1
|
Jiang Y, Zhang Z. OVOL2: an epithelial lineage determiner with emerging roles in energy homeostasis. Trends Cell Biol 2023; 33:824-833. [PMID: 37336658 PMCID: PMC10524639 DOI: 10.1016/j.tcb.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/21/2023]
Abstract
Ovo like zinc finger 2 (OVOL2) is an evolutionarily conserved regulator of epithelial lineage determination and differentiation during embryogenesis. OVOL2 binds to DNA using zinc-finger domains to suppress epithelial-mesenchymal transition (EMT), which is critical for tumor metastasis. However, recent studies have suggested some noncanonical roles of OVOL2 that do not rely on the DNA binding of zinc-finger domains or regulation of EMT. OVOL2 and EMT regulators have emerging roles in adipogenesis, thermogenesis, and lipid metabolism. Here, we review different roles of OVOL2 from embryo development to adult tissue homeostasis, and discuss how OVOL2 and other EMT regulators orchestrate a regulatory network to control energy homeostasis. Last, we propose potential applications of targeting OVOL2 to reduce human obesity.
Collapse
Affiliation(s)
- Yiao Jiang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhao Zhang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Basu B, Karmakar S, Basu M, Ghosh MK. USP7 imparts partial EMT state in colorectal cancer by stabilizing the RNA helicase DDX3X and augmenting Wnt/β-catenin signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119446. [PMID: 36791810 DOI: 10.1016/j.bbamcr.2023.119446] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023]
Abstract
Epithelial mesenchymal transition (EMT) is a fundamental and highly regulated process that is normally observed during embryonic development and tissue repair but is deregulated during advanced cancer. Classically, through the process of EMT, cancer cells gradually transition from a predominantly epithelial phenotype to a more invasive mesenchymal phenotype. Increasing studies have, however, brought into light the existence of unique intermediary states in EMT, often referred to as partial EMT states. Through our studies we have found the deubiquitinase USP7 to be strongly associated with the development of such a partial EMT state in colon cancer cells, characterized by the acquisition of mesenchymal characteristics but without the reduction in epithelial markers. We found USP7 to be overexpressed in colon adenocarcinomas and to be closely associated with advancing tumor stage. We found that functional inhibition or knockdown of USP7 is associated with a marked reduction in mesenchymal markers and in overall migration potential of cancer cells. Starting off with a proteomics-based approach we were able to identify and later on verify the DEAD box RNA helicase DDX3X to be an interacting partner of USP7. We then went on to show that USP7, through the stabilization of DDX3X, augments Wnt/β-catenin signaling, which has previously been shown to be greatly associated with colorectal cancer cell invasiveness. Our results indicate USP7 as a novel key player in establishing a partial mesenchymal phenotype in colorectal cancer.
Collapse
Affiliation(s)
- Bhaskar Basu
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Parganas PIN-743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
3
|
OVOL1 inhibits breast cancer cell invasion by enhancing the degradation of TGF-β type I receptor. Signal Transduct Target Ther 2022; 7:126. [PMID: 35484112 PMCID: PMC9050647 DOI: 10.1038/s41392-022-00944-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 11/09/2022] Open
Abstract
Ovo-like transcriptional repressor 1 (OVOL1) is a key mediator of epithelial lineage determination and mesenchymal-epithelial transition (MET). The cytokines transforming growth factor-β (TGF-β) and bone morphogenetic proteins (BMP) control the epithelial-mesenchymal plasticity (EMP) of cancer cells, but whether this occurs through interplay with OVOL1 is not known. Here, we show that OVOL1 is inversely correlated with the epithelial-mesenchymal transition (EMT) signature, and is an indicator of a favorable prognosis for breast cancer patients. OVOL1 suppresses EMT, migration, extravasation, and early metastatic events of breast cancer cells. Importantly, BMP strongly promotes the expression of OVOL1, which enhances BMP signaling in turn. This positive feedback loop is established through the inhibition of TGF-β receptor signaling by OVOL1. Mechanistically, OVOL1 interacts with and prevents the ubiquitination and degradation of SMAD family member 7 (SMAD7), which is a negative regulator of TGF-β type I receptor stability. Moreover, a small-molecule compound 6-formylindolo(3,2-b)carbazole (FICZ) was identified to activate OVOL1 expression and thereby antagonizing (at least in part) TGF-β-mediated EMT and migration in breast cancer cells. Our results uncover a novel mechanism by which OVOL1 attenuates TGF-β/SMAD signaling and maintains the epithelial identity of breast cancer cells.
Collapse
|
4
|
Saxena K, Srikrishnan S, Celia-Terrassa T, Jolly MK. OVOL1/2: Drivers of Epithelial Differentiation in Development, Disease, and Reprogramming. Cells Tissues Organs 2020; 211:183-192. [PMID: 32932250 DOI: 10.1159/000511383] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/26/2020] [Indexed: 11/19/2022] Open
Abstract
OVOL proteins (OVOL1 and OVOL2), vertebrate homologs of Drosophila OVO, are critical regulators of epithelial lineage determination and differentiation during embryonic development in tissues such as kidney, skin, mammary epithelia, and testis. OVOL can inhibit epithelial-mesenchymal transition and/or can promote mesenchymal-epithelial transition. Moreover, they can regulate the stemness of cancer cells, thus playing an important role during cancer cell metastasis. Due to their central role in differentiation and maintenance of epithelial lineage, OVOL overexpression has been shown to be capable of reprogramming fibroblasts to epithelial cells. Here, we review the roles of OVOL-mediated epithelial differentiation across multiple contexts, including embryonic development, cancer progression, and cellular reprogramming.
Collapse
Affiliation(s)
- Kritika Saxena
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | | | - Toni Celia-Terrassa
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Mohit Kumar Jolly
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India,
| |
Collapse
|
5
|
Jeyarajah MJ, Jaju Bhattad G, Hillier DM, Renaud SJ. The Transcription Factor OVOL2 Represses ID2 and Drives Differentiation of Trophoblast Stem Cells and Placental Development in Mice. Cells 2020; 9:E840. [PMID: 32244352 PMCID: PMC7226816 DOI: 10.3390/cells9040840] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 12/14/2022] Open
Abstract
Trophoblasts are the first cell type to be specified during embryogenesis, and they are essential for placental morphogenesis and function. Trophoblast stem (TS) cells are the progenitor cells for all trophoblast lineages; control of TS cell differentiation into distinct trophoblast subtypes is not well understood. Mice lacking the transcription factor OVO-like 2 (OVOL2) fail to produce a functioning placenta, and die around embryonic day 10.5, suggesting that OVOL2 may be critical for trophoblast development. Therefore, our objective was to determine the role of OVOL2 in mouse TS cell fate. We found that OVOL2 was highly expressed in mouse placenta and differentiating TS cells. Placentas and TS cells lacking OVOL2 showed poor trophoblast differentiation potential, including increased expression of stem-state associated genes (Eomes, Esrrb, Id2) and decreased levels of differentiation-associated transcripts (Gcm1, Tpbpa, Prl3b1, Syna). Ectopic OVOL2 expression in TS cells elicited precocious differentiation. OVOL2 bound proximate to the gene encoding inhibitor of differentiation 2 (ID2), a dominant negative helix-loop-helix protein, and directly repressed its activity. Overexpression of ID2 was sufficient to reinforce the TS cell stem state. Our findings reveal a critical role of OVOL2 as a regulator of TS cell differentiation and placental development, in-part by coordinating repression of ID2.
Collapse
Affiliation(s)
- Mariyan J. Jeyarajah
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada; (M.J.J.)
| | - Gargi Jaju Bhattad
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada; (M.J.J.)
| | - Dendra M. Hillier
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada; (M.J.J.)
| | - Stephen J. Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada; (M.J.J.)
- Children’s Health Research Institute, London, ON N6C2V5, Canada
- Lawson Health Research Institute, London, ON N6C2R5, Canada
| |
Collapse
|
6
|
Hu X, Zhang X, Liu Z, Li S, Zheng X, Nie Y, Tao Y, Zhou X, Wu W, Yang G, Zhao Q, Zhang Y, Xu Q, Mou C. Exploration of key regulators driving primary feather follicle induction in goose skin. Gene 2020; 731:144338. [PMID: 31923576 DOI: 10.1016/j.gene.2020.144338] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 11/28/2022]
Abstract
The primary feather follicles are universal skin appendages widely distributed in the skin of feathered birds. The morphogenesis and development of the primary feather follicles in goose skin remain largely unknown. Here, the induction of primary feather follicles in goose embryonic skin (pre-induction vs induction) was investigated by de novo transcriptome analyses to reveal 409 differentially expressed genes (DEGs). The DEGs were characterized to potentially regulate the de novo formation of feather follicle primordia consisting of placode (4 genes) and dermal condensate (12 genes), and the thickening of epidermis (5 genes) and dermal fibroblasts (17 genes), respectively. Further analyses enriched DEGs into GO terms represented as cell adhesion and KEGG pathways including Wnt and Hedgehog signaling pathways that are highly correlated with cell communication and molecular regulation. Six selected Wnt pathway genes were detected by qPCR with up-regulation in goose skin during the induction of primary feather follicles. The localization of WNT16, SFRP1 and FRZB by in situ hybridization showed weak expression in the primary feather primordia, whereas FZD1, LEF1 and DKK1 were expressed initially in the inter-follicular skin and feather follicle primordia, then mainly restricted in the feather primordia. The spatial-temporal expression patterns indicate that Wnt pathway genes DKK1, FZD1 and LEF1 are the important regulators functioned in the induction of primary feather follicle in goose skin. The dynamic molecular changes and specific gene expression patterns revealed in this report provide the general knowledge of primary feather follicle and skin development in waterfowl, and contribute to further understand the diversity of hair and feather development beyond the mouse and chicken models.
Collapse
Affiliation(s)
- Xuewen Hu
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Xiaokang Zhang
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Zhiwei Liu
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Shaomei Li
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Xinting Zheng
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Yangfan Nie
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Yingfeng Tao
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Xiaoliu Zhou
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Wenqing Wu
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Ge Yang
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Qianqian Zhao
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Yang Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Qi Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Chunyan Mou
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China.
| |
Collapse
|
7
|
Wnt Signaling in Neural Crest Ontogenesis and Oncogenesis. Cells 2019; 8:cells8101173. [PMID: 31569501 PMCID: PMC6829301 DOI: 10.3390/cells8101173] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Neural crest (NC) cells are a temporary population of multipotent stem cells that generate a diverse array of cell types, including craniofacial bone and cartilage, smooth muscle cells, melanocytes, and peripheral neurons and glia during embryonic development. Defective neural crest development can cause severe and common structural birth defects, such as craniofacial anomalies and congenital heart disease. In the early vertebrate embryos, NC cells emerge from the dorsal edge of the neural tube during neurulation and then migrate extensively throughout the anterior-posterior body axis to generate numerous derivatives. Wnt signaling plays essential roles in embryonic development and cancer. This review summarizes current understanding of Wnt signaling in NC cell induction, delamination, migration, multipotency, and fate determination, as well as in NC-derived cancers.
Collapse
|
8
|
Sun X, Li Z, Niu Y, Zhao L, Huang Y, Li Q, Zhang S, Chen T, Fu T, Yang T, An X, Jiang Y, Zhang J. Jarid1b promotes epidermal differentiation by mediating the repression of Ship1 and activation of the AKT/Ovol1 pathway. Cell Prolif 2019; 52:e12638. [PMID: 31152465 PMCID: PMC6797505 DOI: 10.1111/cpr.12638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives Terminally differentiated stratified squamous epithelial cells play an important role in barrier protection of the skin. The integrity of epidermal cells is maintained by tight regulation of proliferation and differentiation. The aim of this study was to investigate the role of epigenetic regulator H3K4me3 and its demethylase Jarid1b in the control of epithelial cell differentiation. Materials and methods RT‐qPCR, Western blotting and IHC were used to detect mRNA and protein levels. We analysed cell proliferation by CCK8 assay and cell migration by wound healing assay. ChIP was used to measure H3K4me3 enrichment. A chamber graft model was established for epidermal development. Results Our studies showed that H3K4me3 was decreased during epidermal differentiation. The H3K4me3 demethylase Jarid1b positively controlled epidermal cell differentiation in vitro and in vivo. Mechanistically, we found that Jarid1b substantially increased the expression of mesenchymal‐epithelial transition (MET)‐related genes, among which Ovol1 positively regulated differentiation gene expression. In addition, Ovol1 expression was repressed by PI3K‐AKT pathway inhibitors and overexpression (O/E) of the PI3K‐AKT pathway suppressor Ship1. Knockdown (KD) of Ship1 activated downstream PI3K‐AKT pathway and enhanced Ovol1 expression in HaCaT. Importantly, we found that Jarid1b negatively regulated Ship1 expression, but not that of Pten, by directly binding to its promoter to modulate H3K4me3 enrichment. Conclusion Our results identify an essential role of Jarid1b in the regulation of the Ship1/AKT/Ovol1 pathway to promote epithelial cell differentiation.
Collapse
Affiliation(s)
- Xuewei Sun
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zhiyuan Li
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yanfang Niu
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Lijuan Zhao
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yichuan Huang
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qiang Li
- Department of Andrology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Shengnan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Ting Chen
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Tao Fu
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Tao Yang
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Xiaofei An
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Jiang
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jisheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, Qingdao, China.,Shandong College Collaborative Innovation Center of Digital Medicine in Clinical Treatment and Nutrition Health, Qingdao, China
| |
Collapse
|
9
|
Min HY, Sung YK, Kim EJ, Jang WG. OVO homologue-like 1 promotes osteoblast differentiation through BMP2 expression. J Cell Physiol 2018; 234:11842-11849. [PMID: 30523637 DOI: 10.1002/jcp.27821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/09/2018] [Indexed: 11/06/2022]
Abstract
OVO homologue-like 1 (OVOL1) encodes a C2H2 zinc finger protein and is an evolutionarily conserved gene in mammals. The OVOL1 expression is required for development. However, the function of OVOL1 in bone metabolism remains unreported. Here, we show for the first time the role of OVOL1 in osteoblast differentiation. To determine the role of OVOL1 in osteogenic differentiation, we analyzed OVOL1 expression in the preosteoblastic cell line. OVOL1 messenger RNA expression was induced during osteoblast differentiation. In addition, OVOL1 overexpression enhanced the expression of osteogenic genes including bone morphogenetic protein 2 (BMP2), the inhibitor of DNA binding 1 (Id1), distal-less homeobox 5 (Dlx5), runt-related transcription factor 2 (Runx2), osteocalcin (OC), and alkaline phosphatase (ALP). Moreover, mineralization of the extracellular matrix was increased by OVOL1 overexpression in MC3T3-E1 cells. Furthermore, knockdown of the OVOL1 experiment demonstrated that OVOL1 is required for osteoblast differentiation. Collectively, these results suggest that OVOL1 function as an important regulator of osteoblast differentiation by inducing BMP2 expression in MC3T3-E1 cells.
Collapse
Affiliation(s)
- Hyeon-Young Min
- Department of Biotechnology, College of Engineering, Daegu University, Daegu, Korea.,Research Institute of Antiaging, Daegu University, Daegu, Korea
| | - Young Kwan Sung
- Department of Immunology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Eun-Jung Kim
- Research Institute of Antiaging, Daegu University, Daegu, Korea.,Department of Immunology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Won-Gu Jang
- Department of Biotechnology, College of Engineering, Daegu University, Daegu, Korea.,Research Institute of Antiaging, Daegu University, Daegu, Korea
| |
Collapse
|
10
|
Ito T, Tsuji G, Ohno F, Nakahara T, Uchi H, Furue M. Potential role of the OVOL1-OVOL2 axis and c-Myc in the progression of cutaneous squamous cell carcinoma. Mod Pathol 2017; 30:919-927. [PMID: 28339425 DOI: 10.1038/modpathol.2016.169] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/15/2016] [Accepted: 08/23/2016] [Indexed: 11/09/2022]
Abstract
OVOL1 and OVOL2 are ubiquitously conserved genes encoding C2H2 zinc-finger transcription factors in mammals. They promote epithelial cell proliferation, differentiation, and mesenchymal-to-epithelial transition, coordinately mediated via the Wnt signaling pathway. We previously reported that human OVOL1 and OVOL2 were preferentially expressed in the normal epidermis and hair follicles as well as their tumors, and found that OVOL1 is upregulated in Bowen's disease and downregulated in cutaneous squamous cell carcinoma. The aims of this study were to elucidate the potential role of the OVOL1-OVOL2 axis in Bowen's disease and squamous cell carcinoma, and to reveal the relationship between OVOL and c-Myc, a proto-oncogene that plays a pivotal role in the malignancy of epithelial tumors. We investigated 20 Bowen's disease and 20 squamous cell carcinoma clinical samples and a human squamous cell carcinoma cell line (A431) using immunohistochemical staining and molecular biological approaches. Immunohistochemical analysis revealed that OVOL1 was upregulated in Bowen's disease and markedly downregulated in squamous cell carcinoma; conversely, c-Myc was downregulated in Bowen's disease and upregulated in squamous cell carcinoma. OVOL2 was markedly upregulated in the nucleus of Bowen's disease cells, but the distribution of OVOL2 expression in squamous cell carcinoma varied widely; OVOL2 was typically expressed in the cytoplasm, but only sporadically in the nucleus. Furthermore, knockdown of OVOL1 using a specific small interfering RNA increased the mRNA and protein levels of c-Myc and OVOL2. Knockdown of OVOL2 did not significantly affect the mRNA and protein levels of either c-Myc or OVOL1. These results suggest that OVOL1 is an upstream suppressor of c-Myc and OVOL2, and the OVOL1-OVOL2 axis is a modulator of c-Myc, coordinately regulating the invasiveness of cutaneous squamous cell carcinoma. Taken together, this study suggests that the OVOL1-OVOL2 axis is a key modulator of c-Myc expression in the shift from in situ epidermal malignancy (Bowen's disease) to invasive squamous cell carcinoma.
Collapse
Affiliation(s)
- Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Gaku Tsuji
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Research and Clinical Center for Yusho and Dioxin, Kyushu University, Fukuoka, Japan
| | - Fumitaka Ohno
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Skin Surface Sensing, Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Uchi
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Research and Clinical Center for Yusho and Dioxin, Kyushu University, Fukuoka, Japan.,Division of Skin Surface Sensing, Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
Ye GD, Sun GB, Jiao P, Chen C, Liu QF, Huang XL, Zhang R, Cai WY, Li SN, Wu JF, Liu YJ, Wu RS, Xie YY, Chan EC, Liou YC, Li BA. OVOL2, an Inhibitor of WNT Signaling, Reduces Invasive Activities of Human and Mouse Cancer Cells and Is Down-regulated in Human Colorectal Tumors. Gastroenterology 2016; 150:659-671.e16. [PMID: 26619963 DOI: 10.1053/j.gastro.2015.11.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 10/25/2015] [Accepted: 11/17/2015] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Activation of WNT signaling promotes the invasive activities of several types of cancer cells, but it is not clear if it regulates the same processes in colorectal cancer (CRC) cells, or what mechanisms are involved. We studied the expression and function of OVOL2, a member of the Ovo family of conserved zinc-finger transcription factors regulated by the WNT signaling pathway, in intestinal tumors of mice and human beings. METHODS We analyzed the expression of OVOL2 protein and messenger RNA in CRC cell lines and tissue arrays, as well as CRC samples from patients who underwent surgery at Xiamen University in China from 2009 to 2012; clinical information also was collected. CRC cell lines (SW620) were infected with lentivirus expressing OVOL2, analyzed in migration and invasion assays, and injected into nude mice to assess tumor growth and metastasis. Tandem affinity purification was used to purify the OVOL2-containing complex from CRC cells; the complex was analyzed by liquid chromatography, tandem mass spectrometry, and immunoprecipitation experiments. Gene promoter activities were measured in luciferase reporter assays. We analyzed mice with an intestine-specific disruption of Ovol2 (Ovol2(flox/+) transgenic mice), as well as Apc(min/+) mice; these mice were crossed and analyzed. RESULTS Analysis of data from patients indicated that the levels of OVOL2 messenger RNA were significantly lower in colon carcinomas than adenomas, and decreased significantly as carcinomas progressed from grades 2 to 4. Immunohistochemical analysis of a tissue array of 275 CRC samples showed a negative association between tumor stage and OVOL2 level. Overexpression of OVOL2 in SW620 cells decreased their migration and invasion, reduced markers of the epithelial-to-mesenchymal transition, and suppressed their metastasis as xenograft tumors in nude mice; knockdown of OVOL2 caused LS174T cells to transition from epithelial to mesenchymal phenotypes. OVOL2 bound T-cell factor (TCF)4 and β-catenin, facilitating recruitment of histone deacetylase 1 to the TCF4-β-catenin complex; this inhibited expression of epithelial-to-mesenchymal transition-related genes regulated by WNT, such as SLUG, in CRC cell lines. OVOL2 was a downstream target of WNT signaling in LS174T and SW480 cells. The OVOL2 promoter was hypermethylated in late-stage CRC specimens from patients and in SW620 cells; hypermethylation resulted in OVOL2 down-regulation and an inability to inhibit WNT signaling. Disruption of Ovol2 in Apc(min/+) mice increased WNT activity in intestinal tissues and the formation of invasive intestinal tumors. CONCLUSIONS OVOL2 is a colorectal tumor suppressor that blocks WNT signaling by facilitating the recruitment of histone deacetylase 1 to the TCF4-β-catenin complex. Strategies to increase levels of OVOL2 might be developed to reduce colorectal tumor progression and metastasis.
Collapse
Affiliation(s)
- Guo-Dong Ye
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen, China
| | - Guang-Bin Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen, China
| | - Peng Jiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chen Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qing-Feng Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiao-Li Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen, China
| | - Rui Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen, China; Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | - Wang-Yu Cai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen, China
| | - Sheng-Nan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jia-Fa Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yun-Jia Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen, China
| | - Rong-Si Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yuan-Yuan Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen, China
| | - Err-Cheng Chan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Yih-Cherng Liou
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | - Bo-An Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
12
|
Ito T, Tsuji G, Ohno F, Uchi H, Nakahara T, Hashimoto-Hachiya A, Yoshida Y, Yamamoto O, Oda Y, Furue M. Activation of the OVOL1-OVOL2 Axis in the Hair Bulb and in Pilomatricoma. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1036-43. [PMID: 26873447 DOI: 10.1016/j.ajpath.2015.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/25/2015] [Accepted: 12/07/2015] [Indexed: 12/27/2022]
Abstract
OVOL1 and OVOL2, ubiquitously conserved genes encoding C2H2 zinc finger transcription factors in mammals, control epithelial cell proliferation, and differentiation, including those in skin. OVOL1 and OVOL2 expression is coordinately mediated via the Wnt signaling pathway, and OVOL1 negatively regulates OVOL2 expression in a transcriptional manner. Our previous study of OVOL1 expression in human skin revealed that OVOL1 is preferentially expressed in the inner root sheath of the hair follicle. Therefore, we hypothesized that the OVOL1-OVOL2 axis is involved in normal and neoplastic follicular differentiation. Immunohistochemical analysis showed that OVOL1 and OVOL2 were strongly expressed in a mutually exclusive manner in the cytoplasm of inner root sheath cells and matrix cells, respectively, in normal follicles. OVOL2 was also expressed in pilomatricoma, with only partial expression of OVOL1. Cultured human keratinocytes expressed OVOL1 and OVOL2 on both the mRNA and protein levels. The expression of OVOL2 was higher in keratinocytes transfected with siRNA of OVOL1. Ketoconazole, a hair growth stimulant, up-regulated the expression of OVOL1 but did not affect OVOL2 expression. These results indicated that the OVOL1-OVOL2 axis may actively contribute to cell differentiation and proliferation in the hair bulb, suggesting that the OVOL1 and OVOL2 may be therapeutic targets of hair disorders, including alopecia, and play important roles in the tumorigenesis of pilomatricoma.
Collapse
Affiliation(s)
- Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Gaku Tsuji
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumitaka Ohno
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Uchi
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Division of Skin Surface Sensing, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akiko Hashimoto-Hachiya
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichi Yoshida
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Osamu Yamamoto
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
Gentzel M, Schille C, Rauschenberger V, Schambony A. Distinct functionality of dishevelled isoforms on Ca2+/calmodulin-dependent protein kinase 2 (CamKII) in Xenopus gastrulation. Mol Biol Cell 2015; 26:966-77. [PMID: 25568338 PMCID: PMC4342031 DOI: 10.1091/mbc.e14-06-1089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
CamKII is a novel binding partner of Arrb2/Dvl2 protein complexes and is required for convergent extension movements in Xenopus. CamKII physically and functionally interacts with Dvl2, whereas CamKII activity is antagonistically modulated by Dvl1 and Dvl3. Wnt ligands trigger the activation of a variety of β-catenin–dependent and β-catenin–independent intracellular signaling cascades. Despite the variations in intracellular signaling, Wnt pathways share the effector proteins frizzled, dishevelled, and β-arrestin. It is unclear how the specific activation of individual branches and the integration of multiple signals are achieved. We hypothesized that the composition of dishevelled–β-arrestin protein complexes contributes to signal specificity and identified CamKII as an interaction partner of the dishevelled–β-arrestin protein complex by quantitative functional proteomics. Specifically, we found that CamKII isoforms interact differentially with the three vertebrate dishevelled proteins. Dvl1 is required for the activation of CamKII and PKC in the Wnt/Ca2+ pathway. However, CamKII interacts with Dvl2 but not with Dvl1, and Dvl2 is necessary to mediate CamKII function downstream of Dvl1 in convergent extension movements in Xenopus gastrulation. Our findings indicate that the different Dvl proteins and the composition of dishevelled–β-arrestin protein complexes contribute to the specific activation of individual branches of Wnt signaling.
Collapse
Affiliation(s)
- Marc Gentzel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Carolin Schille
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Verena Rauschenberger
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Alexandra Schambony
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
14
|
Castellana D, Paus R, Perez-Moreno M. Macrophages contribute to the cyclic activation of adult hair follicle stem cells. PLoS Biol 2014; 12:e1002002. [PMID: 25536657 PMCID: PMC4275176 DOI: 10.1371/journal.pbio.1002002] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 10/10/2014] [Indexed: 12/17/2022] Open
Abstract
Castellana, Paus, and Perez-Moreno discover that skin resident macrophages signal to skin stem cells via Wnt ligands to activate the hair follicle life cycle. Skin epithelial stem cells operate within a complex signaling milieu that orchestrates their lifetime regenerative properties. The question of whether and how immune cells impact on these stem cells within their niche is not well understood. Here we show that skin-resident macrophages decrease in number because of apoptosis before the onset of epithelial hair follicle stem cell activation during the murine hair cycle. This process is linked to distinct gene expression, including Wnt transcription. Interestingly, by mimicking this event through the selective induction of macrophage apoptosis in early telogen, we identify a novel involvement of macrophages in stem cell activation in vivo. Importantly, the macrophage-specific pharmacological inhibition of Wnt production delays hair follicle growth. Thus, perifollicular macrophages contribute to the activation of skin epithelial stem cells as a novel, additional cue that regulates their regenerative activity. This finding may have translational implications for skin repair, inflammatory skin diseases and cancer. The cyclic life of hair follicles consists of recurring phases of growth, decay, and rest. Previous studies have identified signals that prompt a new phase of hair growth through the activation of resting hair follicle stem cells (HF-SCs). In addition to these signals, recent findings have shown that cues arising from the neighboring skin environment, in which hair follicles dwell, also participate in controlling hair follicle growth. Here we show that skin resident macrophages surround and signal to resting HF-SCs, regulating their entry into a new phase of hair follicle growth. This process involves the death and activation of a fraction of resident macrophages— resulting in Wnt ligand release —that in turn activate HF-SCs. These findings reveal additional mechanisms controlling endogenous stem cell pools that are likely to be relevant for modulating stem cell regenerative capabilities. The results provide new insights that may have implications for the development of technologies with potential applications in regeneration, aging, and cancer.
Collapse
Affiliation(s)
- Donatello Castellana
- Epithelial Cell Biology Group, BBVA Foundation-CNIO Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ralf Paus
- Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Department of Dermatology, University of Münster, Münster, Germany
| | - Mirna Perez-Moreno
- Epithelial Cell Biology Group, BBVA Foundation-CNIO Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- * E-mail:
| |
Collapse
|
15
|
Lee B, Villarreal-Ponce A, Fallahi M, Ovadia J, Sun P, Yu QC, Ito S, Sinha S, Nie Q, Dai X. Transcriptional mechanisms link epithelial plasticity to adhesion and differentiation of epidermal progenitor cells. Dev Cell 2014; 29:47-58. [PMID: 24735878 DOI: 10.1016/j.devcel.2014.03.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 01/17/2014] [Accepted: 03/12/2014] [Indexed: 01/05/2023]
Abstract
During epithelial tissue morphogenesis, developmental progenitor cells undergo dynamic adhesive and cytoskeletal remodeling to trigger proliferation and migration. Transcriptional mechanisms that restrict such a mild form of epithelial plasticity to maintain lineage-restricted differentiation in committed epithelial tissues are poorly understood. Here, we report that simultaneous ablation of transcriptional repressor-encoding Ovol1 and Ovol2 results in expansion and blocked terminal differentiation of embryonic epidermal progenitor cells. Conversely, mice overexpressing Ovol2 in their skin epithelia exhibit precocious differentiation accompanied by smaller progenitor cell compartments. We show that Ovol1/Ovol2-deficient epidermal cells fail to undertake α-catenin-driven actin cytoskeletal reorganization and adhesive maturation and exhibit changes that resemble epithelial-to-mesenchymal transition (EMT). Remarkably, these alterations and defective terminal differentiation are reversed upon depletion of EMT-promoting transcriptional factor Zeb1. Collectively, our findings reveal Ovol-Zeb1-α-catenin sequential repression and highlight Ovol1 and Ovol2 as gatekeepers of epithelial adhesion and differentiation by inhibiting progenitor-like traits and epithelial plasticity.
Collapse
Affiliation(s)
- Briana Lee
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine CA 92697, USA
| | - Alvaro Villarreal-Ponce
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine CA 92697, USA
| | - Magid Fallahi
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine CA 92697, USA
| | - Jeremy Ovadia
- Department of Mathematics, University of California, Irvine, Irvine CA 92697, USA
| | - Peng Sun
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine CA 92697, USA
| | - Qian-Chun Yu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seiji Ito
- Department of Medical Chemistry, Kansai Medical University, Moriguchi 570-8506, Japan
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York, Buffalo, NY 14260, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine CA 92697, USA
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine CA 92697, USA.
| |
Collapse
|
16
|
OVO Homolog-Like 1, a Target Gene of the Wnt/β-Catenin Pathway, Controls Hair Follicle Neogenesis. J Invest Dermatol 2014; 134:838-840. [DOI: 10.1038/jid.2013.421] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Zhang T, Zhu Q, Xie Z, Chen Y, Qiao Y, Li L, Jing N. The zinc finger transcription factor Ovol2 acts downstream of the bone morphogenetic protein pathway to regulate the cell fate decision between neuroectoderm and mesendoderm. J Biol Chem 2013; 288:6166-77. [PMID: 23319585 DOI: 10.1074/jbc.m112.418376] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During early embryonic development, bone morphogenetic protein (BMP) signaling is essential for neural/non-neural cell fate decisions. BMP signaling inhibits precocious neural differentiation and allows for proper differentiation of mesoderm, endoderm, and epidermis. However, the mechanisms underlying the BMP pathway-mediated cell fate decision remain largely unknown. Here, we show that the expression of Ovol2, which encodes an evolutionarily conserved zinc finger transcription factor, is down-regulated during neural differentiation of mouse embryonic stem cells. Knockdown of Ovol2 in embryonic stem cells facilitates neural conversion and inhibits mesendodermal differentiation, whereas Ovol2 overexpression gives rise to the opposite phenotype. Moreover, Ovol2 knockdown partially rescues the neural inhibition and mesendodermal induction by BMP4. Mechanistic studies further show that BMP4 directly regulates Ovol2 expression through the binding of Smad1/5/8 to the second intron of the Ovol2 gene. In the chick embryo, cOvol2 expression is specifically excluded from neural territory and is up-regulated by BMP4. In addition, ectopic expression of cOvol2 in the prospective neural plate represses the expression of the definitive neural plate marker cSox2. Taken together, these results indicate that Ovol2 acts downstream of the BMP pathway in the cell fate decision between neuroectoderm and mesendoderm to ensure proper germ layer development.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Kumar A, Bhandari A, Sinha R, Sardar P, Sushma M, Goyal P, Goswami C, Grapputo A. Molecular phylogeny of OVOL genes illustrates a conserved C2H2 zinc finger domain coupled by hypervariable unstructured regions. PLoS One 2012; 7:e39399. [PMID: 22737237 PMCID: PMC3380836 DOI: 10.1371/journal.pone.0039399] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 05/23/2012] [Indexed: 11/19/2022] Open
Abstract
OVO-like proteins (OVOL) are members of the zinc finger protein family and serve as transcription factors to regulate gene expression in various differentiation processes. Recent studies have shown that OVOL genes are involved in epithelial development and differentiation in a wide variety of organisms; yet there is a lack of comprehensive studies that describe OVOL proteins from an evolutionary perspective. Using comparative genomic analysis, we traced three different OVOL genes (OVOL1-3) in vertebrates. One gene, OVOL3, was duplicated during a whole-genome-duplication event in fish, but only the copy (OVOL3b) was retained. From early-branching metazoa to humans, we found that a core domain, comprising a tetrad of C2H2 zinc fingers, is conserved. By domain comparison of the OVOL proteins, we found that they evolved in different metazoan lineages by attaching intrinsically-disordered (ID) segments of N/C-terminal extensions of 100 to 1000 amino acids to this conserved core. These ID regions originated independently across different animal lineages giving rise to different types of OVOL genes over the course of metazoan evolution. We illustrated the molecular evolution of metazoan OVOL genes over a period of 700 million years (MY). This study both extends our current understanding of the structure/function relationship of metazoan OVOL genes, and assembles a good platform for further characterization of OVOL genes from diverged organisms.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Biology, University of Padua, Padova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Paternoster L, Standl M, Chen CM, Ramasamy A, Bønnelykke K, Duijts L, Ferreira MA, Alves AC, Thyssen JP, Albrecht E, Baurecht H, Feenstra B, Sleiman PMA, Hysi P, Warrington NM, Curjuric I, Myhre R, Curtin JA, Groen-Blokhuis MM, Kerkhof M, Sääf A, Franke A, Ellinghaus D, Fölster-Holst R, Dermitzakis E, Montgomery SB, Prokisch H, Heim K, Hartikainen AL, Pouta A, Pekkanen J, Blakemore AIF, Buxton JL, Kaakinen M, Duffy DL, Madden PA, Heath AC, Montgomery GW, Thompson PJ, Matheson MC, Le Souëf P, Pourcain BS, Smith GD, Henderson J, Kemp JP, Timpson NJ, Deloukas P, Ring SM, Wichmann HE, Müller-Nurasyid M, Novak N, Klopp N, Rodríguez E, McArdle W, Linneberg A, Menné T, Nohr EA, Hofman A, Uitterlinden AG, van Duijn CM, Rivadeneira F, de Jongste JC, van der Valk RJP, Wjst M, Jogi R, Geller F, Boyd HA, Murray JC, Kim C, Mentch F, March M, Mangino M, Spector TD, Bataille V, Pennell CE, Holt PG, Sly P, Tiesler CMT, Thiering E, Illig T, Imboden M, Nystad W, Simpson A, Hottenga JJ, Postma D, Koppelman GH, Smit HA, Söderhäll C, Chawes B, Kreiner-Møller E, Bisgaard H, Melén E, Boomsma DI, Custovic A, Jacobsson B, Probst-Hensch NM, Palmer LJ, Glass D, Hakonarson H, Melbye M, Jarvis DL, Jaddoe VWV, Gieger C, Strachan DP, Martin NG, Jarvelin MR, Heinrich J, Evans DM, Weidinger S. Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis. Nat Genet 2011; 44:187-92. [PMID: 22197932 PMCID: PMC3272375 DOI: 10.1038/ng.1017] [Citation(s) in RCA: 256] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/01/2011] [Indexed: 02/07/2023]
Abstract
Atopic dermatitis (AD) is a commonly occurring chronic skin disease with high heritability. Apart from filaggrin (FLG), the genes influencing atopic dermatitis are largely unknown. We conducted a genome-wide association meta-analysis of 5,606 affected individuals and 20,565 controls from 16 population-based cohorts and then examined the ten most strongly associated new susceptibility loci in an additional 5,419 affected individuals and 19,833 controls from 14 studies. Three SNPs reached genome-wide significance in the discovery and replication cohorts combined, including rs479844 upstream of OVOL1 (odds ratio (OR) = 0.88, P = 1.1 × 10(-13)) and rs2164983 near ACTL9 (OR = 1.16, P = 7.1 × 10(-9)), both of which are near genes that have been implicated in epidermal proliferation and differentiation, as well as rs2897442 in KIF3A within the cytokine cluster at 5q31.1 (OR = 1.11, P = 3.8 × 10(-8)). We also replicated association with the FLG locus and with two recently identified association signals at 11q13.5 (rs7927894; P = 0.008) and 20q13.33 (rs6010620; P = 0.002). Our results underline the importance of both epidermal barrier function and immune dysregulation in atopic dermatitis pathogenesis.
Collapse
Affiliation(s)
- Lavinia Paternoster
- MRC CAiTE centre, School of Social & Community Medicine, University of Bristol, Bristol, UK
| | - Marie Standl
- Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Chih-Mei Chen
- Hannover Medical School, Department for Paediatric Pneumology, Allergy and Neonatology, Hannover, Germany
| | - Adaikalavan Ramasamy
- Respiratory Epidemiology and Public Health, Imperial College London, United Kingdom
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom
- Department of Medical and Molecular Genetics, Kings College London, Guy’s Hospital, London, United Kingdom
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood; Health Sciences, University of Copenhagen & Copenhagen University Hospital, Gentofte, Denmark
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Division of Respiratory Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Alexessander Couto Alves
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom
| | - Jacob P Thyssen
- National Allergy Research Centre, Department of Dermato-Allergology, Gentofte Hospital, University of Copenhagen, Denmark
| | - Eva Albrecht
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Hansjörg Baurecht
- Department of Dermatology and Allergy, Technische Universität München, Munich, Germany
- ZAUM-Center for Allergy and Environment, Helmholtz-Zentrum and Technische Universität, Munich, Germany
- Graduate School of Information Science in Health, Technische Universität München, Munich, Germany
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Patrick MA Sleiman
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Pirro Hysi
- Department of Twin Research and Genetic Epidemiology, King’s College London
| | - Nicole M Warrington
- School of Women’s and Infants’ Health, The University of Western Australia, Western Australia, Australia
| | - Ivan Curjuric
- Swiss Tropical and Public Health Institute (SwissTPH), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ronny Myhre
- Norwegian Institute of Public Health, Department of Genes and Environment, Division of Epidemiology, Oslo, Norway
| | - John A Curtin
- The University of Manchester, Manchester Academic Health Science Centre, NIHR Translational Research Facility in Respiratory Medicine, University Hospital of South Manchester NHS Foundation Trust, Manchester, UK
| | | | - Marjan Kerkhof
- Department of Pediatric Pulmonology and Allergology, University Medical Center Groningen, University of Groningen, GRIAC research institute, Groningen, The Netherlands
| | - Annika Sääf
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Regina Fölster-Holst
- Department of Dermatology, Allergology, and Venerology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Emmanouil Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, 1211 Switzerland
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Stephen B Montgomery
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, 1211 Switzerland
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Katharina Heim
- Institute of Human Genetics, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Anneli Pouta
- Department of Obstetrics and Gynaecology, University of Oulu
- Department of Children, Young People and Families, National Institute for Health and Welfare, Finland
| | - Juha Pekkanen
- Department of Environmental Health, National Institute for Health and Welfare (THL), Kuopio, Finland
| | | | | | - Marika Kaakinen
- Institute of Health Sciences, University of Oulu, Oulu, Finland Biocenter Oulu, University of Oulu, Oulu, Finland
| | - David L Duffy
- Queensland Institute of Medical Research, Brisbane, Australia
| | - Pamela A Madden
- Washington University School of Medicine, St Louis, United States
| | - Andrew C Heath
- Washington University School of Medicine, St Louis, United States
| | | | - Philip J Thompson
- Lung Institute of Western Australia (WA) and Centre for Asthma, Allergy and Respiratory Research, University of WA, Perth, Australia
| | - Melanie C Matheson
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, University of Melbourne, Melbourne, Australia
| | - Peter Le Souëf
- School of Paediatrics and Child Health, Princess Margaret Hospital for Children, Perth, Australia
| | - AAGC collaborators
- Australian Asthma Genetics Consortium, a full list of collaborators is included in the Supplementary Note
| | - Beate St Pourcain
- The School of Social & Community Medicine, University of Bristol, Bristol, UK
| | - George Davey Smith
- MRC CAiTE centre, School of Social & Community Medicine, University of Bristol, Bristol, UK
| | - John Henderson
- The School of Social & Community Medicine, University of Bristol, Bristol, UK
| | - John P Kemp
- MRC CAiTE centre, School of Social & Community Medicine, University of Bristol, Bristol, UK
| | - Nicholas J Timpson
- MRC CAiTE centre, School of Social & Community Medicine, University of Bristol, Bristol, UK
| | - Panos Deloukas
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Susan M Ring
- The School of Social & Community Medicine, University of Bristol, Bristol, UK
| | - H-Erich Wichmann
- Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
- Klinikum Grosshadern, Munich, Germany
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology and Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universität, Munich, Germany
| | - Natalija Novak
- Department of Dermatology and Allergy, University of Bonn Medical Center, Bonn, Germany
| | - Norman Klopp
- Unit for Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Elke Rodríguez
- Department of Dermatology and Allergy, Technische Universität München, Munich, Germany
- ZAUM-Center for Allergy and Environment, Helmholtz-Zentrum and Technische Universität, Munich, Germany
| | - Wendy McArdle
- University of Bristol, ALSPAC Laboratory, School of Social & Community Medicine, University of Bristol, Bristol, UK
| | - Allan Linneberg
- Research Center for Prevention and Health, Glostrup University Hospital, Denmark
| | - Torkil Menné
- National Allergy Research Centre, Department of Dermato-Allergology, Gentofte Hospital, University of Copenhagen, Denmark
| | - Ellen A Nohr
- Institute of Public Health, Aarhus University, Denmark
| | - Albert Hofman
- The Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - André G Uitterlinden
- The Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Fernando Rivadeneira
- The Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Johan C de Jongste
- Department of Pediatrics, Division of Respiratory Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ralf JP van der Valk
- The Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Division of Respiratory Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Matthias Wjst
- Comprehensive Pneumology Center and Institute of Lung Biology and Disease, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Rain Jogi
- Lung Clinic, Tartu University, Tartu, Estonia
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Heather A Boyd
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Cecilia Kim
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Frank Mentch
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael March
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College London
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London
| | - Veronique Bataille
- Department of Twin Research and Genetic Epidemiology, King’s College London
| | - Craig E Pennell
- School of Women’s and Infants’ Health, The University of Western Australia, Western Australia, Australia
| | - Patrick G Holt
- Telethon Institute for Child Health Research and Centre for Child Health Research, The University of Western Australia, Western Australia, Australia
| | - Peter Sly
- Queensland Children’s Medical Research Institute; University of Queensland; WHO Collaborating Centre for Research on Children’s Environmental Health, Queensland, Australia
| | - Carla MT Tiesler
- Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Division of Metabolic Diseases and Nutritional Medicine, Dr von Hauner Children’s Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Elisabeth Thiering
- Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Illig
- Unit for Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Medea Imboden
- Swiss Tropical and Public Health Institute (SwissTPH), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Wenche Nystad
- Norwegian Institute of Public Health, Division of Epidemiology, Oslo, Norway
| | - Angela Simpson
- The University of Manchester, Manchester Academic Health Science Centre, NIHR Translational Research Facility in Respiratory Medicine, University Hospital of South Manchester NHS Foundation Trust, Manchester, UK
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - Dirkje Postma
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerard H Koppelman
- Dpt of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children ’s Hospital, GRIAC research institute, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Henriette A Smit
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, The Netherlands
| | - Cilla Söderhäll
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Bo Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood; Health Sciences, University of Copenhagen & Copenhagen University Hospital, Gentofte, Denmark
| | - Eskil Kreiner-Møller
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood; Health Sciences, University of Copenhagen & Copenhagen University Hospital, Gentofte, Denmark
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood; Health Sciences, University of Copenhagen & Copenhagen University Hospital, Gentofte, Denmark
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Dorret I Boomsma
- Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - Adnan Custovic
- The University of Manchester, Manchester Academic Health Science Centre, NIHR Translational Research Facility in Respiratory Medicine, University Hospital of South Manchester NHS Foundation Trust, Manchester, UK
| | - Bo Jacobsson
- Norwegian Institute of Public Health, Department of Genes and Environment, Division of Epidemiology, Oslo, Norway
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, Göteborg University, Sweden
| | - Nicole M Probst-Hensch
- Swiss Tropical and Public Health Institute (SwissTPH), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Lyle J Palmer
- Ontario Institute for Cancer Research, Toronto; University of Toronto, Toronto, Canada
| | - Daniel Glass
- Department of Twin Research and Genetic Epidemiology, King’s College London
| | - Hakon Hakonarson
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatric, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Deborah L Jarvis
- Respiratory Epidemiology and Public Health, Imperial College London, United Kingdom
| | - Vincent WV Jaddoe
- The Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - The GOYA consortium
- The Genetics of Overweight Young Adults consortium, list of members in Supplementary Note
| | - David P Strachan
- Division of Population Health Sciences and Education, St George’s, University of London, London, UK
| | | | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom
- Institute of Health Sciences, Biocenter, University of Oulu, Finland
- National Institute of Health and Welfare, Finland
| | - Joachim Heinrich
- Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - David M Evans
- MRC CAiTE centre, School of Social & Community Medicine, University of Bristol, Bristol, UK
| | - Stephan Weidinger
- Department of Dermatology, Allergology, and Venerology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
20
|
Bell SM, Zhang L, Mendell A, Xu Y, Haitchi HM, Lessard JL, Whitsett JA. Kruppel-like factor 5 is required for formation and differentiation of the bladder urothelium. Dev Biol 2011; 358:79-90. [PMID: 21803035 DOI: 10.1016/j.ydbio.2011.07.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 07/08/2011] [Accepted: 07/09/2011] [Indexed: 12/20/2022]
Abstract
Kruppel-like transcription factor 5 (Klf5) was detected in the developing and mature murine bladder urothelium. Herein we report a critical role of KLF5 in the formation and terminal differentiation of the urothelium. The Shh(GfpCre) transgene was used to delete the Klf5(floxed) alleles from bladder epithelial cells causing prenatal hydronephrosis, hydroureter, and vesicoureteric reflux. The bladder urothelium failed to stratify and did not express terminal differentiation markers characteristic of basal, intermediate, and umbrella cells including keratins 20, 14, and 5, and the uroplakins. The effects of Klf5 deletion were unique to the developing bladder epithelium since maturation of the epithelium comprising the bladder neck and urethra was unaffected by the lack of KLF5. mRNA analysis identified reductions in Pparγ, Grhl3, Elf3, and Ovol1expression in Klf5 deficient fetal bladders supporting their participation in a transcriptional network regulating bladder urothelial differentiation. KLF5 regulated expression of the mGrhl3 promoter in transient transfection assays. The absence of urothelial Klf5 altered epithelial-mesenchymal signaling leading to the formation of an ectopic alpha smooth muscle actin positive layer of cells subjacent to the epithelium and a thinner detrusor muscle that was not attributable to disruption of SHH signaling, a known mediator of detrusor morphogenesis. Deletion of Klf5 from the developing bladder urothelium blocked epithelial cell differentiation, impaired bladder morphogenesis and function causing hydroureter and hydronephrosis at birth.
Collapse
Affiliation(s)
- Sheila M Bell
- Perinatal Institute of Cincinnati Children's Hospital Medical Center, Division of Neonatology-Perinatal-Pulmonary Biology, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Pueyo JI, Couso JP. Tarsal-less peptides control Notch signalling through the Shavenbaby transcription factor. Dev Biol 2011; 355:183-93. [PMID: 21527259 PMCID: PMC3940869 DOI: 10.1016/j.ydbio.2011.03.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 03/28/2011] [Accepted: 03/29/2011] [Indexed: 11/24/2022]
Abstract
The formation of signalling boundaries is one of the strategies employed by the Notch (N) pathway to give rise to two distinct signalling populations of cells. Unravelling the mechanisms involved in the regulation of these signalling boundaries is essential to understanding the role of N during development and diseases. The function of N in the segmentation of the Drosophila leg provides a good system to pursue these mechanisms at the molecular level. Transcriptional and post-transcriptional regulation of the N ligands, Serrate (Ser) and Delta (Dl) generates a signalling boundary that allows the directional activation of N in the distalmost part of the segment, the presumptive joint. A negative feedback loop between odd-skipped-related genes and the N pathway maintains this signalling boundary throughout development in the true joints. However, the mechanisms controlling N signalling boundaries in the tarsal joints are unknown. Here we show that the non-canonical tarsal-less (tal) gene (also known as pri), which encodes for four small related peptides, is expressed in the N-activated region and required for joint development in the tarsi during pupal development. This function of tal is both temporally and functionally separate from the tal-mediated tarsal intercalation during mid-third instar that we reported previously. In the pupal function described here, N signalling activates tal expression and reciprocally Tal peptides feedback on N by repressing the transcription of Dl in the tarsal joints. This Tal-induced repression of Dl is mediated by the post-transcriptional activation of the Shavenbaby transcription factor, in a similar manner as it has been recently described in the embryo. Thus, a negative feedback loop involving Tal regulates the formation and maintenance of a Dl+/Dl- boundary in the tarsal segments highlighting an ancient mechanism for the regulation of N signalling based on the action of small cell signalling peptides.
Collapse
Affiliation(s)
| | - Juan Pablo Couso
- Corresponding author: School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom, BN1 9QG.
| |
Collapse
|
22
|
Tiwari AK, Pragya P, Ravi Ram K, Chowdhuri DK. Environmental chemical mediated male reproductive toxicity: Drosophila melanogaster as an alternate animal model. Theriogenology 2011; 76:197-216. [PMID: 21356551 DOI: 10.1016/j.theriogenology.2010.12.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 12/28/2010] [Accepted: 12/31/2010] [Indexed: 01/16/2023]
Abstract
Industrialization and indiscriminate use of agrochemicals have increased the human health risk. Recent epidemiological studies raised a concern for male reproduction given their observations of reduced sperm counts and altered semen quality. Interestingly, environmental factors that include various metals, pesticides and their metabolites have been causally linked to such adversities by their presence in the semen at levels that correlate to infertility. The epidemiological observations were further supported by studies in animal models involving various chemicals. Therefore, in this review, we focused on male reproductive toxicity and the adverse effects of different environmental chemicals on male reproduction. However, it is beyond the scope of this review to provide a detailed appraisal of all of the environmental chemicals that have been associated with reproductive toxicity in animals. Here, we provided the evidence for reproductive adversities of some commonly encountered chemicals (pesticides/metals) in the environment. In view of the recent thrust for an alternate to animal models in research, we subsequently discussed the contributions of Drosophila melanogaster as an alternate animal model for quick screening of toxicants for their reproductive toxicity potential. Finally, we emphasized the genetic and molecular tools offered by Drosophila for understanding the mechanisms underlying the male reproductive toxicity.
Collapse
Affiliation(s)
- A K Tiwari
- Embryotoxicology Division, Indian Institute of Toxicology Research, M.G. Marg, Lucknow-226001, India
| | | | | | | |
Collapse
|
23
|
Piens M, Muller M, Bodson M, Baudouin G, Plumier JC. A short upstream promoter region mediates transcriptional regulation of the mouse doublecortin gene in differentiating neurons. BMC Neurosci 2010; 11:64. [PMID: 20509865 PMCID: PMC2891791 DOI: 10.1186/1471-2202-11-64] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 05/28/2010] [Indexed: 11/23/2022] Open
Abstract
Background Doublecortin (Dcx), a MAP (Microtubule-Associated Protein), is transiently expressed in migrating and differentiating neurons and thereby characterizes neuronal precursors and neurogenesis in developing and adult neurogenesis. In addition, reduced Dcx expression during development has been related to appearance of brain pathologies. Here, we attempt to unveil the molecular mechanisms controlling Dcx gene expression by studying its transcriptional regulation during neuronal differentiation. Results To determine and analyze important regulatory sequences of the Dcx promoter, we studied a putative regulatory region upstream from the mouse Dcx coding region (pdcx2kb) and several deletions thereof. These different fragments were used in vitro and in vivo to drive reporter gene expression. We demonstrated, using transient expression experiments, that pdcx2kb is sufficient to control specific reporter gene expression in cerebellar cells and in the developing brain (E14.5). We determined the temporal profile of Dcx promoter activity during neuronal differentiation of mouse embryonic stem cells (mESC) and found that transcriptional activation of the Dcx gene varies along with neuronal differentiation of mESC. Deletion experiments and sequence comparison of Dcx promoters across rodents, human and chicken revealed the importance of a highly conserved sequence in the proximal region of the promoter required for specific and strong expression in neuronal precursors and young neuronal cells. Further analyses revealed the presence in this short sequence of several conserved, putative transcription factor binding sites: LEF/TCF (Lymphoid Enhancer Factor/T-Cell Factor) which are effectors of the canonical Wnt pathway; HNF6/OC2 (Hepatocyte Nuclear Factor-6/Oncecut-2) members of the ONECUT family and NF-Y/CAAT (Nuclear Factor-Y). Conclusions Studies of Dcx gene regulatory sequences using native, deleted and mutated constructs suggest that fragments located upstream of the Dcx coding sequence are sufficient to induce specific Dcx expression in vitro: in heterogeneous differentiated neurons from mESC, in primary mouse cerebellar neurons (PND3) and in organotypic slice cultures. Furthermore, a region in the 3'-end region of the Dcx promoter is highly conserved across several species and exerts positive control on Dcx transcriptional activation. Together, these results indicate that the proximal 3'-end region of the mouse Dcx regulatory sequence is essential for Dcx gene expression during differentiation of neuronal precursors.
Collapse
Affiliation(s)
- Marie Piens
- Laboratory for Animal Physiology, Université de Liège, B-4000 Liège, Sart-Tilman, Belgium
| | | | | | | | | |
Collapse
|
24
|
Piloto S, Schilling TF. Ovo1 links Wnt signaling with N-cadherin localization during neural crest migration. Development 2010; 137:1981-90. [PMID: 20463035 DOI: 10.1242/dev.048439] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A fundamental issue in cell biology is how migratory cell behaviors are controlled by dynamically regulated cell adhesion. Vertebrate neural crest (NC) cells rapidly alter cadherin expression and localization at the cell surface during migration. Secreted Wnts induce some of these changes in NC adhesion and also promote specification of NC-derived pigment cells. Here, we show that the zebrafish transcription factor Ovo1 is a Wnt target gene that controls migration of pigment precursors by regulating the intracellular movements of N-cadherin (Ncad). Ovo1 genetically interacts with Ncad and its depletion causes Ncad to accumulate inside cells. Ovo1-deficient embryos strongly upregulate factors involved in intracellular trafficking, including several rab GTPases, known to modulate cellular localization of cadherins. Surprisingly, NC cells express high levels of many of these rab genes in the early embryo, chemical inhibitors of Rab functions rescue NC development in Ovo1-deficient embryos and overexpression of a Rab-interacting protein leads to similar defects in NC migration. These results suggest that Ovo proteins link Wnt signaling to intracellular trafficking pathways that localize Ncad in NC cells and allow them to migrate. Similar processes probably occur in other cell types in which Wnt signaling promotes migration.
Collapse
Affiliation(s)
- Sarah Piloto
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | | |
Collapse
|
25
|
Wells J, Lee B, Cai AQ, Karapetyan A, Lee WJ, Rugg E, Sinha S, Nie Q, Dai X. Ovol2 suppresses cell cycling and terminal differentiation of keratinocytes by directly repressing c-Myc and Notch1. J Biol Chem 2009; 284:29125-35. [PMID: 19700410 DOI: 10.1074/jbc.m109.008847] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ovol2 belongs to the Ovo family of evolutionarily conserved zinc finger transcription factors that act downstream of key developmental signaling pathways including Wg/Wnt and BMP/TGF-beta. We previously reported Ovol2 expression in the basal layer of epidermis, where epidermal stem/progenitor cells reside. In this work, we use HaCaT human keratinocytes to investigate the cellular and molecular functions of Ovol2. We show that depletion of Ovol2 leads to transient cell expansion but a loss of cells with long term proliferation potential. Mathematical modeling and experimental findings suggest that both faster cycling and precocious withdrawal from the cell cycle underlie this phenotype. Ovol2 depletion also accelerates extracellular signal-induced terminal differentiation in two- and three-dimensional culture models. By chromatin immunoprecipitation, luciferase reporter, and functional rescue assays, we demonstrate that Ovol2 directly represses two critical downstream targets, c-Myc and Notch1, thereby suppressing keratinocyte transient proliferation and terminal differentiation, respectively. These findings shed light on how an epidermal cell maintains a proliferation-competent and differentiation-resistant state.
Collapse
Affiliation(s)
- Julie Wells
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Unezaki S, Horai R, Sudo K, Iwakura Y, Ito S. Ovol2/Movo, a homologue of Drosophila ovo, is required for angiogenesis, heart formation and placental development in mice. Genes Cells 2007; 12:773-85. [PMID: 17573777 DOI: 10.1111/j.1365-2443.2007.01084.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The zinc-finger transcription factor Ovol2 (Movo, Movo2) is a mouse homologue of Drosophila ovo, which is essential for the survival and differentiation of female germ line cells. To elucidate OVOL2 function in mammals, we generated Ovol2-deficient mice by gene targeting. The Ovol2 mutants died at embryonic days 9.5-10.5 (E9.5-E10.5), as a result of defects in extraembryonic and embryonic vascularization, and in heart formation. Although the Ovol2 expression was weak, severe defects were detected in extraembryonic and embryonic vascularization, and in heart formation at E8.5-E9.5. In Ovol2(-/-) placentas, allantoic blood vessel expansion and development of the labyrinthine layer were impaired at E10.5. In an endothelial cell line, siRNAs for Ovol2 reduced the expression of Ovol2 and inhibited the capillary-like network formation on Matrigel in vitro. These results demonstrate that Ovol2 may play a critical role in vascular angiogenesis during early embryogenesis.
Collapse
Affiliation(s)
- Sawako Unezaki
- Department of Medical Chemistry, Kansai Medical University, Moriguchi, 570-8506, Japan
| | | | | | | | | |
Collapse
|
28
|
Nair M, Bilanchone V, Ortt K, Sinha S, Dai X. Ovol1 represses its own transcription by competing with transcription activator c-Myb and by recruiting histone deacetylase activity. Nucleic Acids Res 2007; 35:1687-97. [PMID: 17311813 PMCID: PMC1865076 DOI: 10.1093/nar/gkl1141] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ovol1 belongs to a family of evolutionarily conserved zinc finger proteins that act downstream of key developmental signaling pathways such as Wnt and TGF-β/BMP. It plays important roles in epithelial and germ cell development, particularly by repressing c-Myc and Id2 genes and modulating the balance between proliferation and differentiation of progenitor cells. In this study, we show that Ovol1 negatively regulates its own expression by binding to and repressing the activity of its promoter. We further demonstrate that Ovol1 uses both passive and active repression mechanisms to auto-repress: (1) it antagonizes transcriptional activation of c-Myb, a known positive regulator of proliferation, by competing for DNA binding; (2) it recruits histone deacetylase activity to the promoter via an N-terminal SNAG repressor domain. At Ovol1 cognate sites in the endogenous Ovol1 promoter, c-Myb binding correlates with increased histone acetylation, whereas the expression of Ovol1 correlates with a displacement of c-Myb from the DNA and decreased histone acetylation. Collectively, our data suggest that Ovol1 restricts its own expression by counteracting c-Myb activation and histone acetylation of the Ovol1 promoter.
Collapse
Affiliation(s)
- Mahalakshmi Nair
- Department of Biological Chemistry, School of Medicine, Developmental Biology Center, University of California, Irvine, CA 92697, USA and Department of Biochemistry, State University of New York at Buffalo, New York, USA
| | - Virginia Bilanchone
- Department of Biological Chemistry, School of Medicine, Developmental Biology Center, University of California, Irvine, CA 92697, USA and Department of Biochemistry, State University of New York at Buffalo, New York, USA
| | - Kori Ortt
- Department of Biological Chemistry, School of Medicine, Developmental Biology Center, University of California, Irvine, CA 92697, USA and Department of Biochemistry, State University of New York at Buffalo, New York, USA
| | - Satrajit Sinha
- Department of Biological Chemistry, School of Medicine, Developmental Biology Center, University of California, Irvine, CA 92697, USA and Department of Biochemistry, State University of New York at Buffalo, New York, USA
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, Developmental Biology Center, University of California, Irvine, CA 92697, USA and Department of Biochemistry, State University of New York at Buffalo, New York, USA
- *To whom correspondence should be addressed. +1 949 824 3101+1 949 824 2688
| |
Collapse
|
29
|
Chanut-Delalande H, Fernandes I, Roch F, Payre F, Plaza S. Shavenbaby couples patterning to epidermal cell shape control. PLoS Biol 2006; 4:e290. [PMID: 16933974 PMCID: PMC1551925 DOI: 10.1371/journal.pbio.0040290] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 06/28/2006] [Indexed: 01/20/2023] Open
Abstract
It is well established that developmental programs act during embryogenesis to determine animal morphogenesis. How these developmental cues produce specific cell shape during morphogenesis, however, has remained elusive. We addressed this question by studying the morphological differentiation of the Drosophila epidermis, governed by a well-known circuit of regulators leading to a stereotyped pattern of smooth cells and cells forming actin-rich extensions (trichomes). It was shown that the transcription factor Shavenbaby plays a pivotal role in the formation of trichomes and underlies all examined cases of the evolutionary diversification of their pattern. To gain insight into the mechanisms of morphological differentiation, we sought to identify shavenbaby's downstream targets. We show here that Shavenbaby controls epidermal cell shape, through the transcriptional activation of different classes of cellular effectors, directly contributing to the organization of actin filaments, regulation of the extracellular matrix, and modification of the cuticle. Individual inactivation of shavenbaby's targets produces distinct trichome defects and only their simultaneous inactivation prevent trichome formation. Our data show that shavenbaby governs an evolutionarily conserved developmental module consisting of a set of genes collectively responsible for trichome formation, shedding new light on molecular mechanisms acting during morphogenesis and the way they can influence evolution of animal forms. The authors explore how Shavenbaby (Svb) orchestrates the formation of specialized actin-rich structures, called trichomes, that underlie the distinctive morphology of dorsal hairs and ventral denticles.
Collapse
Affiliation(s)
- Hélène Chanut-Delalande
- Centre de Biologie du Développement, CNRS UMR 5547, Université Paul Sabatier, Toulouse, France
| | - Isabelle Fernandes
- Centre de Biologie du Développement, CNRS UMR 5547, Université Paul Sabatier, Toulouse, France
| | - Fernando Roch
- Centre de Biologie du Développement, CNRS UMR 5547, Université Paul Sabatier, Toulouse, France
| | - François Payre
- Centre de Biologie du Développement, CNRS UMR 5547, Université Paul Sabatier, Toulouse, France
- * To whom correspondence should be addressed. E-mail: (SP); (FP)
| | - Serge Plaza
- Centre de Biologie du Développement, CNRS UMR 5547, Université Paul Sabatier, Toulouse, France
- * To whom correspondence should be addressed. E-mail: (SP); (FP)
| |
Collapse
|
30
|
Teng A, Wells MN, Segre JA, Dai X. Strain-dependent perinatal lethality of Ovol1-deficient mice and identification of Ovol2 as a downstream target of Ovol1 in skin epidermis. Biochim Biophys Acta Mol Basis Dis 2006; 1772:89-95. [PMID: 17049212 PMCID: PMC1773004 DOI: 10.1016/j.bbadis.2006.08.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 08/15/2006] [Indexed: 01/29/2023]
Abstract
Ovol1 encodes a zinc finger transcriptional repressor that is downstream of the LEF1/beta-catenin complex, nuclear effectors of canonical Wnt signaling. Previous gene knockout studies performed in a 129SvxC57BL/6 mixed genetic background revealed that Ovol1-deficient mice survive to adulthood but display multiple tissue defects. In this study, we describe a C57BL/6 strain-specific reduction in perinatal survival of Ovol1 mutant mice. The perinatal lethality is accompanied by kidney epithelial cysts of embryonic onset and delayed skin barrier acquisition. Genetic analysis suggests a partial functional compensation by Ovol2 for the loss of Ovol1. The expression of Ovol2 was up-regulated in Ovol1-deficient epidermis, and Ovol1 represses the activity of Ovol2 promoter in a DNA binding-dependent manner. Collectively, these studies uncover novel functions of Ovol1 in mouse development and identify Ovol2 as a downstream target of Ovol1.
Collapse
Affiliation(s)
| | | | - Julia A. Segre
- National Human Genome Research Institute, NIH, 49 Convent
Drive, Bethesda, MD 20892
| | - Xing Dai
- Department of Biological Chemistry
- Developmental Biology Center University of California, Irvine,
CA 92697
- *To whom correspondence should be addressed:
Department of Biological Chemistry College of Medicine D250 Med Sci I University
of California Irvine, CA 92697-1700 Tel: 949-824-3101 Fax: 949-824-2688 E-mail:
| |
Collapse
|
31
|
Chen X, Shevtsov SP, Hsich E, Cui L, Haq S, Aronovitz M, Kerkelä R, Molkentin JD, Liao R, Salomon RN, Patten R, Force T. The beta-catenin/T-cell factor/lymphocyte enhancer factor signaling pathway is required for normal and stress-induced cardiac hypertrophy. Mol Cell Biol 2006; 26:4462-73. [PMID: 16738313 PMCID: PMC1489123 DOI: 10.1128/mcb.02157-05] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In cells capable of entering the cell cycle, including cancer cells, beta-catenin has been termed a master switch, driving proliferation over differentiation. However, its role as a transcriptional activator in terminally differentiated cells is relatively unknown. Herein we utilize conditional, cardiac-specific deletion of the beta-catenin gene and cardiac-specific expression of a dominant inhibitory mutant of Lef-1 (Lef-1Delta20), one of the members of the T-cell factor/lymphocyte enhancer factor (Tcf/Lef) family of transcription factors that functions as a coactivator with beta-catenin, to demonstrate that beta-catenin/Tcf/Lef-dependent gene expression regulates both physiologic and pathological growth (hypertrophy) of the heart. Indeed, the profound nature of the growth impairment of the heart in the Lef-1Delta20 mouse, which leads to very early development of heart failure and premature death, suggests beta-catenin/Tcf/Lef targets are dominant regulators of cardiomyocyte growth. Thus, our studies, employing complementary models in vivo, implicate beta-catenin/Tcf/Lef signaling as an essential growth-regulatory pathway in terminally differentiated cells.
Collapse
Affiliation(s)
- Xin Chen
- Molecular Cardiology Research Institute, Tufts-New England Medical Center and Tufts University School of Medicine, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Nair M, Teng A, Bilanchone V, Agrawal A, Li B, Dai X. Ovol1 regulates the growth arrest of embryonic epidermal progenitor cells and represses c-myc transcription. ACTA ACUST UNITED AC 2006; 173:253-64. [PMID: 16636146 PMCID: PMC2063816 DOI: 10.1083/jcb.200508196] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transcriptional control plays a key role in regulating epidermal proliferation and differentiation. Although ample information has been obtained on how epidermal homeostasis is controlled in adult skin, less is known about the control of proliferation/differentiation of epidermal stem/progenitor cells in the developing embryo. Ovol1, encoding a zinc finger protein homologous to Drosophila melanogaster Ovo, is expressed in embryonic epidermal progenitor cells that are transiting from proliferation to terminal differentiation. In this study, we demonstrate a function for Ovol1 in interfollicular epidermal development. In its absence, developing epidermis fails to properly restrict the proliferative potential of progenitor cells, and cultured keratinocytes fail to efficiently undergo growth arrest in response to extrinsic growth-inhibitory signals. We present molecular evidence that c-myc expression is up-regulated in Ovol1-deficient suprabasal cells and that Ovol1 represses c-myc transcription by directly binding to its promoter. Collectively, our findings indicate that Ovol1 is required for proliferation exit of committed epidermal progenitor cells and identify c-myc as an Ovol1 target.
Collapse
Affiliation(s)
- Mahalakshmi Nair
- Department of Biological Chemistry, University of California, Irvine, 92697, USA
| | | | | | | | | | | |
Collapse
|
33
|
Mackay DR, Hu M, Li B, Rhéaume C, Dai X. The mouse Ovol2 gene is required for cranial neural tube development. Dev Biol 2006; 291:38-52. [PMID: 16423343 PMCID: PMC2891516 DOI: 10.1016/j.ydbio.2005.12.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 11/23/2005] [Accepted: 12/01/2005] [Indexed: 02/02/2023]
Abstract
The Ovo gene family encodes a group of evolutionarily conserved transcription factors and includes members that reside downstream of key developmental signaling pathways such as Wg/Wnt and BMP/TGF-beta. In the current study, we explore the function of Ovol2, one of three Ovo paralogues in mice. We report that Ovol2 is expressed during early-mid embryogenesis, particularly in the inner cell mass at E3.5, in epiblast at E6.5, and at later stages in ectodermally derived tissues such as the rostral surface (epidermal) ectoderm. Embryos in which Ovol2 is ablated exhibit lethality by E10.5, prior to which they display severe defects including an open cranial neural tube. The neural defects are associated with improper Shh expression in the underlying rostral axial mesoderm and localized changes of neural marker expression along the dorsoventral axis, as well as with expanded cranial neural tissue and reduced cranial surface ectoderm culminating in a lateral shift of the neuroectoderm/surface ectoderm border. We propose that these defects reflect the involvement of Ovol2 in independent processes such as regionalized gene expression and neural/non-neural ectodermal patterning. Additionally, we present evidence that Ovol2 is required for efficient migration and survival of neural crest cells that arise at the neuroectoderm/surface ectoderm border, but not for their initial formation. Collectively, our studies indicate that Ovol2 is a key regulator of neural development and reveal a previously unexplored role for Ovo genes in mammalian embryogenesis.
Collapse
Affiliation(s)
- Douglas R. Mackay
- Department of Biological Chemistry, College of Medicine, D250 Med Sci I, University of California, Irvine, CA 92697-1700, USA
| | - Ming Hu
- Department of Biological Chemistry, College of Medicine, D250 Med Sci I, University of California, Irvine, CA 92697-1700, USA
| | - Baoan Li
- Department of Biological Chemistry, College of Medicine, D250 Med Sci I, University of California, Irvine, CA 92697-1700, USA
| | - Catherine Rhéaume
- Department of Biological Chemistry, College of Medicine, D250 Med Sci I, University of California, Irvine, CA 92697-1700, USA
| | - Xing Dai
- Department of Biological Chemistry, College of Medicine, D250 Med Sci I, University of California, Irvine, CA 92697-1700, USA
- Developmental Biology Center, University of California, Irvine, CA 92697, USA
- Corresponding author. Department of Biological Chemistry, College of Medicine, D250 Med Sci I, University of California, Irvine, CA 92697-1700, USA. Fax: +1 949 824 2688. (X. Dai)
| |
Collapse
|
34
|
Lowry WE, Blanpain C, Nowak JA, Guasch G, Lewis L, Fuchs E. Defining the impact of beta-catenin/Tcf transactivation on epithelial stem cells. Genes Dev 2005; 19:1596-611. [PMID: 15961525 PMCID: PMC1172065 DOI: 10.1101/gad.1324905] [Citation(s) in RCA: 297] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Wnt signaling has been implicated in stem cell (SC) biology, but little is known about how stabilized beta-catenin functions within native SC niches. We address this by defining the impact of beta-catenin stabilization on maintenance, proliferation, and lineage commitment of multipotent follicle SCs when in their native niche and in culture. We employ gain of function mutations and inducible loss of function mutations to demonstrate that beta-catenin stabilization is essential for promoting the transition between SC quiescence and conversion to proliferating transit amplifying (TA) progeny. We transcriptionally profile purified SCs isolated directly from wild-type and elevated beta-catenin follicles in both resting and activated states to uncover the discrete set of genes whose expression in native SCs is dependent upon beta-catenin stabilization. Finally, we address the underlying mechanism and show that in the SC niche, Wnt signaling and beta-catenin stabilization transiently activate Lef1/Tcf complexes and promote their binding to target genes that promote TA cell conversion and proliferation to form the activated cells of the newly developing hair follicle. We also show that these changes precede subsequent Wnt signals that impact on the TA progeny to specify the differentiation lineages of the follicle.
Collapse
Affiliation(s)
- William E Lowry
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Recent experiments reveal the role of transcription factors in integrating upstream signals to execute specification and differentiation of epidermal cells. Based on the skin phenotype observed with misregulation of transcription factors such as p63, c-Myc, RelA, pRb, Klf4 and others, their function in controlling proliferation and differentiation is dissected. Understanding the pathways regulated by these factors and their coordinate interactions remains a challenge for the future.
Collapse
Affiliation(s)
- Xing Dai
- Department of Biological Chemistry, 234D Med Sci I, University of California, Irvine, California 92697-1700, USA
| | - Julia A Segre
- National Human Genome Research Institute, NIH, 49 Convent Drive, Bethesda, Maryland 20892, USA
| |
Collapse
|
36
|
Li B, Nair M, Mackay DR, Bilanchone V, Hu M, Fallahi M, Song H, Dai Q, Cohen PE, Dai X. Ovol1 regulates meiotic pachytene progression during spermatogenesis by repressing Id2 expression. Development 2005; 132:1463-73. [PMID: 15716349 PMCID: PMC2898142 DOI: 10.1242/dev.01658] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies have shown that a targeted deletion of Ovol1 (previously known as movo1), encoding a member of the Ovo family of zinc-finger transcription factors, leads to germ cell degeneration and defective sperm production in adult mice. To explore the cellular and molecular mechanism of Ovol1 function, we have examined the mutant testis phenotype during the first wave of spermatogenesis in juvenile mice. Consistent with the detection of Ovol1 transcripts in pachytene spermatocytes of the meiotic prophase, Ovol1-deficient germ cells were defective in progressing through the pachytene stage. The pachytene arrest was accompanied by an inefficient exit from proliferation, increased apoptosis and an abnormal nuclear localization of the G2-M cell cycle regulator cyclin B1, but was not associated with apparent chromosomal or recombination defects. Transcriptional profiling and northern blot analysis revealed reduced expression of pachytene markers in the mutant, providing molecular evidence that pachytene differentiation was defective. In addition, the expression of Id2 (inhibitor of differentiation 2), a known regulator of spermatogenesis, was upregulated in Ovol1-deficient pachytene spermatocytes and repressed by Ovol1 in reporter assays. Taken together, our studies demonstrate a role for Ovol1 in regulating pachytene progression of male germ cells, and identify Id2 as a Ovol1 target.
Collapse
Affiliation(s)
- Baoan Li
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Mahalakshmi Nair
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
- Developmental Biology Center, University of California, Irvine, CA 92697, USA
| | - Douglas R. Mackay
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Virginia Bilanchone
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Ming Hu
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Magid Fallahi
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Hanqiu Song
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Qian Dai
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Paula E. Cohen
- Department of Biomedical Science, Cornell University, Ithaca, NY 14852, USA
| | - Xing Dai
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
- Developmental Biology Center, University of California, Irvine, CA 92697, USA
- Author for correspondence ()
| |
Collapse
|
37
|
Abstract
Substantial progress has been made regarding the elucidation of differentiation processes of the human hair follicle. This review first describes the genomic organization of the human hair keratin gene family and the complex expression characteristics of hair keratins in the hair-forming compartment. Sections describe the role and fate of hair keratins in the diseased hair follicle, particularly hereditary disorders and hair follicle-derived tumors. Also included is a report on the actual state of knowledge concerning the regulation of hair keratin expression. In the second part of this review, essentially the same principles are applied to outline more recent and, thus, occasionally fewer data on specialized epithelial keratins expressed in various tissue constituents of the external sheaths and the companion layer of the follicle. A closing outlook highlights issues that need to be explored further to deepen our insight into the biology and genetics of the hair follicle.
Collapse
Affiliation(s)
- Lutz Langbein
- Division of Cell Biology, German Cancer Research Center, Heidelberg, Germany
| | | |
Collapse
|
38
|
Huysseune A, Thesleff I. Continuous tooth replacement: the possible involvement of epithelial stem cells. Bioessays 2004; 26:665-71. [PMID: 15170864 DOI: 10.1002/bies.20039] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Epithelial stem cells have been identified in integumental structures such as hairs and continuously growing teeth of various rodents, and in the gut. Here we propose the involvement of epithelial stem cells in the continuous tooth replacement that characterizes non-mammalian vertebrates, as exemplified by the zebrafish. Arguments are based on morphological observations of tooth renewal in the zebrafish and on the similarities between molecular control of hair and tooth formation. Dissection of the molecular cascades underlying the regulation of the epithelial stem cell niche might open perspectives for new regenerative treatment strategies in clinical dentistry.
Collapse
|
39
|
Unezaki S, Nishizawa M, Okuda-Ashitaka E, Masu Y, Mukai M, Kobayashi S, Sawamoto K, Okano H, Ito S. Characterization of the isoforms of MOVO zinc finger protein, a mouse homologue of Drosophila Ovo, as transcription factors. Gene 2004; 336:47-58. [PMID: 15225875 DOI: 10.1016/j.gene.2004.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 02/19/2004] [Accepted: 03/09/2004] [Indexed: 12/16/2022]
Abstract
We previously described two isoforms (MOVO-A and -B) of a novel zinc finger protein MOVO, a mouse homologue of Drosophila Ovo protein. Here, we isolated cDNA encoding the third isoform MOVO-C, which had a transactivation domain and zinc finger domain, but lacked an N-terminal potential repression domain that was present in MOVO-A. Three isoform mRNAs were expressed highly in mouse testis and also in the ovary at lower levels. The structural analyses of the isolated Movo gene and mRNAs demonstrated that three different Movo transcripts were differentially processed to generate three isoforms. Major mRNA species encoded MOVO-B with a zinc finger domain alone, and minor mRNA species encoded MOVO-A (potential repressor) and MOVO-C (potential activator). To assign MOVO to a transcriptional factor, we characterized DNA-binding and transactivation properties. Random oligonucleotide selection, electrophoretic mobility shift assay and footprinting indicated that MOVO bound to the sequence, 5'-G(G/C/T)GGGGG-3'. These motifs were found in the 5'-flanking regions of Movo and other testis-specific genes. Nuclear proteins binding to this motif were detected in mouse testis, and the expression of MOVO mRNA was restricted in spermatocytes. The luciferase assay demonstrated that MOVO-C activated Movo promoter and MOVO-A repressed it, but MOVO-B had no effects. Mutated MOVO-binding motifs in the Movo promoter reduced the luciferase activity. All the isoforms had no effects on SV40 promoter without MOVO-binding motifs. MOVO-A partially rescued oogenesis of a Drosophila ovo mutant. These results suggest that MOVO isoforms are transcription factors to regulate genes carrying the MOVO-binding motifs in the testis.
Collapse
Affiliation(s)
- Sawako Unezaki
- Department of Medical Chemistry, Kansai Medical University, 10-15 Fumizono, Moriguchi, Osaka 570-8506 Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hu P, Berkowitz P, O'Keefe EJ, Rubenstein DS. Keratinocyte adherens junctions initiate nuclear signaling by translocation of plakoglobin from the membrane to the nucleus. J Invest Dermatol 2003; 121:242-51. [PMID: 12880414 DOI: 10.1046/j.1523-1747.2003.12376.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Because changes in cell-cell adhesion have profound effects on cellular behavior, we hypothesized a link between the adhesion and signaling functions of plakoglobin and beta-catenin. To investigate the existence of adherens-junction-mediated signaling, we used peroxovanadate to tyrosine phosphorylate plakoglobin and beta-catenin and to dissociate adherens junctions. The distribution of plakoglobin and beta-catenin was determined by immunofluorescence, western blot analysis, pulse-chase radiolabeling, and biochemical subcellular fractionation. Coimmunoprecipitation studies from nuclear fractions, gel-shift assays, and transient transfections with T cell factor (TCF)/lymphoid enhancer factor (LEF) optimized promoter reporter constructs were used to investigate the ability of plakoglobin and beta-catenin that had redistributed from the membrane to the nucleus to form functional transcriptional regulatory complexes with TCF/LEF family member transcription factors. Tyrosine phosphorylation of plakoglobin and beta-catenin resulted in their rapid translocation from the cell membrane to the nucleus. Nuclear translocation was associated with increased plakoglobin and decreased beta-catenin binding to nuclear TCF/LEF and downregulation of gene transcription from TCF/LEF reporter constructs. These results are consistent with a signaling pathway initiated by structural changes in the adherens junction in which adherens-junction-derived plakoglobin regulates nuclear transcription by antagonizing the binding of beta-catenin to TCF/LEF proteins.
Collapse
Affiliation(s)
- Peiqi Hu
- Department of Dermatology, University of North Carolina--Chapel Hill, School of Medicine, Chapel Hill, North Carolina 27599-7287, USA
| | | | | | | |
Collapse
|
41
|
Khila A, El Haidani A, Vincent A, Payre F, Souda SI. The dual function of ovo/shavenbaby in germline and epidermis differentiation is conserved between Drosophila melanogaster and the olive fruit fly Bactrocera oleae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:691-699. [PMID: 12826096 DOI: 10.1016/s0965-1748(03)00063-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The olive fruit fly Bactrocera oleae (B. oleae) is a major olive damaging pest in the Mediterranean area. As a first molecular analysis of a developmental gene in this insect, we characterised the ovo/shavenbaby (ovo/svb) gene. In Drosophila, ovo/svb encodes a family of transcription regulators with two distinct functions: ovo is required for female germline differentiation and svb controls morphogenesis of epidermal cells. Here, we report the cloning and characterisation of ovo/svb in B. oleae, showing that the ovo genomic organisation and complex pattern of germline transcription have been conserved between distantly related Dipterae. We further show that B. oleae svb embryonic expression precisely prefigures the pattern of larval trichomes, supporting the conclusion that regulatory changes in svb transcription underlie evolutionary diversification of trichome patterns seen among Dipterae.
Collapse
Affiliation(s)
- Abderrahman Khila
- Laboratoire de Biotechnologie Végétale et Agro-Alimentaire, Faculté des Sciences et Techniques de Fès-Saïss, Université Sidi Mohammed Ben Abdellah, route de Imouzer, BP2202 Fès, Morocco
| | | | | | | | | |
Collapse
|
42
|
Delon I, Chanut-Delalande H, Payre F. The Ovo/Shavenbaby transcription factor specifies actin remodelling during epidermal differentiation in Drosophila. Mech Dev 2003; 120:747-58. [PMID: 12915226 DOI: 10.1016/s0925-4773(03)00081-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In Drosophila, differentiation of the epidermis results in a stereotyped array of cells with F-actin-based extensions at their apical face. We identified Ovo/Shavenbaby (Svb) as a transcription factor that governs changes in epidermal cell shape. Svb is required for the formation of apical extensions and cells deficient in svb differentiate a smooth surface. In both the embryo and the adult, we show that Svb is necessary and sufficient for the cells to grow extensions and that the tight regulation of ovo/svb activity is critical for morphogenesis to occur correctly. We establish that Svb triggers early F-actin redistribution and is able to initiate the entire process of cytoskeletal remodelling, thereby defining it as a major regulator of epidermal differentiation.
Collapse
Affiliation(s)
- Isabelle Delon
- Centre de Biologie du Développement, Bat 4R3, 118 Rte de Narbonne, 31062 cedex 4, Toulouse, France
| | | | | |
Collapse
|
43
|
Affiliation(s)
- Laura Alonso
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
44
|
Jiang Y, Zhou XD, Liu YK, Wu X, Huang XW. Association of hTcf-4 gene expression and mutation with clinicopathological characteristics of hepatocellular carcinoma. World J Gastroenterol 2002; 8:804-7. [PMID: 12378619 PMCID: PMC4656565 DOI: 10.3748/wjg.v8.i5.804] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: Hepatocellular carcinoma (HCC) is a significant health problem in China. But the molecular mechanisms of HCC remains unclear. APC/β-Catenin/Tcf signaling pathway, also known as Wnt pathway, plays a critical role in the development and oncogenesis. As little is known about the alteration of human T-cell transcription factor-4 (hTcf-4) gene in HCC, it is of interest to study the expression and mutation of hTcf-4 gene in HCC and the relationship between hTcf-4 gene and progression of HCC.
METHODS: Reverse transcription-polymerase chain reaction (RT-PCR) method was used to detect the expression of hTcf-4 mRNA in 32 HCC and para-cancerous tissues and 5 normal liver tissues. PCR-single strand conformation polymorphism (PCR-SSCP) method was used to detect the mutation of hTcf-4 exons 1, 4, 9 and 15 in HCC. The correlation of expression and mutation of the hTcf-4 gene with clinicopathological characteristics of HCC was also analyzed.
RESULTS: RT-PCR showed that the expression rate of hTcf-4 mRNA in HCC, para-cancerous tissues and normal liver tissues was 90.6%, 71.9% and 80%, respectively. The gene expression level in tumor was 0.71 ± 0.13, much higher than that in para-cancerous liver 0.29 ± 005 and normal liver 0.26 ± 0.05 (P < 0.001), although there was no significant difference in gene expression level between para-cancerous tissues and normal liver (P > 0.05). Furthermore, hTcf-4 gene expression was closely associated with tumor capsule status and intrahepatic metastasis of HCC. On SSCP, 2 of 32 cases of HCC (6.25%) displayed characteristic mutational mobility shifts in exon 15 of the hTcf-4 gene. No abnormal shifting bands were observed in para-cancerous tissues.
CONCLUSION: The high expression level of hTcf-4 in HCC, especially in tumors with metastasis, suggests that the over-expression of hTcf-4 gene may be closely associated with development and progression of HCC, but the mutation of this gene seemed to play less important role in this respect.
Collapse
Affiliation(s)
- Ying Jiang
- Liver Cancer Institute, Zhong Shan Hospital, Fudan University, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
45
|
Li B, Dai Q, Li L, Nair M, Mackay DR, Dai X. Ovol2, a mammalian homolog of Drosophila ovo: gene structure, chromosomal mapping, and aberrant expression in blind-sterile mice. Genomics 2002; 80:319-25. [PMID: 12213202 PMCID: PMC2893385 DOI: 10.1006/geno.2002.6831] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The ovo gene family consists of evolutionarily conserved genes including those cloned from Caenorhabditis elegans, Drosophila melanogaster, mouse, and human. Here we report the isolation and characterization of mouse Ovol2 (also known as movol2 or movo2) and provide evidence supporting the existence of multiple Ovol2 transcripts. These transcripts are produced by alternative promoter usage and alternative splicing and encode long and short OVOL2 protein isoforms, whose sequences differ from those previously reported. Mouse and human OVOL2 genes are expressed in overlapping tissues including testis, where Ovol2 expression is developmentally regulated and correlates with the meiotic/postmeiotic stages of spermatogenesis. Mouse Ovol2 maps to chromosome 2 in a region containing blind-sterile (bs), a spontaneous mutation that causes spermatogenic defects and germ cell loss. No mutation has been detected in the coding region of Ovol2 from bs mice, but Ovol2 transcription was dramatically reduced in testes from these mice, suggesting that Ovol2 is expressed in male germ cells.
Collapse
Affiliation(s)
- Baoan Li
- Department of Biological Chemistry, University of California, Irvine, California 92697, USA
| | - Qian Dai
- Department of Biological Chemistry, University of California, Irvine, California 92697, USA
| | - Ling Li
- Department of Biological Chemistry, University of California, Irvine, California 92697, USA
| | - Mahalakshmi Nair
- Department of Biological Chemistry, University of California, Irvine, California 92697, USA
| | - Douglas R. Mackay
- Department of Biological Chemistry, University of California, Irvine, California 92697, USA
| | - Xing Dai
- Department of Biological Chemistry, University of California, Irvine, California 92697, USA
- Developmental Biology Center, University of California, Irvine, California 92697, USA
- To whom correspondence and reprint requests should be addressed. Fax: (949) 824-2688.
| |
Collapse
|