemotaxis.
Collapse
|
44
|
Grb2 regulates B-cell maturation, B-cell memory responses and inhibits B-cell Ca2+ signalling. EMBO J 2011; 30:1621-33. [PMID: 21427701 DOI: 10.1038/emboj.2011.74] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 02/23/2011] [Indexed: 12/18/2022] Open
Abstract
Grb2 is a ubiquitously expressed adaptor protein, which activates Ras and MAP kinases in growth factor receptor signalling, while in B-cell receptor (BCR) signalling this role is controversial. In B cell lines it was shown that Grb2 can inhibit BCR-induced Ca(2+) signalling. Nonetheless, the physiological role of Grb2 in primary B cells is still unknown. We generated a B-cell-specific Grb2-deficient mouse line, which had a severe reduction of mature follicular B cells in the periphery due to a differentiation block and decreased B-cell survival. Moreover, we found several changes in important signalling pathways: enhanced BCR-induced Ca(2+) signalling, alterations in mitogen-activated protein kinase activation patterns and strongly impaired Akt activation, the latter pointing towards a defect in PI3K signalling. Interestingly, B-cell-specific Grb2-deficient mice showed impaired IgG and B-cell memory responses, and impaired germinal centre formation. Thus, Grb2-dependent signalling pathways are crucial for lymphocyte differentiation processes, as well as for control of secondary humoral immune responses.
Collapse
|
45
|
Gascoigne NRJ, Palmer E. Signaling in thymic selection. Curr Opin Immunol 2011; 23:207-12. [PMID: 21242076 DOI: 10.1016/j.coi.2010.12.017] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 12/26/2010] [Indexed: 01/22/2023]
Abstract
T cell receptor signaling allows the developing thymocyte to undergo positive or negative selection, which is required for the formation of a useful mature T cell repertoire. Recent developments include the finding that much of the Lck kinase (required to initiate T cell signaling) is already in an active configuration before signaling. The analog strength of antigen binding to the T cell receptor binding may be translated into a digital signal by the amount of time the TCR is paired with a co-receptor carrying Lck. Downstream, the cellular localization of MAP kinase signaling is determined by the strength of the signal and in turn predicts positive or negative selection. A novel protein, Themis, is important in crossing the positive selection developmental checkpoint, but its mode of action is still uncertain. Commitment to the CD4 or CD8 lineage is influenced by the amount of ZAP-70 signaling and also by closely regulated responsiveness to intrathymic cytokines such as IL7.
Collapse
Affiliation(s)
- Nicholas R J Gascoigne
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
46
|
Dong S, Corre B, Nika K, Pellegrini S, Michel F. T cell receptor signal initiation induced by low-grade stimulation requires the cooperation of LAT in human T cells. PLoS One 2010; 5:e15114. [PMID: 21152094 PMCID: PMC2994893 DOI: 10.1371/journal.pone.0015114] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 10/24/2010] [Indexed: 12/04/2022] Open
Abstract
Background One of the earliest activation events following stimulation of the T cell receptor (TCR) is the phosphorylation of the immunoreceptor tyrosine-based activation motifs (ITAMs) within the CD3-associated complex by the Src family kinase Lck. There is accumulating evidence that a large pool of Lck is constitutively active in T cells but how the TCR is connected to Lck and to the downstream signaling cascade remains elusive. Methodology/Principal Findings We have analyzed the phosphorylation state of Lck and Fyn and TCR signaling in human naïve CD4+ T cells and in the transformed T cell line, Hut-78. The latter has been shown to be similar to primary T cells in TCR-inducible phosphorylations and can be highly knocked down by RNA interference. In both T cell types, basal phosphorylation of Lck and Fyn on their activatory tyrosine was observed, although this was much less pronounced in Hut-78 cells. TCR stimulation led to the co-precipitation of Lck with the transmembrane adaptor protein LAT (linker for activation of T cells), Erk-mediated phosphorylation of Lck and no detectable dephosphorylation of Lck inhibitory tyrosine. Strikingly, upon LAT knockdown in Hut-78 cells, we found that LAT promoted TCR-induced phosphorylation of Lck and Fyn activatory tyrosines, TCRζ chain phosphorylation and Zap-70 activation. Notably, LAT regulated these events at low strength of TCR engagement. Conclusions/Significance Our results indicate for the first time that LAT promotes TCR signal initiation and suggest that this adaptor may contribute to maintain active Lck in proximity of their substrates.
Collapse
Affiliation(s)
- Shen Dong
- Unit of Cytokine Signaling, Department of Immunology, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
| | - Béatrice Corre
- Unit of Cytokine Signaling, Department of Immunology, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
| | - Konstantina Nika
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Sandra Pellegrini
- Unit of Cytokine Signaling, Department of Immunology, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
| | - Frédérique Michel
- Unit of Cytokine Signaling, Department of Immunology, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
- * E-mail:
| |
Collapse
|
47
|
|
48
|
Vartak N, Bastiaens P. Spatial cycles in G-protein crowd control. EMBO J 2010; 29:2689-99. [PMID: 20717139 PMCID: PMC2924655 DOI: 10.1038/emboj.2010.184] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 07/12/2010] [Indexed: 12/19/2022] Open
Abstract
The nature of living systems and their apparent resilience to the second law of thermodynamics has been the subject of extensive investigation and imaginative speculation. The segregation and compartmentalization of proteins is one manifestation of this departure from equilibrium conditions; the effect of which is now beginning to be elucidated. This should not come as a surprise, as even a cursory inspection of cellular processes reveals the large amount of energetic cost borne to maintain cell-scale patterns, separations and gradients of molecules. The G-proteins, kinases, calcium-responsive proteins have all been shown to contain reaction cycles that are inherently coupled to their signalling activities. G-proteins represent an important and diverse toolset used by cells to generate cellular asymmetries. Many small G-proteins in particular, are dynamically acylated to modify their membrane affinities, or localized in an activity-dependent manner, thus manipulating the mobility modes of these proteins beyond pure diffusion and leading to finely tuned steady state partitioning into cellular membranes. The rates of exchange of small G-proteins over various compartments, as well as their steady state distributions enrich and diversify the landscape of possibilities that GTPase-dependent signalling networks can display over cellular dimensions. The chemical manipulation of spatial cycles represents a new approach for the modulation of cellular signalling with potential therapeutic benefits.
Collapse
Affiliation(s)
- Nachiket Vartak
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Philippe Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
- Department of Chemistry, University of Dortmund, Dortmund, Germany
| |
Collapse
|