1
|
Corbella M, Moreira C, Bello‐Madruga R, Torrent Burgas M, Kamerlin SCL, Blair JMA, Sancho‐Vaello E. Targeting MarA N-terminal domain dynamics to prevent DNA binding. Protein Sci 2025; 34:e5258. [PMID: 39660948 PMCID: PMC11633057 DOI: 10.1002/pro.5258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/14/2024] [Accepted: 11/30/2024] [Indexed: 12/12/2024]
Abstract
Efflux is one of the mechanisms employed by Gram-negative bacteria to become resistant to routinely used antibiotics. The inhibition of efflux by targeting their regulators is a promising strategy to re-sensitize bacterial pathogens to antibiotics. AcrAB-TolC is the main resistance-nodulation-division efflux pump in Enterobacteriaceae. MarA is an AraC/XylS family global regulator that regulates more than 40 genes related to the antimicrobial resistance phenotype, including acrAB. The aim of this work was to understand the role of the N-terminal helix of MarA in the mechanism of DNA binding. An N-terminal deletion of MarA showed that the N-terminal helix is critical for recognition of the functional marboxes. By engineering two double cysteine variants of MarA that form a disulfide bond between the N-terminal helix and the hydrophobic core of one of the helices in direct DNA contact, and combining in vitro electrophoretic mobility assays, in vivo measurements of acrAB transcription using a GFP reporter system, and molecular dynamic simulations, it was shown that the immobilization of the N-terminal helix of MarA prevents binding to DNA. This inhibited conformation seems to be universal for the monomeric members of the AraC/XylS family, as suggested by additional molecular dynamics simulations of the two-domain protein Rob. These results point to the N-terminal helix of the AraC/XylS family monomeric regulators as a promising target for the development of inhibitors.
Collapse
Affiliation(s)
- Marina Corbella
- Science for Life Laboratory, Department of Chemistry‐BMCUppsala UniversityUppsalaSweden
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) & Institut de Química Teòrica i Computacional (IQTCUB)Universitat de BarcelonaBarcelonaSpain
| | - Cátia Moreira
- Science for Life Laboratory, Department of Chemistry‐BMCUppsala UniversityUppsalaSweden
| | - Roberto Bello‐Madruga
- Department of Biochemistry and Molecular BiologyUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
| | - Marc Torrent Burgas
- Department of Biochemistry and Molecular BiologyUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
| | - Shina C. L. Kamerlin
- Science for Life Laboratory, Department of Chemistry‐BMCUppsala UniversityUppsalaSweden
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Jessica M. A. Blair
- College of Medicine and Health, Department of Microbes, Infection and MicrobiomesInstitute of Microbiology and Infection, University of BirminghamBirminghamUK
| | - Enea Sancho‐Vaello
- Department of Biochemistry and Molecular BiologyUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
- College of Medicine and Health, Department of Microbes, Infection and MicrobiomesInstitute of Microbiology and Infection, University of BirminghamBirminghamUK
| |
Collapse
|
2
|
Lee D, Joo J, Choi H, Son S, Bae J, Kim DW, Kim EJ. Variations in the Antivirulence Effects of Fatty Acids and Virstatin against Vibrio cholerae Strains. J Microbiol Biotechnol 2024; 34:1757-1768. [PMID: 39187456 PMCID: PMC11485679 DOI: 10.4014/jmb.2405.05002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 08/28/2024]
Abstract
The expression of two major virulence factors of Vibrio cholerae, cholera toxin (CT) and toxin co-regulated pilus (TCP), is induced by environmental stimuli through a cascade of interactions among regulatory proteins known as the ToxR regulon when the bacteria reach the human small intestine. ToxT is produced via the ToxR regulon and acts as the direct transcriptional activator of CT (ctxAB), TCP (tcp gene cluster), and other virulence genes. Unsaturated fatty acids (UFAs) and several small-molecule inhibitors of ToxT have been developed as antivirulence agents against V. cholerae. This study reports the inhibitory effects of fatty acids and virstatin (a small-molecule inhibitor of ToxT) on the transcriptional activation functions of ToxT in isogenic derivatives of V. cholerae strains containing various toxT alleles. The fatty acids and virstatin had discrete effects depending on the ToxT allele (different by 2 amino acids), V. cholerae strain, and culture conditions, indicating that V. cholerae strains could overcome the effects of UFAs and small-molecule inhibitors by acquiring point mutations in toxT. Our results suggest that small-molecule inhibitors should be examined thoroughly against various V. cholerae strains and toxT alleles during development.
Collapse
Affiliation(s)
- Donghyun Lee
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jayun Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hunseok Choi
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Seonghyeon Son
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jonghyun Bae
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Dong Wook Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Eun Jin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
3
|
Maciel-Guerra A, Babaarslan K, Baker M, Rahman A, Hossain M, Sadique A, Alam J, Uzzaman S, Ferdous Rahman Sarker M, Sultana N, Islam Khan A, Ara Begum Y, Hassan Afrad M, Senin N, Hossain Habib Z, Shirin T, Qadri F, Dottorini T. Core and accessory genomic traits of Vibrio cholerae O1 drive lineage transmission and disease severity. Nat Commun 2024; 15:8231. [PMID: 39313510 PMCID: PMC11420230 DOI: 10.1038/s41467-024-52238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
In Bangladesh, Vibrio cholerae lineages are undergoing genomic evolution, with increased virulence and spreading ability. However, our understanding of the genomic determinants influencing lineage transmission and disease severity remains incomplete. Here, we developed a computational framework using machine-learning, genome scale metabolic modelling (GSSM) and 3D structural analysis, to identify V. cholerae genomic traits linked to lineage transmission and disease severity. We analysed in-patients isolates from six Bangladeshi regions (2015-2021), and uncovered accessory genes and core SNPs unique to the most recent dominant lineage, with virulence, motility and bacteriophage resistance functions. We also found a strong correlation between V. cholerae genomic traits and disease severity, with some traits overlapping those driving lineage transmission. GSMM and 3D structure analysis unveiled a complex interplay between transcription regulation, protein interaction and stability, and metabolic networks, associated to lifestyle adaptation, intestinal colonization, acid tolerance and symptom severity. Our findings support advancing therapeutics and targeted interventions to mitigate cholera spread.
Collapse
Affiliation(s)
- Alexandre Maciel-Guerra
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
| | - Kubra Babaarslan
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
| | - Michelle Baker
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
| | - Aura Rahman
- NSU Genome Research Institute (NGRI), North South University, Baridhara, Bashundhara, Dhaka, 1229, Bangladesh
| | - Maqsud Hossain
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
- NSU Genome Research Institute (NGRI), North South University, Baridhara, Bashundhara, Dhaka, 1229, Bangladesh
| | - Abdus Sadique
- NSU Genome Research Institute (NGRI), North South University, Baridhara, Bashundhara, Dhaka, 1229, Bangladesh
| | - Jahidul Alam
- NSU Genome Research Institute (NGRI), North South University, Baridhara, Bashundhara, Dhaka, 1229, Bangladesh
| | - Salim Uzzaman
- Institute of Epidemiology, Disease Control and Research (IEDCR), 44, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Mohammad Ferdous Rahman Sarker
- Institute of Epidemiology, Disease Control and Research (IEDCR), 44, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Nasrin Sultana
- Institute of Epidemiology, Disease Control and Research (IEDCR), 44, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Ashraful Islam Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), 68, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Yasmin Ara Begum
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), 68, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Mokibul Hassan Afrad
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), 68, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Nicola Senin
- Department of Engineering, University of Perugia, 06125, Perugia, Italy
| | - Zakir Hossain Habib
- Institute of Epidemiology, Disease Control and Research (IEDCR), 44, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), 44, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), 68, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK.
- Centre for Smart Food Research, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China.
| |
Collapse
|
4
|
Xia F, Liu Y, Wei L, Shao S, Zhang Y, Ma Y, Wang Q. Long-chain unsaturated fatty acids sensor controlling the type III/VI secretion system is essential for Edwardsiella piscicida infection. Microbiol Res 2024; 285:127770. [PMID: 38788352 DOI: 10.1016/j.micres.2024.127770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Edwardsiella piscicida is an acute marine pathogen that causes severe damage to the aquaculture industry worldwide. The pathogenesis of E. piscicida is dependent mainly on the type III secretion system (T3SS) and type VI secretion system (T6SS), both of which are critically regulated by EsrB and EsrC. In this study, we revealed that fatty acids influence T3SS expression. Unsaturated fatty acids (UFAs), but not saturated fatty acids (SFAs), directly interact with EsrC, which abolishes the function of EsrC and results in the turn-off of T3/T6SS. Moreover, during the in vivo colonization of E. piscicida, host fatty acids were observed to be transported into E. piscicida through FadL and to modulate the expression of T3/T6SS. Furthermore, the esrCR38G mutant blocked the interaction between EsrC and UFAs, leading to dramatic growth defects in DMEM and impaired colonization in HeLa cells and zebrafish. In conclusion, this study revealed that the interaction between UFAs and EsrC to turn off T3/T6SS expression is essential for E. piscicida infection.
Collapse
Affiliation(s)
- Feng Xia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yihan Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lifan Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuai Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China
| | - Yuanxing Zhang
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China.
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China; Shanghai Haosi Marine Biotechnology Co., Ltd, China.
| |
Collapse
|
5
|
Gao R, Wu T, Stock AM. A conserved inhibitory interdomain interaction regulates DNA-binding activities of hybrid two-component systems in Bacteroides. mBio 2024; 15:e0122024. [PMID: 38842315 PMCID: PMC11253607 DOI: 10.1128/mbio.01220-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Hybrid two-component systems (HTCSs) comprise a major class of transcription regulators of polysaccharide utilization genes in Bacteroides. Distinct from classical two-component systems in which signal transduction is carried out by intermolecular phosphotransfer between a histidine kinase (HK) and a cognate response regulator (RR), HTCSs contain the membrane sensor HK and the RR transcriptional regulator within a single polypeptide chain. Tethering the DNA-binding domain (DBD) of the RR with the dimeric HK domain in an HTCS could potentially promote dimerization of the DBDs and would thus require a mechanism to suppress DNA-binding activity in the absence of stimulus. Analysis of phosphorylation and DNA-binding activities of several HTCSs from Bacteroides thetaiotaomicron revealed a DBD suppression mechanism in which an inhibitory interaction between the DBD and the phosphoryl group-accepting receiver domain (REC) decreases autophosphorylation rates of HTCS-RECs and represses DNA-binding activities in the absence of phosphorylation. Sequence analyses and structure predictions identified a highly conserved sequence motif correlated with a conserved inhibitory domain arrangement of REC and DBD. The presence of the motif, as in most HTCSs, or its absence, in a small subset of HTCSs, is likely predictive of two distinct regulatory mechanisms evolved for different glycans. Substitutions within the conserved motif relieve the inhibitory interaction and result in elevated DNA-binding activities in the absence of phosphorylation. Our data suggest a fundamental regulatory mechanism shared by most HTCSs to suppress DBD activities using a conserved inhibitory interdomain arrangement to overcome the challenge of the fused HK and RR components. IMPORTANCE Different dietary and host-derived complex carbohydrates shape the gut microbial community and impact human health. In Bacteroides, the prevalent gut bacteria genus, utilization of these diverse carbohydrates relies on different gene clusters that are under sophisticated control by various signaling systems, including the hybrid two-component systems (HTCSs). We have uncovered a highly conserved regulatory mechanism in which the output DNA-binding activity of HTCSs is suppressed by interdomain interactions in the absence of stimulating phosphorylation. A consensus amino acid motif is found to correlate with the inhibitory interaction surface while deviations from the consensus can lead to constitutive activation. Understanding of such conserved HTCS features will be important to make regulatory predictions for individual systems as well as to engineer novel systems with substitutions in the consensus to explore the glycan regulation landscape in Bacteroides.
Collapse
Affiliation(s)
- Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Ti Wu
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Ann M. Stock
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
6
|
Manisha Y, Srinivasan M, Jobichen C, Rosenshine I, Sivaraman J. Sensing for survival: specialised regulatory mechanisms of Type III secretion systems in Gram-negative pathogens. Biol Rev Camb Philos Soc 2024; 99:837-863. [PMID: 38217090 DOI: 10.1111/brv.13047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/15/2024]
Abstract
For centuries, Gram-negative pathogens have infected the human population and been responsible for numerous diseases in animals and plants. Despite advancements in therapeutics, Gram-negative pathogens continue to evolve, with some having developed multi-drug resistant phenotypes. For the successful control of infections caused by these bacteria, we need to widen our understanding of the mechanisms of host-pathogen interactions. Gram-negative pathogens utilise an array of effector proteins to hijack the host system to survive within the host environment. These proteins are secreted into the host system via various secretion systems, including the integral Type III secretion system (T3SS). The T3SS spans two bacterial membranes and one host membrane to deliver effector proteins (virulence factors) into the host cell. This multifaceted process has multiple layers of regulation and various checkpoints. In this review, we highlight the multiple strategies adopted by these pathogens to regulate or maintain virulence via the T3SS, encompassing the regulation of small molecules to sense and communicate with the host system, as well as master regulators, gatekeepers, chaperones, and other effectors that recognise successful host contact. Further, we discuss the regulatory links between the T3SS and other systems, like flagella and metabolic pathways including the tricarboxylic acid (TCA) cycle, anaerobic metabolism, and stringent cell response.
Collapse
Affiliation(s)
- Yadav Manisha
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Mahalashmi Srinivasan
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Chacko Jobichen
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, 91120, Israel
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
7
|
Wongdontree P, Millan-Oropeza A, Upfold J, Lavergne JP, Halpern D, Lambert C, Page A, Kénanian G, Grangeasse C, Henry C, Fouet A, Gloux K, Anba-Mondoloni J, Gruss A. Oxidative stress is intrinsic to staphylococcal adaptation to fatty acid synthesis antibiotics. iScience 2024; 27:109505. [PMID: 38577105 PMCID: PMC10993138 DOI: 10.1016/j.isci.2024.109505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/08/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Antibiotics inhibiting the fatty acid synthesis pathway (FASII) of the major pathogen Staphylococcus aureus reach their enzyme targets, but bacteria continue growth by using environmental fatty acids (eFAs) to produce phospholipids. We assessed the consequences and effectors of FASII-antibiotic (anti-FASII) adaptation. Anti-FASII induced lasting expression changes without genomic rearrangements. Several identified regulators affected the timing of adaptation outgrowth. Adaptation resulted in decreased expression of major virulence factors. Conversely, stress responses were globally increased and adapted bacteria were more resistant to peroxide killing. Importantly, pre-exposure to peroxide led to faster anti-FASII-adaptation by stimulating eFA incorporation. This adaptation differs from reports of peroxide-stimulated antibiotic efflux, which leads to tolerance. In vivo, anti-FASII-adapted S. aureus killed the insect host more slowly but continued multiplying. We conclude that staphylococcal adaptation to FASII antibiotics involves reprogramming, which decreases virulence and increases stress resistance. Peroxide, produced by the host to combat infection, favors anti-FASII adaptation.
Collapse
Affiliation(s)
- Paprapach Wongdontree
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Aaron Millan-Oropeza
- PAPPSO Platform, Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Jennifer Upfold
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Jean-Pierre Lavergne
- Bacterial Pathogens and Protein Phosphorylation, Molecular Microbiology and Structural Biology, UMR 5086 - CNRS / Université de Lyon, Building IBCP, 7 Passage du Vercors, Lyon, France
| | - David Halpern
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Clara Lambert
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Adeline Page
- Protein Science Facility, SFR BioSciences, CNRS, UMS3444, INSERM US8, Université de Lyon, Lyon, France
| | - Gérald Kénanian
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Christophe Grangeasse
- Bacterial Pathogens and Protein Phosphorylation, Molecular Microbiology and Structural Biology, UMR 5086 - CNRS / Université de Lyon, Building IBCP, 7 Passage du Vercors, Lyon, France
| | - Céline Henry
- PAPPSO Platform, Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Agnès Fouet
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Karine Gloux
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Jamila Anba-Mondoloni
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Alexandra Gruss
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| |
Collapse
|
8
|
Lages MA, do Vale A, Lemos ML, Balado M. Remodulation of bacterial transcriptome after acquisition of foreign DNA: the case of irp-HPI high-pathogenicity island in Vibrio anguillarum. mSphere 2024; 9:e0059623. [PMID: 38078732 PMCID: PMC10826351 DOI: 10.1128/msphere.00596-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024] Open
Abstract
The high-pathogenicity island irp-HPI is widespread in Vibrionaceae and encodes the siderophore piscibactin, as well as the regulator PbtA that is essential for its expression. In this work, we aim to study whether PbtA directly interacts with irp-HPI promoters. Furthermore, we hypothesize that PbtA, and thereby the acquisition of irp-HPI island, may also influence the expression of other genes elsewhere in the bacterial genome. To address this question, an RNAseq analysis was conducted to identify differentially expressed genes after pbtA deletion in Vibrio anguillarum RV22 genetic background. The results showed that PbtA not only modulates the irp-HPI genes but also modulates the expression of a plethora of V. anguillarum core genome genes, inducing nitrate, arginine, and sulfate metabolism, T6SS1, and quorum sensing, while repressing lipopolysaccharide (LPS) production, MARTX toxin, and major porins such as OmpV and ChiP. The direct binding of the C-terminal domain of PbtA to piscibactin promoters (PfrpA and PfrpC), quorum sensing (vanT), LPS transporter wza, and T6SS structure- and effector-encoding genes was demonstrated by electrophoretic mobility shift assay (EMSA). The results provide valuable insights into the regulatory mechanisms underlying the expression of irp-HPI island and its impact on Vibrios transcriptome, with implications in pathogenesis.IMPORTANCEHorizontal gene transfer enables bacteria to acquire traits, such as virulence factors, thereby increasing the risk of the emergence of new pathogens. irp-HPI genomic island has a broad dissemination in Vibrionaceae and is present in numerous potentially pathogenic marine bacteria, some of which can infect humans. Previous works showed that certain V. anguillarum strains exhibit an expanded host range plasticity and heightened virulence, a phenomenon linked to the acquisition of the irp-HPI genomic island. The present work shows that this adaptive capability is likely achieved through comprehensive changes in the transcriptome of the bacteria and that these changes are mediated by the master regulator PbtA encoded within the irp-HPI element. Our results shed light on the broad implications of horizontal gene transfer in bacterial evolution, showing that the acquired DNA can directly mediate changes in the expression of the core genome, with profounds implications in pathogenesis.
Collapse
Affiliation(s)
- Marta A Lages
- Department of Microbiology and Parasitology, Institute of Aquaculture, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana do Vale
- Fish Immunology and Vaccinology Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Manuel L Lemos
- Department of Microbiology and Parasitology, Institute of Aquaculture, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel Balado
- Department of Microbiology and Parasitology, Institute of Aquaculture, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
9
|
Joiner JD, Steinchen W, Mozer N, Kronenberger T, Bange G, Poso A, Wagner S, Hartmann MD. HilE represses the activity of the Salmonella virulence regulator HilD via a mechanism distinct from that of intestinal long-chain fatty acids. J Biol Chem 2023; 299:105387. [PMID: 37890783 PMCID: PMC10696396 DOI: 10.1016/j.jbc.2023.105387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The expression of virulence factors essential for the invasion of host cells by Salmonella enterica is tightly controlled by a network of transcription regulators. The AraC/XylS transcription factor HilD is the main integration point of environmental signals into this regulatory network, with many factors affecting HilD activity. Long-chain fatty acids, which are highly abundant throughout the host intestine, directly bind to and repress HilD, acting as environmental cues to coordinate virulence gene expression. The regulatory protein HilE also negatively regulates HilD activity, through a protein-protein interaction. Both of these regulators inhibit HilD dimerization, preventing HilD from binding to target DNA. We investigated the structural basis of these mechanisms of HilD repression. Long-chain fatty acids bind to a conserved pocket in HilD, in a comparable manner to that reported for other AraC/XylS regulators, whereas HilE forms a stable heterodimer with HilD by binding to the HilD dimerization interface. Our results highlight two distinct, mutually exclusive mechanisms by which HilD activity is repressed, which could be exploited for the development of new antivirulence leads.
Collapse
Affiliation(s)
- Joe D Joiner
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Wieland Steinchen
- Center for Synthetic Microbiology, Philipps University of Marburg, Marburg, Germany; Department of Chemistry, Philipps University of Marburg, Marburg, Germany
| | - Nick Mozer
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Thales Kronenberger
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany; Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, Tübingen, Germany; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland; Excellence Cluster "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany
| | - Gert Bange
- Center for Synthetic Microbiology, Philipps University of Marburg, Marburg, Germany; Department of Chemistry, Philipps University of Marburg, Marburg, Germany
| | - Antti Poso
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany; Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, Tübingen, Germany; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Samuel Wagner
- Excellence Cluster "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany; Partner-site Tübingen, German Center for Infection Research (DZIF), Tübingen, Germany
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany; Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
10
|
Chowdhury R, Bitar PDP, Bell KE, Altier C. Shigella flexneri utilizes intestinal signals to control its virulence. Gut Microbes 2023; 15:2256767. [PMID: 37741806 PMCID: PMC10519361 DOI: 10.1080/19490976.2023.2256767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/05/2023] [Indexed: 09/25/2023] Open
Abstract
The enteric pathogens have evolved to utilize elements from their surroundings to optimize their infection strategies. A common mechanism to achieve this is to employ intestinal compounds as signals to control the activity of a master regulator of virulence. Shigella flexneri (S. flexneri) is a highly infectious entero-invasive pathogen which requires very few organisms to cause invasion of the colonic mucosa. The invasion program is controlled by the virulence master regulator VirF. Here, we show that the fatty acids commonly found in the colon can be exploited by S. flexneri to repress its virulence, allowing it to energetically finance its proliferation, thus increasing its pathogenicity. Colonic fatty acids such as oleic, palmitoleic and cis-2-hexadecenoic acid were shown to directly bind to VirF and mediate its prompt degradation. These fatty acids also disrupted the ability of VirF to bind to its target DNA, suppressing the transcription of the downstream virulence genes and significantly reducing the invasion of S. flexneri to colonic epithelial cells. Treatment with colonic fatty acids significantly increased the growth rate of the pathogen only under invasion-inducing conditions, showing that the reduction in the burden of virulence promotes a growth advantage. These results demonstrate the process by which S. flexneri can employ intestinal compounds as signals to increase its numbers at its preferred site of invasion, highlighting the mechanism by which the full spectrum of shigellosis is achieved despite a miniscule infectious dose. This highlights an elegant model of environmental adaption by S. flexneri to maximize the pathogenic benefit.
Collapse
Affiliation(s)
- Rimi Chowdhury
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | | | - Katherine E. Bell
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
11
|
Adnan M, Siddiqui AJ, Noumi E, Ashraf SA, Awadelkareem AM, Hadi S, Snoussi M, Badraoui R, Bardakci F, Sachidanandan M, Patel M. Biosurfactant derived from probiotic Lactobacillus acidophilus exhibits broad-spectrum antibiofilm activity and inhibits the quorum sensing-regulated virulence. BIOMOLECULES & BIOMEDICINE 2023; 23:1051-1068. [PMID: 37421468 PMCID: PMC10655870 DOI: 10.17305/bb.2023.9324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
Antimicrobial resistance by pathogenic bacteria has become a global risk to human health in recent years. The most promising approach to combating antimicrobial resistance is to target virulent traits of bacteria. In the present study, a biosurfactant derived from the probiotic strain Lactobacillus acidophilus was tested against three Gram-negative bacteria to evaluate its inhibitory potential on their biofilms, and whether it affected the virulence factors controlled by quorum sensing (QS). A reduction in the virulence factors of Chromobacterium violaceum (violacein production), Serratia marcescens (prodigiosin production) and Pseudomonas aeruginosa (pyocyanin, total protease, LasB elastase and LasA protease production) was observed at different sub-MIC concentrations in a dose-dependent manner. Biofilm development was reduced by 65.76%, 70.64% and 58.12% at the highest sub-MIC levels for C. violaceum, P. aeruginosa and S. marcescens, respectively. Biofilm formation on glass surfaces exhibited significant reduction, with less bacterial aggregation and reduced formation of extracellular polymeric materials. Additionally, swimming motility and exopolysaccharides (EPS) production were shown to be reduced in the presence of the L. acidophilus-derived biosurfactant. Furthermore, molecular docking analysis performed on compounds identified through gas chromatography-mass spectrometry (GC-MS) analysis of QS and biofilm proteins yielded further insights into the mechanism underlying the anti-QS activity. Therefore, the present study has clearly demonstrated that a biosurfactant derived from L. acidophilus can significantly inhibit virulence factors of Gram-negative pathogenic bacteria. This could provide an effective method to inhibit the formation of biofilms and QS in Gram-negative bacteria.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Emira Noumi
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Sibte Hadi
- Department of Forensic Sciences, Naif Arab University for Security Sciences, Riyadh, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | | | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, India
| |
Collapse
|
12
|
Lee D, Choi H, Son S, Bae J, Joo J, Kim DW, Kim EJ. Expression of Cholera Toxin (CT) and the Toxin Co-Regulated Pilus (TCP) by Variants of ToxT in Vibrio cholerae Strains. Toxins (Basel) 2023; 15:507. [PMID: 37624264 PMCID: PMC10467113 DOI: 10.3390/toxins15080507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
The expression of the two major virulence genes of Vibrio cholerae-tcpA (the major subunit of the toxin co-regulated pilus) and ctxAB (cholera toxin)-is regulated by the ToxR regulon, which is triggered by environmental stimuli during infection within the human small intestine. Special culture methods are required to induce the expression of virulence genes in V. cholerae in the laboratory setting. In the present study, induction of the expression of virulence genes by two point mutations (65th and 139th amino acids) in toxT, which is produced by the ToxR regulon and activates the transcription of the virulence genes in V. cholerae, under laboratory culture conditions has been investigated. Each of the four toxT alleles assessed displayed different transcriptional activator functions in a given V. cholerae strain. Although the ToxR regulon has been known to not be expressed by El Tor biotype V. cholerae strains cultured under standard laboratory conditions, the variant toxT alleles that we assessed in this study enabled the expression virulence genes in El Tor biotype strains grown under simple culture conditions comprising shake culture in LB medium, suggesting that the regulation of virulence gene expression may be regulated more complexly than previously thought and may involve additional factors beyond the production of ToxT by the ToxR regulon.
Collapse
Affiliation(s)
- Donghyun Lee
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hunseok Choi
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Seonghyeon Son
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jonghyun Bae
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jayun Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Dong Wook Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Eun Jin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
- Institute of Pharmacological Research, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
13
|
Trirocco R, Pasqua M, Tramonti A, Grossi M, Colonna B, Paiardini A, Prosseda G. Fatty Acids Abolish Shigella Virulence by Inhibiting Its Master Regulator, VirF. Microbiol Spectr 2023; 11:e0077823. [PMID: 37140433 PMCID: PMC10269687 DOI: 10.1128/spectrum.00778-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023] Open
Abstract
The pathogenicity of Shigella, the intracellular pathogen responsible for human bacillary dysentery, depends on a coordinated and tightly regulated expression of its virulence determinants. This is the result of a cascade organization of its positive regulators, with VirF, a transcriptional activator belonging to the AraC-XylS family, in a pivotal position. VirF itself is submitted to several well-known regulations at the transcriptional level. In this work, we present evidence for a novel posttranslational regulatory mechanism of VirF mediated by the inhibitory interaction with specific fatty acids. By homology modeling and molecular docking analyses, we identify a jelly roll motif in the structure of ViF capable of interacting with medium-chain saturated and long-chain unsaturated fatty acids. In vitro and in vivo assays show that capric, lauric, myristoleic, palmitoleic, and sapienic acids interact effectively with the VirF protein, abolishing its transcription-promoting activity. This silences the virulence system of Shigella, leading to a drastic reduction in its ability to invade epithelial cells and proliferate in their cytoplasm. IMPORTANCE In the absence of a valid vaccine, the main therapeutic approach currently used to treat shigellosis is based on the use of antibiotics. The emergence of antibiotic resistance jeopardizes the future effectiveness of this approach. The importance of the present work resides both in the identification of a new level of posttranslational regulation of the Shigella virulence system and in the characterization of a mechanism offering new opportunities for the design of antivirulence compounds, which may change the treatment paradigm of Shigella infections by limiting the emergence of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Rita Trirocco
- Institute Pasteur Italia, Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Martina Pasqua
- Institute Pasteur Italia, Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Angela Tramonti
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Milena Grossi
- Institute Pasteur Italia, Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Bianca Colonna
- Institute Pasteur Italia, Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | | | - Gianni Prosseda
- Institute Pasteur Italia, Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
14
|
Abstract
In order for successful fecal-oral transmission, enteric bacterial pathogens have to successfully compete with the intestinal microbiota and reach high concentrations during infection. Vibrio cholerae requires cholera toxin (CT) to cause diarrheal disease, which is thought to promote the fecal-oral transmission of the pathogen. Besides inducing diarrheal disease, the catalytic activity of CT also alters host intestinal metabolism, which promotes the growth of V. cholerae during infection through the acquisition of host-derived nutrients. Furthermore, recent studies have found that CT-induced disease activates a niche-specific suite of V. cholerae genes during infection, some of which may be important for fecal-oral transmission of the pathogen. Our group is currently exploring the concept that CT-induced disease promotes the fecal-oral transmission of V. cholerae by modulating both host and pathogen metabolism. Furthermore, the role of the intestinal microbiota in pathogen growth and transmission during toxin-induced disease merits further investigation. These studies open the door to investigating whether other bacterial toxins also enhance pathogen growth and transmission during infection, which may shed light on the design of novel therapeutics for intervention or prevention of diarrheal diseases.
Collapse
Affiliation(s)
- Claire M. L. Chapman
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Andrew Kapinos
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Fabian Rivera-Chávez
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
15
|
Chowdhury R, Pavinski Bitar PD, Chapman HM, Altier C. Salmonella Invasion Is Controlled by Competition among Intestinal Chemical Signals. mBio 2023; 14:e0001223. [PMID: 37017539 PMCID: PMC10127606 DOI: 10.1128/mbio.00012-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023] Open
Abstract
The intestine is a complex, ever-changing environment replete with an array of signaling molecules. To colonize such a complex organ, pathogens have adapted to utilize specific cues from the local environment to intricately regulate the expression of their virulence determinants. Salmonella preferentially colonizes the distal ileum, a niche enriched in the metabolite formic acid. Here, we show that the relatively higher concentration of this metabolite in the distal ileum prevents other signals from repressing Salmonella invasion in that region. We show that imported and unmetabolized formic acid functions as a cytoplasmic signal that competitively binds to HilD, the master transcriptional regulator of Salmonella invasion, thus preventing repressive fatty acids from binding to the protein. This results in an increased lifetime of HilD and subsequent derepression of invasion genes. This study demonstrates an important mechanism by which Salmonella utilizes competition among signals in the gut to its advantage as a pathogen. IMPORTANCE Enteric pathogens acutely sense their environment for signals to regulate their virulence functions. We demonstrate here that the enteric pathogen Salmonella utilizes the competition among certain regional intestinal constituents to modulate its virulence determinants in that region. We show that the high concentration of formic acid in the ileum outcompetes other signals and triggers the activation of virulence genes in the ileum. This study shows a delicate spatial and temporal mechanism by which enteric pathogens may utilize the competition among environmental cues to optimize their pathogenicity.
Collapse
Affiliation(s)
- Rimi Chowdhury
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - Paulina D. Pavinski Bitar
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - Hanora M. Chapman
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
16
|
Dow GT, Young AM, Garcia GA. Elucidation of the DNA-Binding Activity of VirF from Shigella flexneri for the icsA and rnaG Promoters and Characterization of the N-Terminal Domain To Identify Residues Crucial for Dimerization. J Bacteriol 2023; 205:e0001523. [PMID: 36920216 PMCID: PMC10127635 DOI: 10.1128/jb.00015-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
A novel approach to treat the highly virulent and infectious enteric pathogen Shigella flexneri, with the potential for reduced resistance development, is to target virulence pathways. One promising such target is the AraC-family transcription factor VirF, which activates downstream virulence factors. VirF harbors a conserved C-terminal DNA-binding domain (DBD) and an N-terminal dimerization domain (NTD). Previously, we studied the wild type (WT) and seven alanine DBD mutants of VirF binding to the virB promoter (N. J. Ragazzone, G. T. Dow, and A. Garcia, J Bacteriol 204:e00143-22, 2022, https://doi.org/10.1128/jb.00143-22). Here, we report studies of VirF binding to the icsA and rnaG promoters. Gel shift assays (electrophoretic mobility shift assays [EMSAs]) of WT VirF binding to these promoters revealed multiple bands at higher apparent molecular weights, indicating the likelihood of VirF dimerization when bound to DNA. For three of the mutants, we observed consistent effects on binding to the three promoters. For the four other mutants, we observed differential effects on promoter binding. Results of a cell-based, LexA monohybrid β-galactosidase reporter assay [D. A. Daines, M. Granger-Schnarr, M. Dimitrova, and R. P. Silver, Methods Enzymol 358:153-161, 2002, https://doi.org/10.1016/s0076-6879(02)58087-3] indicated that WT VirF dimerizes in vivo and that alanine mutations to Y132, L137, and L147 significantly reduced dimerization. However, these mutations negatively impacted protein stability. We did purify enough of the Y132A mutant to determine that it binds in vitro to the virB and rnaG promoters, albeit with weaker affinities. Full-length VirF model structures, generated with I-TASSER, predict that these three amino acids are in a "dimerization" helix in the NTD, consistent with our results. IMPORTANCE Antimicrobial-resistant (AMR) infections continue to rise dramatically, and the lack of new approved antibiotics is not ameliorating this crisis. A promising route to reduce AMR is by targeting virulence. The Shigella flexneri virulence pathway is a valuable source for potential therapeutic targets useful to treat this infection. VirF, an AraC-family virulence transcription factor, is responsible for activating necessary downstream virulence genes that allow the bacteria to invade and spread within the human colon. Previous studies have identified how VirF interacts with the virB promoter and have even developed a lead DNA-binding inhibitor, but not much is known about VirF dimerization or binding to the icsA and rnaG promoters. Fully characterizing VirF can be a valuable resource for inhibitor discovery/design.
Collapse
Affiliation(s)
- Garrett T. Dow
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Anna M. Young
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - George A. Garcia
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Pis Diez CM, Antelo GT, Dalia TN, Dalia AB, Giedroc DP, Capdevila DA. Increased intracellular persulfide levels attenuate HlyU-mediated hemolysin transcriptional activation in Vibrio cholerae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532278. [PMID: 36993174 PMCID: PMC10054925 DOI: 10.1101/2023.03.13.532278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The vertebrate host’s immune system and resident commensal bacteria deploy a range of highly reactive small molecules that provide a barrier against infections by microbial pathogens. Gut pathogens, such as Vibrio cholerae , sense and respond to these stressors by modulating the expression of exotoxins that are crucial for colonization. Here, we employ mass-spectrometry-based profiling, metabolomics, expression assays and biophysical approaches to show that transcriptional activation of the hemolysin gene hlyA in V. cholerae is regulated by intracellular reactive sulfur species (RSS), specifically sulfane sulfur. We first present a comprehensive sequence similarity network analysis of the arsenic repressor (ArsR) superfamily of transcriptional regulators where RSS and reactive oxygen species (ROS) sensors segregate into distinct clusters. We show that HlyU, transcriptional activator of hlyA in V. cholerae , belongs to the RSS-sensing cluster and readily reacts with organic persulfides, showing no reactivity and remaining DNA-bound following treatment with various ROS in vitro, including H 2 O 2 . Surprisingly, in V. cholerae cell cultures, both sulfide and peroxide treatment downregulate HlyU-dependent transcriptional activation of hlyA . However, RSS metabolite profiling shows that both sulfide and peroxide treatment raise the endogenous inorganic sulfide and disulfide levels to a similar extent, accounting for this crosstalk, and confirming that V. cholerae attenuates HlyU-mediated activation of hlyA in a specific response to intracellular RSS. These findings provide new evidence that gut pathogens may harness RSS-sensing as an evolutionary adaptation that allows them to overcome the gut inflammatory response by modulating the expression of exotoxins.
Collapse
Affiliation(s)
- Cristian M. Pis Diez
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de, Buenos Aires, Argentina
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Giuliano T. Antelo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de, Buenos Aires, Argentina
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Triana N. Dalia
- Department of Biology, Indiana University, Bloomington, IN 47405-7102, USA
| | - Ankur B. Dalia
- Department of Biology, Indiana University, Bloomington, IN 47405-7102, USA
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Daiana A. Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de, Buenos Aires, Argentina
| |
Collapse
|
18
|
Midgett CR, Kull FJ. Structural Insights into Regulation of Vibrio Virulence Gene Networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:269-294. [PMID: 36792881 DOI: 10.1007/978-3-031-22997-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
One of the best studied aspects of pathogenic Vibrios are the virulence cascades that lead to the production of virulence factors and, ultimately, clinical outcomes. In this chapter, we will examine the regulation of Vibrio virulence gene networks from a structural and biochemical perspective. We will discuss the recent research into the numerous proteins that contribute to regulating virulence in Vibrio spp such as quorum sensing regulator HapR, the transcription factors AphA and AphB, or the virulence regulators ToxR and ToxT. We highlight how insights gained from these studies are already illuminating the basic molecular mechanisms by which the virulence cascade of pathogenic Vibrios unfold and contend that understanding how protein interactions contribute to the host-pathogen communications will enable the development of new antivirulence compounds that can effectively target these pathogens.
Collapse
Affiliation(s)
| | - F Jon Kull
- Chemistry Department, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
19
|
Yang X, Stein KR, Hang HC. Anti-infective bile acids bind and inactivate a Salmonella virulence regulator. Nat Chem Biol 2023; 19:91-100. [PMID: 36175659 PMCID: PMC9805502 DOI: 10.1038/s41589-022-01122-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 07/26/2022] [Indexed: 01/03/2023]
Abstract
Bile acids are prominent host and microbiota metabolites that modulate host immunity and microbial pathogenesis. However, the mechanisms by which bile acids suppress microbial virulence are not clear. To identify the direct protein targets of bile acids in bacterial pathogens, we performed activity-guided chemical proteomic studies. In Salmonella enterica serovar Typhimurium, chenodeoxycholic acid (CDCA) most effectively inhibited the expression of virulence genes and invasion of epithelial cells and interacted with many proteins. Notably, we discovered that CDCA can directly bind and inhibit the function of HilD, an important transcriptional regulator of S. Typhimurium virulence and pathogenesis. Our characterization of bile acid-resistant HilD mutants in vitro and in S. Typhimurium infection models suggests that HilD is one of the key protein targets of anti-infective bile acids. This study highlights the utility of chemical proteomics to identify the direct protein targets of microbiota metabolites for mechanistic studies in bacterial pathogens.
Collapse
Affiliation(s)
- Xinglin Yang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Kathryn R Stein
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
20
|
Muhammad AY, Amonov M, Murugaiah C, Baig AA, Yusoff M. Intestinal colonization against Vibrio cholerae: host and microbial resistance mechanisms. AIMS Microbiol 2023; 9:346-374. [PMID: 37091815 PMCID: PMC10113163 DOI: 10.3934/microbiol.2023019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Vibrio cholerae is a non-invasive enteric pathogen known to cause a major public health problem called cholera. The pathogen inhabits the aquatic environment while outside the human host, it is transmitted into the host easily through ingesting contaminated food and water containing the vibrios, thus causing diarrhoea and vomiting. V. cholerae must resist several layers of colonization resistance mechanisms derived from the host or the gut commensals to successfully survive, grow, and colonize the distal intestinal epithelium, thus causing an infection. The colonization resistance mechanisms derived from the host are not specific to V. cholerae but to all invading pathogens. However, some of the gut commensal-derived colonization resistance may be more specific to the pathogen, making it more challenging to overcome. Consequently, the pathogen has evolved well-coordinated mechanisms that sense and utilize the anti-colonization factors to modulate events that promote its survival and colonization in the gut. This review is aimed at discussing how V. cholerae interacts and resists both host- and microbe-specific colonization resistance mechanisms to cause infection.
Collapse
Affiliation(s)
| | - Malik Amonov
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Malaysia
- * Correspondence: ; Tel: +60189164478
| | | | - Atif Amin Baig
- University Institute of Public Health, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Marina Yusoff
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Malaysia
| |
Collapse
|
21
|
Gahlot DK, Taheri N, MacIntyre S. Diversity in Genetic Regulation of Bacterial Fimbriae Assembled by the Chaperone Usher Pathway. Int J Mol Sci 2022; 24:ijms24010161. [PMID: 36613605 PMCID: PMC9820224 DOI: 10.3390/ijms24010161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
Bacteria express different types of hair-like proteinaceous appendages on their cell surface known as pili or fimbriae. These filamentous structures are primarily involved in the adherence of bacteria to both abiotic and biotic surfaces for biofilm formation and/or virulence of non-pathogenic and pathogenic bacteria. In pathogenic bacteria, especially Gram-negative bacteria, fimbriae play a key role in bacteria-host interactions which are critical for bacterial invasion and infection. Fimbriae assembled by the Chaperone Usher pathway (CUP) are widespread within the Enterobacteriaceae, and their expression is tightly regulated by specific environmental stimuli. Genes essential for expression of CUP fimbriae are organised in small blocks/clusters, which are often located in proximity to other virulence genes on a pathogenicity island. Since these surface appendages play a crucial role in bacterial virulence, they have potential to be harnessed in vaccine development. This review covers the regulation of expression of CUP-assembled fimbriae in Gram-negative bacteria and uses selected examples to demonstrate both dedicated and global regulatory mechanisms.
Collapse
Affiliation(s)
- Dharmender K. Gahlot
- School of Biological Sciences, University of Reading, Reading RG6 6EX, UK
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden
- Correspondence: (D.K.G.); (S.M.)
| | - Nayyer Taheri
- APC Microbiome Institute, University College Cork, T12 K8AF Cork, Ireland
| | - Sheila MacIntyre
- School of Biological Sciences, University of Reading, Reading RG6 6EX, UK
- Correspondence: (D.K.G.); (S.M.)
| |
Collapse
|
22
|
Zhao D, Li H, Cui Y, Tang S, Wang C, Du B, Ding Y. MsmR1, a global transcription factor, regulates polymyxin synthesis and carbohydrate metabolism in Paenibacillus polymyxa SC2. Front Microbiol 2022; 13:1039806. [PMID: 36483206 PMCID: PMC9722767 DOI: 10.3389/fmicb.2022.1039806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/26/2022] [Indexed: 10/19/2023] Open
Abstract
The multiple-sugar metabolism regulator (MsmR), a transcription factor belonging to the AraC/XylS family, participates in polysaccharide metabolism and virulence. However, the transcriptional regulatory mechanisms of MsmR1 in Paenibacillus polymyxa remain unclear. In this study, knocking out msmR1 was found to reduce polymyxin synthesis by the SC2-M1 strain. Chromatin immunoprecipitation assay with sequencing (ChIP-seq) revealed that most enriched pathway was that of carbohydrate metabolism. Additionally, electromobility shift assays (EMSA) confirmed the direct interaction between MsmR1 and the promoter regions of oppC3, sucA, sdr3, pepF, yycN, PPSC2_23180, pppL, and ydfp. MsmR1 stimulates polymyxin biosynthesis by directly binding to the promoter regions of oppC3 and sdr3, while also directly regulating sucA and influencing the citrate cycle (TCA cycle). In addition, MsmR1 directly activates pepF and was beneficial for spore and biofilm formation. These results indicated that MsmR1 could regulate carbohydrate and amino acid metabolism, and indirectly affect biological processes such as polymyxin synthesis, biofilm formation, and motility. Moreover, MsmR1 could be autoregulated. Hence, this study expand the current knowledge of MsmR1 and will be beneficial for the application of P. polymyxa SC2 in the biological control against the certain pathogens in pepper.
Collapse
Affiliation(s)
| | | | | | | | | | - Binghai Du
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an, China
| | - Yanqin Ding
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
23
|
Mitchell MK, Ellermann M. Long Chain Fatty Acids and Virulence Repression in Intestinal Bacterial Pathogens. Front Cell Infect Microbiol 2022; 12:928503. [PMID: 35782143 PMCID: PMC9247172 DOI: 10.3389/fcimb.2022.928503] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
When bacterial pathogens enter the gut, they encounter a complex milieu of signaling molecules and metabolites produced by host and microbial cells or derived from external sources such as the diet. This metabolomic landscape varies throughout the gut, thus establishing a biogeographical gradient of signals that may be sensed by pathogens and resident bacteria alike. Enteric bacterial pathogens have evolved elaborate mechanisms to appropriately regulate their virulence programs, which involves sensing and responding to many of these gut metabolites to facilitate successful gut colonization. Long chain fatty acids (LCFAs) represent major constituents of the gut metabolome that can impact bacterial functions. LCFAs serve as important nutrient sources for all cellular organisms and can function as signaling molecules that regulate bacterial metabolism, physiology, and behaviors. Moreover, in several enteric pathogens, including Salmonella enterica, Listeria monocytogenes, Vibrio cholerae, and enterohemorrhagic Escherichia coli, LCFA sensing results in the transcriptional repression of virulence through two general mechanisms. First, some LCFAs function as allosteric inhibitors that decrease the DNA binding affinities of transcriptional activators of virulence genes. Second, some LCFAs also modulate the activation of histidine kinase receptors, which alters downstream intracellular signaling networks to repress virulence. This mini-review will summarize recent studies that have investigated the molecular mechanisms by which different LCFA derivatives modulate the virulence of enteric pathogens, while also highlighting important gaps in the field regarding the roles of LCFAs as determinants of infection and disease.
Collapse
|
24
|
Kinch LN, Cong Q, Jaishankar J, Orth K. Co-component signal transduction systems: Fast-evolving virulence regulation cassettes discovered in enteric bacteria. Proc Natl Acad Sci U S A 2022; 119:e2203176119. [PMID: 35648808 PMCID: PMC9214523 DOI: 10.1073/pnas.2203176119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/08/2022] [Indexed: 01/31/2023] Open
Abstract
Bacterial signal transduction systems sense changes in the environment and transmit these signals to control cellular responses. The simplest one-component signal transduction systems include an input sensor domain and an output response domain encoded in a single protein chain. Alternatively, two-component signal transduction systems transmit signals by phosphorelay between input and output domains from separate proteins. The membrane-tethered periplasmic bile acid sensor that activates the Vibrio parahaemolyticus type III secretion system adopts an obligate heterodimer of two proteins encoded by partially overlapping VtrA and VtrC genes. This co-component signal transduction system binds bile acid using a lipocalin-like domain in VtrC and transmits the signal through the membrane to a cytoplasmic DNA-binding transcription factor in VtrA. Using the domain and operon organization of VtrA/VtrC, we identify a fast-evolving superfamily of co-component systems in enteric bacteria. Accurate machine learning–based fold predictions for the candidate co-components support their homology in the twilight zone of rapidly evolving sequences and provide mechanistic hypotheses about previously unrecognized lipid-sensing functions.
Collapse
Affiliation(s)
- Lisa N. Kinch
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jananee Jaishankar
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
25
|
Fatty Acid Homeostasis Tunes Flagellar Motility by Activating Phase 2 Flagellin Expression, Contributing to Salmonella Gut Colonization. Infect Immun 2022; 90:e0018422. [PMID: 35652649 DOI: 10.1128/iai.00184-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long-chain-fatty-acid (LCFA) metabolism is a fundamental cellular process in bacteria that is involved in lipid homeostasis, energy production, and infection. However, the role of LCFA metabolism in Salmonella enterica serovar Typhimurium (S. Tm) gut infection remains unclear. Here, using a murine gastroenteritis infection model, we demonstrate involvement of LCFA metabolism in S. Tm gut colonization. The LCFA metabolism-associated transcriptional regulator FadR contributes to S. Tm gut colonization. fadR deletion alters the gene expression profile and leads to aberrant flagellar motility of S. Tm. Colonization defects in the fadR mutant are attributable to altered swimming behavior characterized by less frequently smooth swimming, resulting from reduced expression of the phase 2 flagellin FljB. Notably, changes in lipid LCFA composition by fadR deletion lead to reduced expression of fljB, which is restored by exogenous LCFA. Therefore, LCFA homeostasis may maintain proper flagellar motility by activating fljB expression, contributing to S. Tm gut colonization. Our findings improve the understanding of the effect of luminal LCFA on the virulence of enteric pathogens.
Collapse
|
26
|
Lactiplantibacillus plantarum-Derived Biosurfactant Attenuates Quorum Sensing-Mediated Virulence and Biofilm Formation in Pseudomonas aeruginosa and Chromobacterium violaceum. Microorganisms 2022; 10:microorganisms10051026. [PMID: 35630468 PMCID: PMC9145448 DOI: 10.3390/microorganisms10051026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/10/2022] Open
Abstract
Quorum sensing (QS) controls the expression of diverse biological traits in bacteria, including virulence factors. Any natural bioactive compound that disables the QS system is being considered as a potential strategy to prevent bacterial infection. Various biological activities of biosurfactants have been observed, including anti-QS effects. In the present study, we investigated the effectiveness of a biosurfactant derived from Lactiplantibacillus plantarum on QS-regulated virulence factors and biofilm formation in Pseudomonas aeruginosa and Chromobacterium violaceum. The structural analogues of the crude biosurfactant were identified using gas chromatography–mass spectrometry (GC–MS). Moreover, the inhibitory prospects of identified structural analogues were assessed with QS-associated CviR, LasA, and LasI ligands via in silico molecular docking analysis. An L. plantarum-derived biosurfactant showed a promising dose-dependent interference with the production of both violacein and acyl homoserine lactone (AHL) in C. violaceum. In P. aeruginosa, at a sub-MIC concentration (2.5 mg/mL), QS inhibitory activity was also demonstrated by reduction in pyocyanin (66.63%), total protease (60.95%), LasA (56.62%), and LasB elastase (51.33%) activity. The swarming motility and exopolysaccharide production were also significantly reduced in both C. violaceum (61.13%) and P. aeruginosa (53.11%). When compared with control, biofilm formation was also considerably reduced in C. violaceum (68.12%) and P. aeruginosa (59.80%). A GC–MS analysis confirmed that the crude biosurfactant derived from L. plantarum was a glycolipid type. Among all, n-hexadecanoic acid, oleic acid, and 1H-indene,1-hexadecyl-2,3-dihydro had a high affinity for CviR, LasI, and LasA, respectively. Thus, our findings suggest that the crude biosurfactant of L. plantarum can be used as a new anti-QS/antibiofilm agent against biofilm-associated pathogenesis, which warrants further investigation to uncover its therapeutic efficacy.
Collapse
|
27
|
Katumba GL, Tran H, Henderson JP. The Yersinia High-Pathogenicity Island Encodes a Siderophore-Dependent Copper Response System in Uropathogenic Escherichia coli. mBio 2022; 13:e0239121. [PMID: 35089085 PMCID: PMC8725597 DOI: 10.1128/mbio.02391-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/19/2021] [Indexed: 02/08/2023] Open
Abstract
Siderophores are iron chelators used by microbes to bind and acquire iron, which, once in the cell, inhibits siderophore production through feedback repression mediated by the ferric uptake repressor (Fur). Yersiniabactin (Ybt), a siderophore associated with enhanced pathogenic potential among Enterobacteriaceae, also binds copper ions during human and experimental murine infections. In contrast to iron, we found that extracellular copper ions rapidly and selectively stimulate Ybt production in extraintestinal pathogenic Escherichia coli. The stimulatory pathway requires formation of an extracellular copper-Ybt (Cu(II)-Ybt) complex, internalization of Cu(II)-Ybt entry through the canonical TonB-dependent outer membrane transporter, and Fur-independent transcriptional regulation by the specialized transcription factor YbtA. Dual regulation by iron and copper is consistent with a multifunctional metallophore role for Ybt. Feed-forward regulation is typical of stress responses, implicating Ybt in prevention of, or response to, copper stress during infection pathogenesis. IMPORTANCE Interactions between bacteria and transition metal ions play an important role in encounters between humans and bacteria. Siderophore systems have long been prominent mediators of these interactions. These systems secrete small-molecule chelators that bind oxidized iron(III) and express proteins that specifically recognize and import these complexes as a nutritional iron source. While E. coli and other Enterobacteriaceae secrete enterobactin, clinical isolates often secrete an additional siderophore, yersiniabactin (Ybt), which has been found to also bind copper and other non-iron metal ions. The observation here that an extraintestinal E. coli isolate secretes Ybt in a copper-inducible manner suggests an important gain of function over the enterobactin system. Copper recognition involves using Ybt to bind Cu(II) ions, consistent with a distinctively extracellular mode of copper detection. The resulting Cu(II)-Ybt complex signals upregulation of Ybt biosynthesis genes as a rapid response against potentially toxic extracellular copper ions. The Ybt system is distinguishable from other copper response systems that sense cytosolic and periplasmic copper ions. The Ybt dependence of the copper response presents an implicit feed-forward regulatory scheme that is typical of bacterial stress responses. The distinctive extracellular copper recognition-response functionality of the Ybt system may enhance the pathogenic potential of infection-associated Enterobacteriaceae.
Collapse
Affiliation(s)
- George L. Katumba
- Center for Women’s Infectious Disease Research, Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hung Tran
- Center for Women’s Infectious Disease Research, Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey P. Henderson
- Center for Women’s Infectious Disease Research, Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
28
|
Sharma A, Alajangi HK, Pisignano G, Sood V, Singh G, Barnwal RP. RNA thermometers and other regulatory elements: Diversity and importance in bacterial pathogenesis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1711. [PMID: 35037405 DOI: 10.1002/wrna.1711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 01/11/2023]
Abstract
Survival of microorganisms depends to a large extent on environmental conditions and the occupied host. By adopting specific strategies, microorganisms can thrive in the surrounding environment and, at the same time, preserve their viability. Evading the host defenses requires several mechanisms compatible with the host survival which include the production of RNA thermometers to regulate the expression of genes responsible for heat or cold shock as well as of those involved in virulence. Microorganisms have developed a variety of molecules in response to the environmental changes in temperature and even more specifically to the host they invade. Among all, RNA-based regulatory mechanisms are the most common ones, highlighting the importance of such molecules in gene expression control and novel drug development by suitable structure-based alterations. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Hema Kumari Alajangi
- Department of Biophysics, Panjab University, Chandigarh, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | |
Collapse
|
29
|
Picard HR, Schwingen KS, Green LM, Shis DL, Egan SM, Bennett MR, Swint-Kruse L. Allosteric regulation within the highly interconnected structural scaffold of AraC/XylS homologs tolerates a wide range of amino acid changes. Proteins 2022; 90:186-199. [PMID: 34369028 PMCID: PMC8671227 DOI: 10.1002/prot.26206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 01/03/2023]
Abstract
To create bacterial transcription "circuits" for biotechnology, one approach is to recombine natural transcription factors, promoters, and operators. Additional novel functions can be engineered from existing transcription factors such as the E. coli AraC transcriptional activator, for which binding to DNA is modulated by binding L-arabinose. Here, we engineered chimeric AraC/XylS transcription activators that recognized ara DNA binding sites and responded to varied effector ligands. The first step, identifying domain boundaries in the natural homologs, was challenging because (i) no full-length, dimeric structures were available and (ii) extremely low sequence identities (≤10%) among homologs precluded traditional assemblies of sequence alignments. Thus, to identify domains, we built and aligned structural models of the natural proteins. The designed chimeric activators were assessed for function, which was then further improved by random mutagenesis. Several mutational variants were identified for an XylS•AraC chimera that responded to benzoate; two enhanced activation to near that of wild-type AraC. For an RhaR•AraC chimera, a variant with five additional substitutions enabled transcriptional activation in response to rhamnose. These five changes were dispersed across the protein structure, and combinatorial experiments testing subsets of substitutions showed significant non-additivity. Combined, the structure modeling and epistasis suggest that the common AraC/XylS structural scaffold is highly interconnected, with complex intra-protein and inter-domain communication pathways enabling allosteric regulation. At the same time, the observed epistasis and the low sequence identities of the natural homologs suggest that the structural scaffold and function of transcriptional regulation are nevertheless highly accommodating of amino acid changes.
Collapse
Affiliation(s)
- Hunter R. Picard
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Kristen S. Schwingen
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Lisa M. Green
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160
| | - David L. Shis
- Department of Biosciences and Department of Bioengineering, Rice University, Houston, TX 77005
| | - Susan M. Egan
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045
| | - Matthew R. Bennett
- Department of Biosciences and Department of Bioengineering, Rice University, Houston, TX 77005
| | - Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160,To whom correspondence should be addressed: ; 913-588-0399
| |
Collapse
|
30
|
Bile Salts Promote ToxR Regulon Activation during Growth under Virulence-Inducing Conditions. Infect Immun 2021; 89:e0044121. [PMID: 34543121 DOI: 10.1128/iai.00441-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cholera is an epidemic disease caused by the Gram-negative bacterium Vibrio cholerae. V. cholerae is found in aquatic ecosystems and infects people through the consumption of V. cholerae-contaminated food or water. Following ingestion, V. cholerae responds to host cues to activate the expression of critical virulence genes that are under the control of a hierarchical regulatory system called the ToxR regulon. The ToxR regulon is tightly regulated and is expressed in vitro only under special growth conditions referred to as AKI conditions. AKI conditions have been instrumental in elucidating V. cholerae virulence regulation, but the chemical cues within AKI medium that activate virulence gene expression are unknown. In this study, we fractionated AKI medium on a reverse-phase chromatography column (RPCC) and showed that the virulence-activating molecules were retained on the RPCC column and recovered in the eluate. Liquid chromatography-high-resolution mass spectrometry (LC-HRMS) analysis of the eluate revealed the presence of a known ToxR regulon activator, taurocholate, and other bile salts. The RPCC eluate activated the ToxR regulon when added to noninducing medium and promoted TcpP dimerization in a two-hybrid system, consistent with taurocholate being responsible for the virulence-inducing activity of AKI medium. Additional experiments using purified bile salts showed that the ToxR regulon was preferentially activated in response to primary bile acids. The results of this study shed light on the chemical cues involved in V. cholerae virulence activation and suggested that V. cholerae virulence genes are modulated in response to regionally specific bile acid species in the intestine.
Collapse
|
31
|
Optimised Heterologous Expression and Functional Analysis of the Yersinia pestis F1-Capsular Antigen Regulator Caf1R. Int J Mol Sci 2021; 22:ijms22189805. [PMID: 34575967 PMCID: PMC8470410 DOI: 10.3390/ijms22189805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
The bacterial pathogen, Yersinia pestis, has caused three historic pandemics and continues to cause small outbreaks worldwide. During infection, Y. pestis assembles a capsule-like protective coat of thin fibres of Caf1 subunits. This F1 capsular antigen has attracted much attention due to its clinical value in plague diagnostics and anti-plague vaccine development. Expression of F1 is tightly regulated by a transcriptional activator, Caf1R, of the AraC/XylS family, proteins notoriously prone to aggregation. Here, we have optimised the recombinant expression of soluble Caf1R. Expression from the native and synthetic codon-optimised caf1R cloned in three different expression plasmids was examined in a library of E. coli host strains. The functionality of His-tagged Caf1R was demonstrated in vivo, but insolubility was a problem with overproduction. High levels of soluble MBP-Caf1R were produced from codon optimised caf1R. Transcriptional-lacZ reporter fusions defined the PM promoter and Caf1R binding site responsible for transcription of the cafMA1 operon. Use of the identified Caf1R binding caf DNA sequence in an electrophoretic mobility shift assay (EMSA) confirmed correct folding and functionality of the Caf1R DNA-binding domain in recombinant MBP-Caf1R. Availability of functional recombinant Caf1R will be a valuable tool to elucidate control of expression of F1 and Caf1R-regulated pathophysiology of Y. pestis.
Collapse
|
32
|
Markham L, Tolbert JD, Kull FJ, Midgett CR, Micalizio GC. An Enantiodefined Conformationally Constrained Fatty Acid Mimetic and Potent Inhibitor of ToxT. ACS Med Chem Lett 2021; 12:1493-1497. [PMID: 34531958 PMCID: PMC8436414 DOI: 10.1021/acsmedchemlett.1c00378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022] Open
Abstract
The chiral conformation that palmitoleic acid takes when it is bound to ToxT, the master regulator of virulence genes in the bacterial pathogen Vibrio cholerae, was used as inspiration to design a novel class of fatty acid mimetics. The best mimetic, based on a chiral hydrindane, was found to be a potent inhibitor of this target. The synthetic chemistry that enabled these studies was based on the sequential use of a stereoselective annulative cross-coupling reaction and dissolving metal reduction to establish the C13 and C9 stereocenters, respectively.
Collapse
Affiliation(s)
- Lauren
E. Markham
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - Jessica D. Tolbert
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - F. Jon Kull
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - Charles R. Midgett
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - Glenn C. Micalizio
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire 03755, United States
| |
Collapse
|
33
|
Midgett CR, Talbot KM, Day JL, Munson GP, Kull FJ. Structure of the master regulator Rns reveals an inhibitor of enterotoxigenic Escherichia coli virulence regulons. Sci Rep 2021; 11:15663. [PMID: 34341412 PMCID: PMC8329261 DOI: 10.1038/s41598-021-95123-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Enteric infections caused by the gram-negative bacteria enterotoxigenic Escherichia coli (ETEC), Vibrio cholerae, Shigella flexneri, and Salmonella enterica are among the most common and affect billions of people each year. These bacteria control expression of virulence factors using a network of transcriptional regulators, some of which are modulated by small molecules as has been shown for ToxT, an AraC family member from V. cholerae. In ETEC the expression of many types of adhesive pili is dependent upon the AraC family member Rns. We present here the 3 Å crystal structure of Rns and show it closely resembles ToxT. Rns crystallized as a dimer via an interface similar to that observed in other dimeric AraC's. Furthermore, the structure of Rns revealed the presence of a ligand, decanoic acid, that inhibits its activity in a manner similar to the fatty acid mediated inhibition observed for ToxT and the S. enterica homologue HilD. Together, these results support our hypothesis that fatty acids regulate virulence controlling AraC family members in a common manner across a number of enteric pathogens. Furthermore, for the first time this work identifies a small molecule capable of inhibiting the ETEC Rns regulon, providing a basis for development of therapeutics against this deadly human pathogen.
Collapse
Affiliation(s)
| | - Kacey Marie Talbot
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jessica L Day
- Department of Chemistry, Dartmouth College, Hanover, NH, USA
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - George P Munson
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - F Jon Kull
- Department of Chemistry, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
34
|
Transcriptome Analysis of Listeria monocytogenes Exposed to Beef Fat Reveals Antimicrobial and Pathogenicity Attenuation Mechanisms. Appl Environ Microbiol 2021; 87:AEM.03027-20. [PMID: 33608290 DOI: 10.1128/aem.03027-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Listeria monocytogenes is a deadly intracellular pathogen mostly associated with consumption of ready-to-eat foods. This study investigated the effectiveness of total beef fat (BF-T) from flaxseed-fed cattle and its fractions enriched with monounsaturated fatty acids (BF-MUFA) and polyunsaturated fatty acids (BF-PUFA), along with commercially available long-chain fatty acids (LC-FA), as natural antimicrobials against L. monocytogenes BF-T was ineffective at concentrations up to 6 mg/ml, while L. monocytogenes was susceptible to BF-MUFA and BF-PUFA, with MICs at pH 7 of 0.33 ± 0.21 mg/ml and 0.06 ± 0.03 mg/ml, respectively. The MIC of C14:0 was significantly lower than those of C16:0 and C18:0 (P < 0.05). Fatty acids c9-C16:1, C18:2n-6, and C18:3n-3 showed stronger inhibitory activity than c9-C18:1 and conjugated C18:2, with MICs of <1 mg/ml. Furthermore, global transcriptional analysis by transcriptome sequencing (RNA-seq) was performed to characterize the response of L. monocytogenes to selected fatty acids. Functional analysis indicated that antimicrobial LC-UFA repressed the expression of genes associated with nutrient transmembrane transport, energy generation, and oxidative stress resistance. On the other hand, upregulation of ribosome assembly and translation process is possibly associated with adaptive and repair mechanisms activated in response to LC-UFA. Virulence genes and genes involved in bile, acid, and osmotic stresses were largely downregulated, and more so for c9-C16:1, C18:2n-6, and C18:3n-3, likely through interaction with the master virulence regulator PrfA and the alternative sigma factor σB IMPORTANCE Listeria monocytogenes is a bacterial pathogen known for its ability to survive and thrive under adverse environments and, as such, its control poses a significant challenge, especially with the trend of minimally processed and ready-to-eat foods. This work investigated the effectiveness of fatty acids from various sources as natural antimicrobials against L. monocytogenes and evaluated their potential role in L. monocytogenes pathogenicity modulation, using the strain ATCC 19111. The findings show that long-chain unsaturated fatty acids (LC-UFA), including unsaturated beef fat fractions from flaxseed-fed cattle, could have the potential to be used as effective antimicrobials for L. monocytogenes through controlling growth as well as virulence attenuation. This not only advances our understanding of the mode of action of LC-UFA against L. monocytogenes but also suggests the potential for use of beef fat or its fractions as natural antimicrobials for controlling foodborne pathogens.
Collapse
|
35
|
Cortés-Avalos D, Martínez-Pérez N, Ortiz-Moncada MA, Juárez-González A, Baños-Vargas AA, Estrada-de Los Santos P, Pérez-Rueda E, Ibarra JA. An update of the unceasingly growing and diverse AraC/XylS family of transcriptional activators. FEMS Microbiol Rev 2021; 45:6219864. [PMID: 33837749 DOI: 10.1093/femsre/fuab020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/31/2021] [Indexed: 01/09/2023] Open
Abstract
Transcriptional factors play an important role in gene regulation in all organisms, especially in Bacteria. Here special emphasis is placed in the AraC/XylS family of transcriptional regulators. This is one of the most abundant as many predicted members have been identified and more members are added because more bacterial genomes are sequenced. Given the way more experimental evidence has mounded in the past decades, we decided to update the information about this captivating family of proteins. Using bioinformatics tools on all the data available for experimentally characterized members of this family, we found that many members that display a similar functional classification can be clustered together and in some cases they have a similar regulatory scheme. A proposal for grouping these proteins is also discussed. Additionally, an analysis of surveyed proteins in bacterial genomes is presented. Altogether, the current review presents a panoramic view into this family and we hope it helps to stimulate future research in the field.
Collapse
Affiliation(s)
- Daniel Cortés-Avalos
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Noemy Martínez-Pérez
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
| | - Mario A Ortiz-Moncada
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Aylin Juárez-González
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Arturo A Baños-Vargas
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Paulina Estrada-de Los Santos
- Laboratorio de Biotecnología Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México.,Facultad de Ciencias, Centro de Genómica y Bioinformática, Universidad Mayor, Santiago, Chile
| | - J Antonio Ibarra
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
36
|
Chowdhury R, Pavinski Bitar PD, Keresztes I, Condo AM, Altier C. A diffusible signal factor of the intestine dictates Salmonella invasion through its direct control of the virulence activator HilD. PLoS Pathog 2021; 17:e1009357. [PMID: 33617591 PMCID: PMC7932555 DOI: 10.1371/journal.ppat.1009357] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/04/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Successful intestinal infection by Salmonella requires optimized invasion of the gut epithelium, a function that is energetically costly. Salmonella have therefore evolved to intricately regulate the expression of their virulence determinants by utilizing specific environmental cues. Here we show that a powerful repressor of Salmonella invasion, a cis-2 unsaturated long chain fatty acid, is present in the murine large intestine. Originally identified in Xylella fastidiosa as a diffusible signal factor for quorum sensing, this fatty acid directly interacts with HilD, the master transcriptional regulator of Salmonella, and prevents hilA activation, thus inhibiting Salmonella invasion. We further identify the fatty acid binding region of HilD and show it to be selective and biased in favour of signal factors with a cis-2 unsaturation over other intestinal fatty acids. Single mutation of specific HilD amino acids to alanine prevented fatty acid binding, thereby alleviating their repressive effect on invasion. Together, these results highlight an exceedingly sensitive mechanism used by Salmonella to colonize its host by detecting and exploiting specific molecules present within the complex intestinal environment.
Collapse
Affiliation(s)
- Rimi Chowdhury
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail: (RC); (CA)
| | - Paulina D. Pavinski Bitar
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Ivan Keresztes
- Chemistry NMR Facility, Cornell University, Ithaca, New York, United States of America
| | - Anthony M. Condo
- Chemistry NMR Facility, Cornell University, Ithaca, New York, United States of America
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail: (RC); (CA)
| |
Collapse
|
37
|
The Canonical Long-Chain Fatty Acid Sensing Machinery Processes Arachidonic Acid To Inhibit Virulence in Enterohemorrhagic Escherichia coli. mBio 2021; 12:mBio.03247-20. [PMID: 33468701 PMCID: PMC7845647 DOI: 10.1128/mbio.03247-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) play important roles in host immunity. Manipulation of lipid content in host tissues through diet or pharmacological interventions is associated with altered severity of various inflammatory diseases. The mammalian gastrointestinal tract is a complex biochemical organ that generates a diverse milieu of host- and microbe-derived metabolites. In this environment, bacterial pathogens sense and respond to specific stimuli, which are integrated into the regulation of their virulence programs. Previously, we identified the transcription factor FadR, a long-chain fatty acid (LCFA) acyl coenzyme A (acyl-CoA) sensor, as a novel virulence regulator in the human foodborne pathogen enterohemorrhagic Escherichia coli (EHEC). Here, we demonstrate that exogenous LCFAs directly inhibit the locus of enterocyte effacement (LEE) pathogenicity island in EHEC through sensing by FadR. Moreover, in addition to LCFAs that are 18 carbons in length or shorter, we introduce host-derived arachidonic acid (C20:4) as an additional LCFA that is recognized by the FadR system in EHEC. We show that arachidonic acid is processed by the acyl-CoA synthetase FadD, which permits binding to FadR and decreases FadR affinity for its target DNA sequences. This interaction enables the transcriptional regulation of FadR-responsive operons by arachidonic acid in EHEC, including the LEE. Finally, we show that arachidonic acid inhibits hallmarks of EHEC disease in a FadR-dependent manner, including EHEC attachment to epithelial cells and the formation of attaching and effacing lesions. Together, our findings delineate a molecular mechanism demonstrating how LCFAs can directly inhibit the virulence of an enteric bacterial pathogen. More broadly, our findings expand the repertoire of ligands sensed by the canonical LFCA sensing machinery in EHEC to include arachidonic acid, an important bioactive lipid that is ubiquitous within host environments.
Collapse
|
38
|
Cho JY, Liu R, Macbeth JC, Hsiao A. The Interface of Vibrio cholerae and the Gut Microbiome. Gut Microbes 2021; 13:1937015. [PMID: 34180341 PMCID: PMC8244777 DOI: 10.1080/19490976.2021.1937015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 02/04/2023] Open
Abstract
The bacterium Vibrio cholerae is the etiologic agent of the severe human diarrheal disease cholera. The gut microbiome, or the native community of microorganisms found in the human gastrointestinal tract, is increasingly being recognized as a factor in driving susceptibility to infection, in vivo fitness, and host interactions of this pathogen. Here, we review a subset of the emerging studies in how gut microbiome structure and microbial function are able to drive V. cholerae virulence gene regulation, metabolism, and modulate host immune responses to cholera infection and vaccination. Improved mechanistic understanding of commensal-pathogen interactions offers new perspectives in the design of prophylactic and therapeutic approaches for cholera control.
Collapse
Affiliation(s)
- Jennifer Y. Cho
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Rui Liu
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, California, USA
| | - John C. Macbeth
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| |
Collapse
|
39
|
Zhou Y, Lee ZL, Zhu J. On or Off: Life-Changing Decisions Made by Vibrio cholerae Under Stress. INFECTIOUS MICROBES & DISEASES 2020; 2:127-135. [PMID: 38630076 PMCID: PMC7769058 DOI: 10.1097/im9.0000000000000037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 11/25/2022]
Abstract
Vibrio cholerae, the causative agent of the infectious disease, cholera, is commonly found in brackish waters and infects human hosts via the fecal-oral route. V. cholerae is a master of stress resistance as V. cholerae's dynamic lifestyle across different physical environments constantly exposes it to diverse stressful circumstances. Specifically, V. cholerae has dedicated genetic regulatory networks to sense different environmental cues and respond to these signals. With frequent outbreaks costing a tremendous amount of lives and increased global water temperatures providing more suitable aquatic habitats for V. cholerae, cholera pandemics remain a probable catastrophic threat to humanity. Understanding how V. cholerae copes with different environmental stresses broadens our repertoire of measures against infectious diseases and expands our general knowledge of prokaryotic stress responses. In this review, we summarize the regulatory mechanisms of how V. cholerae fights against stresses in vivo and in vitro.
Collapse
|
40
|
Hsiao A, Zhu J. Pathogenicity and virulence regulation of Vibrio cholerae at the interface of host-gut microbiome interactions. Virulence 2020; 11:1582-1599. [PMID: 33172314 PMCID: PMC7671094 DOI: 10.1080/21505594.2020.1845039] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
The Gram-negative bacterium Vibrio cholerae is responsible for the severe diarrheal pandemic disease cholera, representing a major global public health concern. This pathogen transitions from aquatic reservoirs into epidemics in human populations, and has evolved numerous mechanisms to sense this transition in order to appropriately regulate its gene expression for infection. At the intersection of pathogen and host in the gastrointestinal tract lies the community of native gut microbes, the gut microbiome. It is increasingly clear that the diversity of species and biochemical activities within the gut microbiome represents a driver of infection outcome, through their ability to manipulate the signals used by V. cholerae to regulate virulence and fitness in vivo. A better mechanistic understanding of how commensal microbial action interacts with V. cholerae pathogenesis may lead to novel prophylactic and therapeutic interventions for cholera. Here, we review a subset of this burgeoning field of research.
Collapse
Affiliation(s)
- Ansel Hsiao
- Department of Microbiology & Plant Pathology, University of California Riverside, Riverside, CA, USA
| | - Jun Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
41
|
Kumar A, Das B, Kumar N. Vibrio Pathogenicity Island-1: The Master Determinant of Cholera Pathogenesis. Front Cell Infect Microbiol 2020; 10:561296. [PMID: 33123494 PMCID: PMC7574455 DOI: 10.3389/fcimb.2020.561296] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/11/2020] [Indexed: 11/13/2022] Open
Abstract
Cholera is an acute secretory diarrhoeal disease caused by the bacterium Vibrio cholerae. The key determinants of cholera pathogenicity, cholera toxin (CT), and toxin co-regulated pilus (TCP) are part of the genome of two horizontally acquired Mobile Genetic Elements (MGEs), CTXΦ, and Vibrio pathogenicity island 1 (VPI-1), respectively. Besides, V. cholerae genome harbors several others MGEs that provide antimicrobial resistance, metabolic functions, and other fitness traits. VPI-1, one of the most well characterized genomic island (GI), deserved a special attention, because (i) it encodes many of the virulence factors that facilitate development of cholera (ii) it is essential for the acquisition of CTXΦ and production of CT, and (iii) it is crucial for colonization of V. cholerae in the host intestine. Nevertheless, VPI-1 is ubiquitously present in all the epidemic V. cholerae strains. Therefore, to understand the role of MGEs in the evolution of cholera pathogen from a natural aquatic habitat, it is important to understand the VPI-1 encoded functions, their acquisition and possible mode of dissemination. In this review, we have therefore discussed our present understanding of the different functions of VPI-1 those are associated with virulence, important for toxin production and essential for the disease development.
Collapse
Affiliation(s)
- Ashok Kumar
- Translational Health Science and Technology Institute, Faridabad, India.,Centre for Doctoral Studies, Advanced Research Centre, Manipal Academy of Higher Education, Manipal, India
| | - Bhabatosh Das
- Translational Health Science and Technology Institute, Faridabad, India.,Centre for Doctoral Studies, Advanced Research Centre, Manipal Academy of Higher Education, Manipal, India
| | - Niraj Kumar
- Translational Health Science and Technology Institute, Faridabad, India.,Centre for Doctoral Studies, Advanced Research Centre, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
42
|
Diffusible Signal Factors Act through AraC-Type Transcriptional Regulators as Chemical Cues To Repress Virulence of Enteric Pathogens. Infect Immun 2020; 88:IAI.00226-20. [PMID: 32690633 PMCID: PMC7504960 DOI: 10.1128/iai.00226-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/08/2020] [Indexed: 01/02/2023] Open
Abstract
Successful colonization by enteric pathogens is contingent upon effective interactions with the host and the resident microbiota. These pathogens thus respond to and integrate myriad signals to control virulence. Long-chain fatty acids repress the virulence of the important enteric pathogens Salmonella enterica and Vibrio cholerae by repressing AraC-type transcriptional regulators in pathogenicity islands. While several fatty acids are known to be repressive, we show here that cis-2-unsaturated fatty acids, a rare chemical class used as diffusible signal factors (DSFs), are highly potent inhibitors of virulence functions. We found that DSFs repressed virulence gene expression of enteric pathogens by interacting with transcriptional regulators of the AraC family. In Salmonella enterica serovar Typhimurium, DSFs repress the activity of HilD, an AraC-type activator essential to the induction of epithelial cell invasion, by both preventing its interaction with target DNA and inducing its rapid degradation by Lon protease. cis-2-Hexadecenoic acid (c2-HDA), a DSF produced by Xylella fastidiosa, was the most potent among those tested, repressing the HilD-dependent transcriptional regulator hilA and the type III secretion effector sopB >200- and 68-fold, respectively. Further, c2-HDA attenuated the transcription of the ToxT-dependent cholera toxin synthesis genes of V. cholerae c2-HDA significantly repressed invasion gene expression by Salmonella in the murine colitis model, indicating that the HilD-dependent signaling pathway functions within the complex milieu of the animal intestine. These data argue that enteric pathogens respond to DSFs as interspecies signals to identify appropriate niches in the gut for virulence activation, which could be exploited to control the virulence of enteric pathogens.
Collapse
|
43
|
OnfD, an AraC-Type Transcriptional Regulator Encoded by Rhizobium tropici CIAT 899 and Involved in Nod Factor Synthesis and Symbiosis. Appl Environ Microbiol 2020; 86:AEM.01297-20. [PMID: 32709725 PMCID: PMC7499043 DOI: 10.1128/aem.01297-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
Rhizobium tropici CIAT 899 is a broad-host-range rhizobial strain that establishes symbiotic interactions with legumes and tolerates different environmental stresses such as heat, acidity, or salinity. This rhizobial strain produces a wide variety of symbiotically active nodulation factors (NF) induced not only by the presence of plant-released flavonoids but also under osmotic stress conditions through the LysR-type transcriptional regulators NodD1 (flavonoids) and NodD2 (osmotic stress). However, the activation of NodD2 under high-osmotic-stress conditions remains elusive. Here, we have studied the role of a new AraC-type regulator (named as OnfD) in the symbiotic interaction of R. tropici CIAT 899 with Phaseolus vulgaris and Lotus plants. We determined that OnfD is required under salt stress conditions for the transcriptional activation of the nodulation genes and therefore the synthesis and export of NF, which are required for a successful symbiosis with P. vulgaris Moreover, using bacterial two-hybrid analysis, we demonstrated that the OnfD and NodD2 proteins form homodimers and OnfD/NodD2 form heterodimers, which could be involved in the production of NF in the presence of osmotic stress conditions since both regulators are required for NF synthesis in the presence of salt. A structural model of OnfD is presented and discussed.IMPORTANCE The synthesis and export of rhizobial NF are mediated by a conserved group of LysR-type regulators, the NodD proteins. Here, we have demonstrated that a non-LysR-type regulator, an AraC-type protein, is required for the transcriptional activation of symbiotic genes and for the synthesis of symbiotically active NF under salt stress conditions.
Collapse
|
44
|
Yang S, Xi D, Wang X, Li Y, Li Y, Yan J, Cao B. Vibrio cholerae VC1741 (PsrA) enhances the colonization of the pathogen in infant mice intestines in the presence of the long-chain fatty acid, oleic acid. Microb Pathog 2020; 147:104443. [PMID: 32777352 DOI: 10.1016/j.micpath.2020.104443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023]
Abstract
Vibrio cholerae is a natural inhabitant of aquatic environments and causes the epidemic diarrheal disease known as cholera. Fatty acid metabolism is closely related to the pathogenicity of V. cholerae. The TetR family transcriptional repressor PsrA regulates the β-oxidation pathway in Pseudomonas aeruginosa; however, little is known about its regulation in V. cholerae. In this study, qRT-PCR revealed that the expression of vc1741 (psrA) increased 40-fold in the small intestines of infant mice compared with that grown in LB medium. The Δvc1741 mutant showed a significant defected in the ability to colonize the small intestines of infant mice with a competitive index (CI) of 0.53. EMSAs indicated that VC1741 could directly bind to the promoter regions of vc1741-fadE1, fadBA, and fadIJ operons, and these bindings were reversed upon addition of the long-chain fatty acid (LCFA), oleic acid. The expression levels of the fadB, fadA, fadI, and fadJ genes were all elevated by approximately 2-fold in the Δvc1741 mutant strain compared with that in the wild-type strain in LB medium, indicating that VC1741 is a repressor for these genes involved in fatty acid degradation. Moreover, ΔfadBA, ΔfadB, and ΔfadA isogenic mutants showed defective abilities to colonize the small intestines of infant mice, with CI values of 0.64, 0.73, and 0.74, respectively. These data provided a mechanistic model in which LCFAs affect the expression of VC1741 to control fatty acid degradation and virulence in V. cholerae.
Collapse
Affiliation(s)
- Shuang Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Daoyi Xi
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Xiaochen Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Yuehua Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Yujia Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Junxiang Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Boyang Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China.
| |
Collapse
|
45
|
The Vibrio cholerae Quorum-Sensing Protein VqmA Integrates Cell Density, Environmental, and Host-Derived Cues into the Control of Virulence. mBio 2020; 11:mBio.01572-20. [PMID: 32723922 PMCID: PMC7387800 DOI: 10.1128/mbio.01572-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Quorum sensing (QS) is a process of chemical communication that bacteria use to orchestrate collective behaviors. QS communication relies on chemical signal molecules called autoinducers. QS regulates virulence in Vibrio cholerae, the causative agent of the disease cholera. Transit into the human small intestine, the site of cholera infection, exposes V. cholerae to the host environment. In this study, we show that the combination of two stimuli encountered in the small intestine, the absence of oxygen and the presence of host-produced bile salts, impinge on V. cholerae QS function and, in turn, pathogenicity. We suggest that possessing a QS system that is responsive to multiple environmental, host, and cell density cues enables V. cholerae to fine-tune its virulence capacity in the human intestine. Quorum sensing is a chemical communication process in which bacteria use the production, release, and detection of signal molecules called autoinducers to orchestrate collective behaviors. The human pathogen Vibrio cholerae requires quorum sensing to infect the small intestine. There, V. cholerae encounters the absence of oxygen and the presence of bile salts. We show that these two stimuli differentially affect quorum-sensing function and, in turn, V. cholerae pathogenicity. First, during anaerobic growth, V. cholerae does not produce the CAI-1 autoinducer, while it continues to produce the DPO autoinducer, suggesting that CAI-1 may encode information specific to the aerobic lifestyle of V. cholerae. Second, the quorum-sensing receptor-transcription factor called VqmA, which detects the DPO autoinducer, also detects the lack of oxygen and the presence of bile salts. Detection occurs via oxygen-, bile salt-, and redox-responsive disulfide bonds that alter VqmA DNA binding activity. We propose that VqmA serves as an information processing hub that integrates quorum-sensing information, redox status, the presence or absence of oxygen, and host cues. In response to the information acquired through this mechanism, V. cholerae appropriately modulates its virulence output.
Collapse
|
46
|
Pan X, Fan Z, Chen L, Liu C, Bai F, Wei Y, Tian Z, Dong Y, Shi J, Chen H, Jin Y, Cheng Z, Jin S, Lin J, Wu W. PvrA is a novel regulator that contributes to Pseudomonas aeruginosa pathogenesis by controlling bacterial utilization of long chain fatty acids. Nucleic Acids Res 2020; 48:5967-5985. [PMID: 32406921 PMCID: PMC7293031 DOI: 10.1093/nar/gkaa377] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
During infection of a host, Pseudomonas aeruginosa orchestrates global gene expression to adapt to the host environment and counter the immune attacks. P. aeruginosa harbours hundreds of regulatory genes that play essential roles in controlling gene expression. However, their contributions to the bacterial pathogenesis remain largely unknown. In this study, we analysed the transcriptomic profile of P. aeruginosa cells isolated from lungs of infected mice and examined the roles of upregulated regulatory genes in bacterial virulence. Mutation of a novel regulatory gene pvrA (PA2957) attenuated the bacterial virulence in an acute pneumonia model. Chromatin immunoprecipitation (ChIP)-Seq and genetic analyses revealed that PvrA directly regulates genes involved in phosphatidylcholine utilization and fatty acid catabolism. Mutation of the pvrA resulted in defective bacterial growth when phosphatidylcholine or palmitic acid was used as the sole carbon source. We further demonstrated that palmitoyl coenzyme A is a ligand for the PvrA, enhancing the binding affinity of PvrA to its target promoters. An arginine residue at position 136 was found to be essential for PvrA to bind palmitoyl coenzyme A. Overall, our results revealed a novel regulatory pathway that controls genes involved in phosphatidylcholine and fatty acid utilization and contributes to the bacterial virulence.
Collapse
Affiliation(s)
- Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zheng Fan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lei Chen
- Department of Plant Biology and Ecology, College of Life Science Nankai University, Tianjin 300071 China
| | - Chang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yu Wei
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Zhenyang Tian
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuanyuan Dong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jing Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hao Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
47
|
Backbone Interactions Between Transcriptional Activator ExsA and Anti-Activator ExsD Facilitate Regulation of the Type III Secretion System in Pseudomonas aeruginosa. Sci Rep 2020; 10:9881. [PMID: 32555263 PMCID: PMC7303211 DOI: 10.1038/s41598-020-66555-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 05/20/2020] [Indexed: 12/20/2022] Open
Abstract
The type III secretion system (T3SS) is a pivotal virulence mechanism of many Gram-negative bacteria. During infection, the syringe-like T3SS injects cytotoxic proteins directly into the eukaryotic host cell cytoplasm. In Pseudomonas aeruginosa, expression of the T3SS is regulated by a signaling cascade involving the proteins ExsA, ExsC, ExsD, and ExsE. The AraC-type transcription factor ExsA activates transcription of all T3SS-associated genes. Prior to host cell contact, ExsA is inhibited through direct binding of the anti-activator protein ExsD. Host cell contact triggers secretion of ExsE and sequestration of ExsD by ExsC to cause the release of ExsA. ExsA does not bind ExsD through the canonical ligand binding pocket of AraC-type proteins. Using site-directed mutagenesis and a specific in vitro transcription assay, we have now discovered that backbone interactions between the amino terminus of ExsD and the ExsA beta barrel constitute a pivotal part of the ExsD-ExsA interface. Follow-up bacterial two-hybrid experiments suggest additional contacts create an even larger protein–protein interface. The discovered role of the amino terminus of ExsD in ExsA binding explains how ExsC might relieve the ExsD-mediated inhibition of T3SS gene expression, because the same region of ExsD interacts with ExsC following host cell contact.
Collapse
|
48
|
HilD, HilC, and RtsA Form Homodimers and Heterodimers To Regulate Expression of the Salmonella Pathogenicity Island I Type III Secretion System. J Bacteriol 2020; 202:JB.00012-20. [PMID: 32041797 DOI: 10.1128/jb.00012-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
Salmonella enterica serovar Typhimurium colonizes and invades host intestinal epithelial cells using the type three secretion system (T3SS) encoded on Salmonella pathogenicity island 1 (SPI1). The level of SPI1 T3SS gene expression is controlled by the transcriptional activator HilA, encoded on SPI1. Expression of hilA is positively regulated by three homologous transcriptional regulators, HilD, HilC, and RtsA, belonging to the AraC/XylS family. These regulators also activate the hilD, hilC, and rtsA genes by binding to the same DNA sequences upstream of these promoters, forming a complex feed-forward loop to control SPI1 expression. Despite the apparent redundancy in function, HilD has a unique role in SPI1 regulation because the majority of external regulatory inputs act exclusively through HilD. To better understand SPI1 regulation, the nature of interaction between HilD, HilC, and RtsA has been characterized using biochemical and genetic techniques. Our results showed that HilD, HilC, and RtsA can form heterodimers as well as homodimers in solution. Comparison with other AraC family members identified a putative α-helix in the N-terminal domain, which acts as the dimerization domain. Alanine substitution in this region results in reduced dimerization of HilD and HilC and also affects their ability to activate hilA expression. The dimer interactions of HilD, HilC, and RtsA add another layer of complexity to the SPI1 regulatory circuit, providing a more comprehensive understanding of SPI1 T3SS regulation and Salmonella pathogenesis.IMPORTANCE The SPI1 type three secretion system is a key virulence factor required for Salmonella to both cause gastroenteritis and initiate serious systemic disease. The system responds to numerous environmental signals in the intestine, integrating this information via a complex regulatory network. Here, we show that the primary regulatory proteins in the network function as both homodimers and heterodimers, providing information regarding both regulation of virulence in this important pathogen and general signal integration to control gene expression.
Collapse
|
49
|
Eraso JM, Kachroo P, Olsen RJ, Beres SB, Zhu L, Badu T, Shannon S, Cantu CC, Saavedra MO, Kubiak SL, Porter AR, DeLeo FR, Musser JM. Genetic heterogeneity of the Spy1336/R28-Spy1337 virulence axis in Streptococcus pyogenes and effect on gene transcript levels and pathogenesis. PLoS One 2020; 15:e0229064. [PMID: 32214338 PMCID: PMC7098570 DOI: 10.1371/journal.pone.0229064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/28/2020] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pyogenes is a strict human pathogen responsible for more than 700 million infections annually worldwide. Strains of serotype M28 S. pyogenes are typically among the five more abundant types causing invasive infections and pharyngitis in adults and children. Type M28 strains also have an unusual propensity to cause puerperal sepsis and neonatal disease. We recently discovered that a one-nucleotide indel in an intergenic homopolymeric tract located between genes Spy1336/R28 and Spy1337 altered virulence in a mouse model of infection. In the present study, we analyzed size variation in this homopolymeric tract and determined the extent of heterogeneity in the number of tandemly-repeated 79-amino acid domains in the coding region of Spy1336/R28 in large samples of strains recovered from humans with invasive infections. Both repeat sequence elements are highly polymorphic in natural populations of M28 strains. Variation in the homopolymeric tract results in (i) changes in transcript levels of Spy1336/R28 and Spy1337 in vitro, (ii) differences in virulence in a mouse model of necrotizing myositis, and (iii) global transcriptome changes as shown by RNAseq analysis of isogenic mutant strains. Variation in the number of tandem repeats in the coding sequence of Spy1336/R28 is responsible for size variation of R28 protein in natural populations. Isogenic mutant strains in which genes encoding R28 or transcriptional regulator Spy1337 are inactivated are significantly less virulent in a nonhuman primate model of necrotizing myositis. Our findings provide impetus for additional studies addressing the role of R28 and Spy1337 variation in pathogen-host interactions.
Collapse
Affiliation(s)
- Jesus M. Eraso
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Priyanka Kachroo
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Randall J. Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
- Departments of Pathology and Laboratory Medicine and Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Stephen B. Beres
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Luchang Zhu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Traci Badu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Sydney Shannon
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Concepcion C. Cantu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Samantha L. Kubiak
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Adeline R. Porter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Frank R. DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - James M. Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
- Departments of Pathology and Laboratory Medicine and Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| |
Collapse
|
50
|
Abstract
Hfq (host factor for phage Q beta) is key for posttranscriptional gene regulation in many bacteria. Hfq's function is to stabilize sRNAs and to facilitate base-pairing with trans-encoded target mRNAs. Loss of Hfq typically results in pleiotropic phenotypes, and, in the major human pathogen Vibrio cholerae, Hfq inactivation has been linked to reduced virulence, failure to produce biofilms, and impaired intercellular communication. However, the RNA ligands of Hfq in V. cholerae are currently unknown. Here, we used RIP-seq (RNA immunoprecipitation followed by high-throughput sequencing) analysis to identify Hfq-bound RNAs in V. cholerae Our work revealed 603 coding and 85 noncoding transcripts associated with Hfq, including 44 sRNAs originating from the 3' end of mRNAs. Detailed investigation of one of these latter transcripts, named FarS (fatty acid regulated sRNA), showed that this sRNA is produced by RNase E-mediated maturation of the fabB 3'UTR, and, together with Hfq, inhibits the expression of two paralogous fadE mRNAs. The fabB and fadE genes are antagonistically regulated by the major fatty acid transcription factor, FadR, and we show that, together, FadR, FarS, and FadE constitute a mixed feed-forward loop regulating the transition between fatty acid biosynthesis and degradation in V. cholerae Our results provide the molecular basis for studies on Hfq in V. cholerae and highlight the importance of a previously unrecognized sRNA for fatty acid metabolism in this major human pathogen.
Collapse
|