1
|
Caro-Astorga J, Meyerowitz JT, Stork DA, Nattermann U, Piszkiewicz S, Vimercati L, Schwendner P, Hocher A, Cockell C, DeBenedictis E. Polyextremophile engineering: a review of organisms that push the limits of life. Front Microbiol 2024; 15:1341701. [PMID: 38903795 PMCID: PMC11188471 DOI: 10.3389/fmicb.2024.1341701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Nature exhibits an enormous diversity of organisms that thrive in extreme environments. From snow algae that reproduce at sub-zero temperatures to radiotrophic fungi that thrive in nuclear radiation at Chernobyl, extreme organisms raise many questions about the limits of life. Is there any environment where life could not "find a way"? Although many individual extremophilic organisms have been identified and studied, there remain outstanding questions about the limits of life and the extent to which extreme properties can be enhanced, combined or transferred to new organisms. In this review, we compile the current knowledge on the bioengineering of extremophile microbes. We summarize what is known about the basic mechanisms of extreme adaptations, compile synthetic biology's efforts to engineer extremophile organisms beyond what is found in nature, and highlight which adaptations can be combined. The basic science of extremophiles can be applied to engineered organisms tailored to specific biomanufacturing needs, such as growth in high temperatures or in the presence of unusual solvents.
Collapse
Affiliation(s)
| | | | - Devon A. Stork
- Pioneer Research Laboratories, San Francisco, CA, United States
| | - Una Nattermann
- Pioneer Research Laboratories, San Francisco, CA, United States
| | | | - Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | | | - Antoine Hocher
- London Institute of Medical Sciences, London, United Kingdom
| | - Charles Cockell
- UK Centre for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Erika DeBenedictis
- The Francis Crick Institute, London, United Kingdom
- Pioneer Research Laboratories, San Francisco, CA, United States
| |
Collapse
|
2
|
Wood C, Bruinink A, Trembath-Reichert E, Wilhelm MB, Vidal C, Balaban E, McKay CP, Swan R, Swan B, Goordial J. Active microbiota persist in dry permafrost and active layer from Elephant Head, Antarctica. ISME COMMUNICATIONS 2024; 4:ycad002. [PMID: 38304082 PMCID: PMC10833075 DOI: 10.1093/ismeco/ycad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/03/2023] [Accepted: 11/07/2023] [Indexed: 02/03/2024]
Abstract
Dry permafrost is a challenging environment for microbial life due to cold, dry, and often oligotrophic conditions. In 2016, Elephant Head, Antarctica, was confirmed as the second site on Earth to contain dry permafrost. It is geographically distinct from the McMurdo Dry Valleys where dry permafrost has been studied previously. Here, we present the first study of the microbial activity, diversity, and functional potential of Elephant Head dry permafrost. Microbial activity was measured using radiorespiration assays with radiolabeled acetate as a carbon source at 5, 0, and -5°C. Low, but detectable, rates of microbial activity were measured in some samples at 0 and -5°C. This is distinct from previous studies of McMurdo Dry Valley dry permafrost which concluded that dry permafrost represents a cold-arid limit to life on the planet. The isolation of cold-adapted organisms from these soils, including one capable of subzero growth, further supports that the Elephant Head dry active layer and dry permafrost harbor viable microbial life, which may be active in situ. Metagenomic, 16S rRNA gene, and internal transcribed spacer and amplicon sequencing identified similar microbial communities to other Antarctic and cold environments. The Elephant Head microbial community appears to be adapted for survival in cold, dry, and oligotrophic conditions based on the presence of cold adaptation and stress response genes in the metagenomes. Together, our results show that dry permafrost environments do not exclude active microbial life at subzero temperatures, suggesting that the cold, dry soils of Mars may also not be as inhospitable as previously thought.
Collapse
Affiliation(s)
- Claudia Wood
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| | - Alyssa Bruinink
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| | - Elizabeth Trembath-Reichert
- School of Earth and Space Exploration, Arizona State University, 781 Terrace Mall, Tempe, AZ 85287, United States
| | - Mary Beth Wilhelm
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, CA 94035, United States
| | - Chanel Vidal
- School of Earth and Space Exploration, Arizona State University, 781 Terrace Mall, Tempe, AZ 85287, United States
| | - Edward Balaban
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, CA 94035, United States
| | - Christopher P McKay
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, CA 94035, United States
| | - Robert Swan
- 2041 Foundation, 130 Wescott Ct, Auburn, CA 95603, United States
| | - Barney Swan
- 2041 Foundation, 130 Wescott Ct, Auburn, CA 95603, United States
| | - Jackie Goordial
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
3
|
Chen C, Yi R, Igisu M, Sakaguchi C, Afrin R, Potiszil C, Kunihiro T, Kobayashi K, Nakamura E, Ueno Y, Antunes A, Wang A, Chandru K, Hao J, Jia TZ. Spectroscopic and Biophysical Methods to Determine Differential Salt-Uptake by Primitive Membraneless Polyester Microdroplets. SMALL METHODS 2023; 7:e2300119. [PMID: 37203261 DOI: 10.1002/smtd.202300119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/23/2023] [Indexed: 05/20/2023]
Abstract
α-Hydroxy acids are prebiotic monomers that undergo dehydration synthesis to form polyester gels, which assemble into membraneless microdroplets upon aqueous rehydration. These microdroplets are proposed as protocells that can segregate and compartmentalize primitive molecules/reactions. Different primitive aqueous environments with a variety of salts could have hosted chemistries that formed polyester microdroplets. These salts could be essential cofactors of compartmentalized prebiotic reactions or even directly affect protocell structure. However, fully understanding polyester-salt interactions remains elusive, partially due to technical challenges of quantitative measurements in condensed phases. Here, spectroscopic and biophysical methods are applied to analyze salt uptake by polyester microdroplets. Inductively coupled plasma mass spectrometry is applied to measure the cation concentration within polyester microdroplets after addition of chloride salts. Combined with methods to determine the effects of salt uptake on droplet turbidity, size, surface potential and internal water distribution, it was observed that polyester microdroplets can selectively partition salt cations, leading to differential microdroplet coalescence due to ionic screening effects reducing electrostatic repulsion forces between microdroplets. Through applying existing techniques to novel analyses related to primitive compartment chemistry and biophysics, this study suggests that even minor differences in analyte uptake can lead to significant protocellular structural change.
Collapse
Affiliation(s)
- Chen Chen
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Ruiqin Yi
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Motoko Igisu
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
| | - Chie Sakaguchi
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Rehana Afrin
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Christian Potiszil
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Tak Kunihiro
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Katsura Kobayashi
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Eizo Nakamura
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Yuichiro Ueno
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8551, Japan
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology (MUST), Taipa, Macau, SAR, China
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA
| | - Anna Wang
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, NSW, 2052, Australia
- RNA Institute, UNSW Sydney, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence for Synthetic Biology, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia, Selangor, 43650, Malaysia
| | - Jihua Hao
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA
- Deep Space Exploration Laboratory/CAS Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei, 230026, China
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA
| |
Collapse
|
4
|
Carré L, Gonzalez D, Girard É, Franzetti B. Effects of chaotropic salts on global proteome stability in halophilic archaea: Implications for life signatures on Mars. Environ Microbiol 2023; 25:2216-2230. [PMID: 37349893 DOI: 10.1111/1462-2920.16451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/28/2023] [Indexed: 06/24/2023]
Abstract
Halophilic archaea thriving in hypersaline environments, such as salt lakes, offer models for putative life in extraterrestrial brines such as those found on Mars. However, little is known about the effect of the chaotropic salts that could be found in such brines, such as MgCl2 , CaCl2 and (per)chlorate salts, on complex biological samples like cell lysates which could be expected to be more representative of biomarkers left behind putative extraterrestrial life forms. We used intrinsic fluorescence to study the salt dependence of proteomes extracted from five halophilic strains: Haloarcula marismortui, Halobacterium salinarum, Haloferax mediterranei, Halorubrum sodomense and Haloferax volcanii. These strains were isolated from Earth environments with different salt compositions. Among the five strains that were analysed, H. mediterranei stood out as a results of its high dependency on NaCl for its proteome stabilization. Interestingly, the results showed contrasting denaturation responses of the proteomes to chaotropic salts. In particular, the proteomes of strains that are most dependent or tolerant on MgCl2 for growth exhibited higher tolerance towards chaotropic salts that are abundant in terrestrial and Martian brines. These experiments bridge together global protein properties and environmental adaptation and help guide the search for protein-like biomarkers in extraterrestrial briny environments.
Collapse
Affiliation(s)
- Lorenzo Carré
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | | | - Éric Girard
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | | |
Collapse
|
5
|
Noel D, Hallsworth JE, Gelhaye E, Darnet S, Sormani R, Morel-Rouhier M. Modes-of-action of antifungal compounds: Stressors and (target-site-specific) toxins, toxicants, or Toxin-stressors. Microb Biotechnol 2023. [PMID: 37191200 DOI: 10.1111/1751-7915.14242] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 05/17/2023] Open
Abstract
Fungi and antifungal compounds are relevant to the United Nation's Sustainable Development Goals. However, the modes-of-action of antifungals-whether they are naturally occurring substances or anthropogenic fungicides-are often unknown or are misallocated in terms of their mechanistic category. Here, we consider the most effective approaches to identifying whether antifungal substances are cellular stressors, toxins/toxicants (that are target-site-specific), or have a hybrid mode-of-action as Toxin-stressors (that induce cellular stress yet are target-site-specific). This newly described 'toxin-stressor' category includes some photosensitisers that target the cell membrane and, once activated by light or ultraviolet radiation, cause oxidative damage. We provide a glossary of terms and a diagrammatic representation of diverse types of stressors, toxic substances, and Toxin-stressors, a classification that is pertinent to inhibitory substances not only for fungi but for all types of cellular life. A decision-tree approach can also be used to help differentiate toxic substances from cellular stressors (Curr Opin Biotechnol 2015 33: 228-259). For compounds that target specific sites in the cell, we evaluate the relative merits of using metabolite analyses, chemical genetics, chemoproteomics, transcriptomics, and the target-based drug-discovery approach (based on that used in pharmaceutical research), focusing on both ascomycete models and the less-studied basidiomycete fungi. Chemical genetic methods to elucidate modes-of-action currently have limited application for fungi where molecular tools are not yet available; we discuss ways to circumvent this bottleneck. We also discuss ecologically commonplace scenarios in which multiple substances act to limit the functionality of the fungal cell and a number of as-yet-unresolved questions about the modes-of-action of antifungal compounds pertaining to the Sustainable Development Goals.
Collapse
Affiliation(s)
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Eric Gelhaye
- Université de Lorraine, INRAE, IAM, Nancy, France
| | | | | | | |
Collapse
|
6
|
Shaffer JMC, Giddings LA, Samples RM, Mikucki JA. Genomic and phenotypic characterization of a red-pigmented strain of Massilia frigida isolated from an Antarctic microbial mat. Front Microbiol 2023; 14:1156033. [PMID: 37250028 PMCID: PMC10213415 DOI: 10.3389/fmicb.2023.1156033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
The McMurdo Dry Valleys of Antarctica experience a range of selective pressures, including extreme seasonal variation in temperature, water and nutrient availability, and UV radiation. Microbial mats in this ecosystem harbor dense concentrations of biomass in an otherwise desolate environment. Microbial inhabitants must mitigate these selective pressures via specialized enzymes, changes to the cellular envelope, and the production of secondary metabolites, such as pigments and osmoprotectants. Here, we describe the isolation and characterization of a Gram-negative, rod-shaped, motile, red-pigmented bacterium, strain DJPM01, from a microbial mat within the Don Juan Pond Basin of Wright Valley. Analysis of strain DJMP01's genome indicates it can be classified as a member of the Massilia frigida species. The genome contains several genes associated with cold and salt tolerance, including multiple RNA helicases, protein chaperones, and cation/proton antiporters. In addition, we identified 17 putative secondary metabolite gene clusters, including a number of nonribosomal peptides and ribosomally synthesized and post-translationally modified peptides (RiPPs), among others, and the biosynthesis pathway for the antimicrobial pigment prodigiosin. When cultivated on complex agar, multiple prodiginines, including the antibiotic prodigiosin, 2-methyl-3-propyl-prodiginine, 2-methyl-3-butyl-prodiginine, 2-methyl-3-heptyl-prodiginine, and cycloprodigiosin, were detected by LC-MS. Genome analyses of sequenced members of the Massilia genus indicates prodigiosin production is unique to Antarctic strains. UV-A radiation, an ecological stressor in the Antarctic, was found to significantly decrease the abundance of prodiginines produced by strain DJPM01. Genomic and phenotypic evidence indicates strain DJPM01 can respond to the ecological conditions of the DJP microbial mat, with prodiginines produced under a range of conditions, including extreme UV radiation.
Collapse
Affiliation(s)
- Jacob M. C. Shaffer
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | | | - Robert M. Samples
- Department of Chemistry, Smith College, Northampton, MA, United States
| | - Jill A. Mikucki
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
7
|
Li J, Xiao X, Zhou M, Zhang Y. Strategy for the Adaptation to Stressful Conditions of the Novel Isolated Conditional Piezophilic Strain Halomonas titanicae ANRCS81. Appl Environ Microbiol 2023; 89:e0130422. [PMID: 36912687 PMCID: PMC10057041 DOI: 10.1128/aem.01304-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/10/2023] [Indexed: 03/14/2023] Open
Abstract
Microorganisms have successfully predominated deep-sea ecosystems, while we know little about their adaptation strategy to multiple environmental stresses therein, including high hydrostatic pressure (HHP). Here, we focused on the genus Halomonas, one of the most widely distributed halophilic bacterial genera in marine ecosystems and isolated a piezophilic strain Halomonas titanicae ANRCS81 from Antarctic deep-sea sediment. The strain grew under a broad range of temperatures (2 to 45°C), pressures (0.1 to 55 MPa), salinities (NaCl, 0.5 to 17.5%, wt/vol), and chaotropic agent (Mg2+, 0 to 0.9 M) with either oxygen or nitrate as an electron acceptor. Genome annotation revealed that strain ANRCS81 expressed potential antioxidant genes/proteins and possessed versatile energy generation pathways. Based on the transcriptomic analysis, when the strain was incubated at 40 MPa, genes related to antioxidant defenses, anaerobic respiration, and fermentation were upregulated, indicating that HHP induced intracellular oxidative stress. Under HHP, superoxide dismutase (SOD) activity increased, glucose consumption increased with less CO2 generation, and nitrate/nitrite consumption increased with more ammonium generation. The cellular response to HHP represents the common adaptation developed by Halomonas to inhabit and drive geochemical cycling in deep-sea environments. IMPORTANCE Microbial growth and metabolic responses to environmental changes are core aspects of adaptation strategies developed during evolution. In particular, high hydrostatic pressure (HHP) is the most common but least examined environmental factor driving microbial adaptation in the deep sea. According to recent studies, microorganisms developed a common adaptation strategy to multiple stresses, including HHP, with antioxidant defenses and energy regulation as key components, but experimental data are lacking. Meanwhile, cellular SOD activity is elevated under HHP. The significance of this research lies in identifying the HHP adaptation strategy of a Halomonas strain at the genomic, transcriptomic, and metabolic activity levels, which will allow researchers to bridge environmental factors with the ecological function of marine microorganisms.
Collapse
Affiliation(s)
- Jiakang Li
- Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Xiao
- Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Meng Zhou
- Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Zhang
- Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Milojevic T, Cramm MA, Hubert CRJ, Westall F. "Freezing" Thermophiles: From One Temperature Extreme to Another. Microorganisms 2022; 10:2417. [PMID: 36557670 PMCID: PMC9782878 DOI: 10.3390/microorganisms10122417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
New detections of thermophiles in psychrobiotic (i.e., bearing cold-tolerant life forms) marine and terrestrial habitats including Arctic marine sediments, Antarctic accretion ice, permafrost, and elsewhere are continually being reported. These microorganisms present great opportunities for microbial ecologists to examine biogeographical processes for spore-formers and non-spore-formers alike, including dispersal histories connecting warm and cold biospheres. In this review, we examine different examples of thermophiles in cryobiotic locations, and highlight exploration of thermophiles at cold temperatures under laboratory conditions. The survival of thermophiles in psychrobiotic environments provokes novel considerations of physiological and molecular mechanisms underlying natural cryopreservation of microorganisms. Cultures of thermophiles maintained at low temperature may serve as a non-sporulating laboratory model for further exploration of metabolic potential of thermophiles at psychrobiotic temperatures, as well as for elucidating molecular mechanisms behind natural preservation and adaptation to psychrobiotic environments. These investigations are highly relevant for the search for life on other cold and icy planets in the Solar System, such as Mars, Europa and Enceladus.
Collapse
Affiliation(s)
- Tetyana Milojevic
- Exobiology Group, CNRS-Centre de Biophysique Moléculaire, University of Orléans, Rue Charles Sadron, CEDEX 2, 45071 Orléans, France
| | - Margaret Anne Cramm
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Casey R. J. Hubert
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Frances Westall
- Exobiology Group, CNRS-Centre de Biophysique Moléculaire, Rue Charles Sadron, CEDEX 2, 45071 Orléans, France
| |
Collapse
|
9
|
Micheluz A, Pinzari F, Rivera-Valentín EG, Manente S, Hallsworth JE. Biophysical Manipulation of the Extracellular Environment by Eurotium halophilicum. Pathogens 2022; 11:1462. [PMID: 36558795 PMCID: PMC9781259 DOI: 10.3390/pathogens11121462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Eurotium halophilicum is psychrotolerant, halophilic, and one of the most-extreme xerophiles in Earth's biosphere. We already know that this ascomycete grows close to 0 °C, at high NaCl, and-under some conditions-down to 0.651 water-activity. However, there is a paucity of information about how it achieves this extreme stress tolerance given the dynamic water regimes of the surface habitats on which it commonly occurs. Here, against the backdrop of global climate change, we investigated the biophysical interactions of E. halophilicum with its extracellular environment using samples taken from the surfaces of library books. The specific aims were to examine its morphology and extracellular environment (using scanning electron microscopy for visualisation and energy-dispersive X-ray spectrometry to identify chemical elements) and investigate interactions with water, ions, and minerals (including analyses of temperature and relative humidity conditions and determinations of salt deliquescence and water activity of extracellular brine). We observed crystals identified as eugsterite (Na4Ca(SO4)3·2H2O) and mirabilite (Na2SO4·10H2O) embedded within extracellular polymeric substances and provide evidence that E. halophilicum uses salt deliquescence to maintain conditions consistent with its water-activity window for growth. In addition, it utilizes a covering of hair-like microfilaments that likely absorb water and maintain a layer of humid air adjacent to the hyphae. We believe that, along with compatible solutes used for osmotic adjustment, these adaptations allow the fungus to maintain hydration in both space and time. We discuss these findings in relation to the conservation of books and other artifacts within the built environment, spoilage of foods and feeds, the ecology of E. halophilicum in natural habitats, and the current episode of climate change.
Collapse
Affiliation(s)
- Anna Micheluz
- Conservation Science Department, Deutsches Museum, Museumsinsel 1, 80538 Munich, Germany
| | - Flavia Pinzari
- Institute for Biological Systems, Council of National Research of Italy, Area della Ricerca di Roma 1, Via Salaria Km 29,300, 00015 Monterotondo, Italy
- Life Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | | | - Sabrina Manente
- Department of Molecular Sciences and Nanosystems, Scientific Campus, Ca’ Foscari University of Venice, Via Torino, 30170 Venice, Italy
| | - John E. Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| |
Collapse
|
10
|
Braga GÚL, Silva-Junior GJ, Brancini GTP, Hallsworth JE, Wainwright M. Photoantimicrobials in agriculture. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112548. [PMID: 36067596 DOI: 10.1016/j.jphotobiol.2022.112548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Classical approaches for controlling plant pathogens may be impaired by the development of pathogen resistance to chemical pesticides and by limited availability of effective antimicrobial agents. Recent increases in consumer awareness of and/or legislation regarding environmental and human health, and the urgent need to improve food security, are driving increased demand for safer antimicrobial strategies. Therefore, there is a need for a step change in the approaches used for controlling pre- and post-harvest diseases and foodborne human pathogens. The use of light-activated antimicrobial substances for the so-called antimicrobial photodynamic treatment is known to be effective not only in a clinical context, but also for use in agriculture to control plant-pathogenic fungi and bacteria, and to eliminate foodborne human pathogens from seeds, sprouted seeds, fruits, and vegetables. Here, we take a holistic approach to review and re-evaluate recent findings on: (i) the ecology of naturally-occurring photoantimicrobials, (ii) photodynamic processes including the light-activated antimicrobial activities of some plant metabolites, and (iii) fungus-induced photosensitization of plants. The inhibitory mechanisms of both natural and synthetic light-activated substances, known as photosensitizers, are discussed in the contexts of microbial stress biology and agricultural biotechnology. Their modes-of-antimicrobial action make them neither stressors nor toxins/toxicants (with specific modes of poisonous activity), but a hybrid/combination of both. We highlight the use of photoantimicrobials for the control of plant-pathogenic fungi and quantify their potential contribution to global food security.
Collapse
Affiliation(s)
- Gilberto Ú L Braga
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil.
| | | | - Guilherme T P Brancini
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil.
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, United Kingdom.
| | - Mark Wainwright
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom.
| |
Collapse
|
11
|
Heinz J, Doellinger J, Maus D, Schneider A, Lasch P, Grossart HP, Schulze-Makuch D. Perchlorate-Specific Proteomic Stress Responses of Debaryomyces hansenii Could Enable Microbial Survival in Martian Brines. Environ Microbiol 2022; 24:5051-5065. [PMID: 35920032 DOI: 10.1111/1462-2920.16152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
Abstract
If life exists on Mars, it would face several challenges including the presence of perchlorates, which destabilize biomacromolecules by inducing chaotropic stress. However, little is known about perchlorate toxicity for microorganism on the cellular level. Here we present the first proteomic investigation on the perchlorate-specific stress responses of the halotolerant yeast Debaryomyces hansenii and compare these to generally known salt stress adaptations. We found that the responses to NaCl and NaClO4 -induced stresses share many common metabolic features, e.g., signaling pathways, elevated energy metabolism, or osmolyte biosynthesis. Nevertheless, several new perchlorate-specific stress responses could be identified, such as protein glycosylation and cell wall remodulations, presumably in order to stabilize protein structures and the cell envelope. These stress responses would also be relevant for life on Mars, which - given the environmental conditions - likely developed chaotropic defense strategies such as stabilized confirmations of biomacromolecules and the formation of cell clusters. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jacob Heinz
- Center for Astronomy and Astrophysics, RG Astrobiology, Technische Universität Berlin, Berlin, Germany
| | - Joerg Doellinger
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens, Proteomics and Spectroscopy (ZBS6), Berlin, Germany
| | - Deborah Maus
- Robert Koch-Institute, Metabolism of Microbial Pathogens (NG2), Berlin, Germany
| | - Andy Schneider
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens, Proteomics and Spectroscopy (ZBS6), Berlin, Germany
| | - Peter Lasch
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens, Proteomics and Spectroscopy (ZBS6), Berlin, Germany
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775 Stechlin, Germany.,Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Dirk Schulze-Makuch
- Center for Astronomy and Astrophysics, RG Astrobiology, Technische Universität Berlin, Berlin, Germany.,Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775 Stechlin, Germany.,GFZ German Research Center for Geosciences, Section Geomicrobiology, Potsdam, Germany.,School of the Environment, Washington State University, Pullman, Washington, USA
| |
Collapse
|
12
|
Dorawa S, Werbowy O, Plotka M, Kaczorowska AK, Makowska J, Kozlowski LP, Fridjonsson OH, Hreggvidsson GO, Aevarsson A, Kaczorowski T. Molecular Characterization of a DNA Polymerase from Thermus thermophilus MAT72 Phage vB_Tt72: A Novel Type-A Family Enzyme with Strong Proofreading Activity. Int J Mol Sci 2022; 23:ijms23147945. [PMID: 35887293 PMCID: PMC9324360 DOI: 10.3390/ijms23147945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
We present a structural and functional analysis of the DNA polymerase of thermophilic Thermus thermophilus MAT72 phage vB_Tt72. The enzyme shows low sequence identity (<30%) to the members of the type-A family of DNA polymerases, except for two yet uncharacterized DNA polymerases of T. thermophilus phages: φYS40 (91%) and φTMA (90%). The Tt72 polA gene does not complement the Escherichia colipolA− mutant in replicating polA-dependent plasmid replicons. It encodes a 703-aa protein with a predicted molecular weight of 80,490 and an isoelectric point of 5.49. The enzyme contains a nucleotidyltransferase domain and a 3′-5′ exonuclease domain that is engaged in proofreading. Recombinant enzyme with His-tag at the N-terminus was overproduced in E. coli, subsequently purified by immobilized metal affinity chromatography, and biochemically characterized. The enzyme exists in solution in monomeric form and shows optimum activity at pH 8.5, 25 mM KCl, and 0.5 mM Mg2+. Site-directed analysis proved that highly-conserved residues D15, E17, D78, D180, and D184 in 3′-5′ exonuclease and D384 and D615 in the nucleotidyltransferase domain are critical for the enzyme’s activity. Despite the source of origin, the Tt72 DNA polymerase has not proven to be highly thermoresistant, with a temperature optimum at 55 °C. Above 60 °C, the rapid loss of function follows with no activity > 75 °C. However, during heat treatment (10 min at 75 °C), trehalose, trimethylamine N-oxide, and betaine protected the enzyme against thermal inactivation. A midpoint of thermal denaturation at Tm = 74.6 °C (ΔHcal = 2.05 × 104 cal mol−1) and circular dichroism spectra > 60 °C indicate the enzyme’s moderate thermal stability.
Collapse
Affiliation(s)
- Sebastian Dorawa
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (S.D.); (O.W.); (M.P.)
| | - Olesia Werbowy
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (S.D.); (O.W.); (M.P.)
| | - Magdalena Plotka
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (S.D.); (O.W.); (M.P.)
| | - Anna-Karina Kaczorowska
- Collection of Plasmids and Microorganisms, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland;
| | - Joanna Makowska
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
| | - Lukasz P. Kozlowski
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland;
| | | | - Gudmundur O. Hreggvidsson
- Matis, 113 Reykjavik, Iceland; (O.H.F.); (G.O.H.); (A.A.)
- Department of Biology, School of Engineering and Natural Sciences, University of Iceland, 102 Reykjavik, Iceland
| | | | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (S.D.); (O.W.); (M.P.)
- Correspondence:
| |
Collapse
|
13
|
Physicochemical Parameters Limiting Growth of Debaryomyces hansenii in Solutions of Hygroscopic Compounds and Their Effects on the Habitability of Martian Brines. Life (Basel) 2021; 11:life11111194. [PMID: 34833070 PMCID: PMC8619379 DOI: 10.3390/life11111194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/27/2022] Open
Abstract
The availability of liquid water is a prerequisite for all lifeforms on Earth. In hyperarid subzero environments like the Dry Valleys in Antarctica or the near-subsurface of Mars liquid water might be provided temporarily by hygroscopic substances that absorb water from the atmosphere and lower the freezing point of water. To evaluate the potential of hygroscopic compounds to serve as a habitat, it is necessary to explore the microbial tolerances towards these substances and their life-limiting properties. Here we present a study investigating the tolerances of the halotolerant yeast Debaryomyces hansenii to various solutes. Growth experiments were conducted via counting colony forming units (CFUs) after inoculation of a liquid growth medium containing a specific solute concentration. The lowest water activities (aw) enabling growth were determined to be ~0.83 in glycerol and fructose-rich media. For all other solutes the growth-enabling aw was higher, due to additional stress factors such as chaotropicity and ionic strength. Additionally, we found that the solute tolerances of D. hansenii correlate with both the eutectic freezing point depressions and the deliquescence relative humidities of the respective solutes. Our findings strongly impact our understanding of the habitability of solute-rich low aw environments on Earth and beyond.
Collapse
|
14
|
Gault S, Jaworek MW, Winter R, Cockell CS. Perchlorate salts confer psychrophilic characteristics in α-chymotrypsin. Sci Rep 2021; 11:16523. [PMID: 34400699 PMCID: PMC8367967 DOI: 10.1038/s41598-021-95997-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
Studies of salt effects on enzyme activity have typically been conducted at standard temperatures and pressures, thus missing effects which only become apparent under non-standard conditions. Here we show that perchlorate salts, which are found pervasively on Mars, increase the activity of α-chymotrypsin at low temperatures. The low temperature activation is facilitated by a reduced enthalpy of activation owing to the destabilising effects of perchlorate salts. By destabilising α-chymotrypsin, the perchlorate salts also cause an increasingly negative entropy of activation, which drives the reduction of enzyme activity at higher temperatures. We have also shown that α-chymotrypsin activity appears to exhibit an altered pressure response at low temperatures while also maintaining stability at high pressures and sub-zero temperatures. As the effects of perchlorate salts on the thermodynamics of α-chymotrypsin's activity closely resemble those of psychrophilic adaptations, it suggests that the presence of chaotropic molecules may be beneficial to life operating in low temperature environments.
Collapse
Affiliation(s)
- Stewart Gault
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
| | - Michel W Jaworek
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227, Dortmund, Germany
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227, Dortmund, Germany
| | - Charles S Cockell
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| |
Collapse
|
15
|
Hallsworth JE. Mars' surface is not universally biocidal. Environ Microbiol 2021; 23:3345-3350. [DOI: 10.1111/1462-2920.15494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022]
Affiliation(s)
- John E. Hallsworth
- Institute for Global Food Security, School of Biological Sciences Queen's University Belfast 19 Chlorine Gardens Belfast BT9 7BL UK
| |
Collapse
|
16
|
de Menezes GCA, Câmara PEAS, Pinto OHB, Carvalho-Silva M, Oliveira FS, Souza CD, Reynaud Schaefer CEG, Convey P, Rosa CA, Rosa LH. Fungal diversity present on rocks from a polar desert in continental Antarctica assessed using DNA metabarcoding. Extremophiles 2021; 25:193-202. [PMID: 33651232 DOI: 10.1007/s00792-021-01221-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/11/2021] [Indexed: 01/04/2023]
Abstract
We evaluated the fungal diversity associated with carbonate veins and two types of salt encrustation in rocks in a polar desert region of continental Antarctica using DNA a metabarcoding approach. We detected 262,268 reads grouped into 517 amplicon sequence variants (ASVs) assigned to the phyla Ascomycota, Basidiomycota, Mortierellomycota and Mucoromycota. Fourteen ASVs belonging to the genera Trichosporon, Mortierella, Penicillium, Aspergillus, Cladosporium, Coprinellus, Pleurotus and Pseudogymnoascus were assessed to be dominant taxa. The fungal communities of the three habitats sampled displayed high diversity indices when compared with other habitats of Antarctica, although differing in detail, with the highest diversity indices in the gypsum crust type 2. Only 48 of the 517 ASVs (9.28%) were detected in all three habitats, including dominant, intermediate and minor components. In contrast with previous studies of fungal communities living in the ultra-extreme conditions of continental Antarctica, application of metabarcoding revealed the DNA of a rich and complex resident fungal community. The ASVs detected included fungi with different ecological roles, with xerophilic, human- and animal-associated, phytopathogenic, saprotrophic, mutualistic, psychrotolerant and cosmopolitan taxa. This sequence diversity may be the result of deposition of fungal propagules over time driven by air currents, precipitation or human activities in the region.
Collapse
Affiliation(s)
- Graciéle Cunha Alves de Menezes
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, PO Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil
| | | | | | | | - Fábio Soares Oliveira
- Departamento de Geografia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Carlos Augusto Rosa
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, PO Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Luiz Henrique Rosa
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, PO Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil.
| |
Collapse
|
17
|
Wang R, Han F, Chen B, Liu L, Wang S, Zhang H, Han Y, Chen H. Liquid Nanoparticles: Manipulating the Nucleation and Growth of Nanoscale Droplets. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ruoxu Wang
- Institute of Advanced Synthesis (IAS) School of Chemistry and Molecular Engineering Nanjing Tech University No.30 Puzhu Road(S) Nanjing China
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Fei Han
- Institute of Advanced Synthesis (IAS) School of Chemistry and Molecular Engineering Nanjing Tech University No.30 Puzhu Road(S) Nanjing China
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Bo Chen
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| | - Lingmei Liu
- Physical Science and Engineering Division King Abdullah University of Science and Technology Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Shaoyan Wang
- Institute of Advanced Synthesis (IAS) School of Chemistry and Molecular Engineering Nanjing Tech University No.30 Puzhu Road(S) Nanjing China
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Hua Zhang
- Department of Chemistry City University of Hong Kong 83 Tat Chee Ave Kowloon Tong, Hong Kong China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM) City University of Hong Kong 83 Tat Chee Ave Kowloon Tong, Hong Kong China
| | - Yu Han
- Physical Science and Engineering Division King Abdullah University of Science and Technology Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Hongyu Chen
- Institute of Advanced Synthesis (IAS) School of Chemistry and Molecular Engineering Nanjing Tech University No.30 Puzhu Road(S) Nanjing China
| |
Collapse
|
18
|
Wang R, Han F, Chen B, Liu L, Wang S, Zhang H, Han Y, Chen H. Liquid Nanoparticles: Manipulating the Nucleation and Growth of Nanoscale Droplets. Angew Chem Int Ed Engl 2021; 60:3047-3054. [PMID: 33191586 DOI: 10.1002/anie.202012564] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/02/2020] [Indexed: 12/11/2022]
Abstract
By manipulating the nucleation and growth of solid materials, the synthesis of various sophisticated nanostructures has been achieved. Similar methodology, if applied to liquids, could enable the mass-production and control of ultra-small droplets at the scale of nanoparticles (10-18 L or below). It would be highly desirable since droplets play a fundamental role in numerous applications. Here we present a general strategy to synthesize and manipulate nanoscale droplets, similar to what has been done to solid nanoparticles in classic solution-synthesis. It was achieved by a solute-induced phase separation which initiates the nucleation of droplets from a homogeneous solution. These liquid nanoparticles have great potentials to be manipulated like their solid counterparts, borrowing from the vast methodologies of nanoparticle synthesis, such as burst nucleation, seeded growth, and co-precipitation. Liquid nanoparticles also serve as a general synthetic platform, to fabricate nanoreactors, drug-loaded carriers, and other hollow nanostructures with a variety of shell materials.
Collapse
Affiliation(s)
- Ruoxu Wang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, No.30 Puzhu Road(S), Nanjing, China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Fei Han
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, No.30 Puzhu Road(S), Nanjing, China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Bo Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Lingmei Liu
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Shaoyan Wang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, No.30 Puzhu Road(S), Nanjing, China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong, China.,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong, China
| | - Yu Han
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Hongyu Chen
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, No.30 Puzhu Road(S), Nanjing, China
| |
Collapse
|
19
|
Dövényi-Nagy T, Rácz C, Molnár K, Bakó K, Szláma Z, Jóźwiak Á, Farkas Z, Pócsi I, Dobos AC. Pre-Harvest Modelling and Mitigation of Aflatoxins in Maize in a Changing Climatic Environment-A Review. Toxins (Basel) 2020; 12:E768. [PMID: 33291729 PMCID: PMC7761929 DOI: 10.3390/toxins12120768] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 01/13/2023] Open
Abstract
Aflatoxins (AFs) are harmful secondary metabolites produced by various moulds, among which Aspergillus flavus is the major AF-producer fungus. These mycotoxins have carcinogenic or acute toxigenic effects on both humans and food producing animals and, therefore, the health risks and also the potential economic damages mounted by them have led to legal restrictions, and several countries have set maximum allowable limits for AF contaminations in food and feed. While colonization of food and feed and AF production by A. flavus are highly supported by the climatic conditions in tropical and subtropical geographic regions, countries in the temperate climate zones are also increasingly exposed to AF-derived health risks due to climate change. In the present study, we have reviewed the available mathematical models as risk assessment tools to predict the possibility of A. flavus infection and levels of AF contaminations in maize in a changing climatic environment. After highlighting the benefits and possible future improvements of these models, we summarize the current agricultural practices used to prevent or, at least, mitigate the deleterious consequences of AF contaminations.
Collapse
Affiliation(s)
- Tamás Dövényi-Nagy
- Agrometeorological and Agroecological Monitoring Centre, AKIT-DTTI, University of Debrecen, H4032 Debrecen, Hungary; (C.R.); (K.M.); (K.B.); (Z.S.); (A.C.D.)
| | - Csaba Rácz
- Agrometeorological and Agroecological Monitoring Centre, AKIT-DTTI, University of Debrecen, H4032 Debrecen, Hungary; (C.R.); (K.M.); (K.B.); (Z.S.); (A.C.D.)
| | - Krisztina Molnár
- Agrometeorological and Agroecological Monitoring Centre, AKIT-DTTI, University of Debrecen, H4032 Debrecen, Hungary; (C.R.); (K.M.); (K.B.); (Z.S.); (A.C.D.)
| | - Károly Bakó
- Agrometeorological and Agroecological Monitoring Centre, AKIT-DTTI, University of Debrecen, H4032 Debrecen, Hungary; (C.R.); (K.M.); (K.B.); (Z.S.); (A.C.D.)
| | - Zsombor Szláma
- Agrometeorological and Agroecological Monitoring Centre, AKIT-DTTI, University of Debrecen, H4032 Debrecen, Hungary; (C.R.); (K.M.); (K.B.); (Z.S.); (A.C.D.)
| | - Ákos Jóźwiak
- Digital Food Institute, University of Veterinary Medicine Budapest, H1078 Budapest, Hungary; (Á.J.); (Z.F.)
| | - Zsuzsa Farkas
- Digital Food Institute, University of Veterinary Medicine Budapest, H1078 Budapest, Hungary; (Á.J.); (Z.F.)
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H4032 Debrecen, Hungary;
| | - Attila Csaba Dobos
- Agrometeorological and Agroecological Monitoring Centre, AKIT-DTTI, University of Debrecen, H4032 Debrecen, Hungary; (C.R.); (K.M.); (K.B.); (Z.S.); (A.C.D.)
| |
Collapse
|
20
|
Pavankumar TL, Mittal P, Hallsworth JE. Molecular insights into the ecology of a psychrotolerant
Pseudomonas syringae. Environ Microbiol 2020; 23:3665-3681. [DOI: 10.1111/1462-2920.15304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Theetha L. Pavankumar
- Department of Microbiology and Molecular Genetics, Briggs Hall, One Shields Avenue University of California Davis CA USA
| | - Pragya Mittal
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine University of Edinburgh Crewe Road South, Edinburgh, EH42XU, Scotland UK
| | - John E. Hallsworth
- Institute for Global Food Security, School of Biological Sciences Queen's University Belfast 19 Chlorine Gardens, Belfast, BT9 5DL Northern Ireland UK
| |
Collapse
|
21
|
Stevens AH, Cockell CS. A Systematic Study of the Limits of Life in Mixed Ion Solutions: Physicochemical Parameters Do Not Predict Habitability. Front Microbiol 2020; 11:1478. [PMID: 32670258 PMCID: PMC7332579 DOI: 10.3389/fmicb.2020.01478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/08/2020] [Indexed: 11/13/2022] Open
Abstract
This study investigated what defines the limits of life in mixed ion solutions. Better understanding these limits should allow us to better predict the habitability of extreme environments on the Earth and extraterrestrial environments. We systematically examined the response of Bacillus subtilis, a well characterized non-halophile model organism, to a range of solutions made from single and mixed salts up to their solubility limits and measured at what concentration growth was arrested, specifically exploring Na, Mg, and Ca cations and Cl, SO4, and ClO4 anions. We measured the physicochemical properties of the solutions to identify which properties correlated with the limits of growth. Individual salts imposed a growth limit specific to the combination of cation and anion, although we generally observe that chloride salts allow growth at lower water activity than sulfate salts, with perchlorate restricting growth even at the highest measured water activity. Growth was limited at a wide range of ionic strength, with no apparently correlation. Despite the theoretically counteracting disordering effects (chaotropic) of perchlorates and ordering effects (kosmotropic) effects of sulfates, when these salts were combined they instead additively narrowed the window for growth in both the Na and Mg cation systems, in the same manner as the combined effects of two chaotropic Ca salts. Our results imply that away from hard limits that might be imposed by physicochemical properties such as water activity, ionic strength or chaotropicity in highly concentrated brines, these properties do not set the limits of life. Instead these limits are highly specific to the salts and organisms in question. This specificity means that the habitability of extreme environments cannot be predicted, even with accurate measurements of the physicochemical conditions present.
Collapse
Affiliation(s)
- Adam H. Stevens
- UK Centre for Astrobiology, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
22
|
The roles and applications of chaotropes and kosmotropes in industrial fermentation processes. World J Microbiol Biotechnol 2020; 36:89. [PMID: 32507915 DOI: 10.1007/s11274-020-02865-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
Abstract
Chaotropicity has long been recognised as a property of some compounds. Chaotropes tend to disrupt non-covalent interactions in biological macromolecules (e.g. proteins and nucleic acids) and supramolecular assemblies (e.g. phospholipid membranes). This results in the destabilisation and unfolding of these macromolecules and assemblies. Unsurprisingly, these compounds are typically harmful to living cells since they act against multiple targets, comprising cellular integrity and function. Kosmotropes are the opposite of chaotropes and these compounds promote the ordering and rigidification of biological macromolecules and assemblies. Since many biological macromolecules have optimum levels of flexibility, kosmotropes can also inhibit their activity and can be harmful to cells. Some products of industrial fermentations, most notably alcohols, are chaotropic. This property can be a limiting factor on rates of production and yields. It has been hypothesised that the addition of kosmotropes may mitigate the chaotropicity of some fermentation products. Some microbes naturally adapt to chaotropic environments by producing kosmotropic compatible solutes. Exploitation of this in industrial fermentations has been hampered by scientific and economic issues. The cost of the kosmotropes and their removal during purification needs to be considered. We lack a complete understanding of the chemistry of chaotropicity and a robust, quantitative framework for estimating overall chaotropicities of mixtures. This makes it difficult to predict the amount of kosmotrope required to neutralise the chaotropicity. This review considers examples of industrial fermentations where chaotropicity is an issue and suggests possible mitigations.
Collapse
|
23
|
Microbiome and ecology of a hot spring-microbialite system on the Trans-Himalayan Plateau. Sci Rep 2020; 10:5917. [PMID: 32246033 PMCID: PMC7125080 DOI: 10.1038/s41598-020-62797-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 03/17/2020] [Indexed: 11/30/2022] Open
Abstract
Little is known about life in the boron-rich hot springs of Trans-Himalayas. Here, we explore the geomicrobiology of a 4438-m-high spring which emanates ~70 °C-water from a boratic microbialite called Shivlinga. Due to low atmospheric pressure, the vent-water is close to boiling point so can entropically destabilize biomacromolecular systems. Starting from the vent, Shivlinga’s geomicrobiology was revealed along the thermal gradients of an outflow-channel and a progressively-drying mineral matrix that has no running water; ecosystem constraints were then considered in relation to those of entropically comparable environments. The spring-water chemistry and sinter mineralogy were dominated by borates, sodium, thiosulfate, sulfate, sulfite, sulfide, bicarbonate, and other macromolecule-stabilizing (kosmotropic) substances. Microbial diversity was high along both of the hydrothermal gradients. Bacteria, Eukarya and Archaea constituted >98%, ~1% and <1% of Shivlinga’s microbiome, respectively. Temperature constrained the biodiversity at ~50 °C and ~60 °C, but not below 46 °C. Along each thermal gradient, in the vent-to-apron trajectory, communities were dominated by Aquificae/Deinococcus-Thermus, then Chlorobi/Chloroflexi/Cyanobacteria, and finally Bacteroidetes/Proteobacteria/Firmicutes. Interestingly, sites of >45 °C were inhabited by phylogenetic relatives of taxa for which laboratory growth is not known at >45 °C. Shivlinga’s geomicrobiology highlights the possibility that the system’s kosmotrope-dominated chemistry mitigates against the biomacromolecule-disordering effects of its thermal water.
Collapse
|
24
|
Hamill PG, Stevenson A, McMullan PE, Williams JP, Lewis ADR, S S, Stevenson KE, Farnsworth KD, Khroustalyova G, Takemoto JY, Quinn JP, Rapoport A, Hallsworth JE. Microbial lag phase can be indicative of, or independent from, cellular stress. Sci Rep 2020; 10:5948. [PMID: 32246056 PMCID: PMC7125082 DOI: 10.1038/s41598-020-62552-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/16/2020] [Indexed: 01/01/2023] Open
Abstract
Measures of microbial growth, used as indicators of cellular stress, are sometimes quantified at a single time-point. In reality, these measurements are compound representations of length of lag, exponential growth-rate, and other factors. Here, we investigate whether length of lag phase can act as a proxy for stress, using a number of model systems (Aspergillus penicillioides; Bacillus subtilis; Escherichia coli; Eurotium amstelodami, E. echinulatum, E. halophilicum, and E. repens; Mrakia frigida; Saccharomyces cerevisiae; Xerochrysium xerophilum; Xeromyces bisporus) exposed to mechanistically distinct types of cellular stress including low water activity, other solute-induced stresses, and dehydration-rehydration cycles. Lag phase was neither proportional to germination rate for X. bisporus (FRR3443) in glycerol-supplemented media (r2 = 0.012), nor to exponential growth-rates for other microbes. In some cases, growth-rates varied greatly with stressor concentration even when lag remained constant. By contrast, there were strong correlations for B. subtilis in media supplemented with polyethylene-glycol 6000 or 600 (r2 = 0.925 and 0.961), and for other microbial species. We also analysed data from independent studies of food-spoilage fungi under glycerol stress (Aspergillus aculeatinus and A. sclerotiicarbonarius); mesophilic/psychrotolerant bacteria under diverse, solute-induced stresses (Brochothrix thermosphacta, Enterococcus faecalis, Pseudomonas fluorescens, Salmonella typhimurium, Staphylococcus aureus); and fungal enzymes under acid-stress (Terfezia claveryi lipoxygenase and Agaricus bisporus tyrosinase). These datasets also exhibited diversity, with some strong- and moderate correlations between length of lag and exponential growth-rates; and sometimes none. In conclusion, lag phase is not a reliable measure of stress because length of lag and growth-rate inhibition are sometimes highly correlated, and sometimes not at all.
Collapse
Affiliation(s)
- Philip G Hamill
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Andrew Stevenson
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Phillip E McMullan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - James P Williams
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Abiann D R Lewis
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Sudharsan S
- Department of Chemistry, PGP College of Arts and Science, NH-7, Karur Main Road, Paramathi, Namakkal, Tamil Nadu, 637 207, India
| | - Kath E Stevenson
- Special Collections and Archives, McClay Library, Queen's University Belfast, 10 College Park Avenue, Belfast, BT7 1LP, Northern Ireland
| | - Keith D Farnsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Galina Khroustalyova
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1-537, LV-1004, Riga, Latvia
| | - Jon Y Takemoto
- Utah State University, Department of Biology, 5305 Old Main Hill, Logan, UT, 84322, USA
| | - John P Quinn
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Alexander Rapoport
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1-537, LV-1004, Riga, Latvia
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland.
| |
Collapse
|
25
|
Garrido-Sanz D, Sansegundo-Lobato P, Redondo-Nieto M, Suman J, Cajthaml T, Blanco-Romero E, Martin M, Uhlik O, Rivilla R. Analysis of the biodegradative and adaptive potential of the novel polychlorinated biphenyl degrader Rhodococcus sp. WAY2 revealed by its complete genome sequence. Microb Genom 2020; 6. [PMID: 32238227 PMCID: PMC7276702 DOI: 10.1099/mgen.0.000363] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The complete genome sequence of Rhodococcus sp. WAY2 (WAY2) consists of a circular chromosome, three linear replicons and a small circular plasmid. The linear replicons contain typical actinobacterial invertron-type telomeres with the central CGTXCGC motif. Comparative phylogenetic analysis of the 16S rRNA gene along with phylogenomic analysis based on the genome-to-genome blast distance phylogeny (GBDP) algorithm and digital DNA–DNA hybridization (dDDH) with other Rhodococcus type strains resulted in a clear differentiation of WAY2, which is likely a new species. The genome of WAY2 contains five distinct clusters of bph, etb and nah genes, putatively involved in the degradation of several aromatic compounds. These clusters are distributed throughout the linear plasmids. The high sequence homology of the ring-hydroxylating subunits of these systems with other known enzymes has allowed us to model the range of aromatic substrates they could degrade. Further functional characterization revealed that WAY2 was able to grow with biphenyl, naphthalene and xylene as sole carbon and energy sources, and could oxidize multiple aromatic compounds, including ethylbenzene, phenanthrene, dibenzofuran and toluene. In addition, WAY2 was able to co-metabolize 23 polychlorinated biphenyl congeners, consistent with the five different ring-hydroxylating systems encoded by its genome. WAY2 could also use n-alkanes of various chain-lengths as a sole carbon source, probably due to the presence of alkB and ladA gene copies, which are only found in its chromosome. These results show that WAY2 has a potential to be used for the biodegradation of multiple organic compounds.
Collapse
Affiliation(s)
- Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Darwin 2, 28049 Madrid, Spain
| | - Paula Sansegundo-Lobato
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Darwin 2, 28049 Madrid, Spain
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Darwin 2, 28049 Madrid, Spain
| | - Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technika 3, 16628 Prague, Czech Republic
| | - Tomas Cajthaml
- Laboratory of Environmental Biotechnology, Institute of Microbiology, Czech Academy of Sciences v.v.i., Vídeňská 1083, 14200 Prague, Czech Republic
| | - Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Darwin 2, 28049 Madrid, Spain
| | - Marta Martin
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Darwin 2, 28049 Madrid, Spain
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technika 3, 16628 Prague, Czech Republic
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Darwin 2, 28049 Madrid, Spain
| |
Collapse
|
26
|
Effect of d-tryptophan on the psychrotrophic growth of Listeria monocytogenes and its application in milk. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Heinz J, Waajen AC, Airo A, Alibrandi A, Schirmack J, Schulze-Makuch D. Bacterial Growth in Chloride and Perchlorate Brines: Halotolerances and Salt Stress Responses of Planococcus halocryophilus. ASTROBIOLOGY 2019; 19:1377-1387. [PMID: 31386567 PMCID: PMC6818489 DOI: 10.1089/ast.2019.2069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Extraterrestrial environments encompass physicochemical conditions and habitats that are unknown on Earth, such as perchlorate-rich brines that can be at least temporarily stable on the martian surface. To better understand the potential for life in these cold briny environments, we determined the maximum salt concentrations suitable for growth (MSCg) of six different chloride and perchlorate salts at 25°C and 4°C for the extremotolerant cold- and salt-adapted bacterial strain Planococcus halocryophilus. Growth was measured through colony-forming unit (CFU) counts, while cellular and colonial phenotypic stress responses were observed through visible light, fluorescence, and scanning electron microscopy. Our data show the following: (1) The tolerance to high salt concentrations can be increased through a stepwise inoculation toward higher concentrations. (2) Ion-specific factors are more relevant for the growth limitation of P. halocryophilus in saline solutions than single physicochemical parameters like ionic strength or water activity. (3) P. halocryophilus shows the highest microbial sodium perchlorate tolerance described so far. However, (4) MSCg values are higher for all chlorides compared to perchlorates. (5) The MSCg for calcium chloride was increased by lowering the temperature from 25°C to 4°C, while sodium- and magnesium-containing salts can be tolerated at 25°C to higher concentrations than at 4°C. (6) Depending on salt type and concentration, P. halocryophilus cells show distinct phenotypic stress responses such as novel types of colony morphology on agar plates and biofilm-like cell clustering, encrustation, and development of intercellular nanofilaments. This study, taken in context with previous work on the survival of extremophiles in Mars-like environments, suggests that high-concentrated perchlorate brines on Mars might not be habitable to any present organism on Earth, but extremophilic microorganisms might be able to evolve thriving in such environments.
Collapse
Affiliation(s)
- Jacob Heinz
- Center of Astronomy and Astrophysics, Astrobiology Research Group, Technical University of Berlin, Berlin, Germany
| | - Annemiek C. Waajen
- Center of Astronomy and Astrophysics, Astrobiology Research Group, Technical University of Berlin, Berlin, Germany
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Alessandro Airo
- Center of Astronomy and Astrophysics, Astrobiology Research Group, Technical University of Berlin, Berlin, Germany
| | - Armando Alibrandi
- Center of Astronomy and Astrophysics, Astrobiology Research Group, Technical University of Berlin, Berlin, Germany
| | - Janosch Schirmack
- Center of Astronomy and Astrophysics, Astrobiology Research Group, Technical University of Berlin, Berlin, Germany
| | - Dirk Schulze-Makuch
- Center of Astronomy and Astrophysics, Astrobiology Research Group, Technical University of Berlin, Berlin, Germany
- School of the Environment, Washington State University, Pullman, Washington, USA
- GFZ German Center for Geoscience, Section Geomicrobiology, Potsdam, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Department of Experimental Limnology, Stechlin, Germany
| |
Collapse
|
28
|
Eardley J, Dedi C, Dymond M, Hallsworth JE, Timson DJ. Evidence for chaotropicity/kosmotropicity offset in a yeast growth model. Biotechnol Lett 2019; 41:1309-1318. [DOI: 10.1007/s10529-019-02737-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/20/2019] [Indexed: 11/28/2022]
|
29
|
Casillo A, Parrilli E, Tutino ML, Corsaro MM. The outer membrane glycolipids of bacteria from cold environments: isolation, characterization, and biological activity. FEMS Microbiol Ecol 2019; 95:5519854. [DOI: 10.1093/femsec/fiz094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/14/2019] [Indexed: 01/18/2023] Open
Abstract
ABSTRACTLipopolysaccharides (LPSs) are the main components of the external leaflet of the outer membrane of Gram-negative bacteria. Microorganisms that colonize permanently or transiently cold habitats have evolved an array of structural adaptations, some of which involve components of bacterial membranes. These adaptations assure the perfect functionality of the membrane even at freezing or sub-freezing growth temperatures. This review summarizes the state-of-the-art information concerning the structural features of the LPSs produced by cold-adapted bacteria. The LPS structure has recently been elucidated from species mainly belonging to Gammaproteobacteria and Flavobacteriaceae. Although the reported structural heterogeneity may arise from the phylogenetic diversity of the analyzed source strains, some generalized trends can be deduced. For instance, it is clear that only a small portion of LPSs displays the O-chain. In addition, the biological activity of the lipid A portion from several cold-adapted strains is reported.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| |
Collapse
|
30
|
La Cono V, Bortoluzzi G, Messina E, La Spada G, Smedile F, Giuliano L, Borghini M, Stumpp C, Schmitt-Kopplin P, Harir M, O'Neill WK, Hallsworth JE, Yakimov M. The discovery of Lake Hephaestus, the youngest athalassohaline deep-sea formation on Earth. Sci Rep 2019; 9:1679. [PMID: 30737448 PMCID: PMC6368551 DOI: 10.1038/s41598-018-38444-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/27/2018] [Indexed: 12/30/2022] Open
Abstract
Hydrated, magnesium-rich minerals and subglacial brines exist on the martian surface, so the habitability of high-Mg2+ environments on Earth has extraterrestrial (as well as terrestrial) implications. Here, we report the discovery of a MgCl2-dominated (4.72 M) brine lake on the floor of the Mediterranean Ridge that underlies a 3500-m water column, and name it Lake Hephaestus. Stable isotope analyses indicated that the Hephaestus brine is derived from interactions between ancient bishofite-enriched evaporites and subsurface fluids. Analyses of sediment pore waters indicated that the Hephaestus depression had contained the MgCl2 brine for a remarkably short period; only 700 years. Lake Hephaestus is, therefore, the youngest among currently known submarine athalassohaline brine lakes on Earth. Due to its biologically hostile properties (low water-activity and extreme chaotropicity), the Hephaestus brine is devoid of life. By contrast, the seawater-Hephaestus brine interface has been shown to act as refuge for extremely halophilic and magnesium-adapted stratified communities of microbes, even at MgCl2 concentrations that approach the water-activity limit for life (0.653).
Collapse
Affiliation(s)
- Violetta La Cono
- CNR, Institute for Coastal Marine Environment, Messina, 98122, Italy
| | | | - Enzo Messina
- CNR, Institute for Coastal Marine Environment, Messina, 98122, Italy
| | - Gina La Spada
- CNR, Institute for Coastal Marine Environment, Messina, 98122, Italy
| | - Francesco Smedile
- CNR, Institute for Coastal Marine Environment, Messina, 98122, Italy
| | - Laura Giuliano
- Mediterranean Science Commission (CIESM), MC, 98000, Monaco
| | | | - Christine Stumpp
- Institute of Groundwater Ecology, Helmholtz Centre Munich, Neuherberg, 85764, Germany.,Institute of Hydraulics and Rural Water Management, University of Natural Resources and Life Sciences Vienna, Wien, 1190, Austria
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Centre Munich, Neuherberg, 85764, Germany.,Technische Universität München, Lehrstuhl für Analytische Lebensmittelchemie, Freising, 85354, Germany
| | - Mourad Harir
- Research Unit Analytical BioGeoChemistry, Helmholtz Centre Munich, Neuherberg, 85764, Germany
| | - William K O'Neill
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Michail Yakimov
- CNR, Institute for Coastal Marine Environment, Messina, 98122, Italy. .,Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad, 236016, Russia.
| |
Collapse
|
31
|
Hallsworth JE. Wooden owl that redefines Earth's biosphere may yet catapult a fungus into space. Environ Microbiol 2019; 21:2202-2211. [PMID: 30588723 PMCID: PMC6618284 DOI: 10.1111/1462-2920.14510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 11/30/2022]
Affiliation(s)
- John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, MBC, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
32
|
Lee CJD, McMullan PE, O'Kane CJ, Stevenson A, Santos IC, Roy C, Ghosh W, Mancinelli RL, Mormile MR, McMullan G, Banciu HL, Fares MA, Benison KC, Oren A, Dyall-Smith ML, Hallsworth JE. NaCl-saturated brines are thermodynamically moderate, rather than extreme, microbial habitats. FEMS Microbiol Rev 2018; 42:672-693. [PMID: 29893835 DOI: 10.1093/femsre/fuy026] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/08/2018] [Indexed: 11/12/2022] Open
Abstract
NaCl-saturated brines such as saltern crystalliser ponds, inland salt lakes, deep-sea brines and liquids-of-deliquescence on halite are commonly regarded as a paradigm for the limit of life on Earth. There are, however, other habitats that are thermodynamically more extreme. Typically, NaCl-saturated environments contain all domains of life and perform complete biogeochemical cycling. Despite their reduced water activity, ∼0.755 at 5 M NaCl, some halophiles belonging to the Archaea and Bacteria exhibit optimum growth/metabolism in these brines. Furthermore, the recognised water-activity limit for microbial function, ∼0.585 for some strains of fungi, lies far below 0.755. Other biophysical constraints on the microbial biosphere (temperatures of >121°C; pH > 12; and high chaotropicity; e.g. ethanol at >18.9% w/v (24% v/v) and MgCl2 at >3.03 M) can prevent any cellular metabolism or ecosystem function. By contrast, NaCl-saturated environments contain biomass-dense, metabolically diverse, highly active and complex microbial ecosystems; and this underscores their moderate character. Here, we survey the evidence that NaCl-saturated brines are biologically permissive, fertile habitats that are thermodynamically mid-range rather than extreme. Indeed, were NaCl sufficiently soluble, some halophiles might grow at concentrations of up to 8 M. It may be that the finite solubility of NaCl has stabilised the genetic composition of halophile populations and limited the action of natural selection in driving halophile evolution towards greater xerophilicity. Further implications are considered for the origin(s) of life and other aspects of astrobiology.
Collapse
Affiliation(s)
- Callum J D Lee
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Phillip E McMullan
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Callum J O'Kane
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Andrew Stevenson
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Inês C Santos
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Chayan Roy
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Wriddhiman Ghosh
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Rocco L Mancinelli
- BAER Institute, Mail Stop 239-4, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Melanie R Mormile
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65401, USA
| | - Geoffrey McMullan
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Horia L Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Mario A Fares
- Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain.,Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de Valencia (CSIC-UV), Valencia, 46980, Spain.,Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Dublin, Ireland
| | - Kathleen C Benison
- Department of Geology and Geography, West Virginia University, Morgantown, WV 26506-6300, USA
| | - Aharon Oren
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat-Ram, Jerusalem 9190401, Israel
| | - Mike L Dyall-Smith
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| |
Collapse
|
33
|
Heinz J, Schirmack J, Airo A, Kounaves SP, Schulze-Makuch D. Enhanced Microbial Survivability in Subzero Brines. ASTROBIOLOGY 2018; 18:1171-1180. [PMID: 29664686 PMCID: PMC6150940 DOI: 10.1089/ast.2017.1805] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/08/2018] [Indexed: 05/09/2023]
Abstract
It is well known that dissolved salts can significantly lower the freezing point of water and thus extend habitability to subzero conditions. However, most investigations thus far have focused on sodium chloride as a solute. In this study, we report on the survivability of the bacterial strain Planococcus halocryophilus in sodium, magnesium, and calcium chloride or perchlorate solutions at temperatures ranging from +25°C to -30°C. In addition, we determined the survival rates of P. halocryophilus when subjected to multiple freeze/thaw cycles. We found that cells suspended in chloride-containing samples have markedly increased survival rates compared with those in perchlorate-containing samples. In both cases, the survival rates increase with lower temperatures; however, this effect is more pronounced in chloride-containing samples. Furthermore, we found that higher salt concentrations increase survival rates when cells are subjected to freeze/thaw cycles. Our findings have important implications not only for the habitability of cold environments on Earth but also for extraterrestrial environments such as that of Mars, where cold brines might exist in the subsurface and perhaps even appear temporarily at the surface such as at recurring slope lineae.
Collapse
Affiliation(s)
- Jacob Heinz
- Center of Astronomy and Astrophysics, Technical University of Berlin, Berlin, Germany
| | - Janosch Schirmack
- Center of Astronomy and Astrophysics, Technical University of Berlin, Berlin, Germany
| | - Alessandro Airo
- Center of Astronomy and Astrophysics, Technical University of Berlin, Berlin, Germany
| | - Samuel P. Kounaves
- Department of Chemistry, Tufts University, Medford, Massachusetts
- Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Dirk Schulze-Makuch
- Center of Astronomy and Astrophysics, Technical University of Berlin, Berlin, Germany
- School of the Environment, Washington State University, Pullman, Washington
| |
Collapse
|
34
|
Rangel DE, Finlay RD, Hallsworth JE, Dadachova E, Gadd GM. Fungal strategies for dealing with environment- and agriculture-induced stresses. Fungal Biol 2018; 122:602-612. [DOI: 10.1016/j.funbio.2018.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 01/21/2023]
|
35
|
Complete genome sequence of Pseudomonas frederiksbergensis ERDD5:01 revealed genetic bases for survivability at high altitude ecosystem and bioprospection potential. Genomics 2018. [PMID: 29530765 DOI: 10.1016/j.ygeno.2018.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pseudomonas frederiksbergensis ERDD5:01 is a psychrotrophic bacteria isolated from the glacial stream flowing from East Rathong glacier in Sikkim Himalaya. The strain showed survivability at high altitude stress conditions like freezing, frequent freeze-thaw cycles, and UV-C radiations. The complete genome of 5,746,824 bp circular chromosome and a plasmid of 371,027 bp was sequenced to understand the genetic basis of its survival strategy. Multiple copies of cold-associated genes encoding cold active chaperons, general stress response, osmotic stress, oxidative stress, membrane/cell wall alteration, carbon storage/starvation and, DNA repair mechanisms supported its survivability at extreme cold and radiations corroborating with the bacterial physiological findings. The molecular cold adaptation analysis in comparison with the genome of 15 mesophilic Pseudomonas species revealed functional insight into the strategies of cold adaptation. The genomic data also revealed the presence of industrially important enzymes.
Collapse
|
36
|
Alder-Rangel A, Bailão AM, da Cunha AF, Soares CMA, Wang C, Bonatto D, Dadachova E, Hakalehto E, Eleutherio ECA, Fernandes ÉKK, Gadd GM, Braus GH, Braga GUL, Goldman GH, Malavazi I, Hallsworth JE, Takemoto JY, Fuller KK, Selbmann L, Corrochano LM, von Zeska Kress MR, Bertolini MC, Schmoll M, Pedrini N, Loera O, Finlay RD, Peralta RM, Rangel DEN. The second International Symposium on Fungal Stress: ISFUS. Fungal Biol 2017; 122:386-399. [PMID: 29801782 DOI: 10.1016/j.funbio.2017.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/23/2022]
Abstract
The topic of 'fungal stress' is central to many important disciplines, including medical mycology, chronobiology, plant and insect pathology, industrial microbiology, material sciences, and astrobiology. The International Symposium on Fungal Stress (ISFUS) brought together researchers, who study fungal stress in a variety of fields. The second ISFUS was held in May 8-11 2017 in Goiania, Goiás, Brazil and hosted by the Instituto de Patologia Tropical e Saúde Pública at the Universidade Federal de Goiás. It was supported by grants from CAPES and FAPEG. Twenty-seven speakers from 15 countries presented their research related to fungal stress biology. The Symposium was divided into seven topics: 1. Fungal biology in extreme environments; 2. Stress mechanisms and responses in fungi: molecular biology, biochemistry, biophysics, and cellular biology; 3. Fungal photobiology in the context of stress; 4. Role of stress in fungal pathogenesis; 5. Fungal stress and bioremediation; 6. Fungal stress in agriculture and forestry; and 7. Fungal stress in industrial applications. This article provides an overview of the science presented and discussed at ISFUS-2017.
Collapse
Affiliation(s)
| | - Alexandre M Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil
| | - Anderson F da Cunha
- Laboratório de Bioquímica e Genética Aplicada, Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, 90040-060, SP, Brazil
| | - Célia M A Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil
| | - Chengshu Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Diego Bonatto
- Center for Biotechnology, Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, 13565-905, RS, Brazil
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Elias Hakalehto
- Department of Agricultural Sciences, P.O.B. 27, FI-00014, University of Helsinki, Finland
| | - Elis C A Eleutherio
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, RJ, Brazil
| | - Éverton K K Fernandes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO 74605-050, Brazil
| | - Geoffrey M Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, DD15EH, Scotland, UK
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, D-37077, Germany
| | - Gilberto U L Braga
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-903, SP, Brazil
| | - Gustavo H Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-903, SP, Brazil
| | - Iran Malavazi
- Centro de Ciências Biológicas e da Saúde, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, 13565-905, SP, Brazil
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Jon Y Takemoto
- Department of Biology, Utah State University, Logan, UT 84322, USA
| | - Kevin K Fuller
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Laura Selbmann
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - Luis M Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Marcia R von Zeska Kress
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-903, SP, Brazil
| | - Maria Célia Bertolini
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, 14800-060, Araraquara, SP, Brazil
| | - Monika Schmoll
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad-Lorenz Straße 24, 3430 Tulln, Austria
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de La Plata (UNLP), calles 60 y 120, 1900 La Plata, Argentina
| | - Octavio Loera
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, C.P. 09340, Mexico City, Mexico
| | - Roger D Finlay
- Uppsala Biocenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 750 07 Uppsala, Sweden
| | - Rosane M Peralta
- Department of Biochemistry, Universidade Estadual de Maringá, 87020-900, Maringá, PR, Brazil
| | - Drauzio E N Rangel
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO 74605-050, Brazil.
| |
Collapse
|
37
|
Raymond-Bouchard I, Chourey K, Altshuler I, Iyer R, Hettich RL, Whyte LG. Mechanisms of subzero growth in the cryophile Planococcus halocryophilus determined through proteomic analysis. Environ Microbiol 2017; 19:4460-4479. [PMID: 28834033 DOI: 10.1111/1462-2920.13893] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/13/2017] [Indexed: 01/22/2023]
Abstract
The eurypsychrophilic bacterium Planococcus halocryophilus is capable of growth down to -15°C, making it ideal for studying adaptations to subzero growth. To increase our understanding of the mechanisms and pathways important for subzero growth, we performed proteomics on P. halocryophilus grown at 23°C, 23°C with 12% w/v NaCl and -10°C with 12% w/v NaCl. Many proteins with increased abundances at -10°C versus 23°C also increased at 23C-salt versus 23°C, indicating a closely tied relationship between salt and cold stress adaptation. Processes which displayed the largest changes in protein abundance were peptidoglycan and fatty acid (FA) synthesis, translation processes, methylglyoxal metabolism, DNA repair and recombination, and protein and nucleotide turnover. We identified intriguing targets for further research at -10°C, including PlsX and KASII (FA metabolism), DD-transpeptidase and MurB (peptidoglycan synthesis), glyoxalase family proteins (reactive electrophile response) and ribosome modifying enzymes (translation turnover). PemK/MazF may have a crucial role in translational reprogramming under cold conditions. At -10°C P. halocryophilus induces stress responses, uses resources efficiently, and carefully controls its growth and metabolism to maximize subzero survival. The present study identifies several mechanisms involved in subzero growth and enhances our understanding of cold adaptation.
Collapse
Affiliation(s)
- Isabelle Raymond-Bouchard
- Macdonald Campus, McGill University, 21,111 Lakeshore Rd, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Karuna Chourey
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA
| | - Ianina Altshuler
- Macdonald Campus, McGill University, 21,111 Lakeshore Rd, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Ramsunder Iyer
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA.,Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA
| | - Lyle G Whyte
- Macdonald Campus, McGill University, 21,111 Lakeshore Rd, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada
| |
Collapse
|
38
|
|
39
|
dC Rubin SS, Marín I, Gómez MJ, Morales EA, Zekker I, San Martín-Uriz P, Rodríguez N, Amils R. Prokaryotic diversity and community composition in the Salar de Uyuni, a large scale, chaotropic salt flat. Environ Microbiol 2017; 19:3745-3754. [DOI: 10.1111/1462-2920.13876] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 07/16/2017] [Accepted: 07/24/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Sergio S. dC Rubin
- Centro Nacional de Investigaciones Biotecnológicas; CNIB; Bolivia
- Departamento de Biología Molecular; Universidad Autónoma de Madrid, Cantoblanco; Madrid 28049 Spain
| | - Irma Marín
- Departamento de Biología Molecular; Universidad Autónoma de Madrid, Cantoblanco; Madrid 28049 Spain
| | - Manuel J. Gómez
- Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernández Almagro 3; Madrid 28029 Spain
| | - Eduardo A. Morales
- Centro Nacional de Investigaciones Biotecnológicas; CNIB; Bolivia
- Herbario Criptogámico; Universidad Católica Boliviana; Cochabamba Bolivia
| | - Ivar Zekker
- Institute of Chemistry; University of Tartu; Tartu Estonia
| | | | - Nuria Rodríguez
- Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz; Madrid 28055 Spain
| | - Ricardo Amils
- Centro Nacional de Investigaciones Biotecnológicas; CNIB; Bolivia
- Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz; Madrid 28055 Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM); Universidad Autónoma de Madrid; Madrid 28049 Spain
| |
Collapse
|
40
|
Managadze GG, Safronova AA, Luchnikov KA, Vorobyova EA, Duxbury NS, Wurz P, Managadze NG, Chumikov AE, Khamizov RK. A New Method and Mass-Spectrometric Instrument for Extraterrestrial Microbial Life Detection Using the Elemental Composition Analyses of Martian Regolith and Permafrost/Ice. ASTROBIOLOGY 2017; 17:448-458. [PMID: 28520473 DOI: 10.1089/ast.2016.1511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We propose a new technique for the detection of microorganisms by elemental composition analyses of a sample extracted from regolith, permafrost, and ice of extraterrestrial bodies. We also describe the design of the ABIMAS instrument, which consists of the onboard time-of-flight laser mass-reflectron (TOF LMR) and the sample preparation unit (SPU) for biomass extraction. This instrument was initially approved to fly on board the ExoMars 2020 lander mission. The instrument can be used to analyze the elemental composition of possible extraterrestrial microbial communities and compare it to that of terrestrial microorganisms. We have conducted numerous laboratory studies to confirm the possibility of biomass identification via the following biomarkers: P/S and Ca/K ratios, and C and N abundances. We underline that only the combination of these factors will allow one to discriminate microbial samples from geological ones. Our technique has been tested experimentally in numerous laboratory trials on cultures of microorganisms and polar permafrost samples as terrestrial analogues for martian polar soils. We discuss various methods of extracting microorganisms and sample preparation. The developed technique can be used to search for and identify microorganisms in different martian samples and in the subsurface of other planets, satellites, comets, and asteroids-in particular, Europa, Ganymede, and Enceladus. Key Words: Mass spectrometry-Life-detection instruments-Biomarkers-Earth Mars-Biomass spectra. Astrobiology 17, 448-458.
Collapse
Affiliation(s)
- G G Managadze
- 1 Space Research Institute , Russian Academy of Sciences, Moscow, Russian Federation
| | - A A Safronova
- 1 Space Research Institute , Russian Academy of Sciences, Moscow, Russian Federation
| | - K A Luchnikov
- 1 Space Research Institute , Russian Academy of Sciences, Moscow, Russian Federation
| | - E A Vorobyova
- 1 Space Research Institute , Russian Academy of Sciences, Moscow, Russian Federation
- 2 Soil Science Faculty, Lomonosov Moscow State University , Moscow, Russian Federation
| | - N S Duxbury
- 3 Department of Physics, Astronomy and Computational Sciences, George Mason University , Fairfax, Virginia, USA
- 4 Geology Faculty, Lomonosov Moscow State University , Moscow, Russian Federation
| | - P Wurz
- 5 Physics Institute, University of Bern , Bern, Switzerland
| | - N G Managadze
- 1 Space Research Institute , Russian Academy of Sciences, Moscow, Russian Federation
| | - A E Chumikov
- 1 Space Research Institute , Russian Academy of Sciences, Moscow, Russian Federation
| | - R Kh Khamizov
- 6 Institute of Geological Chemistry , Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
41
|
Stevenson A, Hamill PG, Medina Á, Kminek G, Rummel JD, Dijksterhuis J, Timson DJ, Magan N, Leong SLL, Hallsworth JE. Glycerol enhances fungal germination at the water-activity limit for life. Environ Microbiol 2017; 19:947-967. [PMID: 27631633 PMCID: PMC5363249 DOI: 10.1111/1462-2920.13530] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 11/30/2022]
Abstract
For the most-extreme fungal xerophiles, metabolic activity and cell division typically halts between 0.700 and 0.640 water activity (approximately 70.0-64.0% relative humidity). Here, we investigate whether glycerol can enhance xerophile germination under acute water-activity regimes, using an experimental system which represents the biophysical limit of Earth's biosphere. Spores from a variety of species, including Aspergillus penicillioides, Eurotium halophilicum, Xerochrysium xerophilum (formerly Chrysosporium xerophilum) and Xeromyces bisporus, were produced by cultures growing on media supplemented with glycerol (and contained up to 189 mg glycerol g dry spores-1 ). The ability of these spores to germinate, and the kinetics of germination, were then determined on a range of media designed to recreate stresses experienced in microbial habitats or anthropogenic systems (with water-activities from 0.765 to 0.575). For A. penicillioides, Eurotium amstelodami, E. halophilicum, X. xerophilum and X. bisporus, germination occurred at lower water-activities than previously recorded (0.640, 0.685, 0.651, 0.664 and 0.637 respectively). In addition, the kinetics of germination at low water-activities were substantially faster than those reported previously. Extrapolations indicated theoretical water-activity minima below these values; as low as 0.570 for A. penicillioides and X. bisporus. Glycerol is present at high concentrations (up to molar levels) in many types of microbial habitat. We discuss the likely role of glycerol in expanding the water-activity limit for microbial cell function in relation to temporal constraints and location of the microbial cell or habitat. The findings reported here have also critical implications for understanding the extremes of Earth's biosphere; for understanding the potency of disease-causing microorganisms; and in biotechnologies that operate at the limits of microbial function.
Collapse
Affiliation(s)
- Andrew Stevenson
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Philip G Hamill
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Ángel Medina
- Applied Mycology Group, Cranfield Soil and AgriFood Institute, Cranfield University, Cranfield, Bedford, MK43 OAL, UK
| | - Gerhard Kminek
- Independent Safety Office, European Space Agency, 2200 AG Noordwijk, The Netherlands
| | - John D Rummel
- SETI Institute, Mountain View, California, 94043, USA
| | - Jan Dijksterhuis
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, Utrecht, CT, 3584, The Netherlands
| | - David J Timson
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, UK
| | - Naresh Magan
- Applied Mycology Group, Cranfield Soil and AgriFood Institute, Cranfield University, Cranfield, Bedford, MK43 OAL, UK
| | - Su-Lin L Leong
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, Uppsala, 75007, Sweden
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| |
Collapse
|
42
|
Paulussen C, Hallsworth JE, Álvarez‐Pérez S, Nierman WC, Hamill PG, Blain D, Rediers H, Lievens B. Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microb Biotechnol 2017; 10:296-322. [PMID: 27273822 PMCID: PMC5328810 DOI: 10.1111/1751-7915.12367] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/08/2016] [Accepted: 04/18/2016] [Indexed: 01/26/2023] Open
Abstract
Fungi of the genus Aspergillus are widespread in the environment. Some Aspergillus species, most commonly Aspergillus fumigatus, may lead to a variety of allergic reactions and life-threatening systemic infections in humans. Invasive aspergillosis occurs primarily in patients with severe immunodeficiency, and has dramatically increased in recent years. There are several factors at play that contribute to aspergillosis, including both fungus and host-related factors such as strain virulence and host pulmonary structure/immune status, respectively. The environmental tenacity of Aspergilllus, its dominance in diverse microbial communities/habitats, and its ability to navigate the ecophysiological and biophysical challenges of host infection are attributable, in large part, to a robust stress-tolerance biology and exceptional capacity to generate cell-available energy. Aspects of its stress metabolism, ecology, interactions with diverse animal hosts, clinical presentations and treatment regimens have been well-studied over the past years. Here, we synthesize these findings in relation to the way in which some Aspergillus species have become successful opportunistic pathogens of human- and other animal hosts. We focus on the biophysical capabilities of Aspergillus pathogens, key aspects of their ecophysiology and the flexibility to undergo a sexual cycle or form cryptic species. Additionally, recent advances in diagnosis of the disease are discussed as well as implications in relation to questions that have yet to be resolved.
Collapse
Affiliation(s)
- Caroline Paulussen
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)Department of Microbial and Molecular Systems (M2S)KU LeuvenCampus De NayerSint‐Katelijne‐WaverB‐2860Belgium
| | - John E. Hallsworth
- Institute for Global Food SecuritySchool of Biological SciencesMedical Biology CentreQueen's University BelfastBelfastBT9 7BLUK
| | - Sergio Álvarez‐Pérez
- Faculty of Veterinary MedicineDepartment of Animal HealthUniversidad Complutense de MadridMadridE‐28040Spain
| | | | - Philip G. Hamill
- Institute for Global Food SecuritySchool of Biological SciencesMedical Biology CentreQueen's University BelfastBelfastBT9 7BLUK
| | - David Blain
- Institute for Global Food SecuritySchool of Biological SciencesMedical Biology CentreQueen's University BelfastBelfastBT9 7BLUK
| | - Hans Rediers
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)Department of Microbial and Molecular Systems (M2S)KU LeuvenCampus De NayerSint‐Katelijne‐WaverB‐2860Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)Department of Microbial and Molecular Systems (M2S)KU LeuvenCampus De NayerSint‐Katelijne‐WaverB‐2860Belgium
| |
Collapse
|
43
|
Stevenson A, Hamill PG, O'Kane CJ, Kminek G, Rummel JD, Voytek MA, Dijksterhuis J, Hallsworth JE. Aspergillus penicillioidesdifferentiation and cell division at 0.585 water activity. Environ Microbiol 2017; 19:687-697. [DOI: 10.1111/1462-2920.13597] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/03/2016] [Accepted: 11/16/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Andrew Stevenson
- Institute for Global Food Security; School of Biological Sciences, MBC, Queen's University Belfast; Belfast BT9 7BL Northern Ireland
| | - Philip G. Hamill
- Institute for Global Food Security; School of Biological Sciences, MBC, Queen's University Belfast; Belfast BT9 7BL Northern Ireland
| | - Callum J. O'Kane
- Institute for Global Food Security; School of Biological Sciences, MBC, Queen's University Belfast; Belfast BT9 7BL Northern Ireland
| | - Gerhard Kminek
- Independent Safety Office; European Space Agency; 2200 AG Noordwijk The Netherlands
| | | | | | - Jan Dijksterhuis
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8; Utrecht CT 3584 The Netherlands
| | - John E. Hallsworth
- Institute for Global Food Security; School of Biological Sciences, MBC, Queen's University Belfast; Belfast BT9 7BL Northern Ireland
| |
Collapse
|
44
|
Harrison JP, Angel R, Cockell CS. Astrobiology as a framework for investigating antibiotic susceptibility: a study of Halomonas hydrothermalis. J R Soc Interface 2017; 14:20160942. [PMID: 28123098 PMCID: PMC5310740 DOI: 10.1098/rsif.2016.0942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/14/2016] [Indexed: 01/19/2023] Open
Abstract
Physical and chemical boundaries for microbial multiplication on Earth are strongly influenced by interactions between environmental extremes. However, little is known about how interactions between multiple stress parameters affect the sensitivity of microorganisms to antibiotics. Here, we assessed how 12 distinct permutations of salinity, availability of an essential nutrient (iron) and atmospheric composition (aerobic or microaerobic) affect the susceptibility of a polyextremotolerant bacterium, Halomonas hydrothermalis, to ampicillin, kanamycin and ofloxacin. While salinity had a significant impact on sensitivity to all three antibiotics (as shown by turbidimetric analyses), the nature of this impact was modified by iron availability and the ambient gas composition, with differing effects observed for each compound. These two parameters were found to be of particular importance when considered in combination and, in the case of ampicillin, had a stronger combined influence on antibiotic tolerance than salinity. Our data show how investigating microbial responses to multiple extremes, which are more representative of natural habitats than single extremes, can improve our understanding of the effects of antimicrobial compounds and suggest how studies of habitability, motivated by the desire to map the limits of life, can be used to systematically assess the effectiveness of antibiotics.
Collapse
Affiliation(s)
- Jesse P Harrison
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network 'Chemistry Meets Microbiology', University of Vienna, Vienna 1090, Austria
| | - Roey Angel
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network 'Chemistry Meets Microbiology', University of Vienna, Vienna 1090, Austria
| | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK
| |
Collapse
|
45
|
Jehlička J, Culka A, Nedbalová L. Colonization of Snow by Microorganisms as Revealed Using Miniature Raman Spectrometers-Possibilities for Detecting Carotenoids of Psychrophiles on Mars? ASTROBIOLOGY 2016; 16:913-924. [PMID: 27901343 DOI: 10.1089/ast.2016.1487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We tested the potential of a miniaturized Raman spectrometer for use in field detection of snow algae pigments. A miniature Raman spectrometer, equipped with an excitation laser at 532 nm, allowed for the detection of carotenoids in cells of Chloromonas nivalis and Chlamydomonas nivalis at different stages of their life cycle. Astaxanthin, the major photoprotective pigment, was detected in algal blooms originating in snows at two alpine European sites that differed in altitude (Krkonoše Mts., Czech Republic, 1502 m a.s.l., and Ötztal Alps, Austria, 2790 m a.s.l.). Comparison is made with a common microalga exclusively producing astaxanthin (Haematococcus pluvialis). The handheld Raman spectrometer is a useful tool for fast and direct field estimations of the presence of carotenoids (mainly astaxanthin) within blooms of snow algae. Application of miniature Raman instruments as well as flight prototypes in areas where microbes are surviving under extreme conditions is an important stage in preparation for successful deployment of this kind of instrumentation in the framework of forthcoming astrobiological missions to Mars. Key Words: Snow algae-Chloromonas nivalis-Chlamydomonas nivalis-On-site field detection-Raman spectroscopy-Astaxanthin. Astrobiology 16, 913-924.
Collapse
Affiliation(s)
- Jan Jehlička
- 1 Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University , Prague, Czech Republic
| | - Adam Culka
- 1 Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University , Prague, Czech Republic
| | - Linda Nedbalová
- 2 Department of Ecology, Charles University , Prague, Czech Republic
| |
Collapse
|
46
|
Gallardo K, Candia JE, Remonsellez F, Escudero LV, Demergasso CS. The Ecological Coherence of Temperature and Salinity Tolerance Interaction and Pigmentation in a Non-marine Vibrio Isolated from Salar de Atacama. Front Microbiol 2016; 7:1943. [PMID: 27990141 PMCID: PMC5130992 DOI: 10.3389/fmicb.2016.01943] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/18/2016] [Indexed: 12/17/2022] Open
Abstract
The occurrence of microorganisms from the Vibrio genus in saline lakes from northern Chile had been evidenced using Numerical Taxonomy decades before and, more recently, by phylogenetic analyses of environmental samples and isolates. Most of the knowledge about this genus came from marine isolates and showed temperature and salinity to be integral agents in shaping the niche of the Vibrio populations. The stress tolerance phenotypes of Vibrio sp. Teb5a1 isolated from Salar de Atacama was investigated. It was able to grow without NaCl and tolerated up to 100 g/L of the salt. Furthermore, it grew between 17° and 49°C (optimum 30°C) in the absence of NaCl, and the range was expanded into cold temperature (4–49°C) in the presence of the salt. Other additional adaptive strategies were observed in response to the osmotic stress: pigment production, identified as the known antibacterial prodigiosin, swimming and swarming motility and synthesis of a polar flagellum. It is possible to infer that environmental congruence might explain the cellular phenotypes observed in Vibrio sp. considering that coupling between temperature and salinity tolerance, the production of antibacterial agents at higher temperatures, flagellation and motility increase the chance of Vibrio sp. to survive in salty environments with high daily temperature swings and UV radiation.
Collapse
Affiliation(s)
- Karem Gallardo
- Centro de Biotecnología, Universidad Católica del Norte Antofagasta, Chile
| | - Jonathan E Candia
- Centro de Biotecnología, Universidad Católica del Norte Antofagasta, Chile
| | - Francisco Remonsellez
- Departamento de Ingeniería Química, Universidad Católica del Norte Antofagasta, Chile
| | - Lorena V Escudero
- Centro de Biotecnología, Universidad Católica del NorteAntofagasta, Chile; Centro de Investigación Científico Tecnológico para la MineríaAntofagasta, Chile
| | | |
Collapse
|
47
|
Zhu Z, Wu X, Lv B, Wu G, Wang J, Jiang W, Li P, He J, Chen J, Chen M, Bao D, Zhang J, Tan Q, Tang X. A new approach for breeding low-temperature-resistantVolvariella volvaceastrains: Genome shuffling in edible fungi. Biotechnol Appl Biochem 2016; 63:605-615. [DOI: 10.1002/bab.1420] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 05/15/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Ziping Zhu
- Biotechnology Research Institute; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
- School of Life Science; Taizhou University; Taizhou People's Republic of China
| | - Xiao Wu
- Biotechnology Research Institute; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
- Key Laboratory of Agricultural Genetics and Breeding; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
| | - Beibei Lv
- Biotechnology Research Institute; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
- Key Laboratory of Agricultural Genetics and Breeding; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
| | - Guogan Wu
- Biotechnology Research Institute; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
- Key Laboratory of Agricultural Genetics and Breeding; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
| | - Jinbin Wang
- Biotechnology Research Institute; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
- Key Laboratory of Agricultural Genetics and Breeding; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
| | - Wei Jiang
- Biotechnology Research Institute; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
- Key Laboratory of Agricultural Genetics and Breeding; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
| | - Peng Li
- Biotechnology Research Institute; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
- Key Laboratory of Agricultural Genetics and Breeding; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
| | - Jianhua He
- Biotechnology Research Institute; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
- Key Laboratory of Agricultural Genetics and Breeding; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
| | - Jianzhong Chen
- Biotechnology Research Institute; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
- Key Laboratory of Agricultural Genetics and Breeding; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
| | - Mingjie Chen
- National Engineering Research Center of Edible Fungi; Shanghai People's Republic of China
| | - Dapeng Bao
- National Engineering Research Center of Edible Fungi; Shanghai People's Republic of China
| | - Jinsong Zhang
- National Engineering Research Center of Edible Fungi; Shanghai People's Republic of China
| | - Qi Tan
- National Engineering Research Center of Edible Fungi; Shanghai People's Republic of China
| | - Xueming Tang
- Biotechnology Research Institute; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
- Key Laboratory of Agricultural Genetics and Breeding; Shanghai Academy of Agricultural Sciences; Shanghai People's Republic of China
| |
Collapse
|
48
|
Nguyen Van Long N, Vasseur V, Coroller L, Dantigny P, Le Panse S, Weill A, Mounier J, Rigalma K. Temperature, water activity and pH during conidia production affect the physiological state and germination time of Penicillium species. Int J Food Microbiol 2016; 241:151-160. [PMID: 27780083 DOI: 10.1016/j.ijfoodmicro.2016.10.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/28/2016] [Accepted: 10/17/2016] [Indexed: 11/25/2022]
Abstract
Conidial germination and mycelial growth are generally studied with conidia produced under optimal conditions to increase conidial yield. Nonetheless, the physiological state of such conidia most likely differs from those involved in spoilage of naturally contaminated food. The present study aimed at investigating the impact of temperature, pH and water activity (aw) during production of conidia on the germination parameters and compatible solutes of conidia of Penicillium roqueforti and Penicillium expansum. Low temperature (5°C) and reduced aw (0.900 aw) during sporulation significantly reduced conidial germination times whereas the pH of the sporulation medium only had a slight effect at the tested values (2.5, 8.0). Conidia of P. roqueforti produced at 5°C germinated up to 45h earlier than those produced at 20°C. Conidia of P. roqueforti and P. expansum produced at 0.900 aw germinated respectively up to 8h and 3h earlier than conidia produced at 0.980 aw. Furthermore, trehalose and mannitol assessments suggested that earlier germination might be related to delayed conidial maturation even though no ultra-structural modifications were observed by transmission electron microscopy. Taken together, these results highlight the importance of considering environmental conditions during sporulation in mycological studies. The physiological state of fungal conidia should be taken into account to design challenge tests or predictive mycology studies. This knowledge may also be of interest to improve the germination capacity of fungal cultures commonly used in fermented foods.
Collapse
Affiliation(s)
- Nicolas Nguyen Van Long
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Valérie Vasseur
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Louis Coroller
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, UMT Spore Risk, IUT Quimper, 6 rue de l'Université, 29334 Quimper, France
| | - Philippe Dantigny
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Sophie Le Panse
- Plateforme Merimage, Station Biologique de Roscoff, CNRS-UPMC, Place Georges Teissier, CS90074, 29688 Roscoff, Cedex, France
| | - Amélie Weill
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Jérôme Mounier
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Karim Rigalma
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|
49
|
Makau CM, Matofari JW, Muliro PS, Bebe BO. Association of on-farm feeds handling practices with fungal growth and Mycotoxin production on feeds in smallholder dairy farms, Nakuru, Kenya. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajar2016.11525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
50
|
Stevenson A, Hamill PG, Dijksterhuis J, Hallsworth JE. Water-, pH- and temperature relations of germination for the extreme xerophiles Xeromyces bisporus (FRR 0025), Aspergillus penicillioides (JH06THJ) and Eurotium halophilicum (FRR 2471). Microb Biotechnol 2016; 10:330-340. [PMID: 27562192 PMCID: PMC5328819 DOI: 10.1111/1751-7915.12406] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 12/01/2022] Open
Abstract
Water activity, temperature and pH are determinants for biotic activity of cellular systems, biosphere function and, indeed, for all life processes. This study was carried out at high concentrations of glycerol, which concurrently reduces water activity and acts as a stress protectant, to characterize the biophysical capabilities of the most extremely xerophilic organisms known. These were the fungal xerophiles: Xeromyces bisporus (FRR 0025), Aspergillus penicillioides (JH06THJ) and Eurotium halophilicum (FRR 2471). High‐glycerol spores were produced and germination was determined using 38 media in the 0.995–0.637 water activity range, 33 media in the 2.80–9.80 pH range and 10 incubation temperatures, from 2 to 50°C. Water activity was modified by supplementing media with glycerol+sucrose, glycerol+NaCl and glycerol+NaCl+sucrose which are known to be biologically permissive for X. bisporus, A. penicillioides and E. halophilicum respectively. The windows and rates for spore germination were quantified for water activity, pH and temperature; symmetry/asymmetry of the germination profiles were then determined in relation to supra‐ and sub‐optimal conditions; and pH‐ and temperature optima for extreme xerophilicity were quantified. The windows for spore germination were ~1 to 0.637 water activity, pH 2.80–9.80 and > 10 and < 44°C, depending on strain. Germination profiles in relation to water activity and temperature were asymmetrical because conditions known to entropically disorder cellular macromolecules, i.e. supra‐optimal water activity and high temperatures, were severely inhibitory. Implications of these processes were considered in relation to the in‐situ ecology of extreme conditions and environments; the study also raises a number of unanswered questions which suggest the need for new lines of experimentation.
Collapse
Affiliation(s)
- Andrew Stevenson
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Philip G Hamill
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Jan Dijksterhuis
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, CT 3584, Utrecht, The Netherlands
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, UK
| |
Collapse
|