1
|
Jiang X, Zhao K, Sun Y, Song X, Yi C, Xiong T, Wang S, Yu Y, Chen X, Liu R, Yan X, Antos CL. The scale of zebrafish pectoral fin buds is determined by intercellular K+ levels and consequent Ca2+-mediated signaling via retinoic acid regulation of Rcan2 and Kcnk5b. PLoS Biol 2024; 22:e3002565. [PMID: 38527087 PMCID: PMC11018282 DOI: 10.1371/journal.pbio.3002565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/15/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
K+ channels regulate morphogens to scale adult fins, but little is known about what regulates the channels and how they control morphogen expression. Using the zebrafish pectoral fin bud as a model for early vertebrate fin/limb development, we found that K+ channels also scale this anatomical structure, and we determined how one K+-leak channel, Kcnk5b, integrates into its developmental program. From FLIM measurements of a Förster Resonance Energy Transfer (FRET)-based K+ sensor, we observed coordinated decreases in intracellular K+ levels during bud growth, and overexpression of K+-leak channels in vivo coordinately increased bud proportions. Retinoic acid, which can enhance fin/limb bud growth, decreased K+ in bud tissues and up-regulated regulator of calcineurin (rcan2). rcan2 overexpression increased bud growth and decreased K+, while CRISPR-Cas9 targeting of rcan2 decreased growth and increased K+. We observed similar results in the adult caudal fins. Moreover, CRISPR targeting of Kcnk5b revealed that Rcan2-mediated growth was dependent on the Kcnk5b. We also found that Kcnk5b enhanced depolarization in fin bud cells via Na+ channels and that this enhanced depolarization was required for Kcnk5b-enhanced growth. Lastly, Kcnk5b-induced shha transcription and bud growth required IP3R-mediated Ca2+ release and CaMKK activity. Thus, we provide a mechanism for how retinoic acid via rcan2 can regulate K+-channel activity to scale a vertebrate appendage via intercellular Ca2+ signaling.
Collapse
Affiliation(s)
- Xiaowen Jiang
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Kun Zhao
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Yi Sun
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Xinyue Song
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Chao Yi
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Tianlong Xiong
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Sen Wang
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Yi Yu
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
- Center for Quantitative Biology, Peking University, Beijing, People’s Republic of China
| | - Xiduo Chen
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Run Liu
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Xin Yan
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Christopher L. Antos
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Ou G, Komura A, Hojo M, Kato R, Ikeda M, Fujisawa M, Xu K, Yoshioka K, Obara K, Tanaka Y. Pharmacological study on the enhancing effects of U46619 on guinea pig urinary bladder smooth muscle contraction induced by acetylcholine and α,β-methylene ATP and the possible involvement of protein kinase C. J Pharmacol Sci 2023; 153:119-129. [PMID: 37770153 DOI: 10.1016/j.jphs.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
We examined whether U46619 (a prostanoid TP receptor agonist) could enhance the contractions of guinea pig urinary bladder smooth muscle (UBSM) in response to acetylcholine (ACh) and an ATP analog (α,β-methylene ATP (αβ-MeATP)) through stimulation of the UBSM TP receptor and whether protein kinase C (PKC) is involved. U46619 (10-7 M) markedly enhanced UBSM contractions induced by electrical field stimulation and ACh/αβ-MeATP (3 × 10-6 M each), the potentiation of which was completely suppressed by SQ 29,548 (a TP receptor antagonist, 6 × 10-7 M). PKC inhibitors did not attenuate the ACh-induced contractions enhanced by U46619 although they partly suppressed the U46619-enhanced, αβ-MeATP-induced contractions. While phorbol 12-myristate 13-acetate (PMA, a PKC activator, 10-6 M) did not enhance ACh-induced contractions, it enhanced αβ-MeATP-induced contractions, an effect that was completely suppressed by PKC inhibitors. αβ-MeATP-induced contractions, both with and without U46619 enhancement, were strongly inhibited by diltiazem. U46619/PMA enhanced 50 mM KCl-induced contractions, the potentiation of which was partly/completely attenuated by PKC inhibitors. These findings suggest that U46619 potentiates parasympathetic nerve-associated UBSM contractions by stimulating UBSM TP receptors. PKC-increased Ca2+ influx through voltage-dependent Ca2+ channels may partially play a role in purinergic receptor-mediated UBSM contractions enhanced by TP receptor stimulation.
Collapse
Affiliation(s)
- Guanghan Ou
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Akane Komura
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Misaki Hojo
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Rina Kato
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Masahiro Ikeda
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Miki Fujisawa
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Keyue Xu
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Kento Yoshioka
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Keisuke Obara
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan.
| | - Yoshio Tanaka
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
3
|
Barenco-Marins TS, Seara FAC, Ponte CG, Nascimento JHM. Pulmonary Circulation Under Pressure: Pathophysiological and Therapeutic Implications of BK Channel. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07503-7. [PMID: 37624526 DOI: 10.1007/s10557-023-07503-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
The large-conductance Ca2+-activated K+ (BK) channel is widely expressed in the pulmonary blood vessels and plays a significant role in regulating pulmonary vascular tonus. It opens under membrane depolarization, increased intracellular Ca+2 concentration, and chronic hypoxia, resulting in massive K+ efflux, membrane hyperpolarization, decreased L-type Ca+2 channel opening, and smooth muscle relaxation. Several reports have demonstrated an association between BK channel dysfunction and pulmonary hypertension (PH) development. Decreased BK channel subunit expression and impaired regulation by paracrine hormones result in decreased BK channel opening, increased pulmonary vascular resistance, and pulmonary arterial pressure being the cornerstone of PH. The resulting right ventricular pressure overload ultimately leads to ventricular remodeling and failure. Therefore, it is unsurprising that the BK channel has arisen as a potential target for treating PH. Recently, a series of selective, synthetic BK channel agonists have proven effective in attenuating the pathophysiological progression of PH without adverse effects in animal models.
Collapse
Affiliation(s)
- Thais S Barenco-Marins
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação Em Cardiologia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernando A C Seara
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
- Instituto de Ciências Biológicas E da Saúde, Universidade Federal Rural Do Rio de Janeiro, Seropédica, RJ, Brazil.
- Programa de Pós-Graduação Multicêntrico Em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, São Paulo, Brazil.
| | - Cristiano G Ponte
- Instituto Federal de Educação, Ciências e Tecnologia do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jose H M Nascimento
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação Em Cardiologia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Ashton AW. Preparing to strike: Acute events in signaling by the serpentine receptor for thromboxane A 2. Pharmacol Ther 2023:108478. [PMID: 37321373 DOI: 10.1016/j.pharmthera.2023.108478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Over the last two decades, awareness of the (patho)physiological roles of thromboxane A2 signaling has been greatly extended. From humble beginnings as a short-lived stimulus that activates platelets and causes vasoconstriction to a dichotomous receptor system involving multiple endogenous ligands capable of modifying tissue homeostasis and disease generation in almost every tissue of the body. Thromboxane A2 receptor (TP) signal transduction is associated with the pathogenesis of cancer, atherosclerosis, heart disease, asthma, and host response to parasitic infection amongst others. The two receptors mediating these cellular responses (TPα and TPβ) are derived from a single gene (TBXA2R) through alternative splicing. Recently, knowledge about the mechanism(s) of signal propagation by the two receptors has undergone a revolution in understanding. Not only have the structural relationships associated with G-protein coupling been established but the modulation of that signaling by post-translational modification to the receptor has come sharply into focus. Moreover, the signaling of the receptor unrelated to G-protein coupling has become a burgeoning field of endeavor with over 70 interacting proteins currently identified. These data are reshaping the concept of TP signaling from a mere guanine nucleotide exchange factors for Gα activation to a nexus for the convergence of diverse and poorly characterized signaling pathways. This review summarizes the advances in understanding in TP signaling, and the potential for new growth in a field that after almost 50 years is finally coming of age.
Collapse
Affiliation(s)
- Anthony W Ashton
- Division of Cardiovascular Medicine, Lankenau Institute for Medical Research, Rm 128, 100 E Lancaster Ave, Wynnewood, PA 19096, USA; Division of Perinatal Research, Kolling Institute of Medical Research, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW 2065, Australia.
| |
Collapse
|
5
|
Obara K, Inaba R, Kawakita M, De Dios Regadera M, Uetake T, Murata A, Nishioka N, Kuroki K, Yoshioka K, Tanaka Y. Docosahexaenoic Acid Selectively Suppresses U46619- and PGF 2α-Induced Contractions in Guinea Pig Tracheal Smooth Muscles. Biol Pharm Bull 2022; 45:240-244. [PMID: 35110511 DOI: 10.1248/bpb.b21-00905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the potential inhibitory effects of docosahexaenoic acid (DHA) on the contractions of guinea pig tracheal smooth muscles in response to U46619 (a thromboxane A2 (TXA2) mimetic) and prostaglandin F2α (PGF2α) to examine whether this n-3 polyunsaturated fatty acid suppresses prostanoid-induced tracheal contractions. DHA (3 × 10-5 M) significantly suppressed tracheal contractions elicited by lower concentrations of U46619 (10-8 M) and PGF2α (5 × 10-7 M) (vs. control), although it did not suppress the contractions induced by higher concentrations (U46619: 10-7 M; PGF2α: 10-5 M). Supporting these findings, DHA (4 × 10-5 M/6 × 10-5 M) shifted the concentration-response curves for U46619 (10-9-10-6 M) and PGF2α (10-8-10-5 M) to the right. However, the slope of the regression line in the Schild plot of DHA vs. U46619/PGF2α was larger than unity. The tracheal contractions induced by U46619 (10-8 M) and PGF2α (5 × 10-7 M) were significantly suppressed by the prostanoid TP receptor antagonist SQ 29,548 (10-6 M) (vs. ethanol-treated). In contrast, DHA (4 × 10-5 M) did not show significant inhibitory effects on the contractions induced by acetylcholine (10-8-10-4 M), histamine (10-8-10-4 M), and leukotriene D4 (10-11-10-7 M) (vs. ethanol-treated). These findings indicate that DHA selectively suppresses tracheal contractions induced by U46619 and PGF2α. Therefore, DHA may be a useful therapeutic agent against asthma associated with tracheal/bronchial hyper-constriction caused by prostanoids including TXA2 and PGF2α.
Collapse
Affiliation(s)
- Keisuke Obara
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| | - Rikako Inaba
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| | - Mirai Kawakita
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| | | | - Tomomi Uetake
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| | - Azusa Murata
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| | - Nanako Nishioka
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| | - Kota Kuroki
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| | - Kento Yoshioka
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| | - Yoshio Tanaka
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| |
Collapse
|
6
|
Santos JD, Paulo M, Vercesi JA, Bendhack LM. Thromboxane-prostanoid receptor activation blocks ATP-sensitive potassium channels in rat aortas. Clin Exp Pharmacol Physiol 2021; 48:1537-1546. [PMID: 34329487 DOI: 10.1111/1440-1681.13557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022]
Abstract
K+ channel activation is one of the major mechanisms involved in vasodilation. Vasoconstrictor agonists such as angiotensin II promote ATP-dependent potassium channels (KATP ) dysfunction. This study evaluates whether thromboxane-prostanoid (TP receptor) activation by the agonist U46619 increases reactive oxygen species (ROS) production in rat aortas, which could contribute to KATP channel dysfunction and impaired NO-dependent vasodilation. TP receptor activation with the selective agonist U46619 increased ROS in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), but the TP receptor antagonist SQ29548 abolished this effect. ECs and VSMCs incubation with ROS scavengers like Tiron or PEG-Catalase impaired U46619-induced ROS production. U46619 at the concentrations of 0.1 and 1 µmol/L induced contractions with similar amplitude. KATP channel activation with pinacidil-induced relaxation was lower for the contractions induced with 0.1 or 1 µmol/L U46619 than with 10 nmol/L U46619. Acetylcholine-induced relaxation provided similar results. In aortas pre-contracted with 10 nmol/L U46619, neither Tiron (100 µmol/L) nor catalase (300 U/mL) affected pinacidil-induced relaxation. However, in aortas pre-contracted with 0.1 µmol/L U46619, catalase potentiated pinacidil-induced relaxation. Pinacidil potentiated acetylcholine-induced relaxation in aortas pre-contracted with 0.1 and 1 µmol/L U46619. Incubation with 10 nmol/L U46619 increased NO concentration in ECs. Taken together, these results show that high concentrations of the TP receptor agonist U46619 impair KATP channels, which is probably due to ROS production. It is likely that hydrogen peroxide is the ROS.
Collapse
MESH Headings
- Animals
- Rats
- KATP Channels/metabolism
- KATP Channels/agonists
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Receptors, Thromboxane/metabolism
- Receptors, Thromboxane/agonists
- Receptors, Thromboxane/antagonists & inhibitors
- Reactive Oxygen Species/metabolism
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Vasodilation/drug effects
- Aorta/drug effects
- Aorta/metabolism
- Rats, Wistar
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Vasoconstrictor Agents/pharmacology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
Collapse
Affiliation(s)
- Jeimison D Santos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Michele Paulo
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, São Paulo, Brazil
| | - Juliana A Vercesi
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, São Paulo, Brazil
| | - Lusiane M Bendhack
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Sun WT, Xue HM, Hou HT, Chen HX, Wang J, He GW, Yang Q. Homocysteine alters vasoreactivity of human internal mammary artery by affecting the K Ca channel family. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:625. [PMID: 33987323 PMCID: PMC8106027 DOI: 10.21037/atm-20-6821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background Hyperhomocysteinemia is an independent risk factor for atherosclerotic heart disease. We previously demonstrated that disruption of calcium-activated potassium (KCa) channel activity is involved in homocysteine-induced dilatory dysfunction of porcine coronary arteries. Recently we reported that the KCa channel family, including large-, intermediate-, and small-conductance KCa (BKCa, IKCa, and SKCa) subtypes, are abundantly expressed in human internal mammary artery (IMA). In this study, we further investigated whether homocysteine affects the expression and functionality of the KCa channel family in this commonly used graft for coronary artery bypass surgery (CABG). Methods Residual IMA segments obtained from patients undergoing CABG were studied in a myograph for the role of KCa subtypes in both vasorelaxation and vasoconstriction. The expression and distribution of KCa subtypes were detected by Western blot and immunohistochemistry. Results Both the BKCa channel activator NS1619 and the IKCa/SKCa channel activator NS309 evoked significant IMA relaxation. Homocysteine exposure suppressed NS1619-induced relaxation whereas showed no influence on NS309-induced response. Blockade of BKCa but not IKCa and SKCa subtypes significantly suppressed acetylcholine-induced relaxation and enhanced U46619-induced contraction. Homocysteine compromised the vasodilating activity of the BKCa subtype in IMA, associated with a lowered protein level of the BKCa β1-subunit. Homocysteine potentiated the role of IKCa and SKCa subtypes in mediating endothelium-dependent relaxation without affecting the expression of these channels. Conclusions Homocysteine reduces the expression of BKCa β1-subunit and compromises the vasodilating activity of BKCa channels in IMA. Unlike BKCa, IKCa and SKCa subtypes are unessential for IMA vasoregulation, whereas the loss of BKCa functionality in hyperhomocysteinemia enhances the role of IKCa and SKCa subtypes in mediating endothelial dilator function. Targeting BKCa channels may form a strategy to improve the postoperative graft performance in CABG patients with hyperhomocysteinemia who receive IMA grafting.
Collapse
Affiliation(s)
- Wen-Tao Sun
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,School of Medicine, Nankai University, Tianjin, China
| | - Hong-Mei Xue
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,School of Medicine, Nankai University, Tianjin, China.,Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Hai-Tao Hou
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Huan-Xin Chen
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jun Wang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Guo-Wei He
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,School of Pharmacy, Wannan Medical College, Wuhu, China.,Department of Surgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Qin Yang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
8
|
Yamagata K. Prevention of Endothelial Dysfunction and Cardiovascular Disease by n-3 Fatty Acids-Inhibiting Action on Oxidative Stress and Inflammation. Curr Pharm Des 2021; 26:3652-3666. [PMID: 32242776 DOI: 10.2174/1381612826666200403121952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/11/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Prospective cohort studies and randomized controlled trials have shown the protective effect of n-3 fatty acids against cardiovascular disease (CVD). The effect of n-3 fatty acids on vascular endothelial cells indicates their possible role in CVD prevention. OBJECTIVE Here, we describe the effect of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on endothelial dysfunction-caused by inflammation and oxidative stress-and their role in the development of CVD. METHODS We reviewed epidemiological studies done on n-3 fatty acids in CVD. The effect of DHA and EPA on vascular endothelial cells was examined with regard to changes in various markers, such as arteriosclerosis, inflammation, and oxidative stress, using cell and animal models. RESULTS Epidemiological studies revealed that dietary intake of EPA and DHA was associated with a reduced risk of various CVDs. EPA and DHA inhibited various events involved in arteriosclerosis development by preventing oxidative stress and inflammation associated with endothelial cell damage. In particular, EPA and DHA prevented endothelial cell dysfunction mediated by inflammatory responses and oxidative stress induced by events related to CVD. DHA and EPA also increased eNOS activity and induced nitric oxide production. CONCLUSION The effects of DHA and EPA on vascular endothelial cell damage and dysfunction may involve the induction of nitric oxide, in addition to antioxidant and anti-inflammatory effects. n-3 fatty acids inhibit endothelial dysfunction and prevent arteriosclerosis. Therefore, the intake of n-3 fatty acids may prevent CVDs, like myocardial infarction and stroke.
Collapse
Affiliation(s)
- Kazuo Yamagata
- College of Bioresource Science, Nihon University (UNBS), Kanagawa, Japan
| |
Collapse
|
9
|
Application of Machine-Learning Methods to Recognize mitoBK Channels from Different Cell Types Based on the Experimental Patch-Clamp Results. Int J Mol Sci 2021; 22:ijms22020840. [PMID: 33467711 PMCID: PMC7831025 DOI: 10.3390/ijms22020840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 12/03/2022] Open
Abstract
(1) Background: In this work, we focus on the activity of large-conductance voltage- and Ca2+-activated potassium channels (BK) from the inner mitochondrial membrane (mitoBK). The characteristic electrophysiological features of the mitoBK channels are relatively high single-channel conductance (ca. 300 pS) and types of activating and deactivating stimuli. Nevertheless, depending on the isoformal composition of mitoBK channels in a given membrane patch and the type of auxiliary regulatory subunits (which can be co-assembled to the mitoBK channel protein) the characteristics of conformational dynamics of the channel protein can be altered. Consequently, the individual features of experimental series describing single-channel activity obtained by patch-clamp method can also vary. (2) Methods: Artificial intelligence approaches (deep learning) were used to classify the patch-clamp outputs of mitoBK activity from different cell types. (3) Results: Application of the K-nearest neighbors algorithm (KNN) and the autoencoder neural network allowed to perform the classification of the electrophysiological signals with a very good accuracy, which indicates that the conformational dynamics of the analyzed mitoBK channels from different cell types significantly differs. (4) Conclusion: We displayed the utility of machine-learning methodology in the research of ion channel gating, even in cases when the behavior of very similar microbiosystems is analyzed. A short excerpt from the patch-clamp recording can serve as a “fingerprint” used to recognize the mitoBK gating dynamics in the patches of membrane from different cell types.
Collapse
|
10
|
Wawrzkiewicz-Jałowiecka A, Trybek P, Borys P, Dworakowska B, Machura Ł, Bednarczyk P. Differences in Gating Dynamics of BK Channels in Cellular and Mitochondrial Membranes from Human Glioblastoma Cells Unraveled by Short- and Long-Range Correlations Analysis. Cells 2020; 9:E2305. [PMID: 33076484 PMCID: PMC7602617 DOI: 10.3390/cells9102305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/04/2023] Open
Abstract
The large-conductance voltage- and Ca2+-activated K+ channels (BK) are encoded in humans by the Kcnma1 gene. Nevertheless, BK channel isoforms in different locations can exhibit functional heterogeneity mainly due to the alternative splicing during the Kcnma1 gene transcription. Here, we would like to examine the existence of dynamic diversity of BK channels from the inner mitochondrial and cellular membrane from human glioblastoma (U-87 MG). Not only the standard characteristics of the spontaneous switching between the functional states of the channel is discussed, but we put a special emphasis on the presence and strength of correlations within the signal describing the single-channel activity. The considered short- and long-range memory effects are here analyzed as they can be interpreted in terms of the complexity of the switching mechanism between stable conformational states of the channel. We calculate the dependencies of mean dwell-times of (conducting/non-conducting) states on the duration of the previous state, Hurst exponents by the rescaled range R/S method and detrended fluctuation analysis (DFA), and use the multifractal extension of the DFA (MFDFA) for the series describing single-channel activity. The obtained results unraveled statistically significant diversity in gating machinery between the mitochondrial and cellular BK channels.
Collapse
Affiliation(s)
- Agata Wawrzkiewicz-Jałowiecka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Paulina Trybek
- Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzow, Poland;
| | - Przemysław Borys
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Beata Dworakowska
- Institute of Biology, Department of Physics and Biophysics, Warsaw University of Life Sciences—SGGW, 02-787 Warszawa, Poland; (B.D.); (P.B.)
| | - Łukasz Machura
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzow, Poland;
| | - Piotr Bednarczyk
- Institute of Biology, Department of Physics and Biophysics, Warsaw University of Life Sciences—SGGW, 02-787 Warszawa, Poland; (B.D.); (P.B.)
| |
Collapse
|
11
|
Wu Y, Yue Z, Wang Q, Lv Q, Liu H, Bai Y, Li S, Xie M, Bao J, Ma J, Zhu X, Wang Z. BK Ca compensates impaired coronary vasoreactivity through RhoA/ROCK pathway in hind-limb unweighted rats. FASEB J 2019; 33:13358-13366. [PMID: 31530101 DOI: 10.1096/fj.201901273r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous studies have demonstrated cardiac and vascular remodeling induced by microgravity exposure. Yet, as the most important branch of vasculatures circulating the heart, the coronary artery has been seldomly studied about its adaptations under microgravity conditions. Large-conductance Ca2+-activated potassium channel (BKCa) and the Ras homolog family member A (RhoA)/Rho kinase (ROCK) pathway play key roles in control of vascular tone and mediation of microgravity-induced vascular adjustments. Therefore, we investigated the adaptation of coronary vasoreactivity to simulated microgravity and the role of BKCa and the RhoA/ROCK pathway in it. Four-week-old hind-limb unweighted (HU) rats were adopted to simulate effects of microgravity. Right coronary artery (RCA) constriction was measured by isometric force recording. The activity and expression of BKCa and the RhoA/ROCK pathway were examined by Western blot, patch-clamp recordings, and immunoprecipitation. We found HU significantly decreased RCA vasoconstriction to KCl, serotonin, and U-46619, but increased protein expression and current densities of BKCa, inhibition of which by iberiotoxin (IBTX) further decreased RCA vasoconstriction (P < 0.05). Expression of RhoA and ROCK as well as active RhoA and phosphorylation of myosin light chain (MLC) at Ser19 and MLC phosphatase target-1 at Thr696 were significantly increased by HU, and ROCK inhibitor Y-27632 exerted greater suppressing effect on HU RCA vasoconstriction than that of control (P < 0.05). BKCa opener NS1619 increased HU RCA vasoconstriction, which was blocked by both RhoA and ROCK inhibitor, similar to the effect of IBTX. These results indicate that HU impairs coronary vasoconstriction but enhances BKCa activity acting as a protective mechanism avoiding excessive decrease of coronary vasoreactivity through activation of the RhoA/ROCK pathway.-Wu, Y., Yue, Z., Wang, Q., Lv, Q., Liu, H., Bai, Y., Li, S., Xie, M., Bao, J., Ma, J., Zhu, X., Wang, Z. BKCa compensates impaired coronary vasoreactivity through RhoA/ROCK pathway in hind-limb unweighted rats.
Collapse
Affiliation(s)
- Yue Wu
- Department of Congenital Heart Disease, General Hospital of Northern Theater Command, Shenyang, China.,Department of Medical Administration, General Hospital of Northern Theater Command, Shenyang, China
| | - Zhijie Yue
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Affiliated Hospital of The Bethune Medical Noncommissioned Officer (NCO) School, Army Medical University, Shijiazhuang, China
| | - Qiguang Wang
- Department of Congenital Heart Disease, General Hospital of Northern Theater Command, Shenyang, China
| | - Qiang Lv
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Huan Liu
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Yungang Bai
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Shaohua Li
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Manjiang Xie
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Junxiang Bao
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Jin Ma
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Xianyang Zhu
- Department of Congenital Heart Disease, General Hospital of Northern Theater Command, Shenyang, China
| | - Zhongchao Wang
- Department of Congenital Heart Disease, General Hospital of Northern Theater Command, Shenyang, China.,Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
12
|
Balderas E, Torres NS, Rosa-Garrido M, Chaudhuri D, Toro L, Stefani E, Olcese R. MitoBK Ca channel is functionally associated with its regulatory β1 subunit in cardiac mitochondria. J Physiol 2019; 597:3817-3832. [PMID: 31173379 DOI: 10.1113/jp277769] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/03/2019] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS Association of plasma membrane BKCa channels with BK-β subunits shapes their biophysical properties and physiological roles; however, functional modulation of the mitochondrial BKCa channel (mitoBKCa ) by BK-β subunits is not established. MitoBKCa -α and the regulatory BK-β1 subunit associate in mouse cardiac mitochondria. A large fraction of mitoBKCa display properties similar to that of plasma membrane BKCa when associated with BK-β1 (left-shifted voltage dependence of activation, V1/2 = -55 mV, 12 µm matrix Ca2+ ). In BK-β1 knockout mice, cardiac mitoBKCa displayed a low Po and a depolarized V1/2 of activation (+47 mV at 12 µm matrix Ca2+ ) Co-expression of BKCa with the BK-β1 subunit in HeLa cells doubled the density of BKCa in mitochondria. The present study supports the view that the cardiac mitoBKCa channel is functionally modulated by the BK-β1 subunit; proper targeting and activation of mitoBKCa shapes mitochondrial Ca2+ handling. ABSTRACT Association of the plasma membrane BKCa channel with auxiliary BK-β1-4 subunits profoundly affects the regulatory mechanisms and physiological processes in which this channel participates. However, functional association of mitochondrial BK (mitoBKCa ) with regulatory subunits is unknown. We report that mitoBKCa functionally associates with its regulatory subunit BK-β1 in adult rodent cardiomyocytes. Cardiac mitoBKCa is a calcium- and voltage-activated channel that is sensitive to paxilline with a large conductance for K+ of 300 pS. Additionally, mitoBKCa displays a high open probability (Po ) and voltage half-activation (V1/2 = -55 mV, n = 7) resembling that of plasma membrane BKCa when associated with its regulatory BK-β1 subunit. Immunochemistry assays demonstrated an interaction between mitochondrial BKCa -α and its BK-β1 subunit. Mitochondria from the BK-β1 knockout (KO) mice showed sparse mitoBKCa currents (five patches with mitoBKCa activity out of 28 total patches from n = 5 different hearts), displaying a depolarized V1/2 of activation (+47 mV in 12 µm matrix Ca2+ ). The reduced activity of mitoBKCa was accompanied by a high expression of BKCa transcript in the BK-β1 KO, suggesting a lower abundance of mitoBKCa channels in this genotype. Accordingly, BK-β1subunit increased the localization of BKDEC (i.e. the splice variant of BKCa that specifically targets mitochondria) into mitochondria by two-fold. Importantly, both paxilline-treated and BK-β1 KO mitochondria displayed a more rapid Ca2+ overload, featuring an early opening of the mitochondrial transition pore. We provide strong evidence that mitoBKCa associates with its regulatory BK-β1 subunit in cardiac mitochondria, ensuring proper targeting and activation of the mitoBKCa channel that helps to maintain mitochondrial Ca2+ homeostasis.
Collapse
Affiliation(s)
- Enrique Balderas
- Nora Eccles Harrison Cardiovascular Research & Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Natalia S Torres
- Nora Eccles Harrison Cardiovascular Research & Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Manuel Rosa-Garrido
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine.,Department of Physiology
| | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research & Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Ligia Toro
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine.,Cardiovascular Research Laboratories.,Department of Molecular and Medical Pharmacology.,Brain Research Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Enrico Stefani
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine.,Department of Physiology.,Cardiovascular Research Laboratories.,Brain Research Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Riccardo Olcese
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine.,Department of Physiology.,Cardiovascular Research Laboratories.,Brain Research Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
13
|
Zhao T, Zhang H, Jin C, Qiu F, Wu Y, Shi L. Melatonin mediates vasodilation through both direct and indirect activation of BK Ca channels. J Mol Endocrinol 2017; 59:219-233. [PMID: 28676563 DOI: 10.1530/jme-17-0028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/03/2017] [Indexed: 01/14/2023]
Abstract
Melatonin, synthesized primarily by the pineal gland, is a neuroendocrine hormone with high membrane permeability. The vascular effects of melatonin, including vasoconstriction and vasodilation, have been demonstrated in numerous studies. However, the mechanisms underlying these effects are not fully understood. Large-conductance Ca2+-activated K+ (BKCa) channels are expressed broadly on smooth muscle cells and play an important role in vascular tone regulation. This study explored the mechanisms of myocyte BKCa channels and endothelial factors underlying the action of melatonin on the mesenteric arteries (MAs). Vascular contractility and patch-clamp studies were performed on myocytes of MAs from Wistar rats. Melatonin induced significant vasodilation on MAs. In the presence of Nω-nitro-l-arginine methyl ester (l-NAME), a potent endothelial oxide synthase (eNOS) inhibitor, melatonin elicited concentration-dependent relaxation, with lowered pIC50 The effect of melatonin was significantly attenuated in the presence of BKCa channel blocker iberiotoxin or MT1/MT2 receptor antagonist luzindole in both (+) l-NAME and (-) l-NAME groups. In the (+) l-NAME group, iberiotoxin caused a parallel rightward shift of the melatonin concentration-relaxation curve, with pIC50 lower than that of luzindole. Both inside-out and cell-attached patch-clamp recordings showed that melatonin significantly increased the open probability, mean open time and voltage sensitivity of BKCa channels. In a cell-attached patch-clamp configuration, the melatonin-induced enhancement of BKCa channel activity was significantly suppressed by luzindole. These findings indicate that in addition to the activation of eNOS, melatonin-induced vasorelaxation of MAs is partially attributable to its direct (passing through the cell membrane) and indirect (via MT1/MT2 receptors) activation of the BKCa channels on mesenteric arterial myocytes.
Collapse
MESH Headings
- Animals
- Gene Expression
- Ion Channel Gating/drug effects
- Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/agonists
- Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics
- Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism
- Male
- Melatonin/metabolism
- Melatonin/pharmacology
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Rats
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Vasodilation/drug effects
- Vasodilation/genetics
Collapse
Affiliation(s)
- T Zhao
- Department of Exercise PhysiologyBeijing Sport University, Beijing, China
| | - H Zhang
- Department of Exercise PhysiologyBeijing Sport University, Beijing, China
| | - C Jin
- Department of Exercise PhysiologyBeijing Sport University, Beijing, China
| | - F Qiu
- Department of Exercise PhysiologyBeijing Sport University, Beijing, China
| | - Y Wu
- Department of Exercise PhysiologyBeijing Sport University, Beijing, China
| | - L Shi
- Department of Exercise PhysiologyBeijing Sport University, Beijing, China
| |
Collapse
|
14
|
López-Dyck E, Andrade-Urzúa F, Elizalde A, Ferrer-Villada T, Dagnino-Acosta A, Huerta M, Osuna-Calleros Z, Rangel-Sandoval C, Sánchez-Pastor E. ACPA and JWH-133 modulate the vascular tone of superior mesenteric arteries through cannabinoid receptors, BK Ca channels, and nitric oxide dependent mechanisms. Pharmacol Rep 2017; 69:1131-1139. [PMID: 29128791 DOI: 10.1016/j.pharep.2017.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/26/2017] [Accepted: 06/20/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND Some cannabinoids, a family of compounds derived from Cannabis sativa (marijuana), have previously shown vasodilator effects in several studies, a feature that makes them suitable for the generation of a potential treatment for hypertension. The mechanism underlying this vasodilator effect in arteries is still controversial. In this report, we explored how the synthetic cannabinoids ACPA (CB1-selective agonist) and JWH-133 (CB2-selective agonist) regulate the vascular tone of rat superior mesenteric arteries. METHODS To screen the expression of CB1 (Cannabinoid receptor 1) and CB2 (Cannabinoid receptor 2) receptors in arterial rings or isolated smooth muscle cells obtained from the artery, immunocytochemistry, immunohistochemistry, and confocal microscopy were performed. In addition, the effects on vascular tone induced by the two cannabinoids were tested in isometric tension experiments in rings obtained from superior mesenteric arteries. The participation of voltage and calcium-activated potassium channel of big conductance (BKCa) and the role of nitric oxide (NO) release on the vascular effects induced by ACPA and JWH-133 were tested. RESULTS CB1 and CB2 receptors were highly expressed in the rat superior mesenteric artery, in both smooth muscle and endothelium. The vasodilation effect shown by ACPA was endothelium-dependent through a mechanism involving CB1 receptors, BKCa channel activation, and NO release; meanwhile, the vasodilator effect of JWH-133 was induced by the activation of CB2 receptors located in smooth muscle and by a CB2 receptor-independent mechanism inducing NO release. CONCLUSIONS CB1 and CB2 receptor activation in superior mesenteric artery causes vasorelaxation by mechanisms involving BKCa channels and NO release.
Collapse
Affiliation(s)
- Evelyn López-Dyck
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | | | - Alejandro Elizalde
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Tania Ferrer-Villada
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | | | - Miguel Huerta
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Zyanya Osuna-Calleros
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | | | - Enrique Sánchez-Pastor
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico.
| |
Collapse
|
15
|
Abstract
Heme oxygenases are composed of two isozymes, Hmox1 and Hmox2, that catalyze the degradation of heme to carbon monoxide (CO), ferrous iron, and biliverdin, the latter of which is subsequently converted to bilirubin. While initially considered to be waste products, CO and biliverdin/bilirubin have been shown over the last 20 years to modulate key cellular processes, such as inflammation, cell proliferation, and apoptosis, as well as antioxidant defense. This shift in paradigm has led to the importance of heme oxygenases and their products in cell physiology now being well accepted. The identification of the two human cases thus far of heme oxygenase deficiency and the generation of mice deficient in Hmox1 or Hmox2 have reiterated a role for these enzymes in both normal cell function and disease pathogenesis, especially in the context of cardiovascular disease. This review covers the current knowledge on the function of both Hmox1 and Hmox2 at both a cellular and tissue level in the cardiovascular system. Initially, the roles of heme oxygenases in vascular health and the regulation of processes central to vascular diseases are outlined, followed by an evaluation of the role(s) of Hmox1 and Hmox2 in various diseases such as atherosclerosis, intimal hyperplasia, myocardial infarction, and angiogenesis. Finally, the therapeutic potential of heme oxygenases and their products are examined in a cardiovascular disease context, with a focus on how the knowledge we have gained on these enzymes may be capitalized in future clinical studies.
Collapse
Affiliation(s)
- Anita Ayer
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Abolfazl Zarjou
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Anupam Agarwal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| |
Collapse
|
16
|
Hoshi T, Heinemann SH. Modulation of BK Channels by Small Endogenous Molecules and Pharmaceutical Channel Openers. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:193-237. [PMID: 27238265 DOI: 10.1016/bs.irn.2016.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Voltage- and Ca(2+)-activated K(+) channels of big conductance (BK channels) are abundantly found in various organs and their relevance for smooth muscle tone and neuronal signaling is well documented. Dysfunction of BK channels is implicated in an array of human diseases involving many organs including the nervous, pulmonary, cardiovascular, renal, and urinary systems. In humans a single gene (KCNMA1) encodes the pore-forming α subunit (Slo1) of BK channels, but the channel properties are variable because of alternative splicing, tissue- and subcellular-specific auxiliary subunits (β, γ), posttranslational modifications, and a multitude of endogenous signaling molecules directly affecting the channel function. Initiatives to develop drugs capable of activating BK channels (channel openers) therefore need to consider the tissue-specific variability of BK channel structure and the potential interference with endogenously produced regulatory factors. The atomic structural basis of BK channel function is only beginning to be revealed. However, building on detailed knowledge of BK channel function, including its single-channel characteristics, voltage- and Ca(2+) dependence of channel gating, and modulation by diffusible messengers, a multi-tier allosteric model of BK channel gating (Horrigan and Aldrich (HA) model) has become a valuable tool in studying modulation of the channel. Using the conceptual framework of the HA model, we here review the functional impact of endogenous modulatory factors and select small synthetic compounds that regulate BK channel activity. Furthermore, we devise experimental approaches for studying BK channel-drug interactions with the aim to classify BK-modulating substances according to their molecular mode of action.
Collapse
Affiliation(s)
- T Hoshi
- University of Pennsylvania, Philadelphia, PA, United States.
| | - S H Heinemann
- Friedrich Schiller University Jena & Jena University Hospital, Jena, Germany
| |
Collapse
|
17
|
Data supporting characterization of CLIC1, CLIC4, CLIC5 and DmCLIC antibodies and localization of CLICs in endoplasmic reticulum of cardiomyocytes. Data Brief 2016; 7:1038-44. [PMID: 27104215 PMCID: PMC4826591 DOI: 10.1016/j.dib.2016.03.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/22/2016] [Accepted: 03/16/2016] [Indexed: 01/29/2023] Open
Abstract
Chloride intracellular channel (CLICs) proteins show 60–70% sequence identity to each other, and exclusively localize to the intracellular organelle membranes and cytosol. In support of our recent publication, “Molecular identity of cardiac mitochondrial chloride intracellular channel proteins” (Ponnalagu et al., 2016) [1], it was important to characterize the specificity of different CLIC paralogs/ortholog (CLIC1, CLIC4, CLIC5 and DmCLIC) antibodies used to decipher their localization in cardiac cells. In addition, localization of CLICs in the other organelles such as endoplasmic reticulum (ER) of cardiomyocytes was established. This article also provides data on the different primers used to show the relative abundance of CLIC paralogs in cardiac tissue and the specificity of the various CLIC antibodies used. We demonstrate that the predominant CLICs in the heart, namely CLIC1, CLIC4 and CLIC5, show differential distribution in endoplasmic reticulum. CLIC1 and CLIC4 both show co-localization to the endoplasmic reticulum whereas CLIC5 does not.
Collapse
|
18
|
Fernández-Mariño AI, Cidad P, Zafra D, Nocito L, Domínguez J, Oliván-Viguera A, Köhler R, López-López JR, Pérez-García MT, Valverde MÁ, Guinovart JJ, Fernández-Fernández JM. Tungstate-targeting of BKαβ1 channels tunes ERK phosphorylation and cell proliferation in human vascular smooth muscle. PLoS One 2015; 10:e0118148. [PMID: 25659150 PMCID: PMC4320054 DOI: 10.1371/journal.pone.0118148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/05/2015] [Indexed: 02/07/2023] Open
Abstract
Despite the substantial knowledge on the antidiabetic, antiobesity and antihypertensive actions of tungstate, information on its primary target/s is scarce. Tungstate activates both the ERK1/2 pathway and the vascular voltage- and Ca2+-dependent large-conductance BKαβ1 potassium channel, which modulates vascular smooth muscle cell (VSMC) proliferation and function, respectively. Here, we have assessed the possible involvement of BKαβ1 channels in the tungstate-induced ERK phosphorylation and its relevance for VSMC proliferation. Western blot analysis in HEK cell lines showed that expression of vascular BKαβ1 channels potentiates the tungstate-induced ERK1/2 phosphorylation in a Gi/o protein-dependent manner. Tungstate activated BKαβ1 channels upstream of G proteins as channel activation was not altered by the inhibition of G proteins with GDPβS or pertussis toxin. Moreover, analysis of Gi/o protein activation measuring the FRET among heterologously expressed Gi protein subunits suggested that tungstate-targeting of BKαβ1 channels promotes G protein activation. Single channel recordings on VSMCs from wild-type and β1-knockout mice indicated that the presence of the regulatory β1 subunit was essential for the tungstate-mediated activation of BK channels in VSMCs. Moreover, the specific BK channel blocker iberiotoxin lowered tungstate-induced ERK phosphorylation by 55% and partially reverted (by 51%) the tungstate-produced reduction of platelet-derived growth factor (PDGF)-induced proliferation in human VSMCs. Our observations indicate that tungstate-targeting of BKαβ1 channels promotes activation of PTX-sensitive Gi proteins to enhance the tungstate-induced phosphorylation of ERK, and inhibits PDGF-stimulated cell proliferation in human vascular smooth muscle.
Collapse
Affiliation(s)
- Ana Isabel Fernández-Mariño
- Laboratori de Fisiologia Molecular i Canalopaties, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Pilar Cidad
- Departamento de Bioquímica y Biología Molecular y Fisiología and Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Delia Zafra
- Institute for Research in Biomedicine (IRB Barcelona) and Department of Biochemistry and Molecular Biology, University of Barcelona, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Barcelona, Spain
| | - Laura Nocito
- Institute for Research in Biomedicine (IRB Barcelona) and Department of Biochemistry and Molecular Biology, University of Barcelona, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Barcelona, Spain
| | - Jorge Domínguez
- Institute for Research in Biomedicine (IRB Barcelona) and Department of Biochemistry and Molecular Biology, University of Barcelona, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Barcelona, Spain
| | - Aida Oliván-Viguera
- Aragon Institute of Health Sciences I+CS/IIS and Fundación Agencia Aragonesa para la Investigación y Desarrollo (ARAID), Zaragoza, Spain
| | - Ralf Köhler
- Aragon Institute of Health Sciences I+CS/IIS and Fundación Agencia Aragonesa para la Investigación y Desarrollo (ARAID), Zaragoza, Spain
| | - José R. López-López
- Departamento de Bioquímica y Biología Molecular y Fisiología and Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - María Teresa Pérez-García
- Departamento de Bioquímica y Biología Molecular y Fisiología and Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Miguel Ángel Valverde
- Laboratori de Fisiologia Molecular i Canalopaties, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Joan J. Guinovart
- Institute for Research in Biomedicine (IRB Barcelona) and Department of Biochemistry and Molecular Biology, University of Barcelona, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Barcelona, Spain
| | - José M. Fernández-Fernández
- Laboratori de Fisiologia Molecular i Canalopaties, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail:
| |
Collapse
|
19
|
Yang H, Zhang G, Cui J. BK channels: multiple sensors, one activation gate. Front Physiol 2015; 6:29. [PMID: 25705194 PMCID: PMC4319557 DOI: 10.3389/fphys.2015.00029] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/19/2015] [Indexed: 01/01/2023] Open
Abstract
Ion transport across cell membranes is essential to cell communication and signaling. Passive ion transport is mediated by ion channels, membrane proteins that create ion conducting pores across cell membrane to allow ion flux down electrochemical gradient. Under physiological conditions, majority of ion channel pores are not constitutively open. Instead, structural region(s) within these pores breaks the continuity of the aqueous ion pathway, thereby serves as activation gate(s) to control ions flow in and out. To achieve spatially and temporally regulated ion flux in cells, many ion channels have evolved sensors to detect various environmental stimuli or the metabolic states of the cell and trigger global conformational changes, thereby dynamically operate the opening and closing of their activation gate. The sensors of ion channels can be broadly categorized as chemical sensors and physical sensors to respond to chemical (such as neural transmitters, nucleotides and ions) and physical (such as voltage, mechanical force and temperature) signals, respectively. With the rapidly growing structural and functional information of different types of ion channels, it is now critical to understand how ion channel sensors dynamically control their gates at molecular and atomic level. The voltage and Ca2+ activated BK channels, a K+ channel with an electrical sensor and multiple chemical sensors, provide a unique model system for us to understand how physical and chemical energy synergistically operate its activation gate.
Collapse
Affiliation(s)
- Huanghe Yang
- Ion Channel Research Unit, Duke University Medical Center Durham, NC, USA ; Department of Biochemistry, Duke University Medical Center Durham, NC, USA
| | - Guohui Zhang
- Department of Biomedical Engineering, Washington University in Saint Louis St. Louis, MO, USA
| | - Jianmin Cui
- Department of Biomedical Engineering, Washington University in Saint Louis St. Louis, MO, USA ; Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis St. Louis, MO, USA ; Center for The Investigation of Membrane Excitability Disorders, Washington University in Saint Louis St. Louis, MO, USA
| |
Collapse
|
20
|
Clements RT, Terentyev D, Sellke FW. Ca 2+-Activated K + Channels as Therapeutic Targets for Myocardial and Vascular Protection. Circ J 2015; 79:455-62. [DOI: 10.1253/circj.cj-15-0015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Richard T. Clements
- Department of Surgery, Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University
| | - Dmitry Terentyev
- Department of Medicine, Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University
| | - Frank W. Sellke
- Department of Surgery, Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University
| |
Collapse
|
21
|
Toro L, Li M, Zhang Z, Singh H, Wu Y, Stefani E. MaxiK channel and cell signalling. Pflugers Arch 2014; 466:875-86. [PMID: 24077696 DOI: 10.1007/s00424-013-1359-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 01/23/2023]
Abstract
The large-conductance Ca2+- and voltage-activated K+ (MaxiK, BK, BKCa, Slo1, KCa1.1) channel role in cell signalling is becoming apparent as we learn how the channel interacts with a multiplicity of proteins not only at the plasma membrane but also in intracellular organelles including the endoplasmic reticulum, nucleus, and mitochondria. In this review, we focus on the interactions of MaxiK channels with seven-transmembrane G protein-coupled receptors and discuss information suggesting that, the channel big C-terminus may act as the nucleus of signalling molecules including kinases relevant for cell death and survival. Increasing evidence indicates that the channel is able to associate with a variety of receptors including β-adrenergic receptors, G protein-coupled estrogen receptors, acetylcholine receptors, thromboxane A2 receptors, and angiotensin II receptors, which highlights the varied functions that the channel has (or may have) not only in regulating contraction/relaxation of muscle cells or neurotransmission in the brain but also in cell metabolism, proliferation, migration, and gene expression. In line with this view, MaxiK channels have been implicated in obesity and in brain, prostate, and mammary cancers. A better understanding on the molecular mechanisms underlying or triggered by MaxiK channel abnormalities like overexpression in certain cancers may lead to new therapeutics to prevent devastating diseases.
Collapse
|
22
|
Rottlerin-induced BKCa channel activation impairs specific contractile responses and promotes vasodilation. Ann Thorac Surg 2014; 99:626-34. [PMID: 25527424 DOI: 10.1016/j.athoracsur.2014.07.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/16/2014] [Accepted: 07/21/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND Activation of large conductance calcium-activated potassium (BKCa) channels is cardioprotective for ischemic injury and can enhance vasorelaxation. Rottlerin has recently been identified as a potent BKCa activator. We demonstrated that rottlerin improves cardiac function and increases coronary flow when used as a cardioplegia additive in rat and mouse models of cardioplegic arrest and reperfusion. In this study we examined the effectiveness and specificity of the putative BKCa activator rottlerin on vascular reactivity in response to specific contractile and dilatory agonists. METHODS Aortic rings from wild-type (wt) and BKCa knock-out (KO) mice were mounted in a tissue bath with force transducers. The vasodilatory effect of rottlerin was evaluated after pre-constriction with U46619. Dose responses to the contractile agonists U46619 and phenylephrine (PE), and vasodilation responses to rottlerin, hydrogen sulfide (H2S), and sodium nitroprusside (SNP) were performed after pretreatment with rottlerin. Similar studies were performed in pig coronary vessels. RESULTS The BKCa KO mouse aortic rings exhibited spontaneous contraction and had greater contractile responses to U46619 and reduced vasodilation to SNP compared with wt mice. The wt and KO responses to phenylephrine were similar. Rottlerin dose dependently dilated wild-type vessels, but not in BKCa KO animals. Pretreatment with rottlerin caused depressed U46619 responses, but had no effect on PE, SNP, or H2S-mediated responses. However, pig coronary vessels pretreated with rottlerin exhibited reduced contractile responses and enhanced nitric oxide-dependent dilation. CONCLUSIONS Rottlerin directly causes vasodilation through BKCa channel dependent mechanisms. The BKCa channel activator pretreatment enhances vasodilatory responses and impairs specific vasoconstrictive agonists.
Collapse
|
23
|
Stanley C, O'Sullivan SE. Vascular targets for cannabinoids: animal and human studies. Br J Pharmacol 2014; 171:1361-78. [PMID: 24329566 DOI: 10.1111/bph.12560] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/18/2013] [Accepted: 11/18/2013] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Application of cannabinoids and endocannabinoids to perfused vascular beds or individual isolated arteries results in changes in vascular resistance. In most cases, the result is vasorelaxation, although vasoconstrictor responses are also observed. Cannabinoids also modulate the actions of vasoactive compounds including acetylcholine, methoxamine, angiotensin II and U46619 (thromboxane mimetic). Numerous mechanisms of action have been proposed including receptor activation, potassium channel activation, calcium channel inhibition and the production of vasoactive mediators such as calcitonin gene-related peptide, prostanoids, NO, endothelial-derived hyperpolarizing factor and hydrogen peroxide. The purpose of this review is to examine the evidence for the range of receptors now known to be activated by cannabinoids. Direct activation by cannabinoids of CB1 , CBe , TRPV1 (and potentially other TRP channels) and PPARs in the vasculature has been observed. A potential role for CB2, GPR55 and 5-HT1 A has also been identified in some studies. Indirectly, activation of prostanoid receptors (TP, IP, EP1 and EP4 ) and the CGRP receptor is involved in the vascular responses to cannabinoids. The majority of this evidence has been obtained through animal research, but recent work has confirmed some of these targets in human arteries. Vascular responses to cannabinoids are enhanced in hypertension and cirrhosis, but are reduced in obesity and diabetes, both due to changes in the target sites of action. Much further work is required to establish the extent of vascular actions of cannabinoids and the application of this research in physiological and pathophysiological situations. LINKED ARTICLES This article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6.
Collapse
Affiliation(s)
- Christopher Stanley
- School of Graduate Entry Medicine and Health, University of Nottingham, Royal Derby Hospital, Derby, UK
| | | |
Collapse
|
24
|
Zhang Z, Li M, Lu R, Alioua A, Stefani E, Toro L. The angiotensin II type 1 receptor (AT1R) closely interacts with large conductance voltage- and Ca2+-activated K+ (BK) channels and inhibits their activity independent of G-protein activation. J Biol Chem 2014; 289:25678-89. [PMID: 25070892 DOI: 10.1074/jbc.m114.595603] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Angiotensin II (ANG-II) and BK channels play important roles in the regulation of blood pressure. In arterial smooth muscle, ANG-II inhibits BK channels, but the underlying molecular mechanisms are unknown. Here, we first investigated whether ANG-II utilizes its type 1 receptor (AT1R) to modulate BK activity. Pharmacological, biochemical, and molecular evidence supports a role for AT1R. In renal arterial myocytes, the AT1R antagonist losartan (10 μM) abolished the ANG-II (1 μM)-induced reduction of whole cell BK currents, and BK channels and ANG-II receptors were found to co-localize at the cell periphery. We also found that BK inhibition via ANG-II-activated AT1R was independent of G-protein activation (assessed with 500 μM GDPβS). In BK-expressing HEK293T cells, ANG-II (1 μM) also induced a reduction of BK currents, which was contingent on AT1R expression. The molecular mechanisms of AT1R and BK channel coupling were investigated in co-transfected cells. Co-immunoprecipitation showed formation of a macromolecular complex, and live immunolabeling demonstrated that both proteins co-localized at the plasma membrane with high proximity indexes as in arterial myocytes. Consistent with a close association, we discovered that the sole AT1R expression could decrease BK channel voltage sensitivity. Truncated BK proteins revealed that the voltage-sensing conduction cassette is sufficient for BK-AT1R association. Finally, C-terminal yellow and cyan fluorescent fusion proteins, AT1R-YFP and BK-CFP, displayed robust co-localized Förster resonance energy transfer, demonstrating intermolecular interactions at their C termini. Overall, our results strongly suggest that AT1R regulates BK channels through a close protein-protein interaction involving multiple BK regions and independent of G-protein activation.
Collapse
Affiliation(s)
- Zhu Zhang
- From the Departments of Anesthesiology
| | - Min Li
- From the Departments of Anesthesiology
| | - Rong Lu
- From the Departments of Anesthesiology
| | | | - Enrico Stefani
- From the Departments of Anesthesiology, Physiology, the Brain Research Institute, and the Cardiovascular Research Laboratory, University of California, Los Angeles, California 90095
| | - Ligia Toro
- From the Departments of Anesthesiology, the Brain Research Institute, and the Cardiovascular Research Laboratory, University of California, Los Angeles, California 90095 Molecular and Medical Pharmacology, and
| |
Collapse
|
25
|
Ellinsworth DC, Shukla N, Fleming I, Jeremy JY. Interactions between thromboxane A₂, thromboxane/prostaglandin (TP) receptors, and endothelium-derived hyperpolarization. Cardiovasc Res 2014; 102:9-16. [PMID: 24469536 DOI: 10.1093/cvr/cvu015] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endothelium-dependent smooth muscle hyperpolarization (EDH) increasingly predominates over endothelium-derived nitric oxide (NO) as a participant in vasodilation as vessel size decreases. Its underlying nature is highly variable between vessel types, species, disease states, and exact experimental conditions, and is variably mediated by one or more transferable endothelium-derived hyperpolarizing factors and/or the electrotonic spread of endothelial hyperpolarization into the media via gap junctions. Although generally regarded (and studied) as a mechanism that is independent of NO and prostanoids, evidence has emerged that the endothelium-derived contracting factor and prostanoid thromboxane A2 can modulate several signalling components central to EDH, and therefore potentially curtail vasodilation through mechanisms that are distinct from those putatively involved in direct smooth muscle contraction. Notably, vascular production of thromboxane A2 is elevated in a number of cardiovascular disease states that promote endothelial dysfunction. This review will therefore discuss the mechanisms through which thromboxane A2 interacts with and modulates EDH, and will also consider the implications of such cross-talk in vasodilator control in health and disease.
Collapse
Affiliation(s)
- David C Ellinsworth
- Bristol Heart Institute, University of Bristol, Queens Building Level 7, Upper Maudlin St, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK
| | | | | | | |
Collapse
|
26
|
Hoshi T, Pantazis A, Olcese R. Transduction of voltage and Ca2+ signals by Slo1 BK channels. Physiology (Bethesda) 2013; 28:172-89. [PMID: 23636263 DOI: 10.1152/physiol.00055.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Large-conductance Ca2+ -and voltage-gated K+ channels are activated by an increase in intracellular Ca2+ concentration and/or depolarization. The channel activation mechanism is well described by an allosteric model encompassing the gate, voltage sensors, and Ca2+ sensors, and the model is an excellent framework to understand the influences of auxiliary β and γ subunits and regulatory factors such as Mg2+. Recent advances permit elucidation of structural correlates of the biophysical mechanism.
Collapse
Affiliation(s)
- T Hoshi
- Department of Physiology, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
27
|
Vinuela-Fernandez I, Sun L, Jerina H, Curtis J, Allchorne A, Gooding H, Rosie R, Holland P, Tas B, Mitchell R, Fleetwood-Walker S. The TRPM8 channel forms a complex with the 5-HT(1B) receptor and phospholipase D that amplifies its reversal of pain hypersensitivity. Neuropharmacology 2013; 79:136-51. [PMID: 24269608 DOI: 10.1016/j.neuropharm.2013.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/07/2013] [Accepted: 11/11/2013] [Indexed: 12/25/2022]
Abstract
Effective relief from chronic hypersensitive pain states remains an unmet need. Here we report the discovery that the TRPM8 ion channel, co-operating with the 5-HT(1B) receptor (5-HT(1B)R) in a subset of sensory afferents, exerts an influence at the spinal cord level to suppress central hypersensitivity in pain processing throughout the central nervous system. Using cell line models, ex vivo rat neural tissue and in vivo pain models, we assessed functional Ca(2+) fluorometric responses, protein:protein interactions, immuno-localisation and reflex pain behaviours, with pharmacological and molecular interventions. We report 5-HT(1B)R expression in many TRPM8-containing afferents and direct interaction of these proteins in a novel multi-protein signalling complex, which includes phospholipase D1 (PLD1). We provide evidence that the 5-HT(1B)R activates PLD1 to subsequently activate PIP 5-kinase and generate PIP2, an allosteric enhancer of TRPM8, achieving a several-fold increase in potency of TRPM8 activation. The enhanced activation responses of synaptoneurosomes prepared from spinal cord and cortical regions of animals with a chronic inflammatory pain state are inhibited by TRPM8 activators that were applied in vivo topically to the skin, an effect potentiated by co-administered 5-HT(1B)R agonists and attenuated by 5-HT(1B)R antagonists, while 5-HT(1B)R agents alone had no detectable effect. Corresponding results are seen when assessing reflex behaviours in inflammatory and neuropathic pain models. Control experiments with alternative receptor/TRP channel combinations reveal no such synergy. Identification of this novel receptor/effector/channel complex and its impact on nociceptive processing give new insights into possible strategies for enhanced analgesia in chronic pain.
Collapse
Affiliation(s)
- Ignacio Vinuela-Fernandez
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, United Kingdom
| | - Liting Sun
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, United Kingdom
| | - Helen Jerina
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, United Kingdom
| | - John Curtis
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, United Kingdom
| | - Andrew Allchorne
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, United Kingdom
| | - Hayley Gooding
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, United Kingdom
| | - Roberta Rosie
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, United Kingdom
| | - Pamela Holland
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, United Kingdom
| | - Basak Tas
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, United Kingdom
| | - Rory Mitchell
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, United Kingdom.
| | - Sue Fleetwood-Walker
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, United Kingdom.
| |
Collapse
|
28
|
Fan L, Hao H, Xue Y, Zhang L, Song K, Ding Z, Botella MA, Wang H, Lin J. Dynamic analysis of Arabidopsis AP2 σ subunit reveals a key role in clathrin-mediated endocytosis and plant development. Development 2013; 140:3826-37. [DOI: 10.1242/dev.095711] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clathrin-mediated endocytosis, which depends on the AP2 complex, plays an essential role in many cellular and developmental processes in mammalian cells. However, the function of the AP2 complex in plants remains largely unexplored. Here, we show in Arabidopsis that the AP2 σ subunit mutant (ap2 σ) displays various developmental defects that are similar to those of mutants defective in auxin transport and/or signaling, including single, trumpet-shaped and triple cotyledons, impaired vascular pattern, reduced vegetative growth, defective silique development and drastically reduced fertility. We demonstrate that AP2 σ is closely associated and physically interacts with the clathrin light chain (CLC) in vivo using fluorescence cross-correlation spectroscopy (FCCS), protein proximity analyses and co-immunoprecipitation assays. Using variable-angle total internal reflection fluorescence microscopy (VA-TIRFM), we show that AP2 σ-mCherry spots colocalize with CLC-EGFP at the plasma membrane, and that AP2 σ-mCherry fluorescence appears and disappears before CLC-EGFP fluorescence. The density and turnover rate of the CLC-EGFP spots are significantly reduced in the ap2 σ mutant. The internalization and recycling of the endocytic tracer FM4-64 and the auxin efflux carrier protein PIN1 are also significantly reduced in the ap2 σ mutant. Further, the polar localization of PIN1-GFP is significantly disrupted during embryogenesis in the ap2 σ mutant. Taken together, our results support an essential role of AP2 σ in the assembly of a functional AP2 complex in plants, which is required for clathrin-mediated endocytosis, polar auxin transport and plant growth regulation.
Collapse
Affiliation(s)
- Lusheng Fan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaiqing Hao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yiqun Xue
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Kai Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojun Ding
- School of Life Sciences, Shandong University, Jinan 250100, China
| | - Miguel A. Botella
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, 29071 Malaga, Spain
| | - Haiyang Wang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8104, USA
| | - Jinxing Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
29
|
MitoBK(Ca) is encoded by the Kcnma1 gene, and a splicing sequence defines its mitochondrial location. Proc Natl Acad Sci U S A 2013; 110:10836-41. [PMID: 23754429 DOI: 10.1073/pnas.1302028110] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The large-conductance Ca(2+)- and voltage-activated K(+) channel (BK(Ca), MaxiK), which is encoded by the Kcnma1 gene, is generally expressed at the plasma membrane of excitable and nonexcitable cells. However, in adult cardiomyocytes, a BK(Ca)-like channel activity has been reported in the mitochondria but not at the plasma membrane. The putative opening of this channel with the BK(Ca) agonist, NS1619, protects the heart from ischemic insult. However, the molecular origin of mitochondrial BK(Ca) (mitoBK(Ca)) is unknown because its linkage to Kcnma1 has been questioned on biochemical and molecular grounds. Here, we unequivocally demonstrate that the molecular correlate of mitoBK(Ca) is the Kcnma1 gene, which produces a protein that migrates at ∼140 kDa and arranges in clusters of ∼50 nm in purified mitochondria. Physiological experiments further support the origin of mitoBK(Ca) as a Kcnma1 product because NS1619-mediated cardioprotection was absent in Kcnma1 knockout mice. Finally, BKCa transcript analysis and expression in adult cardiomyocytes led to the discovery of a 50-aa C-terminal splice insert as essential for the mitochondrial targeting of mitoBK(Ca).
Collapse
|
30
|
Li M, Zhang Z, Koh H, Lu R, Jiang Z, Alioua A, Garcia-Valdes J, Stefani E, Toro L. The β1-subunit of the MaxiK channel associates with the thromboxane A2 receptor and reduces thromboxane A2 functional effects. J Biol Chem 2012; 288:3668-77. [PMID: 23255603 DOI: 10.1074/jbc.m112.426585] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The large conductance voltage- and Ca(2+)-activated K(+) channel (MaxiK, BK(Ca), BK) is composed of four pore-forming α-subunits and can be associated with regulatory β-subunits. One of the functional roles of MaxiK is to regulate vascular tone. We recently found that the MaxiK channel from coronary smooth muscle is trans-inhibited by activation of the vasoconstricting thromboxane A(2) prostanoid receptor (TP), a mechanism supported by MaxiK α-subunit (MaxiKα)-TP physical interaction. Here, we examined the role of the MaxiK β1-subunit in TP-MaxiK association. We found that the β1-subunit can by itself interact with TP and that this association can occur independently of MaxiKα. Subcellular localization analysis revealed that β1 and TP are closely associated at the cell periphery. The molecular mechanism of β1-TP interaction involves predominantly the β1 extracellular loop. As reported previously, TP activation by the thromboxane A(2) analog U46619 caused inhibition of MaxiKα macroscopic conductance or fractional open probability (FP(o)) as a function of voltage. However, the positive shift of the FP(o) versus voltage curve by U46619 relative to the control was less prominent when β1 was coexpressed with TP and MaxiKα proteins (20 ± 6 mV, n = 7) than in cells expressing TP and MaxiKα alone (51 ± 7 mV, n = 7). Finally, β1 gene ablation reduced the EC(50) of the U46619 agonist in mediating aortic contraction from 18 ± 1 nm (n = 12) to 9 ± 1 nm (n = 12). The results indicate that the β1-subunit can form a tripartite complex with TP and MaxiKα, has the ability to associate with each protein independently, and diminishes U46619-induced MaxiK channel trans-inhibition as well as vasoconstriction.
Collapse
Affiliation(s)
- Min Li
- Department of Anesthesiology, UCLA, Los Angeles, California 90095-7115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
New insights into structural determinants for prostanoid thromboxane A2 receptor- and prostacyclin receptor-G protein coupling. Mol Cell Biol 2012; 33:184-93. [PMID: 23109431 DOI: 10.1128/mcb.00725-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
G protein-coupled receptors (GPCRs) interact with heterotrimeric G proteins and initiate a wide variety of signaling pathways. The molecular nature of GPCR-G protein interactions in the clinically important thromboxane A2 (TxA(2)) receptor (TP) and prostacyclin (PGI(2)) receptor (IP) is poorly understood. The TP activates its cognate G protein (Gαq) in response to the binding of thromboxane, while the IP signals through Gαs in response to the binding of prostacyclin. Here, we utilized a combination of approaches consisting of chimeric receptors, molecular modeling, and site-directed mutagenesis to precisely study the specificity of G protein coupling. Multiple chimeric receptors were constructed by replacing the TP intracellular loops (ICLs) with the ICL regions of the IP. Our results demonstrate that both the sequences and lengths of ICL2 and ICL3 influenced G protein specificity. Importantly, we identified a precise ICL region on the prostanoid receptors TP and IP that can switch G protein specificities. The validities of the chimeric technique and the derived molecular model were confirmed by introducing clinically relevant naturally occurring mutations (R60L in the TP and R212C in the IP). Our findings provide new molecular insights into prostanoid receptor-G protein interactions, which are of general significance for understanding the structural basis of G protein activation by GPCRs in basic health and cardiovascular disease.
Collapse
|
32
|
Hu XQ, Zhang L. Function and regulation of large conductance Ca(2+)-activated K+ channel in vascular smooth muscle cells. Drug Discov Today 2012; 17:974-87. [PMID: 22521666 PMCID: PMC3414640 DOI: 10.1016/j.drudis.2012.04.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/06/2012] [Accepted: 04/05/2012] [Indexed: 12/23/2022]
Abstract
Large conductance Ca(2+)-activated K(+) (BK(Ca)) channels are abundantly expressed in vascular smooth muscle cells. Activation of BK(Ca) channels leads to hyperpolarization of cell membrane, which in turn counteracts vasoconstriction. Therefore, BK(Ca) channels have an important role in regulation of vascular tone and blood pressure. The activity of BK(Ca) channels is subject to modulation by various factors. Furthermore, the function of BK(Ca) channels are altered in both physiological and pathophysiological conditions, such as pregnancy, hypertension and diabetes, which has dramatic impacts on vascular tone and hemodynamics. Consequently, compounds and genetic manipulation that alter activity and expression of the channel might be of therapeutic interest.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | | |
Collapse
|
33
|
Abstract
Voltage-gated ion channels are transmembrane proteins that control nerve impulses and cell homeostasis. Signaling molecules that regulate ion channel activity and density at the plasma membrane must be specifically and efficiently coupled to these channels in order to control critical physiological functions such as action potential propagation. Although their regulation by G-protein receptor activation has been extensively explored, the assembly of ion channels into signaling complexes of GPCRs plays a fundamental role, engaging specific downstream -signaling pathways that trigger precise downstream effectors. Recent work has confirmed that GPCRs can intimately interact with ion channels and serve as -chaperone proteins that finely control their gating and trafficking in subcellular microdomains. This chapter aims to describe examples of GPCR-ion channel co-assembly, focusing mainly on signaling complexes between GPCRs and voltage-gated calcium channels.
Collapse
|
34
|
Visualization and quantification of cardiac mitochondrial protein clusters with STED microscopy. Mitochondrion 2011; 12:230-6. [PMID: 21982778 DOI: 10.1016/j.mito.2011.09.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 09/09/2011] [Indexed: 12/11/2022]
Abstract
The visualization and quantification of mitochondria-associated proteins with high power microscopy methods is of particular interest to investigate protein architecture in this organelle. We report the usage of a custom-made STimulated Emission Depletion (STED) fluorescence nanoscope with ~30nm lateral resolution for protein mapping of Percoll-purified viable mitochondria from murine heart. Using this approach, we were able to quantify and resolve distinct protein clusters within mitochondria; specifically, cytochrome c oxidase subunit 2 is distributed in clusters of ~28nm; whereas the voltage dependent anion channel 1 displays three size distributions of ~33, ~55 and ~83nm.
Collapse
|
35
|
Javaherian AD, Yusifov T, Pantazis A, Franklin S, Gandhi CS, Olcese R. Metal-driven operation of the human large-conductance voltage- and Ca2+-dependent potassium channel (BK) gating ring apparatus. J Biol Chem 2011; 286:20701-9. [PMID: 21471215 DOI: 10.1074/jbc.m111.235234] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Large-conductance voltage- and Ca(2+)-dependent K(+) (BK, also known as MaxiK) channels are homo-tetrameric proteins with a broad expression pattern that potently regulate cellular excitability and Ca(2+) homeostasis. Their activation results from the complex synergy between the transmembrane voltage sensors and a large (>300 kDa) C-terminal, cytoplasmic complex (the "gating ring"), which confers sensitivity to intracellular Ca(2+) and other ligands. However, the molecular and biophysical operation of the gating ring remains unclear. We have used spectroscopic and particle-scale optical approaches to probe the metal-sensing properties of the human BK gating ring under physiologically relevant conditions. This functional molecular sensor undergoes Ca(2+)- and Mg(2+)-dependent conformational changes at physiologically relevant concentrations, detected by time-resolved and steady-state fluorescence spectroscopy. The lack of detectable Ba(2+)-evoked structural changes defined the metal selectivity of the gating ring. Neutralization of a high-affinity Ca(2+)-binding site (the "calcium bowl") reduced the Ca(2+) and abolished the Mg(2+) dependence of structural rearrangements. In congruence with electrophysiological investigations, these findings provide biochemical evidence that the gating ring possesses an additional high-affinity Ca(2+)-binding site and that Mg(2+) can bind to the calcium bowl with less affinity than Ca(2+). Dynamic light scattering analysis revealed a reversible Ca(2+)-dependent decrease of the hydrodynamic radius of the gating ring, consistent with a more compact overall shape. These structural changes, resolved under physiologically relevant conditions, likely represent the molecular transitions that initiate the ligand-induced activation of the human BK channel.
Collapse
Affiliation(s)
- Anoosh D Javaherian
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, UCLA, Los Angeles, California 90095-7115, USA
| | | | | | | | | | | |
Collapse
|