1
|
Park YJ, Peñas-Defrutos MN, Drummond MJ, Gordon Z, Kelly OR, Garvey IJ, Gullett KL, García-Melchor M, Fout AR. Secondary Coordination Sphere Influences the Formation of Fe(III)-O or Fe(III)-OH in Nitrite Reduction: A Synthetic and Computational Study. Inorg Chem 2022; 61:8182-8192. [PMID: 35580163 DOI: 10.1021/acs.inorgchem.2c00462] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reduction of nitrite (NO2-) to generate nitric oxide (NO) is a significant area of research due to their roles in the global nitrogen cycle. Here, we describe various modifications of the tris(5-cyclohexyliminopyrrol-2-ylmethyl)amine H3[N(piR)3] ligand where the steric bulk and acidity of the secondary coordination sphere were explored in the non-heme iron system for nitrite reduction. The cyclohexyl and 2,4,6-trimethylphenyl variants of the ligand were used to probe the mechanism of nitrite reduction. While previously stoichiometric addition of nitrite to the iron(II)-species generated an iron(III)-oxo complex, changing the secondary coordination sphere to mesityl resulted in an iron(III)-hydroxo complex. Subsequent addition of an electron and two protons led to the release of water and regeneration of the starting iron(II) catalyst. This sequence mirrored the proposed mechanism of nitrite reduction in biological systems, where the distal histidine residue shuttles protons to the active site. Computational studies aimed at interrogating the dissimilar behavior of the cyclohexyl and mesityl ligand systems resulting in Fe(III)-oxo and Fe(III)-hydroxo complexes, respectively, shed light on the key role of H-bonds involving the secondary coordination sphere in the relative stability of these species.
Collapse
Affiliation(s)
- Yun Ji Park
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Marconi N Peñas-Defrutos
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Michael J Drummond
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Zachary Gordon
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Oscar R Kelly
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Ian J Garvey
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Kelly L Gullett
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Max García-Melchor
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Alison R Fout
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Isolated heterotrophic nitrifying and aerobic denitrifying bacterium for treating actual refinery wastewater with low C/N ratio. J Biosci Bioeng 2021; 132:41-48. [PMID: 33931317 DOI: 10.1016/j.jbiosc.2021.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 11/20/2022]
Abstract
Heterotrophic nitrifying and aerobic denitrifying bacteria that have been widely isolated from complicated activated sludge microflorae demonstrate dominant advantages in simultaneous removal of ammonium and nitrogen oxides under aerobic conditions. However, owing to the need of organic carbon to support bacterial growth, nitrogen removal of actual industrial wastewater with low carbon-to-nitrogen (C/N) ratio remains a challenge. Here, Pseudomonas mendocina Y7 was identified and presented to effectively remove nitrogen of actual refinery wastewater with low C/N ratio. The isolated bacterium showed high removal efficiency of NH4+-N, NO2--N, and NO3--N up to about 90% in single (100 mg/L) or mixed (200 mg/L) nitrogen source media at low C/N ratio of 6 when it was cultivated for 12 or 21 h. According to PCR amplification, the heterotrophic nitrification and aerobic denitrification capability of strain Y7 was attributed to the functional genes of amoA, hao, napA, and nirS. In activated sludge process for treating actual refinery wastewater with low C/N ratio, compared to abundant accumulation of NO2--N and NO3--N only using the activated sludge, strain Y7 significantly improved the removal efficiency of NH4+‒N and total nitrogen (with influent concentrations of about 40 and 55 mg/L) from about 47% and 22% to about 85% and 73%, respectively, without the accumulation of nitrogen oxides. Microbial community structure analysis revealed that strain Y7 could coexist well with other microorganisms in the activated sludge and maintain highly efficient and steady nitrogen removal in continuous treatment system. This discovery provides a promising treatment approach toward actual nitrogen-rich industrial wastewater.
Collapse
|
3
|
Zhang B, Li Y, Fei Y, Cheng Y. Novel Pathway for Vanadium(V) Bio-Detoxification by Gram-Positive Lactococcus raffinolactis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2121-2131. [PMID: 33492933 DOI: 10.1021/acs.est.0c07442] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Whereas prospects of bioremediation for a vanadium(V) [V(V)]-contaminated environment are widely recognized, reported functional species are extremely limited, with the vast majority of Gram-negative bacteria in Proteobacteria. Herein, the effectiveness of V(V) reduction is proved for the first time by Lactococcus raffinolactis, a Gram-positive bacterium in Firmicutes. The V(V) removal efficiency was 86.5 ± 2.17% during 10-d operation, with an average removal rate of 4.32 ± 0.28 mg/L·d in a citrate-fed system correspondingly. V(V) was bio-reduced to insoluble vanadium(IV) and distributed both inside and outside the cells. Nitrite reductase encoded by gene nirS mainly catalyzed intracellular V(V) reduction, revealing a previously unrecognized pathway. Oxidative stress induced by reactive oxygen species from dissimilatory V(V) reduction was alleviated through strengthened superoxide dismutase and catalase activities. Extracellular polymeric substances with chemically reactive hydroxyl (-OH) and carboxyl (-COO-) groups also contributed to V(V) binding and reduction as well as ROS scavenging. This study can improve the understanding of Gram-positive bacteria for V(V) bio-detoxification and offer microbial resources for bioremediation of a V(V)-polluted environment.
Collapse
Affiliation(s)
- Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Yi'na Li
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Yangmei Fei
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Yutong Cheng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| |
Collapse
|
4
|
Amanullah S, Saha P, Nayek A, Ahmed ME, Dey A. Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2nd sphere interactions in catalysis. Chem Soc Rev 2021; 50:3755-3823. [DOI: 10.1039/d0cs01405b] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reduction of oxides and oxoanions of carbon and nitrogen are of great contemporary importance as they are crucial for a sustainable environment.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Paramita Saha
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhijit Nayek
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Md Estak Ahmed
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhishek Dey
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
5
|
Affiliation(s)
- Kazuo Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
6
|
Bai H, Liao S, Wang A, Huang J, Shu W, Ye J. High-efficiency inorganic nitrogen removal by newly isolated Pannonibacter phragmitetus B1. BIORESOURCE TECHNOLOGY 2019; 271:91-99. [PMID: 30265957 DOI: 10.1016/j.biortech.2018.09.090] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/08/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Abstract
An aerobic heterotrophic nitrogen removal bacterium strain, B1, was isolated from aquaculture water and identified as Pannonibacter phragmitetus (99% similarity) by 16S rRNA sequencing analysis. When ammonium, nitrite or nitrate was the sole nitrogen source, with an initial nitrogen concentration of 14 mg/L, the nitrogen removal efficiencies were 98.66%, 99.96% and 98.73%, respectively, and the corresponding maximum removal rates reached as high as 1.16, 0.77 and 0.81 mg/L/h, respectively. In the presence of NH4+-N, the removal efficiency of 56 mg/L NO2--N within 27 h increased by 83.50%, and the corresponding removal rate reached as high as 1.72 mg/L/h. Additionally, different carbon sources (dl-malic acid, sucrose, sodium citrate, and glucose) could be utilized in nitrogen removal. Sequence amplification indicates that the denitrification genes nirK, norB and narG are present in strain B1. All results demonstrate that strain B1 has high promise for future applications of removing inorganic nitrogen from wastewater.
Collapse
Affiliation(s)
- Hong Bai
- College of Life Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, China
| | - Shaoan Liao
- College of Life Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, China.
| | - Anli Wang
- College of Life Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, China
| | - Jiahui Huang
- College of Life Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, China
| | - Wen Shu
- College of Life Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, China
| | - Jianmin Ye
- College of Life Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, China
| |
Collapse
|
7
|
Su J, Luo X, Huang T, Ma F, Zheng S, Shao S. Effect of Mixed Electron Donors on Autotrophic Denitrification by Pseudomonas sp. SZF15. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b04591] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Junfeng Su
- School
of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
- State
Key Laboratory of Urban Water Resource and Environment, School of
Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Xianxin Luo
- School
of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Tinglin Huang
- School
of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Fang Ma
- State
Key Laboratory of Urban Water Resource and Environment, School of
Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Shengchen Zheng
- School
of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
| | - Sicheng Shao
- School
of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
| |
Collapse
|
8
|
Melin F, Xie H, Meyer T, Ahn YO, Gennis RB, Michel H, Hellwig P. The unusual redox properties of C-type oxidases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1892-1899. [PMID: 27664317 DOI: 10.1016/j.bbabio.2016.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 10/21/2022]
Abstract
Cytochrome cbb3 (also known as C-type) oxidases belong to the family of heme-copper terminal oxidases which couple at the end of the respiratory chain the reduction of molecular oxygen into water and the pumping of protons across the membrane. They are expressed most often at low pressure of O2 and they exhibit a low homology of sequence with the cytochrome aa3 (A-type) oxidases found in mitochondria. Their binuclear active site comprises a high-spin heme b3 associated with a CuB center. The protein also contains one low-spin heme b and 3 hemes c. We address here the redox properties of cbb3 oxidases from three organisms, Rhodobacter sphaeroides, Vibrio cholerae and Pseudomonas stutzeri by means of electrochemical and spectroscopic techniques. We show that the redox potential of the heme b3 exhibits a relatively low midpoint potential, as in related cytochrome c-dependent nitric oxide reductases. Potential implications for the coupled electron transfer and proton uptake mechanism of C-type oxidases are discussed.
Collapse
Affiliation(s)
- Frederic Melin
- Laboratoire de Bioélectrochimie et Spectroscopie, Chimie de la Matière Complexe, UMR 7140, Université de Strasbourg, 1 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Hao Xie
- Max Planck Institute of Biophysics, Department of Molecular Membrane Biology, Max-von-Laue-Str. 3, D-60438 Frankfurt am Main, Germany
| | - Thomas Meyer
- Laboratoire de Bioélectrochimie et Spectroscopie, Chimie de la Matière Complexe, UMR 7140, Université de Strasbourg, 1 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Young Ok Ahn
- Department of Biochemistry, University of Illinois at Urbana Champaign, USA
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois at Urbana Champaign, USA
| | - Hartmut Michel
- Max Planck Institute of Biophysics, Department of Molecular Membrane Biology, Max-von-Laue-Str. 3, D-60438 Frankfurt am Main, Germany
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, Chimie de la Matière Complexe, UMR 7140, Université de Strasbourg, 1 Rue Blaise Pascal, 67000 Strasbourg, France.
| |
Collapse
|
9
|
Su JF, Cheng C, Huang TL, Ma F, Lu JS, Shao SC. Characterization of coupling autotrophic denitrification with iron cycle bacterium Enterobacter sp. CC76 and its application of groundwater. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.05.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Su JF, Zheng SC, Huang TL, Ma F, Shao SC, Yang SF, Zhang LN. Characterization of the anaerobic denitrification bacterium Acinetobacter sp. SZ28 and its application for groundwater treatment. BIORESOURCE TECHNOLOGY 2015; 192:654-659. [PMID: 26094190 DOI: 10.1016/j.biortech.2015.06.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 06/04/2023]
Abstract
Acinetobacter sp. SZ28 exhibited efficient autotrophic denitrification ability using Mn(2+) as an electron donor. Sequence amplification identified the presence of the nirS gene. Meteorological chromatography analysis showed that N2 was produced as an end product. Response surface methodology experiments showed that the maximum removal of nitrate occurred under the following conditions: Mn(2+) concentration of 143.56 mg/L, C/N ratio of 6.82, initial pH of 5.17, and temperature of 34.26 °C, where the initial Mn(2+) concentration produced the largest effect. In the groundwater experiment, nitrate levels decreased from 1.63 mg/L to 0 mg/L. Three-dimensional fluorescence analysis showed a decrease in the peak intensity of the original humus. Humus and the small-molecule amino acid tryptophan were detected. These results demonstrated that strain SZ28 is a suitable candidate for the simultaneous removal of nitrogen and Mn(2+) in groundwater treatment.
Collapse
Affiliation(s)
- Jun feng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Sheng Chen Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ting lin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Si Cheng Shao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shao Fei Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Li na Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
11
|
Farver O, Hosseinzadeh P, Marshall NM, Wherland S, Lu Y, Pecht I. Long-Range Electron Transfer in Engineered Azurins Exhibits Marcus Inverted Region Behavior. J Phys Chem Lett 2015; 6:100-105. [PMID: 26263097 DOI: 10.1021/jz5022685] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The Marcus theory of electron transfer (ET) predicts that while the ET rate constants increase with rising driving force until it equals a reaction's reorganization energy, at higher driving force the ET rate decreases, having reached the Marcus inverted region. While experimental evidence of the inverted region has been reported for organic and inorganic ET reactions as well as for proteins conjugated with ancillary redox moieties, evidence of the inverted region in a "protein-only" system has remained elusive. We herein provide such evidence in a series of nonderivatized proteins. These results may facilitate the design of ET centers for future applications such as advanced energy conversions.
Collapse
Affiliation(s)
- Ole Farver
- †Department of Analytical and Bioinorganic Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | | | | | - Scot Wherland
- ∥Department of Chemistry, Washington State University, PO Box 644630, Pullman, Washington 99164, United States
| | | | - Israel Pecht
- §Department of Immunology, Weizmann Institute of Science, Wolfson Building, Rehovot 76100, Israel
| |
Collapse
|
12
|
Nitrate removal by a novel autotrophic denitrifier (Microbacterium sp.) using Fe(II) as electron donor. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0952-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
13
|
Bewley KD, Ellis KE, Firer-Sherwood MA, Elliott SJ. Multi-heme proteins: nature's electronic multi-purpose tool. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:938-48. [PMID: 23558243 DOI: 10.1016/j.bbabio.2013.03.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/20/2013] [Accepted: 03/25/2013] [Indexed: 02/06/2023]
Abstract
While iron is often a limiting nutrient to Biology, when the element is found in the form of heme cofactors (iron protoporphyrin IX), living systems have excelled at modifying and tailoring the chemistry of the metal. In the context of proteins and enzymes, heme cofactors are increasingly found in stoichiometries greater than one, where a single protein macromolecule contains more than one heme unit. When paired or coupled together, these protein associated heme groups perform a wide variety of tasks, such as redox communication, long range electron transfer and storage of reducing/oxidizing equivalents. Here, we review recent advances in the field of multi-heme proteins, focusing on emergent properties of these complex redox proteins, and strategies found in Nature where such proteins appear to be modular and essential components of larger biochemical pathways. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
Affiliation(s)
- Kathryn D Bewley
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
14
|
Radoul M, Barak Y, Rinaldo S, Cutruzzolà F, Pecht I, Goldfarb D. Solvent accessibility in the distal heme pocket of the nitrosyl d(1)-heme complex of Pseudomonas stutzeri cd(1) nitrite reductase. Biochemistry 2012; 51:9192-201. [PMID: 23072349 DOI: 10.1021/bi3011237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In nitrite reductase (cd(1) NIR), the c-heme mediates electron transfer to the catalytic d(1)-heme where nitrite (NO(2)(-)) is reduced to nitric oxide (NO). An interesting feature of this enzyme is the relative lability of the reaction product NO bound to the d(1)-heme. Marked differences in the c- to d(1)-heme electron-transfer rates were reported for cd(1) NIRs from different sources, such as Pseudomonas stutzeri (P. stutzeri) and Pseudomonas aeruginosa (P. aeruginosa). The three-dimensional structure of the P. aeruginosa enzyme has been determined, but that of the P. stutzeri enzyme is still unknown. The difference in electron transfer rates prompted a comparison of the structural properties of the d(1)-heme pocket of P. stutzeri cd(1) NIR with those of the P. aeruginosa wild type enzyme (WT) and its Y10F using their nitrosyl d(1)-heme complexes. We applied high field pulse electron paramagnetic resonance (EPR) techniques that detect nuclear spins in the close environment of the spin bearing Fe(II)-NO entity. We observed similarities in the rhombic g-tensor and detected a proximal histidine ligand with (14)N hyperfine and quadrupole interactions also similar to those of P. aeruginosa WT and Y10F mutant complexes. In contrast, we also observed significant differences in the H-bond network involving the NO ligand and a larger solvent accessibility for P. stutzeri attributed to the absence of this tyrosine residue. For P. aeruginosa, cd(1) NIR domain swapping allows Tyr(10) to become H-bonded to the bound NO substrate. These findings support a previous suggestion that the large difference in the c- to d(1)-heme electron transfer rates between the two enzymes is related to solvent accessibility of their d(1)-heme pockets.
Collapse
Affiliation(s)
- Marina Radoul
- Department of Chemical Physics, Weizmann Institute of Science, Israel
| | | | | | | | | | | |
Collapse
|
15
|
Wan C, Yang X, Lee DJ, Du M, Wan F, Chen C. Aerobic denitrification by novel isolated strain using NO-₂-N as nitrogen source. BIORESOURCE TECHNOLOGY 2011; 102:7244-7248. [PMID: 21620694 DOI: 10.1016/j.biortech.2011.04.101] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/28/2011] [Accepted: 04/30/2011] [Indexed: 05/30/2023]
Abstract
Biological denitrification reaction can be achieved under aerobic environment. Few aerobic denitrifiers using nitrite as sole nitrogen source were identified. Using nitrite as the sole nitrogen source, this work assessed the denitrification activity of yy7, an aerobic heterotrophic denitrifier identified as Pseudomonas sp. (94% similarity) by 16S rRNA sequencing analysis. The logistic equation describes the cell growth curve, yielding a generation time of 2.9h at an initial 18 mg l(-1)NO(-)₂-N. Reduction of NO(-)₂-N was primarily achieved during its logarithmic growth phase, and was accompanied by an increase in suspension pH and near complete consumption of dissolved oxygen. Three genes relating to nirK, norB, and nosZ were noted to involve in isolate strain. Isolate yy7 can survive and remove up to 40 mg l(-1)NO(-)₂-N and, hence, can be applied as an effective aerobic denitrifier during simultaneous nitrification and denitrification via nitrite processes.
Collapse
Affiliation(s)
- Chunli Wan
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
16
|
Observation of fast release of NO from ferrous d₁ haem allows formulation of a unified reaction mechanism for cytochrome cd₁ nitrite reductases. Biochem J 2011; 435:217-25. [PMID: 21244362 DOI: 10.1042/bj20101615] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytochrome cd1 nitrite reductase is a haem-containing enzyme responsible for the reduction of nitrite into NO, a key step in the anaerobic respiratory process of denitrification. The active site of cytochrome cd1 contains the unique d1 haem cofactor, from which NO must be released. In general, reduced haems bind NO tightly relative to oxidized haems. In the present paper, we present experimental evidence that the reduced d1 haem of cytochrome cd1 from Paracoccus pantotrophus releases NO rapidly (k=65-200 s(-1)); this result suggests that NO release is the rate-limiting step of the catalytic cycle (turnover number=72 s(-1)). We also demonstrate, using a complex of the d1 haem and apomyoglobin, that the rapid dissociation of NO is largely controlled by the d1 haem cofactor itself. We present a reaction mechanism proposed to be applicable to all cytochromes cd1 and conclude that the d1 haem has evolved to have low affinity for NO, as compared with other ferrous haems.
Collapse
|
17
|
Pound GJ, Pletnev AA, Fang X, Pletneva EV. A small fluorophore reporter of protein conformation and redox state. Chem Commun (Camb) 2011; 47:5714-6. [PMID: 21487611 DOI: 10.1039/c1cc10896d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new thiol-specific reagent introduces a small bis(methylamino)terephthalic acid fluorophore into proteins. The noninvasive probe with distinct spectroscopic properties offers many advantages for protein labeling, purification, and mechanistic work promising to serve as a powerful tool in studies of protein folding and heme redox reactions.
Collapse
Affiliation(s)
- Graham J Pound
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
18
|
Abu Tarboush N, Jensen LMR, Feng M, Tachikawa H, Wilmot CM, Davidson VL. Functional importance of tyrosine 294 and the catalytic selectivity for the bis-Fe(IV) state of MauG revealed by replacement of this axial heme ligand with histidine . Biochemistry 2010; 49:9783-91. [PMID: 20929212 DOI: 10.1021/bi101254p] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The diheme enzyme MauG catalyzes the posttranslational modification of a precursor protein of methylamine dehydrogenase (preMADH) to complete the biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. It catalyzes three sequential two-electron oxidation reactions which proceed through a high-valent bis-Fe(IV) redox state. Tyr294, the unusual distal axial ligand of one c-type heme, was mutated to His, and the crystal structure of Y294H MauG in complex with preMADH reveals that this heme now has His-His axial ligation. Y294H MauG is able to interact with preMADH and participate in interprotein electron transfer, but it is unable to catalyze the TTQ biosynthesis reactions that require the bis-Fe(IV) state. This mutation affects not only the redox properties of the six-coordinate heme but also the redox and CO-binding properties of the five-coordinate heme, despite the 21 Å separation of the heme iron centers. This highlights the communication between the hemes which in wild-type MauG behave as a single diheme unit. Spectroscopic data suggest that Y294H MauG can stabilize a high-valent redox state equivalent to Fe(V), but it appears to be an Fe(IV)═O/π radical at the five-coordinate heme rather than the bis-Fe(IV) state. This compound I-like intermediate does not catalyze TTQ biosynthesis, demonstrating that the bis-Fe(IV) state, which is stabilized by Tyr294, is specifically required for this reaction. The TTQ biosynthetic reactions catalyzed by wild-type MauG do not occur via direct contact with the Fe(IV)═O heme but via long-range electron transfer through the six-coordinate heme. Thus, a critical feature of the bis-Fe(IV) species may be that it shortens the electron transfer distance from preMADH to a high-valent heme iron.
Collapse
Affiliation(s)
- Nafez Abu Tarboush
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
| | | | | | | | | | | |
Collapse
|
19
|
Cutruzzolà F, Rinaldo S, Castiglione N, Giardina G, Pecht I, Brunori M. Nitrite reduction: a ubiquitous function from a pre-aerobic past. Bioessays 2010; 31:885-91. [PMID: 19554608 DOI: 10.1002/bies.200800235] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In eukaryotes, small amounts of nitrite confer cytoprotection against ischemia/reperfusion-related tissue damage in vivo, possibly via reduction to nitric oxide (NO) and inhibition of mitochondrial function. Several hemeproteins are involved in this protective mechanism, starting with deoxyhemoglobin, which is capable of reducing nitrite. In facultative aerobic bacteria, such as Pseudomonas aeruginosa, nitrite is reduced to NO by specialized heme-containing enzymes called cd(1) nitrite reductases. The details of their catalytic mechanism are summarized below, together with a hypothesis on the biological role of the unusual d(1)-heme, which, in the reduced state, shows unique properties (very high affinity for nitrite and exceptionally fast dissociation of NO). Our results support the idea that the nitrite-based reactions of contemporary eukaryotes are a vestige of earlier bacterial biochemical pathways. The evidence that nitrite reductase activities of enzymes with different cellular roles and biochemical features still exist today highlights the importance of nitrite in cellular homeostasis.
Collapse
Affiliation(s)
- Francesca Cutruzzolà
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza-Università di Roma, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
20
|
Farver O, Tepper AWJW, Wherland S, Canters GW, Pecht I. Site−Site Interactions Enhances Intramolecular Electron Transfer in Streptomyces coelicolor laccase. J Am Chem Soc 2009; 131:18226-7. [DOI: 10.1021/ja908793d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ole Farver
- Institute of Analytical Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark, Leiden Institute of Chemistry, Leiden University, 2300RA, Leiden The Netherlands, Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, and Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Armand W. J. W. Tepper
- Institute of Analytical Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark, Leiden Institute of Chemistry, Leiden University, 2300RA, Leiden The Netherlands, Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, and Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Scot Wherland
- Institute of Analytical Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark, Leiden Institute of Chemistry, Leiden University, 2300RA, Leiden The Netherlands, Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, and Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gerard W. Canters
- Institute of Analytical Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark, Leiden Institute of Chemistry, Leiden University, 2300RA, Leiden The Netherlands, Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, and Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Israel Pecht
- Institute of Analytical Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark, Leiden Institute of Chemistry, Leiden University, 2300RA, Leiden The Netherlands, Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, and Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
21
|
Intramolecular electron transfer in Pseudomonas aeruginosa cd(1) nitrite reductase: thermodynamics and kinetics. Biophys J 2009; 96:2849-56. [PMID: 19348767 DOI: 10.1016/j.bpj.2008.12.3937] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 12/15/2008] [Accepted: 12/23/2008] [Indexed: 11/22/2022] Open
Abstract
The cd(1) nitrite reductases, which catalyze the reduction of nitrite to nitric oxide, are homodimers of 60 kDa subunits, each containing one heme-c and one heme-d(1). Heme-c is the electron entry site, whereas heme-d(1) constitutes the catalytic center. The 3D structure of Pseudomonas aeruginosa nitrite reductase has been determined in both fully oxidized and reduced states. Intramolecular electron transfer (ET), between c and d(1) hemes is an essential step in the catalytic cycle. In earlier studies of the Pseudomonas stutzeri enzyme, we observed that a marked negative cooperativity is controlling this internal ET step. In this study we have investigated the internal ET in the wild-type and His369Ala mutant of P. aeruginosa nitrite reductases and have observed similar cooperativity to that of the Pseudomonas stutzeri enzyme. Heme-c was initially reduced, in an essentially diffusion-controlled bimolecular process, followed by unimolecular electron equilibration between the c and d(1) hemes (k(ET) = 4.3 s(-1) and K = 1.4 at 298 K, pH 7.0). In the case of the mutant, the latter ET rate was faster by almost one order of magnitude. Moreover, the internal ET rate dropped (by approximately 30-fold) as the level of reduction increased in both the WT and the His mutant. Equilibrium standard enthalpy and entropy changes and activation parameters of this ET process were determined. We concluded that negative cooperativity is a common feature among the cd(1) nitrite reductases, and we discuss this control based on the available 3D structure of the wild-type and the H369A mutant, in the reduced and oxidized states.
Collapse
|
22
|
Electron transfer patterns of the di-heme protein cytochrome c4 from Pseudomonas stutzeri. J Inorg Biochem 2009; 103:717-22. [DOI: 10.1016/j.jinorgbio.2009.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 01/08/2009] [Accepted: 01/09/2009] [Indexed: 11/18/2022]
|
23
|
Sam KA, Strampraad MJ, de Vries S, Ferguson SJ. Very Early Reaction Intermediates Detected by Microsecond Time Scale Kinetics of Cytochrome cd1-catalyzed Reduction of Nitrite. J Biol Chem 2008; 283:27403-27409. [DOI: 10.1074/jbc.m804493200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
24
|
Chi Q, Zhang J, Jensen PS, Nazmudtinov RR, Ulstrup J. Surface-induced intramolecular electron transfer in multi-centre redox metalloproteins: the di-haem protein cytochrome c(4) in homogeneous solution and at electrochemical surfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2008; 20:374124. [PMID: 21694431 DOI: 10.1088/0953-8984/20/37/374124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Intramolecular electron transfer (ET) between transition metal centres is a core feature of biological ET and redox enzyme function. The number of microscopic redox potentials and ET rate constants is, however, mostly prohibitive for experimental mapping, but two-centre proteins offer simple enough communication networks for complete mapping to be within reach. At the same time, multi-centre redox proteins operate in a membrane environment where conformational dynamics and ET patterns are quite different from the conditions in a homogeneous solution. The bacterial respiratory di-haem protein Pseudomonas stutzeri cytochrome c(4) offers a prototype target for environmental gating of intra-haem ET. ET between P. stutzeri cyt c(4) and small molecular reaction partners in solution appears completely dominated by intermolecular ET of each haem group/protein domain, with no competing intra-haem ET, for which accompanying propionate-mediated proton transfer is a further barrier. The protein can, however, be immobilized on single-crystal, modified Au(111) electrode surfaces with either the low-potential N terminal or the high-potential C terminal domain facing the surface, clearly with fast intramolecular ET as a key feature in the electrochemical two-ET process. This dual behaviour suggests a pattern for multi-centre redox metalloprotein function. In a homogeneous solution, which is not the natural environment of cyt c(4), the two haem group domains operate largely independently with conformations prohibitive for intramolecular ET. Binding to a membrane or electrochemical surface, however, triggers conformational opening of intramolecular ET channels. The haem group orientation in P. stutzeri cyt c(4) is finally noted to offer a case for orientation dependent electronic rectification between a substrate and a tip in electrochemical in situ scanning tunnelling microscopy or nanoscale electrode configurations.
Collapse
Affiliation(s)
- Qijin Chi
- Department of Chemistry, Technical University of Denmark, Building 207, DK-2800 Kongens Lyngby, Denmark
| | | | | | | | | |
Collapse
|
25
|
Bowman SEJ, Bren KL. The chemistry and biochemistry of heme c: functional bases for covalent attachment. Nat Prod Rep 2008; 25:1118-30. [PMID: 19030605 DOI: 10.1039/b717196j] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A discussion of the literature concerning the synthesis, function, and activity of heme c-containing proteins is presented. Comparison of the properties of heme c, which is covalently bound to protein, is made to heme b, which is bound noncovalently. A question of interest is why nature uses biochemically expensive heme c in many proteins when its properties are expected to be similar to heme b. Considering the effects of covalent heme attachment on heme conformation and on the proximal histidine interaction with iron, it is proposed that heme attachment influences both heme reduction potential and ligand-iron interactions.
Collapse
Affiliation(s)
- Sarah E J Bowman
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
26
|
Moura I, Pauleta SR, Moura JJG. Enzymatic activity mastered by altering metal coordination spheres. J Biol Inorg Chem 2008; 13:1185-95. [PMID: 18719950 DOI: 10.1007/s00775-008-0414-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 08/01/2008] [Indexed: 11/24/2022]
Abstract
Metalloenzymes control enzymatic activity by changing the characteristics of the metal centers where catalysis takes place. The conversion between inactive and active states can be tuned by altering the coordination number of the metal site, and in some cases by an associated conformational change. These processes will be illustrated using heme proteins (cytochrome c nitrite reductase, cytochrome c peroxidase and cytochrome cd1 nitrite reductase), non-heme proteins (superoxide reductase and [NiFe]-hydrogenase), and copper proteins (nitrite and nitrous oxide reductases) as examples. These examples catalyze electron transfer reactions that include atom transfer, abstraction and insertion.
Collapse
Affiliation(s)
- Isabel Moura
- REQUIMTE, Centro de Química Fina e Biotecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.
| | | | | |
Collapse
|
27
|
Léger C, Bertrand P. Direct Electrochemistry of Redox Enzymes as a Tool for Mechanistic Studies. Chem Rev 2008; 108:2379-438. [DOI: 10.1021/cr0680742] [Citation(s) in RCA: 594] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Elucidation of Electron- Transfer Pathways in Copper and Iron Proteins by Pulse Radiolysis Experiments. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/9780470144428.ch1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
29
|
Abstract
The copper- and heme-containing nitrite reductases (NiRs) are key enzymes in denitrification. Their subunits contain two distinct redox-active metal centers, an electron-accepting site and a nitrite-reducing site, to carry out the single-electron reduction of nitrite to nitric oxide. Catalytic cycles of both enzyme families employ intramolecular electron transfer that can be rate-determining for their activity. Herein, we report results comparing these two enzyme families in order to resolve the different mechanisms controlling intramolecular electron transfer in these proteins.
Collapse
Affiliation(s)
- Scot Wherland
- Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA
| | | | | |
Collapse
|
30
|
Farver O, Grell E, Ludwig B, Michel H, Pecht I. Rates and Equilibrium of CuA to heme a electron transfer in Paracoccus denitrificans cytochrome c oxidase. Biophys J 2005; 90:2131-7. [PMID: 16387770 PMCID: PMC1386791 DOI: 10.1529/biophysj.105.075440] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intramolecular electron transfer between CuA and heme a in solubilized bacterial (Paracoccus denitrificans) cytochrome c oxidase was investigated by pulse radiolysis. CuA, the initial electron acceptor, was reduced by 1-methylnicotinamide radicals in a diffusion-controlled reaction, as monitored by absorption changes at 825 nm, followed by partial restoration of the absorption and paralleled by an increase in the heme a absorption at 605 nm. The latter observations indicate partial reoxidation of the CuA center and the concomitant reduction of heme a. The rate constants for heme a reduction and CuA reoxidation were identical within experimental error and independent of the enzyme concentration and its degree of reduction, demonstrating that a fast intramolecular electron equilibration is taking place between CuA and heme a. The rate constants for CuA --> heme a ET and the reverse heme a --> CuA process were found to be 20,400 s(-1) and 10,030 s(-1), respectively, at 25 degrees C and pH 7.5, which corresponds to an equilibrium constant of 2.0. Thermodynamic and activation parameters of these intramolecular ET reactions were determined. The significance of the results, particularly the low activation barriers, is discussed within the framework of the enzyme's known three-dimensional structure, potential ET pathways, and the calculated reorganization energies.
Collapse
Affiliation(s)
- Ole Farver
- Institute of Analytical Chemistry, The Danish University of Pharmaceutical Sciences, 2100 Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
31
|
Heering HA, Wiertz FGM, Dekker C, de Vries S. Direct Immobilization of Native Yeast Iso-1 Cytochrome c on Bare Gold: Fast Electron Relay to Redox Enzymes and Zeptomole Protein-Film Voltammetry. J Am Chem Soc 2004; 126:11103-12. [PMID: 15339197 DOI: 10.1021/ja046737w] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclic voltammetry shows that yeast iso-1-cytochrome c (YCC), chemisorbed on a bare gold electrode via Cys102, exhibits fast, reversible interfacial electron transfer (k(0) = 1.8 x 10(3) s(-1)) and retains its native functionality. Vectorially immobilized YCC relays electrons to yeast cytochrome c peroxidase, and to both cytochrome cd(1) nitrite reductase (NIR) and nitric oxide reductase from Paracoccus denitrificans, thereby revealing the mechanistic properties of these enzymes. On a microelectrode, we measured nitrite turnover by approximately 80 zmol (49 000 molecules) of NIR, coadsorbed on 0.65 amol (390 000 molecules) of YCC.
Collapse
Affiliation(s)
- Hendrik A Heering
- Contribution from the Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | | | | | | |
Collapse
|
32
|
Abstract
Denitrification represents an important part of the biogeochemical cycle of the essential element nitrogen. It constitutes the predominant pathway of the reductive dissimilation of nitrate in the environment. Via four enzymatic reactions, nitrate is transformed stepwise to nitrite (NO2-), nitric oxide (NO), and nitrous oxide (N2O), to finally yield dinitrogen gas (N2). All steps within this metabolic pathway are catalyzed by complex multi-site metalloenzymes with unique spectroscopic and structural features. In recent years, high-resolution crystal structures have become available for these enzymes with the exception of the structure for NO reductase.
Collapse
Affiliation(s)
- Oliver Einsle
- Abt. Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | | |
Collapse
|