1
|
Hao X, Fu Y, Li S, Nie J, Zhang B, Zhang H. Porcine transient receptor potential channel 1 (TRPC1) regulates muscle growth via the Wnt/β-catenin and Wnt/Ca 2+ pathways. Int J Biol Macromol 2024; 265:130855. [PMID: 38490377 DOI: 10.1016/j.ijbiomac.2024.130855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Transient receptor potential canonical (TRPC) channels allow the intracellular entry of Ca2+ and play important roles in several physio-pathological processes. In this study, we constructed transgenic mice expressing porcine TRPC1 (Tg-pTRPC1) to verify the effects of TRPC1 on skeletal muscle growth and elucidate the underlying mechanism. Porcine TRPC1 increased the muscle mass, fiber cross-sectional area, and exercise endurance of mice and accelerated muscle repair and regeneration. TRPC1 overexpression enhanced β-catenin expression and promoted myogenesis, which was partly reversed by inhibitors of β-catenin. TRPC1 facilitated the accumulation of intracellular Ca2+ and nuclear translocation of the NFATC2/NFATC2IP complex involved in the Wnt/Ca2+ pathway, promoting muscle growth. Paired related homeobox 1 (Prrx1) promoted the expression of TRPC1, NFATC2, and NFATC2IP that participate in the regulation of muscle growth. Taken together, our findings indicate that porcine TRPC1 promoted by Prrx1 could regulate muscle development through activating the canonical Wnt/β-catenin and non-canonical Wnt/Ca2+ pathways.
Collapse
Affiliation(s)
- Xin Hao
- State Key Laboratory of animal biotech breeding, Beijing Key Laboratory of animal genetic engineering, China Agricultural University, Beijing 100193, China
| | - Yu Fu
- State Key Laboratory of animal biotech breeding, Beijing Key Laboratory of animal genetic engineering, China Agricultural University, Beijing 100193, China
| | - Shixin Li
- State Key Laboratory of animal biotech breeding, Beijing Key Laboratory of animal genetic engineering, China Agricultural University, Beijing 100193, China
| | - Jingru Nie
- State Key Laboratory of animal biotech breeding, Beijing Key Laboratory of animal genetic engineering, China Agricultural University, Beijing 100193, China
| | - Bo Zhang
- State Key Laboratory of animal biotech breeding, Beijing Key Laboratory of animal genetic engineering, China Agricultural University, Beijing 100193, China
| | - Hao Zhang
- State Key Laboratory of animal biotech breeding, Beijing Key Laboratory of animal genetic engineering, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya, Hainan 572025, China.
| |
Collapse
|
2
|
Sharma AL, Shaffer D, Netting D, Tyagi M. Cocaine sensitizes the CD4 + T cells for HIV infection by co-stimulating NFAT and AP-1. iScience 2022; 25:105651. [PMID: 36483012 PMCID: PMC9722482 DOI: 10.1016/j.isci.2022.105651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/28/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The productive infection of HIV, which generates new viral progeny, depends on the activation status of the cell. In this study, we found cocaine exposure sensitizes partially active CD4+ T cells and makes them poised for productive HIV infection. We discovered that cocaine treatment enhances the metabolic state of the cells by co-stimulating several transcription factors, mainly NFAT and AP-1, the two transcription factors, which specifically play a crucial role in enhancing both HIV and the overall cellular gene expression in T cells. We found that cocaine-induced AP-1 works in tandem with NFAT to boost HIV transcription. The enhanced HIV transcription upon cocaine exposure was further confirmed through higher phosphorylation of the crucial serine residues at the carboxyl-terminal domain (CTD) of RNA polymerase II. The insights gained from this study could aid in developing highly specialized therapeutics combating the deleterious effects of cocaine on the cocaine-using HIV population.
Collapse
Affiliation(s)
| | - Dylan Shaffer
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Daniel Netting
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| |
Collapse
|
3
|
Huang T, Gu W, Liu E, Wang B, Wang G, Dong F, Guo F, Jiao W, Sun Y, Wang X, Li S, Xu G. miR-301b-5p and its target gene nfatc2ip regulate inflammatory responses in the liver of rainbow trout (Oncorhynchus mykiss) under high temperature stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113915. [PMID: 35901591 DOI: 10.1016/j.ecoenv.2022.113915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss) is a typical cold-water aquaculture fish and a high-end aquatic product. When water temperature exceeds its optimal range of 12-18 °C, the immune system of rainbow trout becomes weakened and unbalanced. High temperature in summer and global warming severely impact rainbow trout industry. The focus of this study was to explore the mechanisms regulating the immune response of rainbow trout under high temperature stress and identify molecular elements that account for resistance to high temperature. In this study, individual fish were screened in a high temperature stress experiment and divided into resistant (R) and sensitive (S) groups. The hepatic transcriptome sequencing and analysis of mRNAs and microRNAs of the R, S, and control groups showed that the number of the differentially expressed genes (DEGs) in the S group (9259) was higher than that in the R group (5313). Furthermore, the 1233 genes differentially expressed between S and R groups were mainly enriched in immune-related pathways, including cytokine-cytokine receptor interaction, TNF signaling and IL-17 signaling. Among these DEGs were miR-301b-5p and its target gene that encodes nuclear factor of activated T cells two interacting protein (nfatc2ip). The dual-luciferase reporter system and immunofluorescence experiments verified the relationship between miR-301b-5p and nfatc2ip. We also showed that expression levels of miR-301b-5p and nfatc2ip significantly negatively correlated in the liver of rainbow trout under high temperature stress. By performing functional experiments, we showed that activation of miR-301b-5p expression or inhibition of nfatc2ip expression stimulated the phosphorylation of p65, p38, and JNK in the classical nuclear factor kappa-B and mitogen-activated protein kinase pathways under high temperature stress. These manipulations initially promoted the secretion of the pro-inflammatory factor IL-1β and then increased the levels of IL-6, IL-12, and TNF-α. In addition, activation of miR-301b-5p expression or inhibition of nfatc2ip expression stimulated the repair of the hepatic ultrastructural damage caused by high temperature stress by activating the inflammatory response in rainbow trout liver.
Collapse
Affiliation(s)
- Tianqing Huang
- Cold Water Fish Industry Technology Innovation Strategic Alliance, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Wei Gu
- Cold Water Fish Industry Technology Innovation Strategic Alliance, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Enhui Liu
- Cold Water Fish Industry Technology Innovation Strategic Alliance, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Bingqian Wang
- Cold Water Fish Industry Technology Innovation Strategic Alliance, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Gaochao Wang
- Cold Water Fish Industry Technology Innovation Strategic Alliance, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Fulin Dong
- Cold Water Fish Industry Technology Innovation Strategic Alliance, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Fuyuan Guo
- Yantai Jinghai Marine Fishery Co Ltd, Yantai, PR China
| | - Wenlong Jiao
- Gansu Fisheries Research Institute, Lanzhou, PR China
| | - Yanchun Sun
- Cold Water Fish Industry Technology Innovation Strategic Alliance, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China
| | - Xiance Wang
- Hangzhou Qiandaohu Xun Long Sci-tech CO., LTD, Hangzhou, PR China
| | - Shanwei Li
- Department of Food Science and Engineering, College of Food Science and Technology, Shanghai Ocean University, Shanghai, PR China
| | - Gefeng Xu
- Cold Water Fish Industry Technology Innovation Strategic Alliance, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, PR China.
| |
Collapse
|
4
|
Røyrvik EC, Husebye ES. The genetics of autoimmune Addison disease: past, present and future. Nat Rev Endocrinol 2022; 18:399-412. [PMID: 35411072 DOI: 10.1038/s41574-022-00653-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/23/2022]
Abstract
Autoimmune Addison disease is an endocrinopathy that is fatal if not diagnosed and treated in a timely manner. Its rarity has hampered unbiased studies of the predisposing genetic factors. A 2021 genome-wide association study, explaining up to 40% of the genetic susceptibility, has revealed new disease loci and reproduced some of the previously reported associations, while failing to reproduce others. Credible risk loci from both candidate gene and genome-wide studies indicate that, like one of its most common comorbidities, type 1 diabetes mellitus, Addison disease is primarily caused by aberrant T cell behaviour. Here, we review the current understanding of the genetics of autoimmune Addison disease and its position in the wider field of autoimmune disorders. The mechanisms that could underlie the effects on the adrenal cortex are also discussed.
Collapse
Affiliation(s)
- Ellen C Røyrvik
- Department of Clinical Science, University of Bergen, Bergen, Norway.
- K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway.
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
5
|
Srour N, Khan S, Richard S. The Influence of Arginine Methylation in Immunity and Inflammation. J Inflamm Res 2022; 15:2939-2958. [PMID: 35602664 PMCID: PMC9114649 DOI: 10.2147/jir.s364190] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022] Open
Abstract
Exploration in the field of epigenetics has revealed that protein arginine methyltransferases (PRMTs) contribute to disease, and this has given way to the development of specific small molecule compounds that inhibit arginine methylation. Protein arginine methylation is known to regulate fundamental cellular processes, such as transcription; pre-mRNA splicing and other RNA processing mechanisms; signal transduction, including the anti-viral response; and cellular metabolism. PRMTs are also implicated in the regulation of physiological processes, including embryonic development, myogenesis, and the immune system. Finally, the dysregulation of PRMTs is apparent in cancer, neurodegeneration, muscular disorders, and during inflammation. Herein, we review the functions of PRMTs in immunity and inflammation. We also discuss recent progress with PRMTs regarding the modulation of gene expression related to T and B lymphocyte differentiation, germinal center dynamics, and anti-viral signaling responses, as well as the clinical relevance of using PRMT inhibitors alone or in combination with other drugs to treat cancer, immune, and inflammatory-related diseases.
Collapse
Affiliation(s)
- Nivine Srour
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, and Departments of Biochemistry, Human Genetics, and Medicine, McGill University, Montréal, Québec, H3T 1E2, Canada
| | - Sarah Khan
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, and Departments of Biochemistry, Human Genetics, and Medicine, McGill University, Montréal, Québec, H3T 1E2, Canada
| | - Stephane Richard
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, and Departments of Biochemistry, Human Genetics, and Medicine, McGill University, Montréal, Québec, H3T 1E2, Canada
- Correspondence: Stephane Richard, Email
| |
Collapse
|
6
|
Xu X, Li N, Wang Y, Yu J, Mi J. Calcium channel TRPV6 promotes breast cancer metastasis by NFATC2IP. Cancer Lett 2021; 519:150-160. [PMID: 34265397 DOI: 10.1016/j.canlet.2021.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 12/18/2022]
Abstract
Calcium channel TRPV6 upregulation is associated with poor prognosis of breast cancer by promoting invasion and metastasis, and TRPV6 is a potential target for breast cancer therapy. However, the mechanism by which TRPV6 promotes breast metastasis remains unclear. Here, we report that TRPV6 expression is upregulated in metastatic breast cancers and that TRPV6 overexpression or upregulation accelerates primary breast cancer cell migration. In contrast, TRPV6 suppression decreases cell migration. Mechanistically, TRPV6 activates NFATC2 by increasing NFATC2IP phosphorylation at Ser204, and CDK5 is a candidate kinase that may perform this phosphorylation. Consequently, activated NFATC2 increases breast cancer metastasis by upregulating ADAMTS6 expression. These observations suggest that TRPV6 increases NFATC2 transcriptional activity by increasing NFATC2IP phosphorylation, which consequently upregulates ADAMTS6 expression to promote breast cancer metastasis.
Collapse
Affiliation(s)
- Xiang Xu
- Basic Medical Institute, Hongqiao International Institute of Medicine, Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Department of Laboratory Medicine, Shanghai General Hospital Jiading Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Li
- Basic Medical Institute, Hongqiao International Institute of Medicine, Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yugang Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Shandong, 250117, China.
| | - Jun Mi
- Basic Medical Institute, Hongqiao International Institute of Medicine, Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Department of Laboratory Medicine, Shanghai General Hospital Jiading Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Pers YM, Bony C, Duroux-Richard I, Bernard L, Maumus M, Assou S, Barry F, Jorgensen C, Noël D. miR-155 Contributes to the Immunoregulatory Function of Human Mesenchymal Stem Cells. Front Immunol 2021; 12:624024. [PMID: 33841404 PMCID: PMC8033167 DOI: 10.3389/fimmu.2021.624024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
Objectives Mesenchymal stem/stromal cells (MSCs) are widely investigated in regenerative medicine thanks to their immunomodulatory properties. They exert their anti-inflammatory function thanks to the secretion of a number of mediators, including proteins and miRNAs, which can be released in the extracellular environment or in the cargo of extracellular vesicles (EVs). However, the role of miRNAs in the suppressive function of MSCs is controversial. The aim of the study was to identify miRNAs that contribute to the immunomodulatory function of human bone marrow-derived MSCs (BM-MSCs). Methods Human BM-MSCs were primed by coculture with activated peripheral blood mononuclear cells (aPBMCs). High throughput miRNA transcriptomic analysis was performed using Human MicroRNA TaqMan® Array Cards. The immunosuppressive function of miRNAs was investigated in mixed lymphocyte reactions and the delayed type hypersensitivity (DTH) murine model. Results Upon priming, 21 out of 377 tested miRNAs were significantly modulated in primed MSCs. We validated the up-regulation of miR-29a, miR-146a, miR-155 and the down-regulation of miR-149, miR-221 and miR-361 in additional samples of primed MSCs. We showed that miR-155 significantly reduced the proliferation of aPBMCs in vitro and inflammation in vivo, using the DTH model. Analysis of miRNA-mRNA interactions revealed miR-221 as a potential target gene that is down-regulated by miR-155 both in primed MSCs and in aPBMCs. Conclusion Here, we present evidence that miR-155 participates to the immunosuppressive function of human BM-MSCs and down-regulates the expression of miR-221 as a possible inflammatory mediator.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Cells, Cultured
- Coculture Techniques
- Disease Models, Animal
- Extracellular Vesicles/genetics
- Extracellular Vesicles/immunology
- Extracellular Vesicles/metabolism
- Gene Expression Profiling
- Humans
- Hypersensitivity, Delayed/genetics
- Hypersensitivity, Delayed/immunology
- Hypersensitivity, Delayed/metabolism
- Hypersensitivity, Delayed/prevention & control
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lymphocyte Culture Test, Mixed
- Male
- Mesenchymal Stem Cell Transplantation
- Mesenchymal Stem Cells/immunology
- Mesenchymal Stem Cells/metabolism
- Mice, Inbred C57BL
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Transcriptome
- Mice
Collapse
Affiliation(s)
- Yves-Marie Pers
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, Lapeyronie University Hospital, Montpellier, France
| | - Claire Bony
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | | | - Laurène Bernard
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Marie Maumus
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Said Assou
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Frank Barry
- REMEDI, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, Lapeyronie University Hospital, Montpellier, France
| | - Danièle Noël
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, Lapeyronie University Hospital, Montpellier, France
| |
Collapse
|
8
|
Jørgensen SW, Liberti SE, Larsen NB, Lisby M, Mankouri HW, Hickson ID. Esc2 promotes telomere stability in response to DNA replication stress. Nucleic Acids Res 2019; 47:4597-4611. [PMID: 30838410 PMCID: PMC6511870 DOI: 10.1093/nar/gkz158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/25/2019] [Accepted: 03/02/2019] [Indexed: 01/27/2023] Open
Abstract
Telomeric regions of the genome are inherently difficult-to-replicate due to their propensity to generate DNA secondary structures and form nucleoprotein complexes that can impede DNA replication fork progression. Precisely how cells respond to DNA replication stalling within a telomere remains poorly characterized, largely due to the methodological difficulties in analysing defined stalling events in molecular detail. Here, we utilized a site-specific DNA replication barrier mediated by the ‘Tus/Ter’ system to define the consequences of DNA replication perturbation within a single telomeric locus. Through molecular genetic analysis of this defined fork-stalling event, coupled with the use of a genome-wide genetic screen, we identified an important role for the SUMO-like domain protein, Esc2, in limiting genome rearrangements at a telomere. Moreover, we showed that these rearrangements are driven by the combined action of the Mph1 helicase and the homologous recombination machinery. Our findings demonstrate that chromosomal context influences cellular responses to a stalled replication fork and reveal protective factors that are required at telomeric loci to limit DNA replication stress-induced chromosomal instability.
Collapse
Affiliation(s)
- Signe W Jørgensen
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark
| | - Sascha E Liberti
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark
| | - Nicolai B Larsen
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark
| | - Michael Lisby
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark.,Department of Biology, University of Copenhagen, Ole Maaløes Vej, 2200 Copenhagen N, Denmark
| | - Hocine W Mankouri
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark
| | - Ian D Hickson
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark
| |
Collapse
|
9
|
Targeted deletion of NFAT-Interacting-Protein-(NIP) 45 resolves experimental asthma by inhibiting Innate Lymphoid Cells group 2 (ILC2). Sci Rep 2019; 9:15695. [PMID: 31666531 PMCID: PMC6821848 DOI: 10.1038/s41598-019-51690-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022] Open
Abstract
Here we investigated the role of NFAT-interacting protein (NIP)-45, an Interleukin (IL)-4 inducing Transcription Factor, and its impact on the differentiation of Group 2 Innate -Lymphoid -Cells (ILC2s) in the pathogenesis of asthma. NIP45, a transcription factor regulating NFATc1 activity, mRNA was found to be induced in the Peripheral Blood mononuclear cells (PMBCs) of asthmatic pre-school children with allergies and in the peripheral blood CD4+ T cells from adult asthmatic patients. In PBMCs of asthmatic and control children, NIP45 mRNA directly correlated with NFATc1 but not with T-bet. Targeted deletion of NIP45 in mice resulted in a protective phenotype in experimental asthma with reduced airway mucus production, airway hyperresponsiveness and eosinophils. This phenotype was reversed by intranasal delivery of recombinant r-IL-33. Consistently, ILC2s and not GATA3+ CD4+ T-cells were decreased in the lungs of asthmatic NIP45−/− mice. Reduced cell number spleen ILC2s could be differentiated from NIP45−/− as compared to wild-type mice after in vivo injection of a microcircle-DNA vector expressing IL-25 and decreased cytokines and ILC2 markers in ILC2 differentiated from the bone marrow of NIP45−/− mice. NIP45 thus emerges as a new therapeutic target for the resolution of the airway pathology, down-regulation of ILC2s and mucus production in asthma.
Collapse
|
10
|
Ma M, Zhao X, Chen S, Zhao Y, yang L, Feng Y, Qin W, Li L, Jia C. Strategy Based on Deglycosylation, Multiprotease, and Hydrophilic Interaction Chromatography for Large-Scale Profiling of Protein Methylation. Anal Chem 2017; 89:12909-12917. [DOI: 10.1021/acs.analchem.7b03673] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Min Ma
- School
of Life Sciences, Tianjin University, Tianjin 300072, China
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xinyuan Zhao
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Shuo Chen
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yingyi Zhao
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Lu yang
- Department
of Blood Transfusion, Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Feng
- Beijing Hua LiShi Scientific Co. Ltd., Beijing 101300, China
| | - Weijie Qin
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Lingjun Li
- School
of Life Sciences, Tianjin University, Tianjin 300072, China
- School
of Pharmacy and Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53705, United States
| | - Chenxi Jia
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
11
|
Peng C, Wong CC. The story of protein arginine methylation: characterization, regulation, and function. Expert Rev Proteomics 2017; 14:157-170. [PMID: 28043171 DOI: 10.1080/14789450.2017.1275573] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Arginine methylation is an important post-translational modification (PTM) in cells, which is catalyzed by a group of protein arginine methyltransferases (PRMTs). It plays significant roles in diverse cellular processes and various diseases. Misregulation and aberrant expression of PRMTs can provide potential biomarkers and therapeutic targets for drug discovery. Areas covered: Herein, we review the arginine methylation literature and summarize the methodologies for the characterization of this modification, as well as describe the recent insights into arginine methyltransferases and their biological functions in diseases. Expert commentary: Benefits from the enzyme-based large-scale screening approach, the novel affinity enrichment strategies, arginine methylated protein family is the focus of attention. Although a number of arginine methyltransferases and related substrates are identified, the catalytic mechanism of different types of PRMTs remains unclear and few related demethylases are characterized. Novel functional studies continuously reveal the importance of this modification in the cell cycle and diseases. A deeper understanding of arginine methylated proteins, modification sites, and their mechanisms of regulation is needed to explore their role in life processes, especially their relationship with diseases, thus accelerating the generation of potent, selective, cell-penetrant drug candidates.
Collapse
Affiliation(s)
- Chao Peng
- a National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai , China.,b Shanghai Science Research Center , Chinese Academy of Sciences , Shanghai , China
| | - Catherine Cl Wong
- a National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai , China.,b Shanghai Science Research Center , Chinese Academy of Sciences , Shanghai , China
| |
Collapse
|
12
|
Lucitti JL, Sealock R, Buckley BK, Zhang H, Xiao L, Dudley AC, Faber JE. Variants of Rab GTPase-Effector Binding Protein-2 Cause Variation in the Collateral Circulation and Severity of Stroke. Stroke 2016; 47:3022-3031. [PMID: 27811335 DOI: 10.1161/strokeaha.116.014160] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/23/2016] [Accepted: 09/21/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND PURPOSE The extent (number and diameter) of collateral vessels varies widely and is a major determinant, along with arteriogenesis (collateral remodeling), of variation in severity of tissue injury after large artery occlusion. Differences in genetic background underlie the majority of the variation in collateral extent in mice, through alterations in collaterogenesis (embryonic collateral formation). In brain and other tissues, ≈80% of the variation in collateral extent among different mouse strains has been linked to a region on chromosome 7. We recently used congenic (CNG) fine mapping of C57BL/6 (B6, high extent) and BALB/cByJ (BC, low extent) mice to narrow the region to a 737 Kb locus, Dce1. Herein, we report the causal gene. METHODS We used additional CNG mapping and knockout mice to narrow the number of candidate genes. Subsequent inspection identified a nonsynonymous single nucleotide polymorphism between B6 and BC within Rabep2 (rs33080487). We then created B6 mice with the BC single nucleotide polymorphism at this locus plus 3 other lines for predicted alteration or knockout of Rabep2 using gene editing. RESULTS The single amino acid change caused by rs33080487 accounted for the difference in collateral extent and infarct volume between B6 and BC mice attributable to Dce1. Mechanistically, variants of Rabep2 altered collaterogenesis during embryogenesis but had no effect on angiogenesis examined in vivo and in vitro. Rabep2 deficiency altered endosome trafficking known to be involved in VEGF-A→VEGFR2 signaling required for collaterogenesis. CONCLUSIONS Naturally occurring variants of Rabep2 are major determinants of variation in collateral extent and stroke severity in mice.
Collapse
Affiliation(s)
- Jennifer L Lucitti
- From the Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - Robert Sealock
- From the Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - Brian K Buckley
- From the Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - Hua Zhang
- From the Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - Lin Xiao
- From the Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - Andrew C Dudley
- From the Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill
| | - James E Faber
- From the Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill.
| |
Collapse
|
13
|
Regulation of IL-4 Expression in Immunity and Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 941:31-77. [PMID: 27734408 DOI: 10.1007/978-94-024-0921-5_3] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IL-4 was first identified as a T cell-derived growth factor for B cells. Studies over the past several decades have markedly expanded our understanding of its cellular sources and function. In addition to T cells, IL-4 is produced by innate lymphocytes, such as NTK cells, and myeloid cells, such as basophils and mast cells. It is a signature cytokine of type 2 immune response but also has a nonimmune function. Its expression is tightly regulated at several levels, including signaling pathways, transcription factors, epigenetic modifications, microRNA, and long noncoding RNA. This chapter will review in detail the molecular mechanism regulating the cell type-specific expression of IL-4 in physiological and pathological type 2 immune responses.
Collapse
|
14
|
Morales Y, Cáceres T, May K, Hevel JM. Biochemistry and regulation of the protein arginine methyltransferases (PRMTs). Arch Biochem Biophys 2015; 590:138-152. [PMID: 26612103 DOI: 10.1016/j.abb.2015.11.030] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/14/2015] [Accepted: 11/15/2015] [Indexed: 12/27/2022]
Abstract
Many key cellular processes can be regulated by the seemingly simple addition of one, or two, methyl groups to arginine residues by the nine known mammalian protein arginine methyltransferases (PRMTs). The impact that arginine methylation has on cellular well-being is highlighted by the ever growing evidence linking PRMT dysregulation to disease states, which has marked the PRMTs as prominent pharmacological targets. This review is meant to orient the reader with respect to the structural features of the PRMTs that account for catalytic activity, as well as provide a framework for understanding how these enzymes are regulated. An overview of what we understand about substrate recognition and binding is provided. Control of product specificity and enzyme processivity are introduced as necessary but flexible features of the PRMTs. Precise control of PRMT activity is a critical component to eukaryotic cell health, especially given that an arginine demethylase has not been identified. We therefore conclude the review with a comprehensive discussion of how protein arginine methylation is regulated.
Collapse
Affiliation(s)
- Yalemi Morales
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States
| | - Tamar Cáceres
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States
| | - Kyle May
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States
| | - Joan M Hevel
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States.
| |
Collapse
|
15
|
Mowen KA, David M. Unconventional post-translational modifications in immunological signaling. Nat Immunol 2014; 15:512-20. [DOI: 10.1038/ni.2873] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/21/2014] [Indexed: 02/07/2023]
|
16
|
Differential lymphocyte and antibody responses in deer mice infected with Sin Nombre hantavirus or Andes hantavirus. J Virol 2014; 88:8319-31. [PMID: 24829335 DOI: 10.1128/jvi.00004-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Hantavirus cardiopulmonary syndrome (HCPS) is a rodent-borne disease with a high case-fatality rate that is caused by several New World hantaviruses. Each pathogenic hantavirus is naturally hosted by a principal rodent species without conspicuous disease and infection is persistent, perhaps for life. Deer mice (Peromyscus maniculatus) are the natural reservoirs of Sin Nombre virus (SNV), the etiologic agent of most HCPS cases in North America. Deer mice remain infected despite a helper T cell response that leads to high-titer neutralizing antibodies. Deer mice are also susceptible to Andes hantavirus (ANDV), which causes most HCPS cases in South America; however, deer mice clear ANDV. We infected deer mice with SNV or ANDV to identify differences in host responses that might account for this differential outcome. SNV RNA levels were higher in the lungs but not different in the heart, spleen, or kidneys. Most ANDV-infected deer mice had seroconverted 14 days after inoculation, but none of the SNV-infected deer mice had. Examination of lymph node cell antigen recall responses identified elevated immune gene expression in deer mice infected with ANDV and suggested maturation toward a Th2 or T follicular helper phenotype in some ANDV-infected deer mice, including activation of the interleukin 4 (IL-4) pathway in T cells and B cells. These data suggest that the rate of maturation of the immune response is substantially higher and of greater magnitude during ANDV infection, and these differences may account for clearance of ANDV and persistence of SNV. IMPORTANCE Hantaviruses persistently infect their reservoir rodent hosts without pathology. It is unknown how these viruses evade sterilizing immune responses in the reservoirs. We have determined that infection of the deer mouse with its homologous hantavirus, Sin Nombre virus, results in low levels of immune gene expression in antigen-stimulated lymph node cells and a poor antibody response. However, infection of deer mice with a heterologous hantavirus, Andes virus, results in a robust lymph node cell response, signatures of T and B cell maturation, and production of antibodies. These findings suggest that an early and aggressive immune response to hantaviruses may lead to clearance in a reservoir host and suggest that a modest immune response may be a component of hantavirus ecology.
Collapse
|
17
|
Zeng WP. 'All things considered': transcriptional regulation of T helper type 2 cell differentiation from precursor to effector activation. Immunology 2013; 140:31-8. [PMID: 23668241 DOI: 10.1111/imm.12121] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 02/02/2023] Open
Abstract
T helper type 2 (Th2) cells are critical to host defence against helminth infection and the pathogenesis of allergic diseases. The differentiation of Th2 cells from naive CD4 T cells is controlled by intricate transcriptional mechanisms. At the precursor stage of naive CD4 T cells, transcriptional mechanisms maintain the potential and in the meantime prevent spontaneous differentiation to Th2 fate. In addition, intrachromosomal interactions important for co-ordinated expression of Th2 cytokines pre-exist in naive CD4 T cells. Upon T-cell receptor (TCR) engagement, naive CD4 T cells are induced by polarizing signals of the interleukin-4/Stat6 and Jagged/Notch pathways to up-regulate the expression of GATA-3. Once up-regulated, GATA-3 drives Th2 and suppresses Th1 differentiation in a cell autonomous fashion. In this stage of differentiation, the Th2 cytokine locus, as well as the interferon-γ locus, undergoes chromatin remodelling and epigenetic modifications that contribute to the somatic memory of Th2 cytokine gene expression pattern. Once differentiated, Th2 effector cells promptly produce Th2 cytokines upon TCR stimulation, which is regulated by concerted actions of GATA-3, TCR signalling, enhancers and the Th2 locus control region. This review provides a detailed account of the transcriptional regulatory events at these different stages of Th2 differentiation.
Collapse
Affiliation(s)
- Wei-ping Zeng
- Department of Biochemistry and Microbiology, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, USA.
| |
Collapse
|
18
|
Lönnberg T, Chen Z, Lahesmaa R. From a gene-centric to whole-proteome view of differentiation of T helper cell subsets. Brief Funct Genomics 2013; 12:471-82. [PMID: 24106101 PMCID: PMC3838199 DOI: 10.1093/bfgp/elt033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Proper differentiation of naïve T helper cells into functionally distinct subsets is of critical importance to human health. Consequently, the process is tightly controlled by a complex intracellular signalling network. To dissect the regulatory principles of this network, immunologists have early on embraced system-wide transcriptomics tools, leading to identification of large panels of potential regulatory factors. In contrast, the use of proteomics approaches in T helper cell research has been notably rare, and to this date relatively few high-throughput datasets have been reported. Here, we discuss the importance of such research and envision the possibilities afforded by mass spectrometry-based proteomics in the near future.
Collapse
Affiliation(s)
- Tapio Lönnberg
- European Molecular Biology Laboratory European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom.
| | | | | |
Collapse
|
19
|
Lei F, Song J, Haque R, Xiong X, Fang D, Wu Y, Lens SMA, Croft M, Song J. Transgenic expression of survivin compensates for OX40-deficiency in driving Th2 development and allergic inflammation. Eur J Immunol 2013; 43:1914-24. [PMID: 23616302 DOI: 10.1002/eji.201243081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/28/2013] [Accepted: 04/19/2013] [Indexed: 12/12/2022]
Abstract
Survivin, an inhibitor of apoptosis family molecule, has been proposed as a crucial intermediate in the signaling pathways leading to T-cell development, proliferation, and expansion. However, the importance of survivin to T-cell-driven inflammatory responses has not been demonstrated. Here, we show that survivin transgenic mice exhibit an increased antigen-driven Th2 lung inflammation and that constitutive expression of survivin reversed the defective lung inflammation even in the absence of OX40 costimulation. We found that OX40-deficient mice were compromised in generating Th2 cells, airway eosinophilia, and IgE responses. In contrast, OX40-deficient/survivin transgenic mice generated normal Th2 responses and exhibited strong lung inflammation. These results suggest that OX40 costimulation crucially engages survivin during antigen-mediated Th2 responses. These findings also promote the notion that OX40 costimulation regulates allergic responses or lung inflammation by targeting survivin thereby enhancing T-cell proliferation and resulting in more differentiated Th2 cells in the allergic inflammatory response.
Collapse
Affiliation(s)
- Fengyang Lei
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Establishment of a human cell line stably overexpressing mouse Nip45 and characterization of Nip45 subcellular localization. Biochem Biophys Res Commun 2012; 430:72-7. [PMID: 23159618 DOI: 10.1016/j.bbrc.2012.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 11/06/2012] [Indexed: 11/24/2022]
Abstract
The nuclear factor of activated T cells, cytoplasmic, calcineurin dependent 2 interacting protein, Nfatc2ip (Nip45), has been implicated as a crucial coordinator of the immune response and of cellular differentiation in humans and mice, and contains SUMO-like domains in its C-terminal region. However, the significance of its N-terminal region and its correlation to the SUMO modification pathway remain largely uncharacterized. In this study, a human cultured cell line was established, in which FLAG-tagged mouse Nip45 (FLAG-mNip45) was stably overexpressed. Under standard, non-stressful conditions, we detected FLAG-mNip45 diffusely distributed in the nucleus. Intriguingly, proteasome inhibition by MG132 caused FLAG-mNip45, together with SUMOylated proteins, to localize in nuclear domains associated with promyelocytic leukemia protein. Finally, using an in vitro binding assay, we showed interaction of the N-terminal region of mNip45 with both free SUMO-3 and SUMO-3 chains, indicating that Nip45 may, in part, exert its function via interaction with SUMO/SUMOylated proteins. Taken together, our study provides novel information on a poorly characterized mammalian protein and suggests that our newly established cell line will be useful for elucidating the physiological role of Nip45.
Collapse
|
21
|
Shanmugarajan S, Haycraft CJ, Reddy SV, Ries WL. NIP45 negatively regulates RANK ligand induced osteoclast differentiation. J Cell Biochem 2012; 113:1274-81. [PMID: 22105856 DOI: 10.1002/jcb.23460] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Receptor activator of NF-κB ligand (RANKL)-RANK receptor signaling to induce NFATc1 transcription factor is critical for osteoclast differentiation and bone resorption. RANK adaptor proteins, tumor necrosis factor receptor-associated factors (TRAFs) play an essential role in RANKL signaling. Evidence indicates that NIP45 (NFAT interacting protein) binds with TRAFs and NFATc2. We therefore hypothesized that NIP45 regulates RANKL induced osteoclast differentiation. In this study, we demonstrate that RANKL treatment down regulates NIP45 expression in mouse bone marrow derived pre-osteoclast cells. Lentiviral (pGIPZ) mediated shRNA knock-down of NIP45 expression in RANKL stimulated pre-osteoclast cells resulted in increased levels of NFATc1, NFATc2, and TRAF6 but not TRAF2 expression compared to control shRNA transduced cells. Also, NIP45 suppression elevated p-IκB-α levels and NF-κB-luciferase reporter activity. Confocal microscopy demonstrated NIP45 colocalized with TRAF6 in the cytosol of osteoclast progenitor cells. In contrast, RANKL stimulation induced NIP45 nuclear translocation and colocalization with NFATc2 in these cells. Coimmuneprecipitation assay demonstrated NIP45 binding with NFATc2 but not NFATc1. We further show that shRNA knock-down of NIP45 expression in pre-osteoclast cells significantly increased RANKL induced osteoclast differentiation and bone resorption activity. Taken together, our results indicate that RANKL signaling down regulates NIP45 expression and that NIP45 is a negative regulator of osteoclast differentiation.
Collapse
Affiliation(s)
- Srinivasan Shanmugarajan
- Charles P. Darby Children’s Research Institute, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | |
Collapse
|
22
|
Uhlmann T, Geoghegan VL, Thomas B, Ridlova G, Trudgian DC, Acuto O. A method for large-scale identification of protein arginine methylation. Mol Cell Proteomics 2012; 11:1489-99. [PMID: 22865923 PMCID: PMC3494207 DOI: 10.1074/mcp.m112.020743] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The lack of methods for proteome-scale detection of arginine methylation restricts our knowledge of its relevance in physiological and pathological processes. Here we show that most tryptic peptides containing methylated arginine(s) are highly basic and hydrophilic. Consequently, they could be considerably enriched from total cell extracts by simple protocols using either one of strong cation exchange chromatography, isoelectric focusing, or hydrophilic interaction liquid chromatography, the latter being by far the most effective of all. These methods, coupled with heavy methyl-stable isotope labeling by amino acids in cell culture and mass spectrometry, enabled in T cells the identification of 249 arginine methylation sites in 131 proteins, including 190 new sites and 93 proteins not previously known to be arginine methylated. By extending considerably the number of known arginine methylation sites, our data reveal a novel proline-rich consensus motif and identify for the first time arginine methylation in proteins involved in cytoskeleton rearrangement at the immunological synapse and in endosomal trafficking.
Collapse
Affiliation(s)
- Thomas Uhlmann
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | | | | | | | | |
Collapse
|