1
|
Asgari D, Tate AT. How the Structure of Signaling Regulation Evolves: Insights from an Evolutionary Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619883. [PMID: 39484560 PMCID: PMC11526956 DOI: 10.1101/2024.10.23.619883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
To remain responsive to environmental changes, signaling pathways attenuate their activity with negative feedback loops (NFLs), where proteins produced upon stimulation downregulate the response. NFLs function both upstream of signaling to reduce input and downstream to reduce output. Unlike upstream NFLs, downstream NFLs directly regulate gene expression without the involvement of intermediate proteins. Thus, we hypothesized that downstream NFLs evolve under more stringent selection than upstream NFLs. Indeed, genes encoding downstream NFLs exhibit a slower evolutionary rate than upstream genes. Such differences in selective pressures could result in the robust evolution of downstream NFLs while making the evolution of upstream NFLs more sensitive to changes in signaling proteins and stimuli. Here, we test these assumptions within the context of immune signaling. Our minimal model of immune signaling predicts robust evolution of downstream NFLs to changes in model parameters. This is consistent with their critical role in regulating signaling and the conservative rate of evolution. Furthermore, we show that the number of signaling steps needed to activate a downstream NFL is influenced by the cost of signaling. Our model predicts that upstream NFLs are more likely to evolve under a shorter half-life of signaling proteins, absence of host-pathogen co-evolution, and a high infection rate. Although it has been proposed that NFLs evolve to reduce the cost of signaling, we show that a high cost does not necessarily predict the evolution of upstream NFLs. The insights from our model have broad implications for understanding the evolution of regulatory mechanisms across signaling pathways.
Collapse
|
2
|
Smeal SW, Mokashi CS, Kim AH, Chiknas PM, Lee REC. Time-varying stimuli that prolong IKK activation promote nuclear remodeling and mechanistic switching of NF-κB dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615244. [PMID: 39386677 PMCID: PMC11463372 DOI: 10.1101/2024.09.26.615244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Temporal properties of molecules within signaling networks, such as sub-cellular changes in protein abundance, encode information that mediate cellular responses to stimuli. How dynamic signals relay and process information is a critical gap in understanding cellular behaviors. In this work, we investigate transmission of information about changing extracellular cytokine concentrations from receptor-level supramolecular assemblies of IκB kinases (IKK) downstream to the nuclear factor κB (NF-κB) transcription factor (TF). In a custom robot-controlled microfluidic cell culture, we simultaneously measure input-output (I/O) encoding of IKK-NF-κB in dual fluorescent-reporter cells. When compared with single cytokine pulses, dose-conserving pulse trains prolong IKK assemblies and lead to disproportionately enhanced retention of nuclear NF-κB. Using particle swarm optimization, we demonstrate that a mechanistic model does not recapitulate this emergent property. By contrast, invoking mechanisms for NF-κB-dependent chromatin remodeling to the model recapitulates experiments, showing how temporal dosing that prolongs IKK assemblies facilitates switching to permissive chromatin that sequesters nuclear NF-κB. Remarkably, using simulations to resolve single-cell receptor data accurately predicts same-cell NF-κB time courses for more than 80% of our single cell trajectories. Our data and simulations therefore suggest that cell-to-cell heterogeneity in cytokine responses are predominantly due to mechanisms at the level receptor-associated protein complexes.
Collapse
Affiliation(s)
- Steven W. Smeal
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Chaitanya S. Mokashi
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- current address Altos Labs, Redwood City, CA, 94065, USA
| | - A. Hyun Kim
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - P. Murdo Chiknas
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Robin E. C. Lee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Systems Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Jeong EM, Kim JK. A robust ultrasensitive transcriptional switch in noisy cellular environments. NPJ Syst Biol Appl 2024; 10:30. [PMID: 38493227 PMCID: PMC10944533 DOI: 10.1038/s41540-024-00356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Ultrasensitive transcriptional switches enable sharp transitions between transcriptional on and off states and are essential for cells to respond to environmental cues with high fidelity. However, conventional switches, which rely on direct repressor-DNA binding, are extremely noise-sensitive, leading to unintended changes in gene expression. Here, through model simulations and analysis, we discovered that an alternative design combining three indirect transcriptional repression mechanisms, sequestration, blocking, and displacement, can generate a noise-resilient ultrasensitive switch. Although sequestration alone can generate an ultrasensitive switch, it remains sensitive to noise because the unintended transcriptional state induced by noise persists for long periods. However, by jointly utilizing blocking and displacement, these noise-induced transitions can be rapidly restored to the original transcriptional state. Because this transcriptional switch is effective in noisy cellular contexts, it goes beyond previous synthetic transcriptional switches, making it particularly valuable for robust synthetic system design. Our findings also provide insights into the evolution of robust ultrasensitive switches in cells. Specifically, the concurrent use of seemingly redundant indirect repression mechanisms in diverse biological systems appears to be a strategy to achieve noise-resilience of ultrasensitive switches.
Collapse
Affiliation(s)
- Eui Min Jeong
- Biomedical Mathematics Group, Institute for Basic Science, 55, Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Jae Kyoung Kim
- Biomedical Mathematics Group, Institute for Basic Science, 55, Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea.
- Department of Mathematical Sciences, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
4
|
Komives EA. The multifunctional role of intrinsic disorder in NF-κB signaling. Biochem Soc Trans 2023; 51:2085-2092. [PMID: 38095058 PMCID: PMC10754279 DOI: 10.1042/bst20230035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
The nuclear factor-κB (NF-κB) transcription activation system involves disordered regions of both the NF-κB dimers and their inhibitors, the IκBs. The system is well-studied both at the cellular and biophysical levels affording a unique opportunity to compare and contrast the conclusions from both types of experiments. Through a combination of both experiments and theory, we have discovered that the RelA/p50 heterodimer and its inhibitor IκBα operate under kinetic control. Intrinsically disordered parts of both proteins are directly involved in temporal control and their folding and unfolding determines the rates of various processes. In this review, we show how the dynamic state of the intrinsically disordered sequences define the rates of intracellular processes.
Collapse
Affiliation(s)
- Elizabeth A. Komives
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92161, U.S.A
| |
Collapse
|
5
|
Chen W, Gunther TR, Baughman HER, Komives EA. Site-specific incorporation of biophysical probes into NF-ĸB with non-canonical amino acids. Methods 2023; 213:18-25. [PMID: 36940840 PMCID: PMC10688598 DOI: 10.1016/j.ymeth.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
The transcription factor NF-ĸB is a central mediator of immune and inflammatory responses. To understand the regulation of NF-ĸB, it is important to probe the underlying thermodynamics, kinetics, and conformational dynamics of the NF-ĸB/IĸBα/DNA interaction network. The development of genetic incorporation of non-canonical amino acids (ncAA) has enabled the installation of biophysical probes into proteins with site specificity. Recent single-molecule FRET (smFRET) studies of NF-ĸB with site-specific labeling via ncAA incorporation revealed the conformational dynamics for kinetic control of DNA-binding mediated by IĸBα. Here we report the design and protocols for incorporating the ncAA p-azidophenylalanine (pAzF) into NF-ĸB and site-specific fluorophore labeling with copper-free click chemistry for smFRET. We also expanded the ncAA toolbox of NF-ĸB to include p-benzoylphenylalanine (pBpa) for UV crosslinking mass spectrometry (XL-MS) and incorporated both pAzF and pBpa into the full-length NF-ĸB RelA subunit which includes the intrinsically disordered transactivation domain.
Collapse
Affiliation(s)
- Wei Chen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| | - Tristan R Gunther
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Hannah E R Baughman
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Baughman HER, Narang D, Chen W, Villagrán Suárez AC, Lee J, Bachochin MJ, Gunther TR, Wolynes PG, Komives EA. An intrinsically disordered transcription activation domain increases the DNA binding affinity and reduces the specificity of NFκB p50/RelA. J Biol Chem 2022; 298:102349. [PMID: 35934050 PMCID: PMC9440430 DOI: 10.1016/j.jbc.2022.102349] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022] Open
Abstract
Many transcription factors contain intrinsically disordered transcription activation domains (TADs), which mediate interactions with coactivators to activate transcription. Historically, DNA-binding domains and TADs have been considered as modular units, but recent studies have shown that TADs can influence DNA binding. Whether these results can be generalized to more TADs is not clear. Here, we biophysically characterized the NFκB p50/RelA heterodimer including the RelA TAD and investigated the TAD's influence on NFκB-DNA interactions. In solution, we show the RelA TAD is disordered but compact, with helical tendency in two regions that interact with coactivators. We determined that the presence of the TAD increased the stoichiometry of NFκB-DNA complexes containing promoter DNA sequences with tandem κB recognition motifs by promoting the binding of NFκB dimers in excess of the number of κB sites. In addition, we measured the binding affinity of p50/RelA for DNA containing tandem κB sites and single κB sites. While the presence of the TAD enhanced the binding affinity of p50/RelA for all κB sequences tested, it also increased the affinity for nonspecific DNA sequences by over 10-fold, leading to an overall decrease in specificity for κB DNA sequences. In contrast, previous studies have generally reported that TADs decrease DNA-binding affinity and increase sequence specificity. Our results reveal a novel function of the RelA TAD in promoting binding to nonconsensus DNA, which sheds light on previous observations of extensive nonconsensus DNA binding by NFκB in vivo in response to strong inflammatory signals.
Collapse
Affiliation(s)
- Hannah E R Baughman
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Dominic Narang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Wei Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Amalia C Villagrán Suárez
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Joan Lee
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Maxwell J Bachochin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Tristan R Gunther
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Peter G Wolynes
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
7
|
Jeong EM, Song YM, Kim JK. Combined multiple transcriptional repression mechanisms generate ultrasensitivity and oscillations. Interface Focus 2022; 12:20210084. [PMID: 35450279 PMCID: PMC9010851 DOI: 10.1098/rsfs.2021.0084] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
Transcriptional repression can occur via various mechanisms, such as blocking, sequestration and displacement. For instance, the repressors can hold the activators to prevent binding with DNA or can bind to the DNA-bound activators to block their transcriptional activity. Although the transcription can be completely suppressed with a single mechanism, multiple repression mechanisms are used together to inhibit transcriptional activators in many systems, such as circadian clocks and NF-κB oscillators. This raises the question of what advantages arise if seemingly redundant repression mechanisms are combined. Here, by deriving equations describing the multiple repression mechanisms, we find that their combination can synergistically generate a sharply ultrasensitive transcription response and thus strong oscillations. This rationalizes why the multiple repression mechanisms are used together in various biological oscillators. The critical role of such combined transcriptional repression for strong oscillations is further supported by our analysis of formerly identified mutations disrupting the transcriptional repression of the mammalian circadian clock. The hitherto unrecognized source of the ultrasensitivity, the combined transcriptional repressions, can lead to robust synthetic oscillators with a previously unachievable simple design.
Collapse
Affiliation(s)
- Eui Min Jeong
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Biomedical Mathematics Group, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Yun Min Song
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Biomedical Mathematics Group, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Jae Kyoung Kim
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Biomedical Mathematics Group, Institute for Basic Science, Daejeon 34126, Republic of Korea
| |
Collapse
|
8
|
Chora AF, Pedroso D, Kyriakou E, Pejanovic N, Colaço H, Gozzelino R, Barros A, Willmann K, Velho T, Moita CF, Santos I, Pereira P, Carvalho S, Martins FB, Ferreira JA, de Almeida SF, Benes V, Anrather J, Weis S, Soares MP, Geerlof A, Neefjes J, Sattler M, Messias AC, Neves-Costa A, Moita LF. DNA damage independent inhibition of NF-κB transcription by anthracyclines. eLife 2022; 11:77443. [PMID: 36476511 PMCID: PMC9771368 DOI: 10.7554/elife.77443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Anthracyclines are among the most used and effective anticancer drugs. Their activity has been attributed to DNA double-strand breaks resulting from topoisomerase II poisoning and to eviction of histones from select sites in the genome. Here, we show that the extensively used anthracyclines Doxorubicin, Daunorubicin, and Epirubicin decrease the transcription of nuclear factor kappa B (NF-κB)-dependent gene targets, but not interferon-responsive genes in primary mouse (Mus musculus) macrophages. Using an NMR-based structural approach, we demonstrate that anthracyclines disturb the complexes formed between the NF-κB subunit RelA and its DNA-binding sites. The anthracycline variants Aclarubicin, Doxorubicinone, and the newly developed Dimethyl-doxorubicin, which share anticancer properties with the other anthracyclines but do not induce DNA damage, also suppressed inflammation, thus uncoupling DNA damage from the effects on inflammation. These findings have implications for anticancer therapy and for the development of novel anti-inflammatory drugs with limited side effects for life-threatening conditions such as sepsis.
Collapse
Affiliation(s)
- Angelo Ferreira Chora
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Dora Pedroso
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Eleni Kyriakou
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum MünchenNeuherbergGermany,Bavarian NMR Centre, Department of Bioscience, School of Natural Sciences, Technical University of MunichGarchingGermany
| | - Nadja Pejanovic
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Henrique Colaço
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | | | - André Barros
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Katharina Willmann
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Tiago Velho
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal,Centro Hospitalar Lisboa Norte - Hospital de Santa Maria, EPE, Avenida Professor Egas MonizLisbonPortugal
| | - Catarina F Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Isa Santos
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal,Serviço de Cirurgia, Centro Hospitalar de SetúbalSetúbalPortugal
| | - Pedro Pereira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Silvia Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Filipa Batalha Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - João A Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | | | | | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkUnited States
| | - Sebastian Weis
- Institute for Infectious Disease and Infection Control, Friedrich-Schiller UniversityJenaGermany,Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller UniversityJenaGermany,Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI)JenaGermany
| | - Miguel P Soares
- Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Arie Geerlof
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum MünchenNeuherbergGermany
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, LUMCLeidenNetherlands
| | - Michael Sattler
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum MünchenNeuherbergGermany,Bavarian NMR Centre, Department of Bioscience, School of Natural Sciences, Technical University of MunichGarchingGermany
| | - Ana C Messias
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum MünchenNeuherbergGermany,Bavarian NMR Centre, Department of Bioscience, School of Natural Sciences, Technical University of MunichGarchingGermany
| | - Ana Neves-Costa
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Luis Ferreira Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal,Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de LisboaLisbonPortugal
| |
Collapse
|
9
|
Ghosh G, Wang VYF. Origin of the Functional Distinctiveness of NF-κB/p52. Front Cell Dev Biol 2021; 9:764164. [PMID: 34888310 PMCID: PMC8650618 DOI: 10.3389/fcell.2021.764164] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
The transcription regulators of the NF-κB family have emerged as a critical factor affecting the function of various adult tissues. The NF-κB family transcription factors are homo- and heterodimers made up of five monomers (p50, p52, RelA, cRel and RelB). The family is distinguished by sequence homology in their DNA binding and dimerization domains, which enables them to bind similar DNA response elements and participate in similar biological programs through transcriptional activation and repression of hundreds of genes. Even though the family members are closely related in terms of sequence and function, they all display distinct activities. In this review, we discuss the sequence characteristics, protein and DNA interactions, and pathogenic involvement of one member of family, NF-κB/p52, relative to that of other members. We pinpoint the small sequence variations within the conserved region that are mostly responsible for its distinct functional properties.
Collapse
Affiliation(s)
- Gourisankar Ghosh
- Department of Biochemistry, University of California, San Diego, San Diego, CA, United States
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
10
|
Chen W, Lu W, Wolynes PG, Komives E. Single-molecule conformational dynamics of a transcription factor reveals a continuum of binding modes controlling association and dissociation. Nucleic Acids Res 2021; 49:11211-11223. [PMID: 34614173 PMCID: PMC8565325 DOI: 10.1093/nar/gkab874] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Binding and unbinding of transcription factors to DNA are kinetically controlled to regulate the transcriptional outcome. Control of the release of the transcription factor NF-κB from DNA is achieved through accelerated dissociation by the inhibitor protein IκBα. Using single-molecule FRET, we observed a continuum of conformations of NF-κB in free and DNA-bound states interconverting on the subseconds to minutes timescale, comparable to in vivo binding on the seconds timescale, suggesting that structural dynamics directly control binding kinetics. Much of the DNA-bound NF-κB is partially bound, allowing IκBα invasion to facilitate DNA dissociation. IκBα induces a locked conformation where the DNA-binding domains of NF-κB are too far apart to bind DNA, whereas a loss-of-function IκBα mutant retains the NF-κB conformational ensemble. Overall, our results suggest a novel mechanism with a continuum of binding modes for controlling association and dissociation of transcription factors.
Collapse
Affiliation(s)
- Wei Chen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Wei Lu
- Center for Theoretical Biological Physics, Departments of Chemistry, Physics, and Biosciences, Rice University, Houston, Texas 77005, USA
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Departments of Chemistry, Physics, and Biosciences, Rice University, Houston, Texas 77005, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
11
|
Murphy CE, Walker AK, Weickert CS. Neuroinflammation in schizophrenia: the role of nuclear factor kappa B. Transl Psychiatry 2021; 11:528. [PMID: 34650030 PMCID: PMC8516884 DOI: 10.1038/s41398-021-01607-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation, particularly in the dorsolateral prefrontal cortex, is well-established in a subset of people with schizophrenia, with significant increases in inflammatory markers including several cytokines. Yet the cause(s) of cortical inflammation in schizophrenia remains unknown. Clues as to potential microenvironmental triggers and/or intracellular deficits in immunoregulation may be gleaned from looking further upstream of effector immune molecules to transcription factors that control inflammatory gene expression. Here, we focus on the 'master immune regulator' nuclear factor kappa B (NF-κB) and review evidence in support of NF-κB dysregulation causing or contributing to neuroinflammation in patients. We discuss the utility of 'immune biotyping' as a tool to analyse immune-related transcripts and proteins in patient tissue, and the insights into cortical NF-κB in schizophrenia revealed by immune biotyping compared to studies treating patients as a single, homogenous group. Though the ubiquitous nature of NF-κB presents several hurdles for drug development, targeting this key immunoregulator with novel or repurposed therapeutics in schizophrenia is a relatively underexplored area that could aid in reducing symptoms of patients with active neuroinflammation.
Collapse
Affiliation(s)
- Caitlin E. Murphy
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Randwick, NSW 2031 Australia
| | - Adam K. Walker
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Randwick, NSW 2031 Australia ,grid.1005.40000 0004 4902 0432School of Psychiatry, University of New South Wales, Randwick, NSW 2031 Australia ,grid.1002.30000 0004 1936 7857Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia. .,School of Psychiatry, University of New South Wales, Randwick, NSW, 2031, Australia. .,Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
12
|
Hydrogen Sulfide and the Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:99-128. [PMID: 34302690 DOI: 10.1007/978-981-16-0991-6_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) is the "third gasotransmitter" recognized alongside nitric oxide (NO) and carbon monoxide (CO). H2S exhibits an array of biological effects in mammalian cells as revealed by studies showing important roles in the cardiovascular system, in cell signalling processes, post-translational modifications and in the immune system. Regarding the latter, using pharmacological and genetic approaches scientists have shown this molecule to have both pro- and anti-inflammatory effects in mammalian systems. The anti-inflammatory effects of H2S appeared to be due to its inhibitory action on the nuclear factor kappa beta signalling pathway; NF-kB representing a transcription factor involved in the regulation pro-inflammatory mediators like nitric oxide, prostaglandins, and cytokines. In contrast, results from several animal model describe a more complicated picture and report on pro-inflammatory effects linked to exposure to this molecule; linked to dosage used and point of administration of this molecule. Overall, roles for H2S in several inflammatory diseases spanning arthritis, atherosclerosis, sepsis, and asthma have been described by researchers. In light this work fascinating research, this chapter will cover H2S biology and its many roles in the immune system.
Collapse
|
13
|
Inhibitory feedback control of NF-κB signalling in health and disease. Biochem J 2021; 478:2619-2664. [PMID: 34269817 PMCID: PMC8286839 DOI: 10.1042/bcj20210139] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Cells must adapt to changes in their environment to maintain cell, tissue and organismal integrity in the face of mechanical, chemical or microbiological stress. Nuclear factor-κB (NF-κB) is one of the most important transcription factors that controls inducible gene expression as cells attempt to restore homeostasis. It plays critical roles in the immune system, from acute inflammation to the development of secondary lymphoid organs, and also has roles in cell survival, proliferation and differentiation. Given its role in such critical processes, NF-κB signalling must be subject to strict spatiotemporal control to ensure measured and context-specific cellular responses. Indeed, deregulation of NF-κB signalling can result in debilitating and even lethal inflammation and also underpins some forms of cancer. In this review, we describe the homeostatic feedback mechanisms that limit and ‘re-set’ inducible activation of NF-κB. We first describe the key components of the signalling pathways leading to activation of NF-κB, including the prominent role of protein phosphorylation and protein ubiquitylation, before briefly introducing the key features of feedback control mechanisms. We then describe the array of negative feedback loops targeting different components of the NF-κB signalling cascade including controls at the receptor level, post-receptor signalosome complexes, direct regulation of the critical ‘inhibitor of κB kinases’ (IKKs) and inhibitory feedforward regulation of NF-κB-dependent transcriptional responses. We also review post-transcriptional feedback controls affecting RNA stability and translation. Finally, we describe the deregulation of these feedback controls in human disease and consider how feedback may be a challenge to the efficacy of inhibitors.
Collapse
|
14
|
Folding and Stability of Ankyrin Repeats Control Biological Protein Function. Biomolecules 2021; 11:biom11060840. [PMID: 34198779 PMCID: PMC8229355 DOI: 10.3390/biom11060840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
Ankyrin repeat proteins are found in all three kingdoms of life. Fundamentally, these proteins are involved in protein-protein interaction in order to activate or suppress biological processes. The basic architecture of these proteins comprises repeating modules forming elongated structures. Due to the lack of long-range interactions, a graded stability among the repeats is the generic properties of this protein family determining both protein folding and biological function. Protein folding intermediates were frequently found to be key for the biological functions of repeat proteins. In this review, we discuss most recent findings addressing this close relation for ankyrin repeat proteins including DARPins, Notch receptor ankyrin repeat domain, IκBα inhibitor of NFκB, and CDK inhibitor p19INK4d. The role of local folding and unfolding and gradual stability of individual repeats will be discussed during protein folding, protein-protein interactions, and post-translational modifications. The conformational changes of these repeats function as molecular switches for biological regulation, a versatile property for modern drug discovery.
Collapse
|
15
|
A reaction-diffusion network model predicts a dual role of Cactus/IκB to regulate Dorsal/NFκB nuclear translocation in Drosophila. PLoS Comput Biol 2021; 17:e1009040. [PMID: 34043616 PMCID: PMC8189453 DOI: 10.1371/journal.pcbi.1009040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/09/2021] [Accepted: 05/03/2021] [Indexed: 11/19/2022] Open
Abstract
Dorsal-ventral patterning of the Drosophila embryo depends on the NFκB superfamily transcription factor Dorsal (Dl). Toll receptor activation signals for degradation of the IκB inhibitor Cactus (Cact), leading to a ventral-to-dorsal nuclear Dl gradient. Cact is critical for Dl nuclear import, as it binds to and prevents Dl from entering the nuclei. Quantitative analysis of cact mutants revealed an additional Cact function to promote Dl nuclear translocation in ventral regions of the embryo. To investigate this dual Cact role, we developed a predictive model based on a reaction-diffusion regulatory network. This network distinguishes non-uniform Toll-dependent Dl nuclear import and Cact degradation, from the Toll-independent processes of Cact degradation and reversible nuclear-cytoplasmic Dl flow. In addition, it incorporates translational control of Cact levels by Dl. Our model successfully reproduces wild-type data and emulates the Dl nuclear gradient in mutant dl and cact allelic combinations. Our results indicate that the dual role of Cact depends on the dynamics of Dl-Cact trimers along the dorsal-ventral axis: In the absence of Toll activation, free Dl-Cact trimers retain Dl in the cytoplasm, limiting the flow of Dl into the nucleus; in ventral-lateral regions, Dl-Cact trimers are recruited by Toll activation into predominant signaling complexes and promote Dl nuclear translocation. Simulations suggest that the balance between Toll-dependent and Toll-independent processes are key to this dynamics and reproduce the full assortment of Cact effects. Considering the high evolutionary conservation of these pathways, our analysis should contribute to understanding NFκB/c-Rel activation in other contexts such as in the vertebrate immune system and disease. In Drosophila, Toll pathway establishes spatially distinct gene expression territories that define the embryonic dorsal-ventral axis. Toll activation leads to degradation of the IκB inhibitor Cactus, releasing the NFκB superfamily transcription factor Dorsal for nuclear entry. Recently, quantitative analysis of cact mutants revealed that Cact displays an additional function to promote Dl nuclear translocation in ventral regions of the embryo. To understand this novel activity, we developed a predictive theoretical model that shows that the kinetics of Dorsal-Cactus complex formation prior to their recruitment to Toll-signaling complexes is an essential regulatory hub. Cactus controls the balance between the recruitment of these complexes by active Toll receptor and association-dissociation events that generate free Dorsal for direct nuclear import.
Collapse
|
16
|
Schloop AE, Bandodkar PU, Reeves GT. Formation, interpretation, and regulation of the Drosophila Dorsal/NF-κB gradient. Curr Top Dev Biol 2019; 137:143-191. [PMID: 32143742 DOI: 10.1016/bs.ctdb.2019.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The morphogen gradient of the transcription factor Dorsal in the early Drosophila embryo has become one of the most widely studied tissue patterning systems. Dorsal is a Drosophila homolog of mammalian NF-κB and patterns the dorsal-ventral axis of the blastoderm embryo into several tissue types by spatially regulating upwards of 100 zygotic genes. Recent studies using fluorescence microscopy and live imaging have quantified the Dorsal gradient and its target genes, which has paved the way for mechanistic modeling of the gradient. In this review, we describe the mechanisms behind the initiation of the Dorsal gradient and its regulation of target genes. The main focus of the review is a discussion of quantitative and computational studies of the Dl gradient system, including regulation of the Dl gradient. We conclude with a discussion of potential future directions.
Collapse
Affiliation(s)
- Allison E Schloop
- Genetics Program, North Carolina State University, Raleigh, NC, United States
| | - Prasad U Bandodkar
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States
| | - Gregory T Reeves
- Genetics Program, North Carolina State University, Raleigh, NC, United States; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
17
|
Erbaş A, Marko JF. How do DNA-bound proteins leave their binding sites? The role of facilitated dissociation. Curr Opin Chem Biol 2019; 53:118-124. [PMID: 31586479 PMCID: PMC6926143 DOI: 10.1016/j.cbpa.2019.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/11/2019] [Accepted: 08/24/2019] [Indexed: 10/25/2022]
Abstract
Dissociation of a protein from DNA is often assumed to be described by an off rate that is independent of other molecules in solution. Recent experiments and computational analyses have challenged this view by showing that unbinding rates (residence times) of DNA-bound proteins can depend on concentrations of nearby molecules that are competing for binding. This 'facilitated dissociation' (FD) process can occur at the single-binding site level via formation of a ternary complex, and can dominate over 'spontaneous dissociation' at low (submicromolar) concentrations. In the crowded intracellular environment FD introduces new regulatory possibilities at the level of individual biomolecule interactions.
Collapse
Affiliation(s)
- Aykut Erbaş
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Department of Physics & Astronomy, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
18
|
Tsai MY, Zheng W, Chen M, Wolynes PG. Multiple Binding Configurations of Fis Protein Pairs on DNA: Facilitated Dissociation versus Cooperative Dissociation. J Am Chem Soc 2019; 141:18113-18126. [DOI: 10.1021/jacs.9b08287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Min-Yeh Tsai
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan (R.O.C.)
| | | | | | | |
Collapse
|
19
|
Dahlke K, Zhao J, Sing CE, Banigan EJ. Force-Dependent Facilitated Dissociation Can Generate Protein-DNA Catch Bonds. Biophys J 2019; 117:1085-1100. [PMID: 31427067 DOI: 10.1016/j.bpj.2019.07.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/08/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022] Open
Abstract
Cellular structures are continually subjected to forces, which may serve as mechanical signals for cells through their effects on biomolecule interaction kinetics. Typically, molecular complexes interact via "slip bonds," so applied forces accelerate off rates by reducing transition energy barriers. However, biomolecules with multiple dissociation pathways may have considerably more complicated force dependencies. This is the case for DNA-binding proteins that undergo "facilitated dissociation," in which competitor biomolecules from solution enhance molecular dissociation in a concentration-dependent manner. Using simulations and theory, we develop a generic model that shows that proteins undergoing facilitated dissociation can form an alternative type of molecular bond, known as a "catch bond," for which applied forces suppress protein dissociation. This occurs because the binding by protein competitors responsible for the facilitated dissociation pathway can be inhibited by applied forces. Within the model, we explore how the force dependence of dissociation is regulated by intrinsic factors, including molecular sensitivity to force and binding geometry and the extrinsic factor of competitor protein concentration. We find that catch bonds generically emerge when the force dependence of the facilitated unbinding pathway is stronger than that of the spontaneous unbinding pathway. The sharpness of the transition between slip- and catch-bond kinetics depends on the degree to which the protein bends its DNA substrate. This force-dependent kinetics is broadly regulated by the concentration of competitor biomolecules in solution. Thus, the observed catch bond is mechanistically distinct from other known physiological catch bonds because it requires an extrinsic factor-competitor proteins-rather than a specific intrinsic molecular structure. We hypothesize that this mechanism for regulating force-dependent protein dissociation may be used by cells to modulate protein exchange, regulate transcription, and facilitate diffusive search processes.
Collapse
Affiliation(s)
- Katelyn Dahlke
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jing Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Charles E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| | - Edward J Banigan
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
20
|
Ramsey KM, Chen W, Marion JD, Bergqvist S, Komives EA. Exclusivity and Compensation in NFκB Dimer Distributions and IκB Inhibition. Biochemistry 2019; 58:2555-2563. [PMID: 31033276 DOI: 10.1021/acs.biochem.9b00008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The NFκB transcription factor family members RelA, p50, and cRel form homo- and heterodimers that are inhibited by IκBα, IκBβ, and IκBε. These NFκB family members have diverse biological functions, and their expression profiles differ, leading to different concentrations in different tissue types. Here we present definitive biophysical measurements of the NFκB dimer affinities and inhibitor affinities to better understand dimer exchange and how the presence of inhibitors may alter the equilibrium concentrations of NFκB dimers in the cellular context. Fluorescence anisotropy binding experiments were performed at low concentrations to mimic intracellular concentrations. We report binding affinities much stronger than those that had been previously reported by non-equilibrium gel shift and analytical ultracentrifugation assays. The results reveal a wide range of NFκB dimer affinities and a strong preference of each IκB for a small subset of NFκB dimers. Once the preferred IκB is bound, dimer exchange no longer occurs over a period of days. A mathematical model of the cellular distribution of these canonical NFκB transcription factors based on the revised binding affinities recapitulates intracellular observations and provides simple, precise explanations for observed cellular phenomena.
Collapse
Affiliation(s)
- Kristen M Ramsey
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92092-0378 , United States
| | - Wei Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92092-0378 , United States
| | - James D Marion
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92092-0378 , United States
| | - Simon Bergqvist
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92092-0378 , United States
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92092-0378 , United States
| |
Collapse
|
21
|
Brignall R, Moody AT, Mathew S, Gaudet S. Considering Abundance, Affinity, and Binding Site Availability in the NF-κB Target Selection Puzzle. Front Immunol 2019; 10:609. [PMID: 30984185 PMCID: PMC6450194 DOI: 10.3389/fimmu.2019.00609] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/07/2019] [Indexed: 12/21/2022] Open
Abstract
The NF-κB transcription regulation system governs a diverse set of responses to various cytokine stimuli. With tools from in vitro biochemical characterizations, to omics-based whole genome investigations, great strides have been made in understanding how NF-κB transcription factors control the expression of specific sets of genes. Nonetheless, these efforts have also revealed a very large number of potential binding sites for NF-κB in the human genome, and a puzzle emerges when trying to explain how NF-κB selects from these many binding sites to direct cell-type- and stimulus-specific gene expression patterns. In this review, we surmise that target gene transcription can broadly be thought of as a function of the nuclear abundance of the various NF-κB dimers, the affinity of NF-κB dimers for the regulatory sequence and the availability of this regulatory site. We use this framework to place quantitative information that has been gathered about the NF-κB transcription regulation system into context and thus consider questions it answers, and questions it raises. We end with a brief discussion of some of the future prospects that new approaches could bring to our understanding of how NF-κB transcription factors orchestrate diverse responses in different biological contexts.
Collapse
Affiliation(s)
- Ruth Brignall
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States
| | - Amy T Moody
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States.,Laboratory for Systems Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA, United States.,Department of Microbiology, Tufts University School of Medicine, Boston, MA, United States
| | - Shibin Mathew
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States
| | - Suzanne Gaudet
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States
| |
Collapse
|
22
|
Elevated pre-activation basal level of nuclear NF-κB in native macrophages accelerates LPS-induced translocation of cytosolic NF-κB into the cell nucleus. Sci Rep 2019; 9:4563. [PMID: 30872589 PMCID: PMC6418260 DOI: 10.1038/s41598-018-36052-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/08/2018] [Indexed: 02/01/2023] Open
Abstract
Signaling via Toll-like receptor 4 (TLR4) in macrophages constitutes an essential part of the innate immune response to bacterial infections. Detailed and quantified descriptions of TLR4 signal transduction would help to understand and exploit the first-line response of innate immune defense. To date, most mathematical modelling studies were performed on transformed cell lines. However, properties of primary macrophages differ significantly. We therefore studied TLR4-dependent activation of NF-κB transcription factor in bone marrow-derived and peritoneal primary macrophages. We demonstrate that the kinetics of NF-κB phosphorylation and nuclear translocation induced by a wide range of bacterial lipopolysaccharide (LPS) concentrations in primary macrophages is much faster than previously reported for macrophage cell lines. We used a comprehensive combination of experiments and mathematical modeling to understand the mechanisms of this rapid response. We found that elevated basal NF-κB in the nuclei of primary macrophages is a mechanism increasing native macrophage sensitivity and response speed to the infection. Such pre-activated state of macrophages accelerates the NF-κB translocation kinetics in response to low agonist concentrations. These findings enabled us to refine and construct a new model combining both NF-κB phosphorylation and translocation processes and predict the existence of a negative feedback loop inactivating phosphorylated NF-κB.
Collapse
|
23
|
Vonderach M, Byrne DP, Barran PE, Eyers PA, Eyers CE. DNA Binding and Phosphorylation Regulate the Core Structure of the NF-κB p50 Transcription Factor. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:128-138. [PMID: 29873020 PMCID: PMC6318249 DOI: 10.1007/s13361-018-1984-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 05/07/2023]
Abstract
The NF-κB transcription factors are known to be extensively phosphorylated, with dynamic site-specific modification regulating their ability to dimerize and interact with DNA. p50, the proteolytic product of p105 (NF-κB1), forms homodimers that bind DNA but lack intrinsic transactivation function, functioning as repressors of transcription from κB promoters. Here, we examine the roles of specific phosphorylation events catalysed by either protein kinase A (PKAc) or Chk1, in regulating the functions of p50 homodimers. LC-MS/MS analysis of proteolysed p50 following in vitro phosphorylation allows us to define Ser328 and Ser337 as PKAc- and Chk1-mediated modifications, and pinpoint an additional four Chk1 phosphosites: Ser65, Thr152, Ser242 and Ser248. Native mass spectrometry (MS) reveals Chk1- and PKAc-regulated disruption of p50 homodimer formation through Ser337. Additionally, we characterise the Chk1-mediated phosphosite, Ser242, as a regulator of DNA binding, with a S242D p50 phosphomimetic exhibiting a > 10-fold reduction in DNA binding affinity. Conformational dynamics of phosphomimetic p50 variants, including S242D, are further explored using ion-mobility MS (IM-MS). Finally, comparative theoretical modelling with experimentally observed p50 conformers, in the absence and presence of DNA, reveals that the p50 homodimer undergoes conformational contraction during electrospray ionisation that is stabilised by complex formation with κB DNA. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Matthias Vonderach
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Dominic P Byrne
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Perdita E Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Claire E Eyers
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.
| |
Collapse
|
24
|
Mulero MC, Huxford T, Ghosh G. NF-κB, IκB, and IKK: Integral Components of Immune System Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:207-226. [PMID: 31628658 DOI: 10.1007/978-981-13-9367-9_10] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The NF-κB (Nuclear Factor kappa B) transcription factor plays crucial roles in the regulation of numerous biological processes including development of the immune system, inflammation, and innate and adaptive immune responses. Control over the immune cell functions of NF-κB results from signaling through one of two different routes: the canonical and noncanonical NF-κB signaling pathways. Present at the end of both pathways are the proteins NF-κB, IκB, and the IκB kinase (IKK). These proteins work together to deliver the myriad outcomes that influence context-dependent transcriptional control in immune cells. In the present chapter, we review the structural information available on NF-κB, IκB, and IKK, the critical terminal components of the NF-κB signaling, in relation to their physiological function.
Collapse
Affiliation(s)
- Maria Carmen Mulero
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Tom Huxford
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Gourisankar Ghosh
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
25
|
Targeting the NF-κB/IκBα complex via fragment-based E-Pharmacophore virtual screening and binary QSAR models. J Mol Graph Model 2018; 86:264-277. [PMID: 30415122 DOI: 10.1016/j.jmgm.2018.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/27/2018] [Accepted: 09/30/2018] [Indexed: 12/16/2022]
Abstract
Nuclear factor-κB (NF-κB) transcription factors represent a conserved family of proteins that regulate not only immune cells, but also heart cells, glial cells and neurons, playing a fundamental role in various cellular processes. Due to its dysregulation in certain cancer types as well as in chronic inflammation and autoimmune diseases, it has recently been appreciated as an important therapeutic target. The aim of this study was to investigate the binding pocket of NF-κB (p50/p65) heterodimer complex in association with NF-κB inhibitor IκBα to identify potent ligands via fragment-based e-pharmacophore screening. The ZINC Clean Fragments (∼2 million) and the Schrodinger's medically relevant Glide fragments library (∼670) were used to create the e-pharmacophore models at the potential binding site which was validated by site mapping. Glide/HTVS docking was conducted followed by re-docking of the top 20% fragments by Glide/SP and Glide/XP protocols. The top-85000 Glide XP-docked fragments were used to generate the e-pharmacophore hypotheses. The Otava small molecule library (∼260000 drug-like molecules) and 85 known NF-κB inhibitors were additionally screened against the derived e-pharmacophore models. The top-1000 high-scored molecules, which were well aligned to the e-pharmacophore models, from the Otava small molecule library, were then docked into the binding pocket. Finally, the selected 88 hit molecules and the 85 known inhibitors were analyzed by the MetaCore/MetaDrug™ platform, which uses developed binary QSAR models for therapeutic activity prediction as well as pharmacokinetic and toxicity profile predictions of screening molecules. Ligand selection criteria led to the refinement of 3 potent hit molecules using molecular dynamics (MD) simulations to better investigate their structural and dynamical profiles. The selected hit molecules had a low toxicity and a significant therapeutic potential for heart failure, antiviral activity, asthma and depression, all conditions in which NF-κB plays a critical role. These hit ligands were also structurally stable at the NF-κB/IκBα complex as per the MD simulations and MM/GBSA analysis. Two of these ligands (Otava IDs: 1426436 and 6248112) showed stronger binding and therefore are hypothesized to be more potent. The identification of new potent NF-κB/IκBα inhibitors may thus present a novel therapy for inflammation-mediated conditions as well as cancer, facilitating more efficient research, and leading the way to future drug development efforts.
Collapse
|
26
|
Ramsey KM, Narang D, Komives EA. Prediction of the presence of a seventh ankyrin repeat in IκBε from homology modeling combined with hydrogen-deuterium exchange mass spectrometry (HDX-MS). Protein Sci 2018; 27:1624-1635. [PMID: 30133030 PMCID: PMC6194264 DOI: 10.1002/pro.3459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 02/02/2023]
Abstract
The ankyrin repeat (AR) structure is a common protein-protein interaction motif and ankyrin repeat proteins comprise a vast family across a large array of different taxa. Natural AR proteins adopt a conserved fold comprised of several repeats with the N- and C-terminal repeats generally being of more divergent sequences. Obtaining experimental crystal structures for natural ankyrin repeat domains (ARD) can be difficult and often requires complexation with a binding partner. Homology modeling is an attractive method for creating a model of AR proteins due to the highly conserved fold; however, modeling the divergent N- and C-terminal "capping" repeats remains a challenge. We show here that amide hydrogen/deuterium exchange mass spectrometry (HDX-MS), which reports on the presence of secondary structural elements and "foldedness," can aid in the refinement and selection of AR protein homology models when multiple templates are identified with variations between them localizing to these terminal repeats. We report a homology model for the AR protein IκBε from three different templates and use HDX-MS to establish the presence of a seventh AR at the C-terminus identified by only one of the three templates used for modeling.
Collapse
Affiliation(s)
- Kristen M. Ramsey
- Department of Chemistry and BiochemistryUniversity of CaliforniaSan Diego, La JollaCalifornia92092‐0378
| | - Dominic Narang
- Department of Chemistry and BiochemistryUniversity of CaliforniaSan Diego, La JollaCalifornia92092‐0378
| | - Elizabeth A. Komives
- Department of Chemistry and BiochemistryUniversity of CaliforniaSan Diego, La JollaCalifornia92092‐0378
| |
Collapse
|
27
|
Berlow RB, Dyson HJ, Wright PE. Expanding the Paradigm: Intrinsically Disordered Proteins and Allosteric Regulation. J Mol Biol 2018; 430:2309-2320. [PMID: 29634920 DOI: 10.1016/j.jmb.2018.04.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 11/30/2022]
Abstract
Allosteric regulatory processes are implicated at all levels of biological function. Recent advances in our understanding of the diverse and functionally significant class of intrinsically disordered proteins have identified a multitude of ways in which disordered proteins function within the confines of the allosteric paradigm. Allostery within or mediated by intrinsically disordered proteins ensures robust and efficient signal integration through mechanisms that would be extremely unfavorable or even impossible for globular protein interaction partners. Here, we highlight recent examples that indicate the breadth of biological outcomes that can be achieved through allosteric regulation by intrinsically disordered proteins. Ongoing and future work in this rapidly evolving area of research will expand our appreciation of the central role of intrinsically disordered proteins in ensuring the fidelity and efficiency of cellular regulation.
Collapse
Affiliation(s)
- Rebecca B Berlow
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
28
|
Ramirez-Sarmiento CA, Komives EA. Hydrogen-deuterium exchange mass spectrometry reveals folding and allostery in protein-protein interactions. Methods 2018; 144:43-52. [PMID: 29627358 DOI: 10.1016/j.ymeth.2018.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 11/29/2022] Open
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDXMS) has emerged as a powerful approach for revealing folding and allostery in protein-protein interactions. The advent of higher resolution mass spectrometers combined with ion mobility separation and ultra performance liquid chromatographic separations have allowed the complete coverage of large protein sequences and multi-protein complexes. Liquid-handling robots have improved the reproducibility and accurate temperature control of the sample preparation. Many researchers are also appreciating the power of combining biophysical approaches such as stopped-flow fluorescence, single molecule FRET, and molecular dynamics simulations with HDXMS. In this review, we focus on studies that have used a combination of approaches to reveal (re)folding of proteins as well as on long-distance allosteric changes upon interaction.
Collapse
Affiliation(s)
- Cesar A Ramirez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092-0378, United States.
| |
Collapse
|
29
|
Narang D, Chen W, Ricci CG, Komives EA. RelA-Containing NFκB Dimers Have Strikingly Different DNA-Binding Cavities in the Absence of DNA. J Mol Biol 2018; 430:1510-1520. [PMID: 29625198 DOI: 10.1016/j.jmb.2018.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
Abstract
The main nuclear factor kappa B transcription factor family members RelA-p50 heterodimer and RelA homodimer have different biological functions and show different transcriptional activation profiles. To investigate whether the two family members adopt a similar conformation in their free states, we performed hydrogen-deuterium exchange mass spectrometry, all-atom molecular dynamics simulations, and stopped-flow binding kinetics experiments. Surprisingly, the N-terminal DNA-binding domains adopt an open conformation in RelA-p50 but a closed conformation in RelA homodimer. Both hydrogen-deuterium exchange mass spectrometry and molecular dynamics simulations indicate the formation of an interface between the N-terminal DNA-binding domains only in the RelA homodimer. Such an interface would be expected to impede DNA binding, and stopped-flow binding kinetics show that association of DNA is slower for the homodimer as compared to the heterodimer. Our results show that the DNA-binding cavity in the RelA-p50 heterodimer is open for DNA binding, whereas in the RelA homodimer, it is occluded.
Collapse
Affiliation(s)
- Dominic Narang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092-0378, United States
| | - Wei Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092-0378, United States
| | - Clarisse G Ricci
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092-0378, United States
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092-0378, United States.
| |
Collapse
|
30
|
Wang Z, Potoyan DA, Wolynes PG. Modeling the therapeutic efficacy of NFκB synthetic decoy oligodeoxynucleotides (ODNs). BMC SYSTEMS BIOLOGY 2018; 12:4. [PMID: 29382384 PMCID: PMC5791368 DOI: 10.1186/s12918-018-0525-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/04/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Transfection of NF κB synthetic decoy Oligodeoxynucleotides (ODNs) has been proposed as a promising therapeutic strategy for a variety of diseases arising from constitutive activation of the eukaryotic transcription factor NF κB. The decoy approach faces some limitations under physiological conditions notably nuclease-induced degradation. RESULTS In this work, we show how a systems pharmacology model of NF κB regulatory networks displaying oscillatory temporal dynamics, can be used to predict quantitatively the dependence of therapeutic efficacy of NF κB synthetic decoy ODNs on dose, unbinding kinetic rates and nuclease-induced degradation rates. Both deterministic mass action simulations and stochastic simulations of the systems biology model show that the therapeutic efficacy of synthetic decoy ODNs is inversely correlated with unbinding kinetic rates, nuclease-induced degradation rates and molecular stripping rates, but is positively correlated with dose. We show that the temporal coherence of the stochastic dynamics of NF κB regulatory networks is most sensitive to adding NF κB synthetic decoy ODNs having unbinding time-scales that are in-resonance with the time-scale of the limit cycle of the network. CONCLUSIONS The pharmacokinetics/pharmacodynamics (PK/PD) predicted by the systems-level model should provide quantitative guidance for in-depth translational research of optimizing the thermodynamics/kinetic properties of synthetic decoy ODNs.
Collapse
Affiliation(s)
- Zhipeng Wang
- Center for Theoretical Biological Physics, Rice University, Houston, 77005, TX, USA.,Department of Chemistry, Rice University, Houston, 77005, TX, USA.,Present Address: Genentech Inc. 350 DNA Way, South San Francisco, 94080, CA, USA
| | - Davit A Potoyan
- Center for Theoretical Biological Physics, Rice University, Houston, 77005, TX, USA.,Department of Chemistry, Rice University, Houston, 77005, TX, USA.,Present Address: Department of Chemistry, Iowa State University, Ames, 50011, IA, USA
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, 77005, TX, USA. .,Department of Chemistry, Rice University, Houston, 77005, TX, USA. .,Department of Physics and Astronomy, Rice University, Houston, 77005, TX, USA.
| |
Collapse
|
31
|
Potoyan DA, Bueno C, Zheng W, Komives EA, Wolynes PG. Resolving the NFκB Heterodimer Binding Paradox: Strain and Frustration Guide the Binding of Dimeric Transcription Factors. J Am Chem Soc 2017; 139:18558-18566. [PMID: 29183131 DOI: 10.1021/jacs.7b08741] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many eukaryotic transcription factors function after forming oligomers. The choice of protein partners is a nonrandom event that has distinct functional consequences for gene regulation. In the present work we examine three dimers of transcription factors in the NFκB family: p50p50, p50p65, and p65p65. The NFκB dimers bind to a myriad of genomic sites and switch the targeted genes on or off with precision. The p65p50 heterodimer of NFκB is the strongest DNA binder, and its unbinding is controlled kinetically by molecular stripping from the DNA induced by IκB. In contrast, the homodimeric forms of NFκB, p50p50 and p65p65, bind DNA with significantly less affinity, which places the DNA residence of the homodimers under thermodynamic rather than kinetic control. It seems paradoxical that the heterodimer should bind more strongly than either of the symmetric homodimers since DNA is a nearly symmetric target. Using a variety of energy landscape analysis tools, here we uncover the features in the molecular architecture of NFκB dimers that are responsible for these drastically different binding free energies. We show that frustration in the heterodimer interface gives the heterodimer greater conformational plasticity, allowing the heterodimer to better accommodate the DNA. We also show how the elastic energy and mechanical strain in NFκB dimers can be found by extracting the principal components of the fluctuations in Cartesian coordinates as well as fluctuations in the space of physical contacts, which are sampled via simulations with a predictive energy landscape Hamiltonian. These energetic contributions determine the specific detailed mechanisms of binding and stripping for both homo- and heterodimers.
Collapse
Affiliation(s)
- Davit A Potoyan
- Department of Chemistry, Iowa State University , Ames, Iowa 50011, United States.,Department of Chemistry and Center for Theoretical Biological Physics, Rice University , Houston, Texas 77005, United States
| | - Carlos Bueno
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University , Houston, Texas 77005, United States
| | - Weihua Zheng
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University , Houston, Texas 77005, United States
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California San Diego , La Jolla, California 92093, United States
| | - Peter G Wolynes
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University , Houston, Texas 77005, United States
| |
Collapse
|
32
|
Abstract
The complex genetic programs of eukaryotic cells are often regulated by key transcription factors occupying or clearing out of a large number of genomic locations. Orchestrating the residence times of these factors is therefore important for the well organized functioning of a large network. The classic models of genetic switches sidestep this timing issue by assuming the binding of transcription factors to be governed entirely by thermodynamic protein-DNA affinities. Here we show that relying on passive thermodynamics and random release times can lead to a "time-scale crisis" for master genes that broadcast their signals to a large number of binding sites. We demonstrate that this time-scale crisis for clearance in a large broadcasting network can be resolved by actively regulating residence times through molecular stripping. We illustrate these ideas by studying a model of the stochastic dynamics of the genetic network of the central eukaryotic master regulator NFκB which broadcasts its signals to many downstream genes that regulate immune response, apoptosis, etc.
Collapse
Affiliation(s)
- Davit A Potoyan
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Peter G Wolynes
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
33
|
Chen S, Maini R, Bai X, Nangreave RC, Dedkova LM, Hecht SM. Incorporation of Phosphorylated Tyrosine into Proteins: In Vitro Translation and Study of Phosphorylated IκB-α and Its Interaction with NF-κB. J Am Chem Soc 2017; 139:14098-14108. [PMID: 28898075 PMCID: PMC5901656 DOI: 10.1021/jacs.7b05168] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phosphorylated proteins play important roles in the regulation of many different cell networks. However, unlike the preparation of proteins containing unmodified proteinogenic amino acids, which can be altered readily by site-directed mutagenesis and expressed in vitro and in vivo, the preparation of proteins phosphorylated at predetermined sites cannot be done easily and in acceptable yields. To enable the synthesis of phosphorylated proteins for in vitro studies, we have explored the use of phosphorylated amino acids in which the phosphate moiety bears a chemical protecting group, thus eliminating the negative charges that have been shown to have a negative effect on protein translation. Bis-o-nitrobenzyl protection of tyrosine phosphate enabled its incorporation into DHFR and IκB-α using wild-type ribosomes, and the elaborated proteins could subsequently be deprotected by photolysis. Also investigated in parallel was the re-engineering of the 23S rRNA of Escherichia coli, guided by the use of a phosphorylated puromycin, to identify modified ribosomes capable of incorporating unprotected phosphotyrosine into proteins from a phosphotyrosyl-tRNACUA by UAG codon suppression during in vitro translation. Selection of a library of modified ribosomal clones with phosphorylated puromycin identified six modified ribosome variants having mutations in nucleotides 2600-2605 of 23S rRNA; these had enhanced sensitivity to the phosphorylated puromycin. The six clones demonstrated some sequence homology in the region 2600-2605 and incorporated unprotected phosphotyrosine into IκB-α using a modified gene having a TAG codon in the position corresponding to amino acid 42 of the protein. The purified phosphorylated protein bound to a phosphotyrosine specific antibody and permitted NF-κB binding to a DNA duplex sequence corresponding to its binding site in the IL-2 gene promoter. Unexpectedly, phosphorylated IκB-α also mediated the exchange of exogenous DNA into an NF-κB-cellular DNA complex isolated from the nucleus of activated Jurkat cells.
Collapse
Affiliation(s)
- Shengxi Chen
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Rumit Maini
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Xiaoguang Bai
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Ryan C. Nangreave
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Larisa M. Dedkova
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Sidney M. Hecht
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
34
|
Ma Z, Chalkley RJ, Vosseller K. Hyper- O-GlcNAcylation activates nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling through interplay with phosphorylation and acetylation. J Biol Chem 2017; 292:9150-9163. [PMID: 28416608 DOI: 10.1074/jbc.m116.766568] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 03/23/2017] [Indexed: 01/08/2023] Open
Abstract
O-GlcNAcylation is the covalent addition of an O-linked β-N-acetylglucosamine (O-GlcNAc) sugar moiety to hydroxyl groups of serine/threonine residues of cytosolic and nuclear proteins. O-GlcNAcylation, analogous to phosphorylation, plays critical roles in gene expression through direct modification of transcription factors, such as NF-κB. Aberrantly increased NF-κB O-GlcNAcylation has been linked to NF-κB constitutive activation and cancer development. Therefore, it is of a great biological and clinical significance to dissect the molecular mechanisms that tune NF-κB activity. Recently, we and others have shown that O-GlcNAcylation affects the phosphorylation and acetylation of NF-κB subunit p65/RelA. However, the mechanism of how O-GlcNAcylation activates NF-κB signaling through phosphorylation and acetylation is not fully understood. In this study, we mapped O-GlcNAcylation sites of p65 at Thr-305, Ser-319, Ser-337, Thr-352, and Ser-374. O-GlcNAcylation of p65 at Thr-305 and Ser-319 increased CREB-binding protein (CBP)/p300-dependent activating acetylation of p65 at Lys-310, contributing to NF-κB transcriptional activation. Moreover, elevation of O-GlcNAcylation by overexpression of OGT increased the expression of p300, IKKα, and IKKβ and promoted IKK-mediated activating phosphorylation of p65 at Ser-536, contributing to NF-κB activation. In addition, we also identified phosphorylation of p65 at Thr-308, which might impair the O-GlcNAcylation of p65 at Thr-305. These results indicate mechanisms through which both non-pathological and oncogenic O-GlcNAcylation regulate NF-κB signaling through interplay with phosphorylation and acetylation.
Collapse
Affiliation(s)
- Zhiyuan Ma
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| | - Robert J Chalkley
- the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Keith Vosseller
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| |
Collapse
|
35
|
Ramsey KM, Dembinski HE, Chen W, Ricci CG, Komives EA. DNA and IκBα Both Induce Long-Range Conformational Changes in NFκB. J Mol Biol 2017; 429:999-1008. [PMID: 28249778 DOI: 10.1016/j.jmb.2017.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 10/20/2022]
Abstract
We recently discovered that IκBα enhances the rate of release of nuclear factor kappa B (NFκB) from DNA target sites in a process we have termed molecular stripping. Coarse-grained molecular dynamics simulations of the stripping pathway revealed two mechanisms for the enhanced release rate: the negatively charged PEST region of IκBα electrostatically repels the DNA, and the binding of IκBα appears to twist the NFκB heterodimer so that the DNA can no longer bind. Here, we report amide hydrogen/deuterium exchange data that reveal long-range allosteric changes in the NFκB (RelA-p50) heterodimer induced by DNA or IκBα binding. The data suggest that the two Ig-like subdomains of each Rel-homology region, which are connected by a flexible linker in the heterodimer, communicate in such a way that when DNA binds to the N-terminal DNA-binding domains, the nuclear localization signal becomes more highly exchanging. Conversely, when IκBα binds to the dimerization domains, amide exchange throughout the DNA-binding domains is decreased as if the entire domain is becoming globally stabilized. The results help understand how the subtle mechanism of molecular stripping actually occurs.
Collapse
Affiliation(s)
- Kristen M Ramsey
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092-0378, USA
| | - Holly E Dembinski
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092-0378, USA
| | - Wei Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092-0378, USA
| | - Clarisse G Ricci
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092-0378, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092-0378, USA.
| |
Collapse
|
36
|
Functional importance of stripping in NFκB signaling revealed by a stripping-impaired IκBα mutant. Proc Natl Acad Sci U S A 2017; 114:1916-1921. [PMID: 28167786 DOI: 10.1073/pnas.1610192114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stress-response transcription factors such as NFκB turn on hundreds of genes and must have a mechanism for rapid cessation of transcriptional activation. We recently showed that the inhibitor of NFκB signaling, IκBα, dramatically accelerates the dissociation of NFκB from transcription sites, a process we have called "stripping." To test the role of the IκBα C-terminal PEST (rich in proline, glutamic acid, serine, and threonine residues) sequence in NFκB stripping, a mutant IκBα was generated in which five acidic PEST residues were mutated to their neutral analogs. This IκBα(5xPEST) mutant was impaired in stripping NFκB from DNA and formed a more stable intermediate ternary complex than that formed from IκBα(WT) because DNA dissociated more slowly. NMR and amide hydrogen-deuterium exchange mass spectrometry showed that the IκBα(5xPEST) appears to be "caught in the act of stripping" because it is not yet completely in the folded and NFκB-bound state. When the mutant was introduced into cells, the rate of postinduction IκBα-mediated export of NFκB from the nucleus decreased markedly.
Collapse
|
37
|
Barman A, Hamelberg D. Fe(II)/Fe(III) Redox Process Can Significantly Modulate the Conformational Dynamics and Electrostatics of Pirin in NF-κB Regulation. ACS OMEGA 2016; 1:837-842. [PMID: 31457166 PMCID: PMC6640773 DOI: 10.1021/acsomega.6b00231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/21/2016] [Indexed: 06/10/2023]
Abstract
Pirin is an iron (Fe)-dependent regulatory protein of nuclear factor κB (NF-κB) transcription factors. Binding studies have suggested that the oxidative state of iron plays a crucial role in modulating the binding of Pirin to NF-κB p65, in turn enhancing the binding of p65 to DNA. The Fe(III) form of Pirin is the active form and binds to NF-κB, whereas the Fe(II) form does not bind to NF-κB. However, the surprising consequence of a single charge perturbation in the functional modulation of NF-κB is not well understood. Here, we use quantum mechanical calculations and microsecond-long molecular dynamics simulations to explore the free-energy landscapes of the Fe(II) and Fe(III) forms of Pirin. We show that the restricted conformational space and electrostatic complementarity of the Fe(III) form of Pirin are crucial for binding and regulation of NF-κB. Our results suggest that a subtle single-electron redox trigger could significantly modulate the conformational dynamics and electrostatics of proteins in subcellular allosteric regulatory processes.
Collapse
|
38
|
Wang Z, Potoyan DA, Wolynes PG. Molecular stripping, targets and decoys as modulators of oscillations in the NF-κB/IκBα/DNA genetic network. J R Soc Interface 2016; 13:rsif.2016.0606. [PMID: 27683001 PMCID: PMC5046959 DOI: 10.1098/rsif.2016.0606] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/01/2016] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic transcription factors in the NF-κB family are central components of an extensive genetic network that activates cellular responses to inflammation and to a host of other external stressors. This network consists of feedback loops that involve the inhibitor IκBα, numerous downstream functional targets, and still more numerous binding sites that do not appear to be directly functional. Under steady stimulation, the regulatory network of NF-κB becomes oscillatory, and temporal patterns of NF-κB pulses appear to govern the patterns of downstream gene expression needed for immune response. Understanding how the information from external stress passes to oscillatory signals and is then ultimately relayed to gene expression is a general issue in systems biology. Recently, in vitro kinetic experiments as well as molecular simulations suggest that active stripping of NF-κB by IκBα from its binding sites can modify the traditional systems biology view of NF-κB/IκBα gene circuits. In this work, we revise the commonly adopted minimal model of the NF-κB regulatory network to account for the presence of the large number of binding sites for NF-κB along with dissociation from these sites that may proceed either by passive unbinding or by active molecular stripping. We identify regimes where the kinetics of target and decoy unbinding and molecular stripping enter a dynamic tug of war that may either compensate each other or amplify nuclear NF-κB activity, leading to distinct oscillatory patterns. Our finding that decoys and stripping play a key role in shaping the NF-κB oscillations suggests strategies to control NF-κB responses by introducing artificial decoys therapeutically.
Collapse
Affiliation(s)
- Zhipeng Wang
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA Department of Chemistry, Rice University, Houston, TX 77005, USA Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| | - Davit A Potoyan
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA Department of Chemistry, Rice University, Houston, TX 77005, USA Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA Department of Chemistry, Rice University, Houston, TX 77005, USA Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| |
Collapse
|
39
|
Kohda A, Yamazaki S, Sumimoto H. The Nuclear Protein IκBζ Forms a Transcriptionally Active Complex with Nuclear Factor-κB (NF-κB) p50 and the Lcn2 Promoter via the N- and C-terminal Ankyrin Repeat Motifs. J Biol Chem 2016; 291:20739-52. [PMID: 27489104 DOI: 10.1074/jbc.m116.719302] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Indexed: 12/18/2022] Open
Abstract
The nuclear protein IκBζ, comprising the N-terminal trans-activation domain and the C-terminal ankyrin repeat (ANK) domain composed of seven ANK motifs, activates transcription of a subset of nuclear factor-κB (NF-κB)-dependent innate immune genes such as Lcn2 encoding the antibacterial protein lipocalin-2. Lcn2 activation requires formation of a complex containing IκBζ and NF-κB p50, a transcription factor that harbors the DNA-binding Rel homology region but lacks a trans-activation domain, on the promoter with the canonical NF-κB-binding site (κB site) and its downstream cytosine-rich element. Here we show that IκBζ productively interacts with p50 via Asp-451 in the N terminus of ANK1, a residue that is evolutionarily conserved among IκBζ and the related nuclear IκB proteins Bcl-3 and IκBNS Threonine substitution for Asp-451 abrogates direct association with the κB-site-binding protein p50, complex formation with the Lcn2 promoter DNA, and activation of Lcn2 transcription. The basic residues Lys-717 and Lys-719 in the C-terminal region of ANK7 contribute to IκBζ binding to the Lcn2 promoter, probably via interaction with the cytosine-rich element required for Lcn2 activation; glutamate substitution for both lysines results in a loss of transcriptionally active complex formation without affecting direct contact of IκBζ with p50. Both termini of the ANK domain in Bcl-3 and IκBNS function in a manner similar to that of IκBζ to interact with promoter DNA, indicating a common mechanism in which the nuclear IκBs form a regulatory complex with NF-κB and promoter DNA via the invariant aspartate in ANK1 and the conserved basic residues in ANK7.
Collapse
Affiliation(s)
- Akira Kohda
- From the Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Soh Yamazaki
- From the Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hideki Sumimoto
- From the Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
40
|
Hayes JB, Sircy LM, Heusinkveld LE, Ding W, Leander RN, McClelland EE, Nelson DE. Modulation of Macrophage Inflammatory Nuclear Factor κB (NF-κB) Signaling by Intracellular Cryptococcus neoformans. J Biol Chem 2016; 291:15614-27. [PMID: 27231343 DOI: 10.1074/jbc.m116.738187] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Indexed: 01/29/2023] Open
Abstract
Cryptococcus neoformans (Cn) is a common facultative intracellular pathogen that can cause life-threatening fungal meningitis in immunocompromised individuals. Shortly after infection, Cn is detectable as both extra- and intracellular yeast particles, with Cn being capable of establishing long-lasting latent infections within host macrophages. Although recent studies have shown that shed capsular polysaccharides and intact extracellular Cn can compromise macrophage function through modulation of NF-κB signaling, it is currently unclear whether intracellular Cn also affects NF-κB signaling. Utilizing live cell imaging and computational modeling, we find that extra- and intracellular Cn support distinct modes of NF-κB signaling in cultured murine macrophages. Specifically, in RAW 264.7 murine macrophages treated with extracellular glucuronoxylomannan (GXM), the major Cn capsular polysaccharide, LPS-induced nuclear translocation of p65 is inhibited, whereas in cells with intracellular Cn, LPS-induced nuclear translocation of p65 is both amplified and sustained. Mathematical simulations and quantification of nascent protein expression indicate that this is a possible consequence of Cn-induced "translational interference," impeding IκBα resynthesis. We also show that long term Cn infection induces stable nuclear localization of p65 and IκBα proteins in the absence of additional pro-inflammatory stimuli. In this case, nuclear localization of p65 is not accompanied by TNFα or inducible NOS (iNOS) expression. These results demonstrate that capsular polysaccharides and intact intracellular yeast manipulate NF-κB via multiple distinct mechanisms and provide new insights into how Cn might modulate cellular signaling at different stages of an infection.
Collapse
Affiliation(s)
| | | | | | - Wandi Ding
- Mathematical Sciences, Middle Tennessee State University, Murfreesboro, Tennessee 37130
| | - Rachel N Leander
- Mathematical Sciences, Middle Tennessee State University, Murfreesboro, Tennessee 37130
| | | | | |
Collapse
|
41
|
Structural characterization of the ternary complex that mediates termination of NF-κB signaling by IκBα. Proc Natl Acad Sci U S A 2016; 113:6212-7. [PMID: 27185953 DOI: 10.1073/pnas.1603488113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The transcription factor NF-κB is used in many systems for the transduction of extracellular signals into the expression of signal-responsive genes. Published structural data explain the activation of NF-κB through degradation of its dedicated inhibitor IκBα, but the mechanism by which NF-κB-mediated signaling is turned off by its removal from the DNA in the presence of newly synthesized IκBα (termed stripping) is unknown. Previous kinetic studies showed that IκBα accelerates NF-κB dissociation from DNA, and a transient ternary complex between NF-κB, its cognate DNA sequence, and IκBα was observed. Here we structurally characterize the >100-kDa ternary complex by NMR and negative stain EM and show a modeled structure that is consistent with the measurements. These data provide a structural basis for previously unidentified insights into the molecular mechanism of stripping.
Collapse
|
42
|
Fagerlund R, Behar M, Fortmann KT, Lin YE, Vargas JD, Hoffmann A. Anatomy of a negative feedback loop: the case of IκBα. J R Soc Interface 2016; 12:0262. [PMID: 26311312 DOI: 10.1098/rsif.2015.0262] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The magnitude, duration and oscillation of cellular signalling pathway responses are often limited by negative feedback loops, defined as an 'activator-induced inhibitor' regulatory motif. Within the NFκB signalling pathway, a key negative feedback regulator is IκBα. We show here that, contrary to current understanding, NFκB-inducible expression is not sufficient for providing effective negative feedback. We then employ computational simulations of NFκB signalling to identify IκBα molecular properties that are critical for proper negative feedback control and test the resulting predictions in biochemical and single-cell live-imaging studies. We identified nuclear import and nuclear export of IκBα and the IκBα-NFκB complex, as well as the free IκBα half-life, as key determinants of post-induction repression of NFκB and the potential for subsequent reactivation. Our work emphasizes that negative feedback is an emergent systems property determined by multiple molecular and biophysical properties in addition to the required 'activator-induced inhibitor' relationship.
Collapse
Affiliation(s)
- Riku Fagerlund
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marcelo Behar
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karen T Fortmann
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Y Eason Lin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Jesse D Vargas
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Alexander Hoffmann
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
43
|
Potoyan DA, Zheng W, Ferreiro DU, Wolynes PG, Komives EA. PEST Control of Molecular Stripping of NFκB from DNA Transcription Sites. J Phys Chem B 2016; 120:8532-8. [PMID: 27098223 DOI: 10.1021/acs.jpcb.6b02359] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We recently proposed a model for IκBα-mediated molecular stripping of NFκB from transcription sites. IκBα was shown experimentally to form a transient ternary complex with DNA-bound NFκB, but the mechanism by which the IκBα accelerates dissociation of the NFκB from the DNA was unknown. In this paper we construct and compute free energy profiles for the wild-type IκBα-mediated molecular stripping reaction of NFκB from DNA and compare with that for a mutant of IκBα bearing a charge-neutralized PEST. The differences in the free energy profile for stripping originate from the frustrated electrostatic interactions between the negatively charged PEST and the DNA. The PEST occupies two different conformations in the NFκB-IκBα binary complex, one of which occupies the DNA-binding cavity. Specific interactions with positively charged residues in the N-terminal domains of both p50 and p65 apparently draw the domains closer together hindering reassociation of DNA. Comparison with the charge-neutralized mutant reveals that all of these functional consequences result from the negative charges in the PEST sequence of IκBα.
Collapse
Affiliation(s)
- Davit A Potoyan
- Center for Theoretical Biological Physics and Department of Chemistry, Rice University , Houston, Texas 77005, United States
| | - Weihua Zheng
- Center for Theoretical Biological Physics and Department of Chemistry, Rice University , Houston, Texas 77005, United States
| | - Diego U Ferreiro
- Protein Physiology Lab, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, UBA-CONICET-IQUIBICEN , Buenos Aires C1430EGA, Argentina
| | - Peter G Wolynes
- Center for Theoretical Biological Physics and Department of Chemistry, Rice University , Houston, Texas 77005, United States
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0378, United States
| |
Collapse
|
44
|
Mitchell S, Vargas J, Hoffmann A. Signaling via the NFκB system. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:227-41. [PMID: 26990581 DOI: 10.1002/wsbm.1331] [Citation(s) in RCA: 680] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 12/25/2022]
Abstract
The nuclear factor kappa B (NFκB) family of transcription factors is a key regulator of immune development, immune responses, inflammation, and cancer. The NFκB signaling system (defined by the interactions between NFκB dimers, IκB regulators, and IKK complexes) is responsive to a number of stimuli, and upon ligand-receptor engagement, distinct cellular outcomes, appropriate to the specific signal received, are set into motion. After almost three decades of study, many signaling mechanisms are well understood, rendering them amenable to mathematical modeling, which can reveal deeper insights about the regulatory design principles. While other reviews have focused on upstream, receptor proximal signaling (Hayden MS, Ghosh S. Signaling to NF-κB. Genes Dev 2004, 18:2195-2224; Verstrepen L, Bekaert T, Chau TL, Tavernier J, Chariot A, Beyaert R. TLR-4, IL-1R and TNF-R signaling to NF-κB: variations on a common theme. Cell Mol Life Sci 2008, 65:2964-2978), and advances through computational modeling (Basak S, Behar M, Hoffmann A. Lessons from mathematically modeling the NF-κB pathway. Immunol Rev 2012, 246:221-238; Williams R, Timmis J, Qwarnstrom E. Computational models of the NF-KB signalling pathway. Computation 2014, 2:131), in this review we aim to summarize the current understanding of the NFκB signaling system itself, the molecular mechanisms, and systems properties that are key to its diverse biological functions, and we discuss remaining questions in the field. WIREs Syst Biol Med 2016, 8:227-241. doi: 10.1002/wsbm.1331 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Simon Mitchell
- Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jesse Vargas
- Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
45
|
Csizmok V, Follis AV, Kriwacki RW, Forman-Kay JD. Dynamic Protein Interaction Networks and New Structural Paradigms in Signaling. Chem Rev 2016; 116:6424-62. [PMID: 26922996 DOI: 10.1021/acs.chemrev.5b00548] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Understanding signaling and other complex biological processes requires elucidating the critical roles of intrinsically disordered proteins (IDPs) and regions (IDRs), which represent ∼30% of the proteome and enable unique regulatory mechanisms. In this review, we describe the structural heterogeneity of disordered proteins that underpins these mechanisms and the latest progress in obtaining structural descriptions of conformational ensembles of disordered proteins that are needed for linking structure and dynamics to function. We describe the diverse interactions of IDPs that can have unusual characteristics such as "ultrasensitivity" and "regulated folding and unfolding". We also summarize the mounting data showing that large-scale assembly and protein phase separation occurs within a variety of signaling complexes and cellular structures. In addition, we discuss efforts to therapeutically target disordered proteins with small molecules. Overall, we interpret the remodeling of disordered state ensembles due to binding and post-translational modifications within an expanded framework for allostery that provides significant insights into how disordered proteins transmit biological information.
Collapse
Affiliation(s)
- Veronika Csizmok
- Molecular Structure & Function, The Hospital for Sick Children , Toronto, ON M5G 0A4, Canada
| | - Ariele Viacava Follis
- Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital , Memphis, Tennessee 38105, United States.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center , Memphis, Tennessee 38163, United States
| | - Julie D Forman-Kay
- Molecular Structure & Function, The Hospital for Sick Children , Toronto, ON M5G 0A4, Canada.,Department of Biochemistry, University of Toronto , Toronto, ON M5S 1A8, Canada
| |
Collapse
|
46
|
Abstract
Genetic switches based on the [Formula: see text] system are master regulators of an array of cellular responses. Recent kinetic experiments have shown that [Formula: see text] can actively remove NF-κB bound to its genetic sites via a process called "molecular stripping." This allows the [Formula: see text] switch to function under kinetic control rather than the thermodynamic control contemplated in the traditional models of gene switches. Using molecular dynamics simulations of coarse-grained predictive energy landscape models for the constituent proteins by themselves and interacting with the DNA we explore the functional motions of the transcription factor [Formula: see text] and its various binary and ternary complexes with DNA and the inhibitor IκB. These studies show that the function of the [Formula: see text] genetic switch is realized via an allosteric mechanism. Molecular stripping occurs through the activation of a domain twist mode by the binding of [Formula: see text] that occurs through conformational selection. Free energy calculations for DNA binding show that the binding of [Formula: see text] not only results in a significant decrease of the affinity of the transcription factor for the DNA but also kinetically speeds DNA release. Projections of the free energy onto various reaction coordinates reveal the structural details of the stripping pathways.
Collapse
|
47
|
Parra RG, Espada R, Verstraete N, Ferreiro DU. Structural and Energetic Characterization of the Ankyrin Repeat Protein Family. PLoS Comput Biol 2015; 11:e1004659. [PMID: 26691182 PMCID: PMC4687027 DOI: 10.1371/journal.pcbi.1004659] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/10/2015] [Indexed: 11/21/2022] Open
Abstract
Ankyrin repeat containing proteins are one of the most abundant solenoid folds. Usually implicated in specific protein-protein interactions, these proteins are readily amenable for design, with promising biotechnological and biomedical applications. Studying repeat protein families presents technical challenges due to the high sequence divergence among the repeating units. We developed and applied a systematic method to consistently identify and annotate the structural repetitions over the members of the complete Ankyrin Repeat Protein Family, with increased sensitivity over previous studies. We statistically characterized the number of repeats, the folding of the repeat-arrays, their structural variations, insertions and deletions. An energetic analysis of the local frustration patterns reveal the basic features underlying fold stability and its relation to the functional binding regions. We found a strong linear correlation between the conservation of the energetic features in the repeat arrays and their sequence variations, and discuss new insights into the organization and function of these ubiquitous proteins. Some natural proteins are formed with repetitions of similar amino acid stretches. Ankyrin-repeat proteins constitute one of the most abundant families of this class of proteins that serve as model systems to analyze how variations in sequences exert effects in structures and biological functions. We present an in-depth analysis of the ankyrin repeat protein family, characterizing the variations in the repeating arrays both at the structural and energetic level. We introduce a consistent annotation for the repeat characteristics and describe how the structural differences are related to the sequences by their underlying energetic signatures.
Collapse
Affiliation(s)
- R. Gonzalo Parra
- Protein Physiology Lab, Dep de Química Biológica, Facultad de Ciencias Exactas y Naturales, UBA-CONICET-IQUIBICEN, Buenos Aires, Argentina
| | - Rocío Espada
- Protein Physiology Lab, Dep de Química Biológica, Facultad de Ciencias Exactas y Naturales, UBA-CONICET-IQUIBICEN, Buenos Aires, Argentina
| | - Nina Verstraete
- Protein Physiology Lab, Dep de Química Biológica, Facultad de Ciencias Exactas y Naturales, UBA-CONICET-IQUIBICEN, Buenos Aires, Argentina
| | - Diego U. Ferreiro
- Protein Physiology Lab, Dep de Química Biológica, Facultad de Ciencias Exactas y Naturales, UBA-CONICET-IQUIBICEN, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
48
|
Hutton RD, Wilkinson J, Faccin M, Sivertsson EM, Pelizzola A, Lowe AR, Bruscolini P, Itzhaki LS. Mapping the Topography of a Protein Energy Landscape. J Am Chem Soc 2015; 137:14610-25. [PMID: 26561984 DOI: 10.1021/jacs.5b07370] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein energy landscapes are highly complex, yet the vast majority of states within them tend to be invisible to experimentalists. Here, using site-directed mutagenesis and exploiting the simplicity of tandem-repeat protein structures, we delineate a network of these states and the routes between them. We show that our target, gankyrin, a 226-residue 7-ankyrin-repeat protein, can access two alternative (un)folding pathways. We resolve intermediates as well as transition states, constituting a comprehensive series of snapshots that map early and late stages of the two pathways and show both to be polarized such that the repeat array progressively unravels from one end of the molecule or the other. Strikingly, we find that the protein folds via one pathway but unfolds via a different one. The origins of this behavior can be rationalized using the numerical results of a simple statistical mechanics model that allows us to visualize the equilibrium behavior as well as single-molecule folding/unfolding trajectories, thereby filling in the gaps that are not accessible to direct experimental observation. Our study highlights the complexity of repeat-protein folding arising from their symmetrical structures; at the same time, however, this structural simplicity enables us to dissect the complexity and thereby map the precise topography of the energy landscape in full breadth and remarkable detail. That we can recapitulate the key features of the folding mechanism by computational analysis of the native structure alone will help toward the ultimate goal of designed amino-acid sequences with made-to-measure folding mechanisms-the Holy Grail of protein folding.
Collapse
Affiliation(s)
- Richard D Hutton
- Hutchison/MRC Research Centre , Hills Road, Cambridge CB2 0XZ, U.K
| | - James Wilkinson
- Hutchison/MRC Research Centre , Hills Road, Cambridge CB2 0XZ, U.K
| | - Mauro Faccin
- ICTEAM, Université Catholique de Lovain , Euler Building 4, Avenue Lemaître, B-1348 Louvain-la-Neuve, Belgium
| | - Elin M Sivertsson
- Department of Pharmacology, University of Cambridge , Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Alessandro Pelizzola
- Dipartimento di Scienza Applicata e Tecnologia, CNISM, and Center for Computational Studies, Politecnico di Torino , Corso Duca degli Abruzzi 24, I-10129 Torino, Italy.,INFN, Sezione di Torino , via Pietro Giuria 1, I-10125 Torino, Italy.,Human Genetics Foundation (HuGeF) , Via Nizza 52, I-10126 Torino, Italy
| | - Alan R Lowe
- Institute of Structural and Molecular Biology and London Centre for Nanotechnology, University College London and Birkbeck College , London WC1E 7HX, U.K
| | - Pierpaolo Bruscolini
- Departamento de Física Teórica and Instituto de Biocomputacíon y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza , c/Mariano Esquillor s/n, 50018 Zaragoza, Spain
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge , Tennis Court Road, Cambridge CB2 1PD, U.K
| |
Collapse
|
49
|
Webb JT, Behar M. Topology, dynamics, and heterogeneity in immune signaling. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:285-300. [DOI: 10.1002/wsbm.1306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/14/2015] [Accepted: 04/21/2015] [Indexed: 12/28/2022]
Affiliation(s)
- J. Taylor Webb
- Department of Biomedical Engineering; The University of Texas at Austin; Austin TX USA
| | - Marcelo Behar
- Department of Biomedical Engineering; The University of Texas at Austin; Austin TX USA
| |
Collapse
|
50
|
Tsui R, Kearns JD, Lynch C, Vu D, Ngo K, Basak S, Ghosh G, Hoffmann A. IκBβ enhances the generation of the low-affinity NFκB/RelA homodimer. Nat Commun 2015; 6:7068. [PMID: 25946967 PMCID: PMC4425231 DOI: 10.1038/ncomms8068] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 03/27/2015] [Indexed: 01/21/2023] Open
Abstract
The NFκB family of dimeric transcription factors regulate inflammatory and immune responses. While the dynamic control of NFκB dimer activity via the IκB-NFκB signalling module is well understood, there is little information on how specific dimer repertoires are generated from Rel family polypeptides. Here we report the iterative construction-guided by in vitro and in vivo experimentation-of a mathematical model of the Rel-NFκB generation module. Our study reveals that IκBβ has essential functions within the Rel-NFκB generation module, specifically for the RelA:RelA homodimer, which controls a subset of NFκB target genes. Our findings revise the current dogma of the three classical, functionally related IκB proteins by distinguishing between a positive 'licensing' factor (IκBβ) that contributes to determining the available NFκB dimer repertoire in a cell's steady state, and negative feedback regulators (IκBα and -ɛ) that determine the duration and dynamics of the cellular response to an inflammatory stimulus.
Collapse
Affiliation(s)
- Rachel Tsui
- Signaling Systems Laboratory, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- The San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
| | - Jeffrey D. Kearns
- Signaling Systems Laboratory, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
| | - Candace Lynch
- Signaling Systems Laboratory, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
| | - Don Vu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
| | - Kim Ngo
- Signaling Systems Laboratory, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- The San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
| | - Soumen Basak
- Signaling Systems Laboratory, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
| | - Alexander Hoffmann
- Signaling Systems Laboratory, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- The San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- Department of Microbiology, Immunology and Molecular Genetics (MIMG), and the Institute for Quantitative and Computational Biosciences (QCB), University of California, Los Angeles, CA 90095
| |
Collapse
|