1
|
Elkhawagah AR, Donato GG, Poletto M, Martino NA, Vincenti L, Conti L, Necchi D, Nervo T. Effect of Mitoquinone on sperm quality of cryopreserved stallion semen. J Equine Vet Sci 2024; 141:105168. [PMID: 39151811 DOI: 10.1016/j.jevs.2024.105168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/27/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
This study aimed to investigate the effect of mitochondria-targeted antioxidants (Mitoquinone, MitoQ) on the quality of frozen-thawed stallion semen. Semen samples collected from three fertile stallions aged 10 - 13 years, were filtered, centrifuged in a skimmed milk-based extender, and diluted to a final concentration of 50 × 106 sperm/mL in freezing medium. Diluted semen was divided into five experimental groups supplemented with MitoQ at concentrations of 0 (control), 25, 50, 100, and 200 nM and then subjected to freezing after cooling and equilibration. After thawing, semen was evaluated for motility and kinetics at different time points. Sperm viability, plasma membrane, acrosome, DNA integrity, mitochondrial membrane potential, apoptosis, and intracellular reactive oxygen species (ROS) concentrations were evaluated. The results revealed that MitoQ at concentrations of 25, 50, and 100 nM improved (P< 0.01) the total sperm motility after 30 minutes of incubation. In addition, 25 nM MitoQ improved the sperm amplitude of lateral head displacement values (P< 0.01) after 30 minutes of incubation. Conversely, negative effects on sperm motility, kinetics, and viability were observed with the highest tested concentration of MitoQ (200 nM). The various concentrations of MitoQ did not affect the plasma membrane, acrosome, and DNA integrity, or the mitochondrial membrane potential and intracellular ROS concentrations. In conclusion, supplementation of MitoQ during cryopreservation, had a mild positive effect on sperm motility and kinetics especially at a concentration of 25 nM, while the highest concentration (200nM) has a detrimental effect on motility and viability parameters of frozen-thawed stallion sperm.
Collapse
Affiliation(s)
- Ahmed R Elkhawagah
- Theriogenology Department, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Gian Guido Donato
- Department of Veterinary Science, University of Torino, Grugliasco, Italy.
| | | | - Nicola A Martino
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Leila Vincenti
- Department of Veterinary Science, University of Torino, Grugliasco, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Grugliasco, Italy
| | - Denis Necchi
- Keros Insemination and Embryo Transfer Center, Passendale, Belgium
| | - Tiziana Nervo
- Department of Veterinary Science, University of Torino, Grugliasco, Italy
| |
Collapse
|
2
|
Antonenko YN, Veselov IM, Rokitskaya TI, Vinogradova DV, Khailova LS, Kotova EA, Maltsev AV, Bachurin SO, Shevtsova EF. Neuroprotective thiourea derivative uncouples mitochondria and exerts weak protonophoric action on lipid membranes. Chem Biol Interact 2024; 402:111190. [PMID: 39121899 DOI: 10.1016/j.cbi.2024.111190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The isothiourea derivative NT-1505 is known as a neuroprotector and cognition enhancer in animal models of neurodegenerative diseases. Bearing in mind possible relation of the NT-1505-mediated neuroprotection to mitochondrial uncoupling activity, here, we examine NT-1505 effects on mitochondria functioning. At concentrations starting from 10 μM, NT-1505 prevented Ca2+-induced mitochondrial swelling, similar to common uncouplers. Alongside the inhibition of the mitochondrial permeability transition, NT-1505 caused a decrease in mitochondrial membrane potential and an increase in respiration rate in both isolated mammalian mitochondria and cell cultures, which resulted in the reduction of energy-dependent Ca2+ uptake by mitochondria. Based on the oppositely directed effects of bovine serum albumin and palmitate, we suggest the involvement of fatty acids in the NT-1505-mediated mitochondrial uncoupling. In addition, we measured the induction of electrical current across planar bilayer lipid membrane upon the addition of NT-1505 to the bathing solution. Importantly, introduction of the palmitic acid into the lipid bilayer composition led to weak proton selectivity of the NT-1505-mediated BLM current. Thus, the present study revealed an ability of NT-1505 to cause moderate protonophoric uncoupling of mitochondria, which could contribute to the neuroprotective effect of this compound.
Collapse
Affiliation(s)
- Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1/40, 119991, Moscow, Russia.
| | - Ivan M Veselov
- Institute of Physiologically Active Compounds at the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 1 Severnij Proezd, 142432, Chernogolovka, Russia
| | - Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1/40, 119991, Moscow, Russia
| | - Daria V Vinogradova
- Institute of Physiologically Active Compounds at the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 1 Severnij Proezd, 142432, Chernogolovka, Russia
| | - Lyudmila S Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1/40, 119991, Moscow, Russia
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1/40, 119991, Moscow, Russia
| | - Andrey V Maltsev
- Institute of Physiologically Active Compounds at the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 1 Severnij Proezd, 142432, Chernogolovka, Russia
| | - Sergey O Bachurin
- Institute of Physiologically Active Compounds at the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 1 Severnij Proezd, 142432, Chernogolovka, Russia
| | - Elena F Shevtsova
- Institute of Physiologically Active Compounds at the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 1 Severnij Proezd, 142432, Chernogolovka, Russia.
| |
Collapse
|
3
|
Liu X, Liu H, Yin F, Li Y, Jiang J, Xiao Y, Wu Y, Qin Z. Phytopathogenic Fungicidal Activity and Mechanism Approach of Three Kinds of Triphenylphosphonium Salts. J Fungi (Basel) 2024; 10:450. [PMID: 39057335 PMCID: PMC11278366 DOI: 10.3390/jof10070450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
The triphenylphosphonium (TPP) cation has been widely used as a carrier for mitochondria-targeting molecules. We synthesized two commonly employed targeting systems, namely, ω-triphenylphosphonium fatty acids (group 2) and ω-triphenylphosphonium fatty alcohols (group 3), to assess the impact of the TPP module on the biological efficacy of mitochondria-targeting molecules. We evaluated their fungicidal activities against nine plant pathogenic fungi in comparison to alkyl-1-triphenylphosphonium compounds (group 1). All three compound groups exhibited fungicidal activity and displayed a distinct "cut-off effect", which depended on the length of the carbon chain. Specifically, group 1 compounds showed a cut-off point at C10 (compound 1-7), while group 2 and 3 compounds exhibited cut-off points at C15 (compound 2-12) and C14 (compound 3-11), respectively. Notably, group 1 compounds displayed significantly higher fungicidal activity compared to groups 2 and 3. However, group 2 and 3 compounds showed similar activity to each other, although susceptibility may depend on the pathogen tested. Initial investigations into the mechanism of action of the most active compounds suggested that their fungicidal performance may be primarily attributed to their ability to damage the membrane, as well as uncoupling activity and inhibition of fungal respiration. Our findings suggest that the TPP module used in delivery systems as aliphatic acyl or alkoxyl derivatives with carbon chains length < 10 will contribute negligible fungicidal activity to the TPP-conjugate compared to the effect of high level of accumulation in mitochondria due to its mitochondria-targeting ability. These results provide a foundation for utilizing TPP as a promising carrier in the design and development of more effective mitochondria-targeting drugs or pesticides.
Collapse
Affiliation(s)
- Xuelian Liu
- College of Science, China Agricultural University, Beijing 100193, China; (X.L.); (H.L.); (F.Y.); (Y.L.); (J.J.); (Y.X.); (Y.W.)
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Huihui Liu
- College of Science, China Agricultural University, Beijing 100193, China; (X.L.); (H.L.); (F.Y.); (Y.L.); (J.J.); (Y.X.); (Y.W.)
| | - Fahong Yin
- College of Science, China Agricultural University, Beijing 100193, China; (X.L.); (H.L.); (F.Y.); (Y.L.); (J.J.); (Y.X.); (Y.W.)
| | - Yiyi Li
- College of Science, China Agricultural University, Beijing 100193, China; (X.L.); (H.L.); (F.Y.); (Y.L.); (J.J.); (Y.X.); (Y.W.)
| | - Jiazhen Jiang
- College of Science, China Agricultural University, Beijing 100193, China; (X.L.); (H.L.); (F.Y.); (Y.L.); (J.J.); (Y.X.); (Y.W.)
| | - Yumei Xiao
- College of Science, China Agricultural University, Beijing 100193, China; (X.L.); (H.L.); (F.Y.); (Y.L.); (J.J.); (Y.X.); (Y.W.)
| | - Yanhua Wu
- College of Science, China Agricultural University, Beijing 100193, China; (X.L.); (H.L.); (F.Y.); (Y.L.); (J.J.); (Y.X.); (Y.W.)
| | - Zhaohai Qin
- College of Science, China Agricultural University, Beijing 100193, China; (X.L.); (H.L.); (F.Y.); (Y.L.); (J.J.); (Y.X.); (Y.W.)
| |
Collapse
|
4
|
Cheng G, Hardy M, Hillard CJ, Feix JB, Kalyanaraman B. Mitigating gut microbial degradation of levodopa and enhancing brain dopamine: Implications in Parkinson's disease. Commun Biol 2024; 7:668. [PMID: 38816577 PMCID: PMC11139878 DOI: 10.1038/s42003-024-06330-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
Parkinson's disease is managed using levodopa; however, as Parkinson's disease progresses, patients require increased doses of levodopa, which can cause undesirable side effects. Additionally, the oral bioavailability of levodopa decreases in Parkinson's disease patients due to the increased metabolism of levodopa to dopamine by gut bacteria, Enterococcus faecalis, resulting in decreased neuronal uptake and dopamine formation. Parkinson's disease patients have varying levels of these bacteria. Thus, decreasing bacterial metabolism is a promising therapeutic approach to enhance the bioavailability of levodopa in the brain. In this work, we show that Mito-ortho-HNK, formed by modification of a naturally occurring molecule, honokiol, conjugated to a triphenylphosphonium moiety, mitigates the metabolism of levodopa-alone or combined with carbidopa-to dopamine. Mito-ortho-HNK suppresses the growth of E. faecalis, decreases dopamine levels in the gut, and increases dopamine levels in the brain. Mitigating the gut bacterial metabolism of levodopa as shown here could enhance its efficacy.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Micael Hardy
- Aix-Marseille Univ, CNRS, ICR, UMR 7273, Marseille, 13013, France
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology and Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jimmy B Feix
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
5
|
Kirsanov R, Khailova LS, Rokitskaya TI, Lyamzaev KG, Panteleeva AA, Nazarov PA, Firsov AM, Iaubasarova IR, Korshunova GA, Kotova EA, Antonenko YN. Synthesis of Triphenylphosphonium-Linked Derivative of 3,5-Di tert-butyl-4-hydroxybenzylidene-malononitrile (SF6847) via Knoevenagel Reaction Yields an Effective Mitochondria-Targeted Protonophoric Uncoupler. ACS OMEGA 2024; 9:11551-11561. [PMID: 38496966 PMCID: PMC10938414 DOI: 10.1021/acsomega.3c08621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Mitochondrial uncouplers are actively sought as potential therapeutics. Here, we report the first successful synthesis of mitochondria-targeted derivatives of the highly potent uncoupler 3,5-ditert-butyl-4-hydroxybenzylidene-malononitrile (SF6847), bearing a cationic alkyl(triphenyl)phosphonium (TPP) group. As a key step of the synthesis, we used condensation of a ketophenol with malononitrile via the Knoevenagel reaction. SF-C5-TPP with a pentamethylene linker between SF6847 and TPP, stimulating respiration and collapsing membrane potential of rat liver mitochondria at submicromolar concentrations, proved to be the most effective uncoupler of the series. SF-C5-TPP showed pronounced protonophoric activity on a model planar bilayer lipid membrane. Importantly, SF-C5-TPP exhibited rather low toxicity in fibroblast cell culture, causing mitochondrial depolarization in cells at concentrations that only slightly affected cell viability. SF-C5-TPP was more effective in decreasing the mitochondrial membrane potential in the cell culture than SF6847, in contrast to the case of isolated mitochondria. Like other zwitterionic uncouplers, SF-C5-TPP inhibited the growth of Bacillus subtilis in the micromolar concentration range.
Collapse
Affiliation(s)
- Roman
S. Kirsanov
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, 119991 Moscow, Russia
| | - Ljudmila S. Khailova
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, 119991 Moscow, Russia
| | - Tatyana I. Rokitskaya
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, 119991 Moscow, Russia
| | - Konstantin G. Lyamzaev
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, 119991 Moscow, Russia
- The
“Russian Clinical Research Center for Gerontology” of
the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Alisa A. Panteleeva
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, 119991 Moscow, Russia
| | - Pavel A. Nazarov
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, 119991 Moscow, Russia
| | - Alexander M. Firsov
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, 119991 Moscow, Russia
| | - Iliuza R. Iaubasarova
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, 119991 Moscow, Russia
| | - Galina A. Korshunova
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, 119991 Moscow, Russia
| | - Elena A. Kotova
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, 119991 Moscow, Russia
| | - Yuri N. Antonenko
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
6
|
Sokolov SS, Smirnova EA, Rokitskaya TI, Severin FF. The Imidazolium Ionic Liquids Toxicity is Due to Their Effect on the Plasma Membrane. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:451-461. [PMID: 38648765 DOI: 10.1134/s0006297924030064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 04/25/2024]
Abstract
Ionic liquids (ILs) are organic salts with a low melting point. This is due to the fact that their alkyl side chains, which are covalently connected to the ion, hinder the crystallization of ILs. The low melting point of ILs has led to their widespread use as relatively harmless solvents. However, ILs do have toxic properties, the mechanism of which is largely unknown, so identifying the cellular targets of ILs is of practical importance. In our work, we showed that imidazolium ILs are not able to penetrate model membranes without damaging them. We also found that inactivation of multidrug resistance (MDR) pumps in yeast cells does not increase their sensitivity to imidazolium ILs. The latter indicates that the target of toxicity of imidazolium ILs is not in the cytoplasm. Thus, it can be assumed that the disruption of the barrier properties of the plasma membrane is the main reason for the toxicity of low concentrations of imidazolium ILs. We also showed that supplementation with imidazolium ILs restores the growth of cells with kinetically blocked glycolysis. Apparently, a slight disruption of the plasma membrane caused by ILs can, in some cases, be beneficial for the cell.
Collapse
Affiliation(s)
- Svyatoslav S Sokolov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ekaterina A Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Fedor F Severin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
7
|
Golenkina EA, Viryasova GM, Galkina SI, Kondratenko ND, Gaponova TV, Romanova YM, Lyamzaev KG, Chernyak BV, Sud’ina GF. Redox processes are major regulators of leukotriene synthesis in neutrophils exposed to bacteria Salmonella typhimurium; the way to manipulate neutrophil swarming. Front Immunol 2024; 15:1295150. [PMID: 38384456 PMCID: PMC10880102 DOI: 10.3389/fimmu.2024.1295150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Neutrophils play a primary role in protecting our body from pathogens. When confronted with invading bacteria, neutrophils begin to produce leukotriene B4, a potent chemoattractant that, in cooperation with the primary bacterial chemoattractant fMLP, stimulates the formation of swarms of neutrophils surrounding pathogens. Here we describe a complex redox regulation that either stimulates or inhibits fMLP-induced leukotriene synthesis in an experimental model of neutrophils interacting with Salmonella typhimurium. The scavenging of mitochondrial reactive oxygen species by mitochondria-targeted antioxidants MitoQ and SkQ1, as well as inhibition of their production by mitochondrial inhibitors, inhibit the synthesis of leukotrienes regardless of the cessation of oxidative phosphorylation. On the contrary, antioxidants N-acetylcysteine and sodium hydrosulfide promoting reductive shift in the reversible thiol-disulfide system stimulate the synthesis of leukotrienes. Diamide that oxidizes glutathione at high concentrations inhibits leukotriene synthesis, and the glutathione precursor S-adenosyl-L-methionine prevents this inhibition. Diamide-dependent inhibition is also prevented by diphenyleneiodonium, presumably through inhibition of NADPH oxidase and NADPH accumulation. Thus, during bacterial infection, maintaining the reduced state of glutathione in neutrophils plays a decisive role in the synthesis of leukotriene B4. Suppression of excess leukotriene synthesis is an effective strategy for treating various inflammatory pathologies. Our data suggest that the use of mitochondria-targeted antioxidants may be promising for this purpose, whereas known thiol-based antioxidants, such as N-acetylcysteine, may dangerously stimulate leukotriene synthesis by neutrophils during severe pathogenic infection.
Collapse
Affiliation(s)
- Ekaterina A. Golenkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Galina M. Viryasova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Svetlana I. Galkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia D. Kondratenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatjana V. Gaponova
- National Research Center for Hematology, Russia Federation Ministry of Public Health, Moscow, Russia
| | - Yulia M. Romanova
- Department of Genetics and Molecular Biology, Gamaleya National Research Centre of Epidemiology and Microbiology, Moscow, Russia
| | - Konstantin G. Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- The “Russian Clinical Research Center for Gerontology” of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Galina F. Sud’ina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
8
|
Zorov DB, Abramicheva PA, Andrianova NV, Babenko VA, Zorova LD, Zorov SD, Pevzner IB, Popkov VA, Semenovich DS, Yakupova EI, Silachev DN, Plotnikov EY, Sukhikh GT. Mitocentricity. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:223-240. [PMID: 38622092 DOI: 10.1134/s0006297924020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 04/17/2024]
Abstract
Worldwide, interest in mitochondria is constantly growing, as evidenced by scientific statistics, and studies of the functioning of these organelles are becoming more prevalent than studies of other cellular structures. In this analytical review, mitochondria are conditionally placed in a certain cellular center, which is responsible for both energy production and other non-energetic functions, without which the existence of not only the eukaryotic cell itself, but also the entire organism is impossible. Taking into account the high multifunctionality of mitochondria, such a fundamentally new scheme of cell functioning organization, including mitochondrial management of processes that determine cell survival and death, may be justified. Considering that this issue is dedicated to the memory of V. P. Skulachev, who can be called mitocentric, due to the history of his scientific activity almost entirely aimed at studying mitochondria, this work examines those aspects of mitochondrial functioning that were directly or indirectly the focus of attention of this outstanding scientist. We list all possible known mitochondrial functions, including membrane potential generation, synthesis of Fe-S clusters, steroid hormones, heme, fatty acids, and CO2. Special attention is paid to the participation of mitochondria in the formation and transport of water, as a powerful biochemical cellular and mitochondrial regulator. The history of research on reactive oxygen species that generate mitochondria is subject to significant analysis. In the section "Mitochondria in the center of death", special emphasis is placed on the analysis of what role and how mitochondria can play and determine the program of death of an organism (phenoptosis) and the contribution made to these studies by V. P. Skulachev.
Collapse
Affiliation(s)
- Dmitry B Zorov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Polina A Abramicheva
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nadezda V Andrianova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Valentina A Babenko
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Ljubava D Zorova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Savva D Zorov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina B Pevzner
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Vasily A Popkov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Dmitry S Semenovich
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elmira I Yakupova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Denis N Silachev
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Egor Y Plotnikov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Gennady T Sukhikh
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| |
Collapse
|
9
|
Ciubuc-Batcu MT, Stapelberg NJC, Headrick JP, Renshaw GMC. A mitochondrial nexus in major depressive disorder: Integration with the psycho-immune-neuroendocrine network. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166920. [PMID: 37913835 DOI: 10.1016/j.bbadis.2023.166920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Nervous system processes, including cognition and affective state, fundamentally rely on mitochondria. Impaired mitochondrial function is evident in major depressive disorder (MDD), reflecting cumulative detrimental influences of both extrinsic and intrinsic stressors, genetic predisposition, and mutation. Glucocorticoid 'stress' pathways converge on mitochondria; oxidative and nitrosative stresses in MDD are largely mitochondrial in origin; both initiate cascades promoting mitochondrial DNA (mtDNA) damage with disruptions to mitochondrial biogenesis and tryptophan catabolism. Mitochondrial dysfunction facilitates proinflammatory dysbiosis while directly triggering immuno-inflammatory activation via released mtDNA, mitochondrial lipids and mitochondria associated membranes (MAMs), further disrupting mitochondrial function and mitochondrial quality control, promoting the accumulation of abnormal mitochondria (confirmed in autopsy studies). Established and putative mechanisms highlight a mitochondrial nexus within the psycho-immune neuroendocrine (PINE) network implicated in MDD. Whether lowering neuronal resilience and thresholds for disease, or linking mechanistic nodes within the MDD pathogenic network, impaired mitochondrial function emerges as an important risk, a functional biomarker, providing a therapeutic target in MDD. Several treatment modalities have been demonstrated to reset mitochondrial function, which could benefit those with MDD.
Collapse
Affiliation(s)
- M T Ciubuc-Batcu
- Griffith University School of Medicine and Dentistry, Australia; Gold Coast Health, Queensland, Australia
| | - N J C Stapelberg
- Bond University Faculty of Health Sciences and Medicine, Australia; Gold Coast Health, Queensland, Australia
| | - J P Headrick
- Griffith University School of Pharmacy and Medical Science, Australia
| | - G M C Renshaw
- Hypoxia and Ischemia Research Unit, Griffith University, School of Health Sciences and Social Work, Australia.
| |
Collapse
|
10
|
Nazarov PA, Zinovkina LA, Brezgunova AA, Lyamzaev KG, Golovin AV, Karakozova MV, Kotova EA, Plotnikov EY, Zinovkin RA, Skulachev MV, Antonenko YN. Relationship of Cytotoxic and Antimicrobial Effects of Triphenylphosphonium Conjugates with Various Quinone Derivatives. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:212-222. [PMID: 38622091 DOI: 10.1134/s0006297924020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 04/17/2024]
Abstract
Quinone derivatives of triphenylphosphonium have proven themselves to be effective geroprotectors and antioxidants that prevent oxidation of cell components with participation of active free radicals - peroxide (RO2·), alkoxy (RO·), and alkyl (R·) radicals, as well as reactive oxygen species (superoxide anion, singlet oxygen). Their most studied representatives are derivatives of plastoquinone (SkQ1) and ubiquinone (MitoQ), which in addition to antioxidant properties also have a strong antibacterial effect. In this study, we investigated antibacterial properties of other quinone derivatives based on decyltriphenylphosphonium (SkQ3, SkQT, and SkQThy). We have shown that they, just like SkQ1, inhibit growth of various Gram-positive bacteria at micromolar concentrations, while being less effective against Gram-negative bacteria, which is associated with recognition of the triphenylphosphonium derivatives by the main multidrug resistance (MDR) pump of Gram-negative bacteria, AcrAB-TolC. Antibacterial action of SkQ1 itself was found to be dependent on the number of bacterial cells. It is important to note that the cytotoxic effect of SkQ1 on mammalian cells was observed at higher concentrations than the antibacterial action, which can be explained by (i) the presence of a large number of membrane organelles, (ii) lower membrane potential, (iii) spatial separation of the processes of energy generation and transport, and (iv) differences in the composition of MDR pumps. Differences in the cytotoxic effects on different types of eukaryotic cells may be associated with the degree of membrane organelle development, energy status of the cell, and level of the MDR pump expression.
Collapse
Affiliation(s)
- Pavel A Nazarov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Lyudmila A Zinovkina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anna A Brezgunova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Konstantin G Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Russian Clinical Research Center for Gerontology of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, 129226, Russia
| | - Andrei V Golovin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Marina V Karakozova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Egor Yu Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Roman A Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Russian Clinical Research Center for Gerontology of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, 129226, Russia
| | - Maxim V Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
11
|
Tereshchenkov AG, Khairullina ZZ, Volynkina IA, Lukianov DA, Nazarov PA, Pavlova JA, Tashlitsky VN, Razumova EA, Ipatova DA, Timchenko YV, Senko DA, Efremenkova OV, Paleskava A, Konevega AL, Osterman IA, Rodin IA, Sergiev PV, Dontsova OA, Bogdanov AA, Sumbatyan NV. Triphenylphosphonium Analogs of Short Peptide Related to Bactenecin 7 and Oncocin 112 as Antimicrobial Agents. Pharmaceutics 2024; 16:148. [PMID: 38276518 PMCID: PMC10818380 DOI: 10.3390/pharmaceutics16010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/01/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Antimicrobial peptides (AMPs) have recently attracted attention as promising antibacterial agents capable of acting against resistant bacterial strains. In this work, an approach was applied, consisting of the conjugation of a peptide related to the sequences of bactenecin 7 (Bac7) and oncocin (Onc112) with the alkyl(triphenyl)phosphonium (alkyl-TPP) fragment in order to improve the properties of the AMP and introduce new ones, expand the spectrum of antimicrobial activity, and reduce the inhibitory effect on the eukaryotic translation process. Triphenylphosphonium (TPP) derivatives of a decapeptide RRIRPRPPYL were synthesized. It was comprehensively studied how the modification of the AMP affected the properties of the new compounds. It was shown that while the reduction in the Bac7 length to 10 a.a. residues dramatically decreased the affinity to bacterial ribosomes, the modification of the peptide with alkyl-TPP moieties led to an increase in the affinity. New analogs with structures that combined a decapeptide related to Bac7 and Onc112-Bac(1-10, R/Y)-and TPP attached to the C-terminal amino acid residue via alkylamide linkers, inhibited translation in vitro and were found to be more selective inhibitors of bacterial translation compared with eukaryotic translation than Onc112 and Bac7. The TPP analogs of the decapeptide related to Bac7 and Onc112 suppressed the growth of both Gram-negative bacteria, similar to Onc112 and Bac7, and Gram-positive ones, similar to alkyl-TPP derivatives, and also acted against some resistant laboratory strains. Bac(1-10, R/Y)-C2-TPP, containing a short alkylamide linker between the decapeptide and TPP, was transferred into the E. coli cells via the SbmA transporter protein. TPP derivatives of the decapeptide Bac(1-10, R/Y) containing either a decylamide or ethylamide linker caused B. subtilis membrane depolarization, similar to alkyl-TPP. The Bac(1-10, R/Y)-C2-TPP analog was proven to be non-toxic for mammalian cells using the MTT test.
Collapse
Affiliation(s)
- Andrey G. Tereshchenkov
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1/40 Leninskie Gory, 119991 Moscow, Russia
| | - Zimfira Z. Khairullina
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
| | - Inna A. Volynkina
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
| | - Dmitrii A. Lukianov
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
| | - Pavel A. Nazarov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1/40 Leninskie Gory, 119991 Moscow, Russia
| | - Julia A. Pavlova
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1/40 Leninskie Gory, 119991 Moscow, Russia
| | - Vadim N. Tashlitsky
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
| | - Elizaveta A. Razumova
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
| | - Daria A. Ipatova
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
| | - Yury V. Timchenko
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
| | - Dmitry A. Senko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Olga V. Efremenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia;
| | - Alena Paleskava
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, 188300 Gatchina, Russia (A.L.K.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Andrey L. Konevega
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, 188300 Gatchina, Russia (A.L.K.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- NBICS Center, NRC “Kurchatov Institute”, 123182 Moscow, Russia
| | - Ilya A. Osterman
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
| | - Igor A. Rodin
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
| | - Petr V. Sergiev
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1/40 Leninskie Gory, 119991 Moscow, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga A. Dontsova
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1/40 Leninskie Gory, 119991 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexey A. Bogdanov
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1/40 Leninskie Gory, 119991 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Natalia V. Sumbatyan
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia (Z.Z.K.); (I.A.V.); (D.A.L.); (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
| |
Collapse
|
12
|
Kagan VE, Tyurina YY, Mikulska-Ruminska K, Damschroder D, Vieira Neto E, Lasorsa A, Kapralov AA, Tyurin VA, Amoscato AA, Samovich SN, Souryavong AB, Dar HH, Ramim A, Liang Z, Lazcano P, Ji J, Schmidtke MW, Kiselyov K, Korkmaz A, Vladimirov GK, Artyukhova MA, Rampratap P, Cole LK, Niyatie A, Baker EK, Peterson J, Hatch GM, Atkinson J, Vockley J, Kühn B, Wessells R, van der Wel PCA, Bahar I, Bayir H, Greenberg ML. Anomalous peroxidase activity of cytochrome c is the primary pathogenic target in Barth syndrome. Nat Metab 2023; 5:2184-2205. [PMID: 37996701 PMCID: PMC11213643 DOI: 10.1038/s42255-023-00926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/10/2023] [Indexed: 11/25/2023]
Abstract
Barth syndrome (BTHS) is a life-threatening genetic disorder with unknown pathogenicity caused by mutations in TAFAZZIN (TAZ) that affect remodeling of mitochondrial cardiolipin (CL). TAZ deficiency leads to accumulation of mono-lyso-CL (MLCL), which forms a peroxidase complex with cytochrome c (cyt c) capable of oxidizing polyunsaturated fatty acid-containing lipids. We hypothesized that accumulation of MLCL facilitates formation of anomalous MLCL-cyt c peroxidase complexes and peroxidation of polyunsaturated fatty acid phospholipids as the primary BTHS pathogenic mechanism. Using genetic, biochemical/biophysical, redox lipidomic and computational approaches, we reveal mechanisms of peroxidase-competent MLCL-cyt c complexation and increased phospholipid peroxidation in different TAZ-deficient cells and animal models and in pre-transplant biopsies from hearts of patients with BTHS. A specific mitochondria-targeted anti-peroxidase agent inhibited MLCL-cyt c peroxidase activity, prevented phospholipid peroxidation, improved mitochondrial respiration of TAZ-deficient C2C12 myoblasts and restored exercise endurance in a BTHS Drosophila model. Targeting MLCL-cyt c peroxidase offers therapeutic approaches to BTHS treatment.
Collapse
Affiliation(s)
- Valerian E Kagan
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Karolina Mikulska-Ruminska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Deena Damschroder
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eduardo Vieira Neto
- Department of Pediatrics, Genetic and Genomic Medicine Division, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alessia Lasorsa
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Alexander A Kapralov
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew A Amoscato
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Svetlana N Samovich
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Austin B Souryavong
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Haider H Dar
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Abu Ramim
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Zhuqing Liang
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Pablo Lazcano
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Jiajia Ji
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | | | - Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aybike Korkmaz
- Department of Pediatrics, Division of Critical Care and Hospital Medicine, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Georgy K Vladimirov
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Margarita A Artyukhova
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pushpa Rampratap
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Laura K Cole
- Department of Pharmacology and Therapeutics, University of Manitoba, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Ammanamanchi Niyatie
- Department of Pediatrics, Pediatric Institute for Heart Regeneration and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emma-Kate Baker
- Department of Chemistry & Centre for Biotechnology, Brock University, St Catharines, Ontario, Canada
| | - Jim Peterson
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Grant M Hatch
- Department of Pharmacology and Therapeutics, University of Manitoba, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Jeffrey Atkinson
- Department of Chemistry & Centre for Biotechnology, Brock University, St Catharines, Ontario, Canada
| | - Jerry Vockley
- Department of Pediatrics, Genetic and Genomic Medicine Division, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bernhard Kühn
- Department of Pediatrics, Pediatric Institute for Heart Regeneration and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert Wessells
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Patrick C A van der Wel
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Ivet Bahar
- Laufer Center for Physical Quantitative Biology and Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, New York, NY, USA
| | - Hülya Bayir
- Department of Pediatrics, Division of Critical Care and Hospital Medicine, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
13
|
Ibrahim MK, Haria A, Mehta NV, Degani MS. Antimicrobial potential of quaternary phosphonium salt compounds: a review. Future Med Chem 2023; 15:2113-2141. [PMID: 37929337 DOI: 10.4155/fmc-2023-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023] Open
Abstract
Given that mitochondrial dysregulation is a biomarker of many cancers, cationic quaternary phosphonium salt (QPS) conjugation is a widely utilized strategy for anticancer drug design. QPS-conjugated compounds exhibit greater cell permeation and accumulation in negatively charged mitochondria, and thus, show enhanced activity. Phylogenetic similarities between mitochondria and bacteria have provided a rationale for exploring the antibacterial properties of mitochondria-targeted compounds. Additionally, due to the importance of mitochondria in the survival of pathogenic microbes, including fungi and parasites, this strategy can be extended to these organisms as well. This review examines recent literature on the antimicrobial activities of various QPS-conjugated compounds and provides future directions for exploring the medicinal chemistry of these compounds.
Collapse
Affiliation(s)
- Mahin K Ibrahim
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| | - Akash Haria
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| | - Namrashee V Mehta
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| | - Mariam S Degani
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| |
Collapse
|
14
|
Sokolov S, Zyrina A, Akimov S, Knorre D, Severin F. Toxic Effects of Penetrating Cations. MEMBRANES 2023; 13:841. [PMID: 37888013 PMCID: PMC10608470 DOI: 10.3390/membranes13100841] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
As mitochondria are negatively charged organelles, penetrating cations are used as parts of chimeric molecules to deliver specific compounds into mitochondria. In other words, they are used as electrophilic carriers for such chemical moieties as antioxidants, dyes, etc., to transfer them inside mitochondria. However, unmodified penetrating cations affect different aspects of cellular physiology as well. In this review, we have attempted to summarise the data about the side effects of commonly used natural (e.g., berberine) and artificial (e.g., tetraphenylphosphonium, rhodamine, methylene blue) penetrating cations on cellular physiology. For instance, it was shown that such types of molecules can (1) facilitate proton transport across membranes; (2) react with redox groups of the respiratory chain; (3) induce DNA damage; (4) interfere with pleiotropic drug resistance; (5) disturb membrane integrity; and (6) inhibit enzymes. Also, the products of the biodegradation of penetrating cations can be toxic. As penetrating cations accumulate in mitochondria, their toxicity is mostly due to mitochondrial damage. Mitochondria from certain types of cancer cells appear to be especially sensitive to penetrating cations. Here, we discuss the molecular mechanisms of the toxic effects and the anti-cancer activity of penetrating cations.
Collapse
Affiliation(s)
- Svyatoslav Sokolov
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40 Leninskie Gory, 119991 Moscow, Russia; (S.S.); (D.K.)
| | - Anna Zyrina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Premises 8, Bldg. 1, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, 108819 Moscow, Russia;
| | - Sergey Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 LeninskiyProspekt, 119071 Moscow, Russia;
| | - Dmitry Knorre
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40 Leninskie Gory, 119991 Moscow, Russia; (S.S.); (D.K.)
| | - Fedor Severin
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40 Leninskie Gory, 119991 Moscow, Russia; (S.S.); (D.K.)
| |
Collapse
|
15
|
Rokitskaya TI, Khailova LS, Korshunova GA, Antonenko YN. Efficiency of mitochondrial uncoupling by modified butyltriphenylphosphonium cations and fatty acids correlates with lipophilicity of cations: Protonophoric vs leakage mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184183. [PMID: 37286154 DOI: 10.1016/j.bbamem.2023.184183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
In order to determine the share of protonophoric activity in the uncoupling action of lipophilic cations a number of analogues of butyltriphenylphosphonium with substitutions in phenyl rings (C4TPP-X) were studied on isolated rat liver mitochondria and model lipid membranes. An increase in the rate of respiration and a decrease in the membrane potential of isolated mitochondria were observed for all the studied cations, the efficiency of these processes was significantly enhanced in the presence of fatty acids and correlated with the octanol-water partition coefficient of the cations. The ability of C4TPP-X cations to induce proton transport across the lipid membrane of liposomes loaded with a pH-sensitive fluorescent dye increased also with their lipophilicity and depended on the presence of palmitic acid in the liposome membrane. Of all the cations, only butyl[tri(3,5-dimethylphenyl)]phosphonium (C4TPP-diMe) was able to induce proton transport by the mechanism of formation of a cation-fatty acid ion pair on planar bilayer lipid membranes and liposomes. The rate of oxygen consumption by mitochondria in the presence of C4TPP-diMe increased to the maximum values corresponding to conventional uncouplers; for all other cations the maximum uncoupling rates were significantly lower. We assume that the studied cations of the C4TPP-X series, with the exception of C4TPP-diMe at low concentrations, cause nonspecific leak of ions through lipid model and biological membranes which is significantly enhanced in the presence of fatty acids.
Collapse
Affiliation(s)
- Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Ljudmila S Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Galina A Korshunova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
16
|
Sharma K, Sarkar J, Trisal A, Ghosh R, Dixit A, Singh AK. Targeting mitochondrial dysfunction to salvage cellular senescence for managing neurodegeneration. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:309-337. [PMID: 37437982 DOI: 10.1016/bs.apcsb.2023.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Aging is an inevitable phenomenon that causes a decline in bodily functions over time. One of the most important processes that play a role in aging is senescence. Senescence is characterized by accumulation of cells that are no longer functional but elude the apoptotic pathway. These cells secrete inflammatory molecules that comprise the senescence associated secretory phenotype (SASP). Several essential molecules such as p53, Rb, and p16INK4a regulate the senescence process. Mitochondrial regulation has been found to play an important role in senescence. Reactive oxygen species (ROS) generated from mitochondria can affect cellular senescence by inducing the persistent DNA damage response, thus stabilizing the senescence. Evidently, senescence plays a major contributory role to the development of age-related neurological disorders. In this chapter, we discuss the role of senescence in the progression and onset of several neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Moreover, we also discuss the efficacy of certain molecules like MitoQ, SkQ1, and Latrepirdine that could be proven therapeutics with respect to these disorders by regulating mitochondrial activity.
Collapse
Affiliation(s)
- Komal Sharma
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, India
| | - Joyobrata Sarkar
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, India
| | - Anchal Trisal
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, India
| | - Rishika Ghosh
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, India
| | - Anubhuti Dixit
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, India.
| | - Abhishek Kumar Singh
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, India.
| |
Collapse
|
17
|
Nazarov PA, Majorov KB, Apt AS, Skulachev MV. Penetration of Triphenylphosphonium Derivatives through the Cell Envelope of Bacteria of Mycobacteriales Order. Pharmaceuticals (Basel) 2023; 16:ph16050688. [PMID: 37242470 DOI: 10.3390/ph16050688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The penetration of substances through the bacterial cell envelope is a complex and underinvestigated process. Mitochondria-targeted antioxidant and antibiotic SkQ1 (10-(plastoquinonyl)decyltriphenylphosphonium) is an excellent model for studying the penetration of substances through the bacterial cell envelope. SkQ1 resistance in Gram-negative bacteria has been found to be dependent on the presence of the AcrAB-TolC pump, while Gram-positive bacteria do not have this pump but, instead, have a mycolic acid-containing cell wall that is a tough barrier against many antibiotics. Here, we report the bactericidal action of SkQ1 and dodecyl triphenylphospho-nium (C12TPP) against Rhodococcus fascians and Mycobacterium tuberculosis, pathogens of plants and humans. The mechanism of the bactericidal action is based on the penetration of SkQ1 and C12TPP through the cell envelope and the disruption of the bioenergetics of bacteria. One, but probably not the only such mechanism is a decrease in membrane potential, which is important for the implementation of many cellular processes. Thus, neither the presence of MDR pumps, nor the presence of porins, prevents the penetration of SkQ1 and C12TPP through the complex cell envelope of R. fascians and M. tuberculosis.
Collapse
Affiliation(s)
- Pavel A Nazarov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | - Alexander S Apt
- Central Research Institute for Tuberculosis, 107564 Moscow, Russia
| | - Maxim V Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Mitotech LLC, 119991 Moscow, Russia
| |
Collapse
|
18
|
Samartsev VN, Khoroshavina EI, Pavlova EK, Dubinin MV, Semenova AA. Bile Acids as Inducers of Protonophore and Ionophore Permeability of Biological and Artificial Membranes. MEMBRANES 2023; 13:membranes13050472. [PMID: 37233533 DOI: 10.3390/membranes13050472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
It is now generally accepted that the role of bile acids in the organism is not limited to their participation in the process of food digestion. Indeed, bile acids are signaling molecules and being amphiphilic compounds, are also capable of modifying the properties of cell membranes and their organelles. This review is devoted to the analysis of data on the interaction of bile acids with biological and artificial membranes, in particular, their protonophore and ionophore effects. The effects of bile acids were analyzed depending on their physicochemical properties: namely the structure of their molecules, indicators of the hydrophobic-hydrophilic balance, and the critical micelle concentration. Particular attention is paid to the interaction of bile acids with the powerhouse of cells, the mitochondria. It is of note that bile acids, in addition to their protonophore and ionophore actions, can also induce Ca2+-dependent nonspecific permeability of the inner mitochondrial membrane. We consider the unique action of ursodeoxycholic acid as an inducer of potassium conductivity of the inner mitochondrial membrane. We also discuss a possible relationship between this K+ ionophore action of ursodeoxycholic acid and its therapeutic effects.
Collapse
Affiliation(s)
- Victor N Samartsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Ekaterina I Khoroshavina
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Evgeniya K Pavlova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Mikhail V Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Alena A Semenova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| |
Collapse
|
19
|
Nazarov PA, Khrulnova SA, Kessenikh AG, Novoyatlova US, Kuznetsova SB, Bazhenov SV, Sorochkina AI, Karakozova MV, Manukhov IV. Observation of Cytotoxicity of Phosphonium Derivatives Is Explained: Metabolism Inhibition and Adhesion Alteration. Antibiotics (Basel) 2023; 12:antibiotics12040720. [PMID: 37107081 PMCID: PMC10135132 DOI: 10.3390/antibiotics12040720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
The search for new antibiotics, substances that kill prokaryotic cells and do not kill eukaryotic cells, is an urgent need for modern medicine. Among the most promising are derivatives of triphenylphosphonium, which can protect the infected organs of mammals and heal damaged cells as mitochondria-targeted antioxidants. In addition to the antioxidant action, triphenylphosphonium derivatives exhibit antibacterial activity. It has recently been reported that triphenylphosphonium derivatives cause either cytotoxic effects or inhibition of cellular metabolism at submicromolar concentrations. In this work, we analyzed the MTT data using microscopy and compared them with data on changes in the luminescence of bacteria. We have shown that, at submicromolar concentrations, only metabolism is inhibited, while an increase in alkyltriphenylphosphonium (CnTPP) concentration leads to adhesion alteration. Thus, our data on eukaryotic and prokaryotic cells confirm a decrease in the metabolic activity of cells by CnTPPs but do not confirm a cytocidal effect of TPPs at submicromolar concentrations. This allows us to consider CnTPP as a non-toxic antibacterial drug at low concentrations and a relatively safe vector for delivering other antibacterial substances into bacterial cells.
Collapse
Affiliation(s)
- Pavel A Nazarov
- Moscow Institute of Physics and Technology,141700 Dolgoprudny, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Svetlana A Khrulnova
- Moscow Institute of Physics and Technology,141700 Dolgoprudny, Russia
- National Research Center for Hematology, 117198 Moscow, Russia
| | - Andrew G Kessenikh
- Moscow Institute of Physics and Technology,141700 Dolgoprudny, Russia
- Laboratory for Microbiology, BIOTECH University, 125080 Moscow, Russia
| | - Uliana S Novoyatlova
- Moscow Institute of Physics and Technology,141700 Dolgoprudny, Russia
- Laboratory for Microbiology, BIOTECH University, 125080 Moscow, Russia
| | | | - Sergey V Bazhenov
- Moscow Institute of Physics and Technology,141700 Dolgoprudny, Russia
- Laboratory for Microbiology, BIOTECH University, 125080 Moscow, Russia
| | - Alexandra I Sorochkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Marina V Karakozova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Ilya V Manukhov
- Moscow Institute of Physics and Technology,141700 Dolgoprudny, Russia
- Laboratory for Microbiology, BIOTECH University, 125080 Moscow, Russia
| |
Collapse
|
20
|
Kirsanov RS, Khailova LS, Rokitskaya TI, Iaubasarova IR, Nazarov PA, Panteleeva AA, Lyamzaev KG, Popova LB, Korshunova GA, Kotova EA, Antonenko YN. Ester-stabilized phosphorus ylides as protonophores on bilayer lipid membranes, mitochondria and chloroplasts. Bioelectrochemistry 2023; 150:108369. [PMID: 36638678 DOI: 10.1016/j.bioelechem.2023.108369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Triphenylphosphonium ylides are commonly used as key intermediates in the Wittig reaction. Based on the known acidities of stabilized ylide precursors, we proposed that a methylene group adjacent to phosphorus in these compounds can ensure proton shuttling across lipid membranes. Here, we synthesized (decyloxycarbonylmethyl)triphenylphosphonium bromide (CMTPP-C10) by reaction of triphenylphosphine with decyl bromoacetate. This phosphonium salt precursor of the ester-stabilized phosphorus ylide along with its octyl (CMTPP-C8) and dodecyl (CMTPP-C12) analogues was found to be a carrier of protons in mitochondrial, chloroplast and artificial lipid membranes, suggesting that it can reversibly release hydrogen ions and diffuse through the membranes in both zwitterionic (ylide) and cationic forms. The CMTPP-C10-mediated electrical current across planar bilayer lipid membranes exhibited pronounced proton selectivity. Similar to conventional protonophores, known to uncouple electron transport and ATP synthesis, CMTPP-Cn (n = 8, 10, 12) stimulated mitochondrial respiration, while decreasing membrane potential, at micromolar concentrations, thereby showing the classical uncoupling activity in mitochondria. CMTPP-C12 also caused dissipation of transmembrane pH gradient on chloroplast membranes. Importantly, CMTPP-C10 exhibited substantially lower toxicity in cell culture, than C12TPP. Thus, we report the finding of a new class of ylide-type protonophores, which is of substantial interest due to promising therapeutic properties of uncouplers.
Collapse
Affiliation(s)
- Roman S Kirsanov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ljudmila S Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Iliuza R Iaubasarova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Pavel A Nazarov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alisa A Panteleeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Konstantin G Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; The "Russian Clinical Research Center for Gerontology" of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Lyudmila B Popova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Galina A Korshunova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
21
|
Mitochondria-Targeted Curcumin: A Potent Antibacterial Agent against Methicillin-Resistant Staphylococcus aureus with a Possible Intracellular ROS Accumulation as the Mechanism of Action. Antibiotics (Basel) 2023; 12:antibiotics12020401. [PMID: 36830311 PMCID: PMC9952693 DOI: 10.3390/antibiotics12020401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Mitocurcumin (a triphenylphosphonium curcumin derivative) was previously reported as a selective antitumoral compound on different cellular lines, as well as a potent bactericidal candidate. In this study, the same compound showed strong antimicrobial efficacy against different strains of methicillin-resistant Staphylococcus aureus (MRSA). The minimum inhibitory concentration was identical for all tested strains (four strains of MRSA and one strain of methicillin-sensitive Staphylococcus aureus), suggesting a new mechanism of action compared with usual antibacterial agents. All tested strains showed a significant sensitivity in the low micromolar range for the curcumin-triphenylphosphonium derivative. This susceptibility was modulated by the menadione/glutathione addition (the addition of glutathione resulted in a significant increase in minimal inhibitory concentration from 1.95 to 3.9 uM, whereas adding menadione resulted in a decrease of 0.49 uM). The fluorescence microscopy showed a better intrabacterial accumulation for the new curcumin-triphenylphosphonium derivative compared with simple curcumin. The MitoTracker staining showed an accumulation of reactive oxygen species (ROS) for a S. pombe superoxide dismutase deleted model. All results suggest a new mechanism of action which is not influenced by the acquired resistance of MRSA. The most plausible mechanism is reactive oxygen species (ROS) overproduction after a massive intracellular accumulation of the curcumin-triphenylphosphonium derivative.
Collapse
|
22
|
Somayajulu M, McClellan SA, Wright R, Pitchaikannu A, Croniger B, Zhang K, Hazlett LD. Airborne Exposure of the Cornea to PM 10 Induces Oxidative Stress and Disrupts Nrf2 Mediated Anti-Oxidant Defenses. Int J Mol Sci 2023; 24:3911. [PMID: 36835320 PMCID: PMC9965133 DOI: 10.3390/ijms24043911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The purpose of this study is to test the effects of whole-body animal exposure to airborne particulate matter (PM) with an aerodynamic diameter of <10 μm (PM10) in the mouse cornea and in vitro. C57BL/6 mice were exposed to control or 500 µg/m3 PM10 for 2 weeks. In vivo, reduced glutathione (GSH) and malondialdehyde (MDA) were analyzed. RT-PCR and ELISA evaluated levels of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling and inflammatory markers. SKQ1, a novel mitochondrial antioxidant, was applied topically and GSH, MDA and Nrf2 levels were tested. In vitro, cells were treated with PM10 ± SKQ1 and cell viability, MDA, mitochondrial ROS, ATP and Nrf2 protein were tested. In vivo, PM10 vs. control exposure significantly reduced GSH, corneal thickness and increased MDA levels. PM10-exposed corneas showed significantly higher mRNA levels for downstream targets, pro-inflammatory molecules and reduced Nrf2 protein. In PM10-exposed corneas, SKQ1 restored GSH and Nrf2 levels and lowered MDA. In vitro, PM10 reduced cell viability, Nrf2 protein, and ATP, and increased MDA, and mitochondrial ROS; while SKQ1 reversed these effects. Whole-body PM10 exposure triggers oxidative stress, disrupting the Nrf2 pathway. SKQ1 reverses these deleterious effects in vivo and in vitro, suggesting applicability to humans.
Collapse
Affiliation(s)
- Mallika Somayajulu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA
| | - Sharon A. McClellan
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA
| | - Robert Wright
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA
| | - Ahalya Pitchaikannu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA
| | - Bridget Croniger
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
| | - Linda D. Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA
| |
Collapse
|
23
|
Grymel M, Lalik A, Kazek-Kęsik A, Szewczyk M, Grabiec P, Erfurt K. Design, Synthesis and Preliminary Evaluation of the Cytotoxicity and Antibacterial Activity of Novel Triphenylphosphonium Derivatives of Betulin. Molecules 2022; 27:molecules27165156. [PMID: 36014398 PMCID: PMC9416257 DOI: 10.3390/molecules27165156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
For several decades, natural products have been widely researched and their native scaffolds are the basis for the design and synthesis of new potential therapeutic agents. Betulin is an interesting biologically attractive natural parent molecule with a high safety profile and can easily undergo a variety of structural modifications. Herein, we describe the synthesis of new molecular hybrids of betulin via covalent linkage with an alkyltriphenylphosphonium moiety. The proposed strategy enables the preparation of semi-synthetic derivatives (28-TPP⊕ BN and 3,28-bisTPP⊕ BN) from betulin through simple transformations in high yields. The obtained results showed that the presence of a lipophilic cation improved the solubility of the tested analogs compared to betulin, and increased their cytotoxicity. Among the triphenylphosphonium derivatives tested, analogs 7a (IC50 of 5.56 µM) and 7b (IC50 of 5.77 µM) demonstrated the highest cytotoxicity against the colorectal carcinoma cell line (HCT 116). TPP⊕-conjugates with betulin showed antimicrobial properties against Gram-positive reference Staphylococcus aureus ATCC 25923 and Staphylococcus epidermidis ATCC 12228 bacteria, at a 200 µM concentration in water. Hence, the conjugation of betulin's parent backbone with a triphenylphosphonium moiety promotes transport through the hydrophobic barriers of the mitochondrial membrane, making it a promising strategy to improve the bioavailability of natural substances.
Collapse
Affiliation(s)
- Mirosława Grymel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
- Correspondence: ; Tel.: +48-032-237-1873; Fax: +48-032-237-2094
| | - Anna Lalik
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Alicja Kazek-Kęsik
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100 Gliwice, Poland
| | - Marietta Szewczyk
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Patrycja Grabiec
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Karol Erfurt
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| |
Collapse
|
24
|
Girik V, Feng S, Hariri H, Henne WM, Riezman H. Vacuole-Specific Lipid Release for Tracking Intracellular Lipid Metabolism and Transport in Saccharomyces cerevisiae. ACS Chem Biol 2022; 17:1485-1494. [PMID: 35667650 PMCID: PMC9207805 DOI: 10.1021/acschembio.2c00120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lipid metabolism is spatiotemporally regulated within cells, yet intervention into lipid functions at subcellular resolution remains difficult. Here, we report a method that enables site-specific release of sphingolipids and cholesterol inside the vacuole in Saccharomyces cerevisiae. Using this approach, we monitored real-time sphingolipid metabolic flux out of the vacuole by mass spectrometry and found that the endoplasmic reticulum-vacuole-tethering protein Mdm1 facilitated the metabolism of sphingoid bases into ceramides. In addition, we showed that cholesterol, once delivered into yeast using our method, could restore cell proliferation induced by ergosterol deprivation, overcoming the previously described sterol-uptake barrier under aerobic conditions. Together, these data define a new way to study intracellular lipid metabolism and transport from the vacuole in yeast.
Collapse
Affiliation(s)
- Vladimir Girik
- Department of Biochemistry, University of Geneva, Geneva 1205, Switzerland
| | - Suihan Feng
- Department of Biochemistry, University of Geneva, Geneva 1205, Switzerland.,National Centre of Competence in Research (NCCR) in Chemical Biology, University of Geneva, Geneva 1205, Switzerland
| | - Hanaa Hariri
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390-9039 United States
| | - W Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390-9039 United States
| | - Howard Riezman
- Department of Biochemistry, University of Geneva, Geneva 1205, Switzerland
| |
Collapse
|
25
|
Yang J, Guo Q, Feng X, Liu Y, Zhou Y. Mitochondrial Dysfunction in Cardiovascular Diseases: Potential Targets for Treatment. Front Cell Dev Biol 2022; 10:841523. [PMID: 35646910 PMCID: PMC9140220 DOI: 10.3389/fcell.2022.841523] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases (CVDs) are serious public health issues and are responsible for nearly one-third of global deaths. Mitochondrial dysfunction is accountable for the development of most CVDs. Mitochondria produce adenosine triphosphate through oxidative phosphorylation and inevitably generate reactive oxygen species (ROS). Excessive ROS causes mitochondrial dysfunction and cell death. Mitochondria can protect against these damages via the regulation of mitochondrial homeostasis. In recent years, mitochondria-targeted therapy for CVDs has attracted increasing attention. Various studies have confirmed that clinical drugs (β-blockers, angiotensin-converting enzyme inhibitors/angiotensin receptor-II blockers) against CVDs have mitochondrial protective functions. An increasing number of cardiac mitochondrial targets have shown their cardioprotective effects in experimental and clinical studies. Here, we briefly introduce the mechanisms of mitochondrial dysfunction and summarize the progression of mitochondrial targets against CVDs, which may provide ideas for experimental studies and clinical trials.
Collapse
|
26
|
Castelôa M, Moreira-Pinto B, Benfeito S, Borges F, Fonseca BM, Rebelo I. In Vitro Effects of Mitochondria-Targeted Antioxidants in a Small-Cell Carcinoma of the Ovary of Hypercalcemic Type and in Type 1 and Type 2 Endometrial Cancer. Biomedicines 2022; 10:biomedicines10040800. [PMID: 35453550 PMCID: PMC9030827 DOI: 10.3390/biomedicines10040800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Small-cell carcinoma of the ovary of hypercalcemic type (SCCOHT) and endometrial cancer from type 1 and type 2 are gynecological tumors that affect women worldwide. The treatment encompasses the use of cytotoxic drugs that are nonspecific and inefficient. “Mitocans”, a family of drugs that specifically target tumor cells’ mitochondria, might be a solution, as they conjugate compounds, such as antioxidants, with carriers, such as lipophilic cations, that direct them to the mitochondria. In this study, caffeic acid was conjugated with triphenylphosphonium (TPP), 4-picolinium, or isoquinolinium, forming 3 new compounds (Mito6_TPP, Mito6_picol., and Mito6_isoq.) that were tested on ovarian (COV434) and endometrial (Hec50co and Ishikawa) cancer cells. The results of MTT and neutral red assays suggested a time- and concentration-dependent decrease in cell viability in all tumor cell lines. The presence of apoptosis was indicated by the Giemsa and Höechst staining and by the decrease in mitochondrial membrane potential. The measurement of intracellular reactive oxygen species demonstrated the antioxidant properties of these compounds, which might be related to cell death. Generally, Mito6_TPP was more active at lower concentrations than Mito6_picol. or Mito6_isoq., but was accompanied by more cytotoxic effects, as shown by the lactate dehydrogenase release. Non-tumorous cells (HFF-1) showed no changes after treatment. This study assessed the potential of these compounds as anticancer agents, although further investigation is needed.
Collapse
Affiliation(s)
- Mariana Castelôa
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 1021/1055, 4169-007 Porto, Portugal; (M.C.); (S.B.); (F.B.)
| | - Beatriz Moreira-Pinto
- UCIBIO, Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Laboratory of Biochemistry, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sofia Benfeito
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 1021/1055, 4169-007 Porto, Portugal; (M.C.); (S.B.); (F.B.)
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 1021/1055, 4169-007 Porto, Portugal; (M.C.); (S.B.); (F.B.)
| | - Bruno M. Fonseca
- UCIBIO, Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Laboratory of Biochemistry, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Correspondence: (B.M.F.); (I.R.)
| | - Irene Rebelo
- UCIBIO, Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Laboratory of Biochemistry, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Correspondence: (B.M.F.); (I.R.)
| |
Collapse
|
27
|
Li L, Li P, Song H, Ma X, Zeng S, Peng Y, Zhang G. Targeting entry into mitochondria for increased anticancer efficacy of BCL-X L-selective inhibitors in lung cancer. Pharmacol Res 2022; 177:106095. [PMID: 35074525 DOI: 10.1016/j.phrs.2022.106095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
Abstract
The BCL-XL-selective inhibitors exhibit potential clinical application value when combined with chemotherapeutic drugs for the treatment of solid tumors. However, their efficacy in these settings is still low when treated with BCL-XL inhibitors alone in solid tumors. The mechanism responsible for the poor efficacy remains unclear. We show here that unable to interact with target of BCL-XL-selective inhibitors caused by invalid entry into mitochondria is essential for their inefficacy in solid tumors. We demonstrated in non-small-cell lung cancer (NSCLC) cells that the instability of A-1155463 in cells as well as invalid entry into mitochondria of A-1331852, two BCL-XL-selective inhibitors, accounted for their off-target problems. Furthermore, we found that a mitochondria-targeted, non-toxic small molecule NA-2a improved the on-target effect of A-1331852 to enhance its apoptotic regulatory activity, thereby increasing its anticancer activity in NSCLC. Our results indicated that NA-2a was selectively enriched in mitochondria transported by organic-anion-transporting polypeptide (OATP) transporters, which altered the permeability of the mitochondrial membrane, thereby promoting the entrance of A-1331852 to mitochondria and enhancing its disruption of the BIM-BCL-XL complex, which finally led to the increased anticancer activity in vitro and in vivo. Collectively, our data provided overwhelming evidence that the combination of NA-2a and A-1331852 could be used as a promising synergistic therapeutic agent in NSCLC therapy.
Collapse
Affiliation(s)
- Liangping Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Pingping Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Huanhuan Song
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xuesong Ma
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulan Zeng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Yan Peng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Guohai Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
28
|
Kotova EA, Antonenko YN. Fifty Years of Research on Protonophores: Mitochondrial Uncoupling As a Basis for Therapeutic Action. Acta Naturae 2022; 14:4-13. [PMID: 35441048 PMCID: PMC9013436 DOI: 10.32607/actanaturae.11610] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/21/2021] [Indexed: 11/20/2022] Open
Abstract
Protonophores are compounds capable of electrogenic transport of protons across
membranes. Protonophores have been intensively studied over the past 50 years
owing to their ability to uncouple oxidation and phosphorylation in
mitochondria and chloroplasts. The action mechanism of classical uncouplers,
such as DNP and CCCP, in mitochondria is believed to be related to their
protonophoric activity; i.e., their ability to transfer protons across the
lipid part of the mitochondrial membrane. Given the recently revealed
deviations in the correlation between the protonophoric activity of some
uncouplers and their ability to stimulate mitochondrial respiration, this
review addresses the involvement of some proteins of the inner mitochondrial
membrane, such as the ATP/ADP antiporter, dicarboxylate carrier, and ATPase, in
the uncoupling process. However, these deviations do not contradict the
Mitchell theory but point to a more complex nature of the interaction of DNP,
CCCP, and other uncouplers with mitochondrial membranes. Therefore, a detailed
investigation of the action mechanism of uncouplers is required for a more
successful pharmacological use, including their antibacterial, antiviral,
anticancer, as well as cardio-, neuro-, and nephroprotective effects.
Collapse
Affiliation(s)
- E. A. Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991 Russia
| | - Y. N. Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991 Russia
| |
Collapse
|
29
|
Volynsky PE, Smirnova AI, Akimov SA, Sokolov SS, Severin FF. The Membrane-Water Partition Coefficients of Antifungal, but Not Antibacterial, Membrane-Active Compounds Are Similar. Front Microbiol 2021; 12:756408. [PMID: 34803981 PMCID: PMC8602886 DOI: 10.3389/fmicb.2021.756408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pavel E. Volynsky
- Laboratory of Biomolecular Modeling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Alexandra I. Smirnova
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey A. Akimov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Svyatoslav S. Sokolov
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Fedor F. Severin
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
30
|
Neuroprotective Potential of Mild Uncoupling in Mitochondria. Pros and Cons. Brain Sci 2021; 11:brainsci11081050. [PMID: 34439669 PMCID: PMC8392724 DOI: 10.3390/brainsci11081050] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
There has been an explosion of interest in the use of uncouplers of oxidative phosphorylation in mitochondria in the treatment of several pathologies, including neurological ones. In this review, we analyzed all the mechanisms associated with mitochondrial uncoupling and the metabolic and signaling cascades triggered by uncouplers. We provide a full set of positive and negative effects that should be taken into account when using uncouplers in experiments and clinical practice.
Collapse
|
31
|
Jaglal Y, Osman N, Omolo CA, Mocktar C, Devnarain N, Govender T. Formulation of pH-responsive lipid-polymer hybrid nanoparticles for co-delivery and enhancement of the antibacterial activity of vancomycin and 18β-glycyrrhetinic acid. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Iaubasarova IR, Khailova LS, Nazarov PA, Rokitskaya TI, Silachev DN, Danilina TI, Plotnikov EY, Denisov SS, Kirsanov RS, Korshunova GA, Kotova EA, Zorov DB, Antonenko YN. Linking 7-Nitrobenzo-2-oxa-1,3-diazole (NBD) to Triphenylphosphonium Yields Mitochondria-Targeted Protonophore and Antibacterial Agent. BIOCHEMISTRY (MOSCOW) 2021; 85:1578-1590. [PMID: 33705296 DOI: 10.1134/s000629792012010x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Appending lipophilic cations to small molecules has been widely used to produce mitochondria-targeted compounds with specific activities. In this work, we obtained a series of derivatives of the well-known fluorescent dye 7-nitrobenzo-2-oxa-1,3-diazole (NBD). According to the previous data [Denisov et al. (2014) Bioelectrochemistry, 98, 30-38], alkyl derivatives of NBD can uncouple isolated mitochondria at concentration of tens of micromoles despite a high pKa value (~11) of the dissociating group. Here, a number of triphenylphosphonium (TPP) derivatives linked to NBD via hydrocarbon spacers of varying length (C5, C8, C10, and C12) were synthesized (mitoNBD analogues), which accumulated in the mitochondria in an energy-dependent manner. NBD-C10-TPP (C10-mitoNBD) acted as a protonophore in artificial lipid membranes (liposomes) and uncoupled isolated mitochondria at micromolar concentrations, while the derivative with a shorter linker (NBD-C5-TPP, or C5-mitoNBD) exhibited no such activities. In accordance with this data, C10-mitoNBD was significantly more efficient than C5-mitoNBD in suppressing the growth of Bacillus subtilis. C10-mitoNBD and C12-mitoNBD demonstrated the highest antibacterial activity among the investigated analogues. C10-mitoNBD also exhibited the neuroprotective effect in the rat model of traumatic brain injury.
Collapse
Affiliation(s)
- I R Iaubasarova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - L S Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - P A Nazarov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - T I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - D N Silachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - T I Danilina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - E Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - S S Denisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, Maastricht, 6229 ER, The Netherlands
| | - R S Kirsanov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - G A Korshunova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - E A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - D B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Y N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
33
|
Mitochondrial Succinate Metabolism and Reactive Oxygen Species Are Important but Not Essential for Eliciting Carotid Body and Ventilatory Responses to Hypoxia in the Rat. Antioxidants (Basel) 2021; 10:antiox10060840. [PMID: 34070267 PMCID: PMC8225218 DOI: 10.3390/antiox10060840] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 01/31/2023] Open
Abstract
Reflex increases in breathing in response to acute hypoxia are dependent on activation of the carotid body (CB)—A specialised peripheral chemoreceptor. Central to CB O2-sensing is their unique mitochondria but the link between mitochondrial inhibition and cellular stimulation is unresolved. The objective of this study was to evaluate if ex vivo intact CB nerve activity and in vivo whole body ventilatory responses to hypoxia were modified by alterations in succinate metabolism and mitochondrial ROS (mitoROS) generation in the rat. Application of diethyl succinate (DESucc) caused concentration-dependent increases in chemoafferent frequency measuring approximately 10–30% of that induced by severe hypoxia. Inhibition of mitochondrial succinate metabolism by dimethyl malonate (DMM) evoked basal excitation and attenuated the rise in chemoafferent activity in hypoxia. However, approximately 50% of the response to hypoxia was preserved. MitoTEMPO (MitoT) and 10-(6′-plastoquinonyl) decyltriphenylphosphonium (SKQ1) (mitochondrial antioxidants) decreased chemoafferent activity in hypoxia by approximately 20–50%. In awake animals, MitoT and SKQ1 attenuated the rise in respiratory frequency during hypoxia, and SKQ1 also significantly blunted the overall hypoxic ventilatory response (HVR) by approximately 20%. Thus, whilst the data support a role for succinate and mitoROS in CB and whole body O2-sensing in the rat, they are not the sole mediators. Treatment of the CB with mitochondrial selective antioxidants may offer a new approach for treating CB-related cardiovascular–respiratory disorders.
Collapse
|
34
|
Pavlova JA, Khairullina ZZ, Tereshchenkov AG, Nazarov PA, Lukianov DA, Volynkina IA, Skvortsov DA, Makarov GI, Abad E, Murayama SY, Kajiwara S, Paleskava A, Konevega AL, Antonenko YN, Lyakhovich A, Osterman IA, Bogdanov AA, Sumbatyan NV. Triphenilphosphonium Analogs of Chloramphenicol as Dual-Acting Antimicrobial and Antiproliferating Agents. Antibiotics (Basel) 2021; 10:antibiotics10050489. [PMID: 33922611 PMCID: PMC8145938 DOI: 10.3390/antibiotics10050489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
In the current work, in continuation of our recent research, we synthesized and studied new chimeric compounds, including the ribosome-targeting antibiotic chloramphenicol (CHL) and the membrane-penetrating cation triphenylphosphonium (TPP), which are linked by alkyl groups of different lengths. Using various biochemical assays, we showed that these CAM-Cn-TPP compounds bind to the bacterial ribosome, inhibit protein synthesis in vitro and in vivo in a way similar to that of the parent CHL, and significantly reduce membrane potential. Similar to CAM-C4-TPP, the mode of action of CAM-C10-TPP and CAM-C14-TPP in bacterial ribosomes differs from that of CHL. By simulating the dynamics of CAM-Cn-TPP complexes with bacterial ribosomes, we proposed a possible explanation for the specificity of the action of these analogs in the translation process. CAM-C10-TPP and CAM-C14-TPP more strongly inhibit the growth of the Gram-positive bacteria, as compared to CHL, and suppress some CHL-resistant bacterial strains. Thus, we have shown that TPP derivatives of CHL are dual-acting compounds targeting both the ribosomes and cellular membranes of bacteria. The TPP fragment of CAM-Cn-TPP compounds has an inhibitory effect on bacteria. Moreover, since the mitochondria of eukaryotic cells possess qualities similar to those of their prokaryotic ancestors, we demonstrate the possibility of targeting chemoresistant cancer cells with these compounds.
Collapse
Affiliation(s)
- Julia A. Pavlova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (J.A.P.); (Z.Z.K.); (D.A.S.); (A.A.B.)
| | - Zimfira Z. Khairullina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (J.A.P.); (Z.Z.K.); (D.A.S.); (A.A.B.)
| | - Andrey G. Tereshchenkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119992 Moscow, Russia; (A.G.T.); (P.A.N.); (Y.N.A.)
| | - Pavel A. Nazarov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119992 Moscow, Russia; (A.G.T.); (P.A.N.); (Y.N.A.)
- Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Dmitrii A. Lukianov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 143028 Skolkovo, Russia;
| | - Inna A. Volynkina
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Dmitry A. Skvortsov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (J.A.P.); (Z.Z.K.); (D.A.S.); (A.A.B.)
| | - Gennady I. Makarov
- Laboratory of the Multiscale Modeling of Multicomponent Materials, South Ural State University, 454080 Chelyabinsk, Russia;
| | - Etna Abad
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
| | - Somay Y. Murayama
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8340, Japan;
| | - Susumu Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan;
| | - Alena Paleskava
- Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, 188300 Gatchina, Russia; (A.P.); (A.L.K.)
- Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| | - Andrey L. Konevega
- Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, 188300 Gatchina, Russia; (A.P.); (A.L.K.)
- Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
- NRC “Kurchatov Institute”, 123182 Moscow, Russia
| | - Yuri N. Antonenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119992 Moscow, Russia; (A.G.T.); (P.A.N.); (Y.N.A.)
| | - Alex Lyakhovich
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia;
- Vall D’Hebron Institut de Recerca, 08035 Barcelona, Spain
| | - Ilya A. Osterman
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (J.A.P.); (Z.Z.K.); (D.A.S.); (A.A.B.)
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 143028 Skolkovo, Russia;
- Genetics and Life Sciences Research Center, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Correspondence: (I.A.O.); (N.V.S.)
| | - Alexey A. Bogdanov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (J.A.P.); (Z.Z.K.); (D.A.S.); (A.A.B.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119992 Moscow, Russia; (A.G.T.); (P.A.N.); (Y.N.A.)
| | - Natalia V. Sumbatyan
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (J.A.P.); (Z.Z.K.); (D.A.S.); (A.A.B.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119992 Moscow, Russia; (A.G.T.); (P.A.N.); (Y.N.A.)
- Correspondence: (I.A.O.); (N.V.S.)
| |
Collapse
|
35
|
Synthesis and in vitro evaluation of triphenylphosphonium derivatives of acetylsalicylic and salicylic acids: structure-dependent interactions with cancer cells, bacteria, and mitochondria. Med Chem Res 2021. [DOI: 10.1007/s00044-020-02674-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
36
|
Semenova AA, Samartsev VN, Dubinin MV. The stimulation of succinate-fueled respiration of rat liver mitochondria in state 4 by α,ω-hexadecanedioic acid without induction of proton conductivity of the inner membrane. Intrinsic uncoupling of the bc 1 complex. Biochimie 2021; 181:215-225. [PMID: 33400934 DOI: 10.1016/j.biochi.2020.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/19/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
The paper shows that natural α,ω-dioic acid, α,ω-hexadecanedioic acid (HDA), is able to stimulate the respiration of succinate-fueled rat liver mitochondria in state 4 without induction of proton conductivity of the inner membrane. This effect of HDA is less pronounced in glutamate/malate-fueled mitochondria, as well as in the case of ascorbate/TMPD or ascorbate/ferrocyanide substrate systems, which transfer electrons directly to cytochrome c. It is noted that HDA-induced stimulation of respiration is not associated with damage to the inner membrane in a part of mitochondria and with shunting of electrons through the bc1 complex. Therefore, HDA can be considered as a natural decoupling agent. Specific inhibitors of the bc1 complex (antimycin A and myxothiazole) as well as malonate and dithionitrobenzoate were used in the inhibitory analysis. These and other experiments have shown that during the oxidation of succinate in liver mitochondria, the decoupling effect of HDA is mainly carried out at the level of the bc1 complex. We hypothesized that HDA is capable of promoting the cyclic transport of protons within the bc1 complex and thus switch this complex to the idle mode of operation (intrinsic uncoupling of the bc1 complex). Induction of free respiration in liver mitochondria by HDA at the level of the bc1 complex is considered as one of the "rescue pathways" of hepatocytes in various pathological conditions, accompanied by disorders of carbohydrate and lipid metabolism and increased oxidative stress.
Collapse
Affiliation(s)
- Alena A Semenova
- Mari State University, Pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia
| | - Victor N Samartsev
- Mari State University, Pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia
| | - Mikhail V Dubinin
- Mari State University, Pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia.
| |
Collapse
|
37
|
Chernyak BV, Popova EN, Zinovkina LA, Lyamzaev KG, Zinovkin RA. Mitochondria as Targets for Endothelial Protection in COVID-19. Front Physiol 2020; 11:606170. [PMID: 33329059 PMCID: PMC7710659 DOI: 10.3389/fphys.2020.606170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022] Open
Affiliation(s)
- Boris V Chernyak
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina N Popova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Ludmila A Zinovkina
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Konstantin G Lyamzaev
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Roman A Zinovkin
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
38
|
Bottani E, Lamperti C, Prigione A, Tiranti V, Persico N, Brunetti D. Therapeutic Approaches to Treat Mitochondrial Diseases: "One-Size-Fits-All" and "Precision Medicine" Strategies. Pharmaceutics 2020; 12:E1083. [PMID: 33187380 PMCID: PMC7696526 DOI: 10.3390/pharmaceutics12111083] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Primary mitochondrial diseases (PMD) refer to a group of severe, often inherited genetic conditions due to mutations in the mitochondrial genome or in the nuclear genes encoding for proteins involved in oxidative phosphorylation (OXPHOS). The mutations hamper the last step of aerobic metabolism, affecting the primary source of cellular ATP synthesis. Mitochondrial diseases are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. The limited information of the natural history, the limitations of currently available preclinical models, coupled with the large variability of phenotypical presentations of PMD patients, have strongly penalized the development of effective therapies. However, new therapeutic strategies have been emerging, often with promising preclinical and clinical results. Here we review the state of the art on experimental treatments for mitochondrial diseases, presenting "one-size-fits-all" approaches and precision medicine strategies. Finally, we propose novel perspective therapeutic plans, either based on preclinical studies or currently used for other genetic or metabolic diseases that could be transferred to PMD.
Collapse
Affiliation(s)
- Emanuela Bottani
- Department of Diagnostics and Public Health, Section of Pharmacology, University of Verona, 37134 Verona, Italy
| | - Costanza Lamperti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Clinic Düsseldorf (UKD), Heinrich Heine University (HHU), 40225 Dusseldorf, Germany;
| | - Valeria Tiranti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Nicola Persico
- Department of Clinical Science and Community Health, University of Milan, 20122 Milan, Italy;
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Dario Brunetti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| |
Collapse
|
39
|
Lipophilic Cations Rescue the Growth of Yeast under the Conditions of Glycolysis Overflow. Biomolecules 2020; 10:biom10091345. [PMID: 32962296 PMCID: PMC7563754 DOI: 10.3390/biom10091345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Chemicals inducing a mild decrease in the ATP/ADP ratio are considered as caloric restriction mimetics as well as treatments against obesity. Screening for such chemicals in animal model systems requires a lot of time and labor. Here, we present a system for the rapid screening of non-toxic substances causing such a de-energization of cells. We looked for chemicals allowing the growth of yeast lacking trehalose phosphate synthase on a non-fermentable carbon source in the presence of glucose. Under such conditions, the cells cannot grow because the cellular phosphate is mostly being used to phosphorylate the sugars in upper glycolysis, while the biosynthesis of bisphosphoglycerate is blocked. We reasoned that by decreasing the ATP/ADP ratio, one might prevent the phosphorylation of the sugars and also boost bisphosphoglycerate synthesis by providing the substrate, i.e., inorganic phosphate. We confirmed that a complete inhibition of oxidative phosphorylation alleviates the block. As our system includes a non-fermentable carbon source, only the chemicals that did not cause a complete block of mitochondrial ATP synthesis allowed the initial depletion of glucose followed by respiratory growth. Using this system, we found two novel compounds, dodecylmethyl diphenylamine (FS1) and diethyl (tetradecyl) phenyl ammonium bromide (Kor105), which possess a mild membrane-depolarizing activity.
Collapse
|
40
|
Cardiolipin, Perhydroxyl Radicals, and Lipid Peroxidation in Mitochondrial Dysfunctions and Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1323028. [PMID: 32963690 PMCID: PMC7499269 DOI: 10.1155/2020/1323028] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 02/19/2020] [Indexed: 01/09/2023]
Abstract
Mitochondrial dysfunctions caused by oxidative stress are currently regarded as the main cause of aging. Accumulation of mutations and deletions of mtDNA is a hallmark of aging. So far, however, there is no evidence that most studied oxygen radicals are directly responsible for mutations of mtDNA. Oxidative damages to cardiolipin (CL) and phosphatidylethanolamine (PEA) are also hallmarks of oxidative stress, but the mechanisms of their damage remain obscure. CL is the only phospholipid present almost exclusively in the inner mitochondrial membrane (IMM) where it is responsible, together with PEA, for the maintenance of the superstructures of oxidative phosphorylation enzymes. CL has negative charges at the headgroups and due to specific localization at the negative curves of the IMM, it creates areas with the strong negative charge where local pH may be several units lower than in the surrounding bulk phases. At these sites with the higher acidity, the chance of protonation of the superoxide radical (O2•), generated by the respiratory chain, is much higher with the formation of the highly reactive hydrophobic perhydroxyl radical (HO2•). HO2• specifically reacts with the double bonds of polyunsaturated fatty acids (PUFA) initiating the isoprostane pathway of lipid peroxidation. Because HO2• is formed close to CL aggregates and PEA, it causes peroxidation of the linoleic acid in CL and also damages PEA. This causes disruption of the structural and functional integrity of the respirosomes and ATP synthase. We provide evidence that in elderly individuals with metabolic syndrome (MetS), fatty acids become the major substrates for production of ATP and this may increase several-fold generation of O2• and thus HO2•. We conclude that MetS accelerates aging and the mitochondrial dysfunctions are caused by the HO2•-induced direct oxidation of CL and the isoprostane pathway of lipid peroxidation (IPLP). The toxic products of IPLP damage not only PEA, but also mtDNA and OXPHOS proteins. This results in gradual disruption of the structural and functional integrity of mitochondria and cells.
Collapse
|
41
|
Mitoquinone (MitoQ) Inhibits Platelet Activation Steps by Reducing ROS Levels. Int J Mol Sci 2020; 21:ijms21176192. [PMID: 32867213 PMCID: PMC7503844 DOI: 10.3390/ijms21176192] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Platelet activation plays a key role in cardiovascular diseases. The generation of mitochondrial reactive oxygen species (ROS) has been described as a critical step required for platelet activation. For this reason, it is necessary to find new molecules with antiplatelet activity and identify their mechanisms of action. Mitoquinone (MitoQ) is a mitochondria-targeted antioxidant that reduces mitochondrial overproduction of ROS. In this work, the antiplatelet effect of MitoQ through platelet adhesion and spreading, secretion, and aggregation was evaluated. Thus MitoQ, in a non-toxic effect, decreased platelet adhesion and spreading on collagen surface, and expression of P-selectin and CD63, and inhibited platelet aggregation induced by collagen, convulxin, thrombin receptor activator peptide-6 (TRAP-6), and phorbol 12-myristate 13-acetate (PMA). As an antiplatelet mechanism, we showed that MitoQ produced mitochondrial depolarization and decreased ATP secretion. Additionally, in platelets stimulated with antimycin A and collagen MitoQ significantly decreased ROS production. Our findings showed, for the first time, an antiplatelet effect of MitoQ that is probably associated with its mitochondrial antioxidant effect.
Collapse
|
42
|
Goleva TN, Lyamzaev KG, Rogov AG, Khailova LS, Epremyan KK, Shumakovich GP, Domnina LV, Ivanova OY, Marmiy NV, Zinevich TV, Esipov DS, Zvyagilskaya RA, Skulachev VP, Chernyak BV. Mitochondria-targeted 1,4-naphthoquinone (SkQN) is a powerful prooxidant and cytotoxic agent. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148210. [PMID: 32305410 DOI: 10.1016/j.bbabio.2020.148210] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/27/2020] [Accepted: 04/14/2020] [Indexed: 12/28/2022]
Abstract
An increase in the production of reactive oxygen species (ROS) in mitochondria due to targeted delivery of redox active compounds may be useful in studies of modulation of cell functions by mitochondrial ROS. Recently, the mitochondria-targeted derivative of menadione (MitoK3) was synthesized. However, MitoK3 did not induce mitochondrial ROS production and lipid peroxidation while exerting significant cytotoxic action. Here we synthesized 1,4-naphthoquinone conjugated with alkyltriphenylphosphonium (SkQN) as a prototype of mitochondria-targeted prooxidant, and its redox properties, interactions with isolated mitochondria, yeast cells and various human cell lines were investigated. According to electrochemical measurements, SkQN was more active redox agent and, due to the absence of methyl group in the naphthoquinone ring, more reactive as electrophile than MitoK3. SkQN (but not MitoK3) stimulated hydrogen peroxide production in isolated mitochondria. At low concentrations, SkQN stimulated state 4 respiration in mitochondria, decreased membrane potential, and blocked ATP synthesis, being more efficient uncoupler of oxidative phosphorylation than MitoK3. In yeast cells, SkQN decreased cell viability and induced oxidative stress and mitochondrial fragmentation. SkQN killed various tumor cells much more efficiently than MitoK3. Since many tumors are characterized by increased oxidative stress, the use of new mitochondria-targeted prooxidants may be a promising strategy for anticancer therapy.
Collapse
Affiliation(s)
- Tatyana N Goleva
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, Russian Federation
| | - Konstantin G Lyamzaev
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Russian Federation
| | - Anton G Rogov
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, Russian Federation
| | - Ljudmila S Khailova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Russian Federation
| | - Khoren K Epremyan
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, Russian Federation
| | - Galina P Shumakovich
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, Russian Federation
| | - Lidia V Domnina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Russian Federation
| | - Olga Yu Ivanova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Russian Federation
| | - Natalia V Marmiy
- Faculty of Biology, Institute of Mitoengineering, M.V. Lomonosov Moscow State University, Russian Federation
| | - Tatiana V Zinevich
- Faculty of Biology, Institute of Mitoengineering, M.V. Lomonosov Moscow State University, Russian Federation
| | - Dmitry S Esipov
- Faculty of Biology, Institute of Mitoengineering, M.V. Lomonosov Moscow State University, Russian Federation
| | - Renata A Zvyagilskaya
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, Russian Federation
| | - Vladimir P Skulachev
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Russian Federation
| | - Boris V Chernyak
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Russian Federation.
| |
Collapse
|
43
|
|
44
|
Goedeke L, Perry RJ, Shulman GI. Emerging Pharmacological Targets for the Treatment of Nonalcoholic Fatty Liver Disease, Insulin Resistance, and Type 2 Diabetes. Annu Rev Pharmacol Toxicol 2020; 59:65-87. [PMID: 30625285 DOI: 10.1146/annurev-pharmtox-010716-104727] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes (T2D) is characterized by persistent hyperglycemia despite hyperinsulinemia, affects more than 400 million people worldwide, and is a major cause of morbidity and mortality. Insulin resistance, of which ectopic lipid accumulation in the liver [nonalcoholic fatty liver disease (NAFLD)] and skeletal muscle is the root cause, plays a major role in the development of T2D. Although lifestyle interventions and weight loss are highly effective at reversing NAFLD and T2D, weight loss is difficult to sustain, and newer approaches aimed at treating the root cause of T2D are urgently needed. In this review, we highlight emerging pharmacological strategies aimed at improving insulin sensitivity and T2D by altering hepatic energy balance or inhibiting key enzymes involved in hepatic lipid synthesis. We also summarize recent research suggesting that liver-targeted mitochondrial uncoupling may be an attractive therapeutic approach to treat NAFLD, nonalcoholic steatohepatitis, and T2D.
Collapse
Affiliation(s)
- Leigh Goedeke
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA; , ,
| | - Rachel J Perry
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA; , , .,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA; , , .,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
45
|
A lipophilic cation protects crops against fungal pathogens by multiple modes of action. Nat Commun 2020; 11:1608. [PMID: 32231209 PMCID: PMC7105494 DOI: 10.1038/s41467-020-14949-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/11/2020] [Indexed: 12/21/2022] Open
Abstract
The emerging resistance of crop pathogens to fungicides poses a challenge to food security and compels discovery of new antifungal compounds. Here, we show that mono-alkyl lipophilic cations (MALCs) inhibit oxidative phosphorylation by affecting NADH oxidation in the plant pathogens Zymoseptoria tritici, Ustilago maydis and Magnaporthe oryzae. One of these MALCs, consisting of a dimethylsulfonium moiety and a long alkyl chain (C18-SMe2+), also induces production of reactive oxygen species at the level of respiratory complex I, thus triggering fungal apoptosis. In addition, C18-SMe2+ activates innate plant defense. This multiple activity effectively protects cereals against Septoria tritici blotch and rice blast disease. C18-SMe2+ has low toxicity in Daphnia magna, and is not mutagenic or phytotoxic. Thus, MALCs hold potential as effective and non-toxic crop fungicides. New fungicides are needed due to emerging resistance shown by crop pathogens. Here, the authors show that a mono-alkyl lipophilic cation protects plants from fungal pathogens by inhibiting fungal mitochondrial respiration, inducing production of reactive oxygen species, triggering fungal apoptosis, and activating innate plant defense.
Collapse
|
46
|
Zinovkin RA, Zamyatnin AA. Mitochondria-Targeted Drugs. Curr Mol Pharmacol 2020; 12:202-214. [PMID: 30479224 PMCID: PMC6875871 DOI: 10.2174/1874467212666181127151059] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/05/2018] [Accepted: 11/19/2018] [Indexed: 01/06/2023]
Abstract
Background: Targeting of drugs to the subcellular compartments represents one of the modern trends in molecular pharmacology. The approach for targeting mitochondria was developed nearly 50 years ago, but only in the last decade has it started to become widely used for delivering drugs. A number of pathologies are associated with mitochondrial dysfunction, including cardiovascular, neurological, inflammatory and metabolic conditions. Objective: This mini-review aims to highlight the role of mitochondria in pathophysiological conditions and diseases, to classify and summarize our knowledge about targeting mitochondria and to review the most important preclinical and clinical data relating to the antioxidant lipophilic cations MitoQ and SkQ1. Methods: This is a review of available information in the PubMed and Clinical Trials databases (US National Library of Medicine) with no limiting period. Results and Conclusion: Mitochondria play an important role in the pathogenesis of many diseases and possibly in aging. Both MitoQ and SkQ1 have shown many beneficial features in animal models and in a few completed clinical trials. More clinical trials and research efforts are needed to understand the signaling pathways influenced by these compounds. The antioxidant lipophilic cations have great potential for the treatment of a wide range of pathologies.
Collapse
Affiliation(s)
- Roman A Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russian Federation.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Institute of Mitoengineering, Moscow State University, Moscow, Russian Federation
| | - Andrey A Zamyatnin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russian Federation.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
47
|
Zinovkina LA, Galivondzhyan AK, Prikhodko AS, Galkin II, Zinovkin RA. Mitochondria-targeted triphenylphosphonium-based compounds do not affect estrogen receptor α. PeerJ 2020; 8:e8803. [PMID: 32257641 PMCID: PMC7102506 DOI: 10.7717/peerj.8803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/25/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Targeting negatively charged mitochondria is often achieved using triphenylphosphonium (TPP) cations. These cationic vehicles may possess biological activity, and a docking study indicates that TPP-moieties may act as modulators of signaling through the estrogen receptor α (ERα). Moreover, in vivo and in vitro experiments revealed the estrogen-like effects of TPP-based compounds. Here, we tested the hypothesis that TPP-based compounds regulate the activity of ERα. METHODS We used ERa-positive and ERα-negative human breast adenocarcinoma cell lines (MCF-7 and MDA-MB-231, respectively). Cell proliferation was measured using a resazurin cell growth assay and a real-time cell analyzer assay. Cell cycle progression was analyzed using flow cytometry. Real-time PCR was used to assess mRNA expression of endogenous estrogen-responsive genes. Luciferase activity was measured to evaluate transcription driven by estrogen-responsive promoters in cells transfected with an estrogen response element (ERE)3-luciferase expression vector. RESULTS The TPP-based molecules SkQ1 and C12TPP, as well as the rhodamine-based SkQR1, did not increase the proliferation or alter the cell cycle progression of MCF-7 cells. In contrast, 17β estradiol increased the proliferation of MCF-7 cells and the proportion of cells in the S/G2/M-phases of the cell cycle. TPP-based compounds did not affect the induction of transcription of an ERE-luciferase expression vector in vitro, and SkQ1 did not alter the levels of expression of estrogen-dependent genes encoding GREB1, TFF1, COX6, and IGFBP4. CONCLUSION TPP-based compounds do not possess properties typical of ERα agonists.
Collapse
Affiliation(s)
- Ludmila A. Zinovkina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Institute of Mitoengineering, Moscow State University, Moscow, Russia
| | - Alina K. Galivondzhyan
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia S. Prikhodko
- Institute of Mitoengineering, Moscow State University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ivan I. Galkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Roman A. Zinovkin
- Institute of Mitoengineering, Moscow State University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
48
|
Semenova AA, Samartsev VN, Pavlova SI, Dubinin MV. ω-Hydroxypalmitic and α,ω-Hexadecanedioic Acids As Activators of Free Respiration and Inhibitors of H2O2 Generation in Liver Mitochondria. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2020. [DOI: 10.1134/s1990747819060084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Goleva T, Rogov A, Korshunova G, Trendeleva T, Mamaev D, Aliverdieva D, Zvyagilskaya R. SkQThy, a novel and promising mitochondria-targeted antioxidant. Mitochondrion 2019; 49:206-216. [DOI: 10.1016/j.mito.2019.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/17/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
|
50
|
Belosludtsev KN, Tenkov KS, Vedernikov AA, Belosludtseva NV, Dubinin MV. Dodecyltriphenylphosphonium As an Inducer of Potassium-Dependent Permeability in Rat Liver Mitochondria. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2019; 13:310-318. [DOI: 10.1134/s1990747819040044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 11/29/2023]
|