1
|
Renz-Polster H, Blair PS, Ball HL, Jenni OG, De Bock F. Death from Failed Protection? An Evolutionary-Developmental Theory of Sudden Infant Death Syndrome. HUMAN NATURE (HAWTHORNE, N.Y.) 2024; 35:153-196. [PMID: 39069595 PMCID: PMC11317453 DOI: 10.1007/s12110-024-09474-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/30/2024]
Abstract
Sudden infant death syndrome (SIDS) has been mainly described from a risk perspective, with a focus on endogenous, exogenous, and temporal risk factors that can interact to facilitate lethal outcomes. Here we discuss the limitations that this risk-based paradigm may have, using two of the major risk factors for SIDS, prone sleep position and bed-sharing, as examples. Based on a multipronged theoretical model encompassing evolutionary theory, developmental biology, and cultural mismatch theory, we conceptualize the vulnerability to SIDS as an imbalance between current physiologic-regulatory demands and current protective abilities on the part of the infant. From this understanding, SIDS appears as a developmental condition in which competencies relevant to self-protection fail to develop appropriately in the future victims. Since all of the protective resources in question are bound to emerge during normal infant development, we contend that SIDS may reflect an evolutionary mismatch situation-a constellation in which certain modern developmental influences may overextend the child's adaptive (evolutionary) repertoire. We thus argue that SIDS may be better understood if the focus on risk factors is complemented by a deeper appreciation of the protective resources that human infants acquire during their normal development. We extensively analyze this evolutionary-developmental theory against the body of epidemiological and experimental evidence in SIDS research and thereby also address the as-of-yet unresolved question of why breastfeeding may be protective against SIDS.
Collapse
Affiliation(s)
- Herbert Renz-Polster
- Division of General Medicine, Center for Preventive Medicine and Digital Health Baden- Württemberg (CPD-BW), University Medicine Mannheim, Heidelberg University, Mannheim, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Peter S Blair
- Centre for Academic Child Health, Population Health Sciences, University of Bristol, Bristol, UK
| | - Helen L Ball
- Department of Anthropology, Durham Infancy & Sleep Centre, Durham University, Durham, UK
| | - Oskar G Jenni
- Child Development Center at the University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Freia De Bock
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
2
|
Vitali H, Campus C, Signorini S, De Giorgis V, Morelli F, Varesio C, Pasca L, Sammartano A, Gori M. Blindness affects the developmental trajectory of the sleeping brain. Neuroimage 2024; 286:120508. [PMID: 38181867 DOI: 10.1016/j.neuroimage.2024.120508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/07/2024] Open
Abstract
Sleep plays a crucial role in brain development, sensory information processing, and consolidation. Sleep spindles are markers of these mechanisms as they mirror the activity of the thalamocortical circuits. Spindles can be subdivided into two groups, slow (10-13 Hz) and fast (13-16 Hz), which are each associated with different functions. Specifically, fast spindles oscillate in the high-sigma band and are associated with sensorimotor processing, which is affected by visual deprivation. However, how blindness influences spindle development has not yet been investigated. We recorded nap video-EEG of 50 blind/severely visually impaired (BSI) and 64 sighted children aged 5 months to 6 years old. We considered aspects of both macro- and micro-structural spindles. The BSI children lacked the evolution of developmental spindles within the central area. Specifically, young BSI children presented low central high-sigma and high-beta (25-30 Hz) event-related spectral perturbation and showed no signs of maturational decrease. High-sigma and high-beta activity in the BSI group correlated with clinical indices predicting perceptual and motor disorders. Our findings suggest that fast spindles are pivotal biomarkers for identifying an early developmental deviation in BSI children. These findings are critical for initial therapeutic intervention.
Collapse
Affiliation(s)
- Helene Vitali
- Unit for Visually Impaired People, Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, Genoa 16152, Italy; DIBRIS, University of Genova, Genoa 16145, Italy
| | - Claudio Campus
- Unit for Visually Impaired People, Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, Genoa 16152, Italy
| | - Sabrina Signorini
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Valentina De Giorgis
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia 27100, Italy; Member of European Reference Network for Rare and Complex Epilepsies, EpiCARE, Italy
| | - Federica Morelli
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia 27100, Italy
| | - Costanza Varesio
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia 27100, Italy; Member of European Reference Network for Rare and Complex Epilepsies, EpiCARE, Italy
| | - Ludovica Pasca
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia 27100, Italy; Member of European Reference Network for Rare and Complex Epilepsies, EpiCARE, Italy
| | - Alessia Sammartano
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy; Member of European Reference Network for Rare and Complex Epilepsies, EpiCARE, Italy
| | - Monica Gori
- Unit for Visually Impaired People, Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, Genoa 16152, Italy.
| |
Collapse
|
3
|
Ataei S, Simo E, Bergers M, Schoch SF, Axmacher N, Dresler M. Learning during sleep in humans - A historical review. Sleep Med Rev 2023; 72:101852. [PMID: 37778137 DOI: 10.1016/j.smrv.2023.101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
Sleep helps to consolidate previously acquired memories. Whether new information such as languages and other useful skills can also be learned during sleep has been debated for over a century, however, the sporadic studies' different objectives and varied methodologies make it difficult to draw definitive conclusions. This review provides a comprehensive overview of the history of sleep learning research conducted in humans, from its empirical beginnings in the 1940s to the present day. Synthesizing the findings from 51 research papers, we show that several studies support the notion that simpler forms of learning, such as habituation and conditioning, are possible during sleep. In contrast, the findings for more complex, applied learning (e.g., learning a new language during sleep) are more divergent. While there is often an indication of processing and learning during sleep when looking at neural markers, behavioral evidence for the transfer of new knowledge to wake remains inconclusive. We close by critically examining the limitations and assumptions that have contributed to the discrepancies in the literature and highlight promising new directions in the field.
Collapse
Affiliation(s)
- Somayeh Ataei
- Department of Neuropsychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eni Simo
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mathijs Bergers
- Department of Psychiatry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sarah F Schoch
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, CH, Switzerland
| | - Nikolai Axmacher
- Department of Neuropsychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
4
|
Wang X, Bik A, de Groot ER, Tataranno ML, Benders MJNL, Dudink J. Feasibility of automated early postnatal sleep staging in extremely and very preterm neonates using dual-channel EEG. Clin Neurophysiol 2023; 146:55-64. [PMID: 36535092 DOI: 10.1016/j.clinph.2022.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 10/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the feasibility of automated sleep staging based on quantitative analysis of dual-channel electroencephalography (EEG) for extremely and very preterm infants during their first postnatal days. METHODS We enrolled 17 preterm neonates born between 25 and 30 weeks of gestational age. Three-hour behavioral sleep observations and simultaneous dual-channel EEG monitoring were conducted for each infant within their first 72 hours after birth. Four kinds of representative and complementary quantitative EEG (qEEG) metrics (i.e., bursting, synchrony, spectral power, and complexity) were calculated and compared between active sleep, quiet sleep, and wakefulness. All analyses were performed in offline mode. RESULTS In separate comparison analyses, significant differences between sleep-wake states were found for bursting, spectral power and complexity features. The automated sleep-wake state classifier based on the combination of all qEEG features achieved a macro-averaged area under the curve of receiver operating characteristic of 74.8%. The complexity features contributed the most to sleep-wake state classification. CONCLUSIONS It is feasible to distinguish between sleep-wake states within the first 72 postnatal hours for extremely and very preterm infants using qEEG metrics. SIGNIFICANCE Our findings offer the possibility of starting personalized care dependent on preterm infants' sleep-wake states directly after birth, potentially yielding long-run benefits for their developmental outcomes.
Collapse
Affiliation(s)
- Xiaowan Wang
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anne Bik
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eline R de Groot
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maria Luisa Tataranno
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Lenehan SM, Fogarty L, O’Connor C, Mathieson S, Boylan GB. The Architecture of Early Childhood Sleep Over the First Two Years. Matern Child Health J 2023; 27:226-250. [PMID: 36586054 PMCID: PMC9925493 DOI: 10.1007/s10995-022-03545-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2022] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The architecture and function of sleep during infancy and early childhood has not been fully described in the scientific literature. The impact of early sleep disruption on cognitive and physical development is also under-studied. The aim of this review was to investigate early childhood sleep development over the first two years and its association with neurodevelopment. METHODS This review was conducted according to the 2009 PRISMA guidelines. Four databases (OVID Medline, Pubmed, CINAHL, and Web of Science) were searched according to predefined search terms. RESULTS Ninety-three studies with approximately 90,000 subjects from demographically diverse backgrounds were included in this review. Sleep is the predominant state at birth. There is an increase in NREM and a decrease in REM sleep during the first two years. Changes in sleep architecture occur in tandem with development. There are more studies exploring sleep and early infancy compared to mid and late infancy and early childhood. DISCUSSION Sleep is critical for memory, learning, and socio-emotional development. Future longitudinal studies in infants and young children should focus on sleep architecture at each month of life to establish the emergence of key characteristics, especially from 7-24 months of age, during periods of rapid neurodevelopmental progress.
Collapse
Affiliation(s)
| | - Leanna Fogarty
- INFANT Research Centre, University College Cork, Cork, Ireland
| | - Cathal O’Connor
- INFANT Research Centre, University College Cork, Cork, Ireland
| | - Sean Mathieson
- INFANT Research Centre, University College Cork, Cork, Ireland
| | | |
Collapse
|
6
|
Dumont V, Giovannella M, Zuba D, Clouard R, Durduran T, Guillois B, Roche-Labarbe N. Somatosensory prediction in the premature neonate brain. Dev Cogn Neurosci 2022; 57:101148. [PMID: 36027649 PMCID: PMC9428805 DOI: 10.1016/j.dcn.2022.101148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/11/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Sensory prediction (SP) is at the core of early cognitive development. Impaired SP may be a key to understanding the emergence of neurodevelopmental disorders, however there is little data on how and when this skill emerges. We set out to provide evidence of SP in the brain of premature neonates in the fundamental sensory modality: touch. Using Diffuse Correlation Spectroscopy, we measured blood flow changes in the somatosensory cortex of premature neonates presented with a vibrotactile stimulation-omission sequence. When ISI was fixed, participants presented a decrease in blood flow during stimulus omissions, starting when a stimulus should begin: the expectation of a certain stimulus onset induced deactivation of the somatosensory cortex. When ISI was jittered, we observed an increase in blood flow during omissions: the expectation of a likely but not certain stimulus onset induced activation of the somatosensory cortex. Our results reveal SP in the brain as early as four weeks before term, based on the temporal structure of a unimodal somatosensory stimulation, and show that SP produces opposite regulation of activity in the somatosensory cortex depending on how liable is stimulus onset. Future studies will investigate the predictive value of somatosensory prediction on neurodevelopment in this vulnerable population.
Collapse
Affiliation(s)
- Victoria Dumont
- Normandie Univ, UNICAEN, LPCN, 14000 Caen, France; Normandie Univ, UNICAEN, INSERM, COMETE, 14000 Caen, France.
| | - Martina Giovannella
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Daniel Zuba
- Normandie Univ, UNICAEN, INSERM, COMETE, 14000 Caen, France; CHU, 14000 Caen, France
| | - Régis Clouard
- Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08015 Barcelona, Spain
| | - Bernard Guillois
- Normandie Univ, UNICAEN, LPCN, 14000 Caen, France; CHU, 14000 Caen, France
| | | |
Collapse
|
7
|
Kumaravel VP, Farella E, Parise E, Buiatti M. NEAR: An artifact removal pipeline for human newborn EEG data. Dev Cogn Neurosci 2022; 54:101068. [PMID: 35085870 PMCID: PMC8800139 DOI: 10.1016/j.dcn.2022.101068] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/15/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
Electroencephalography (EEG) is arising as a valuable method to investigate neurocognitive functions shortly after birth. However, obtaining high-quality EEG data from human newborn recordings is challenging. Compared to adults and older infants, datasets are typically much shorter due to newborns’ limited attentional span and much noisier due to non-stereotyped artifacts mainly caused by uncontrollable movements. We propose Newborn EEG Artifact Removal (NEAR), a pipeline for EEG artifact removal designed explicitly for human newborns. NEAR is based on two key steps: 1) A novel bad channel detection tool based on the Local Outlier Factor (LOF), a robust outlier detection algorithm; 2) A parameter calibration procedure for adapting to newborn EEG data the algorithm Artifacts Subspace Reconstruction (ASR), developed for artifact removal in mobile adult EEG. Tests on simulated data showed that NEAR outperforms existing methods in removing representative newborn non-stereotypical artifacts. NEAR was validated on two developmental populations (newborns and 9-month-old infants) recorded with two different experimental designs (frequency-tagging and ERP). Results show that NEAR artifact removal successfully reproduces established EEG responses from noisy datasets, with a higher statistical significance than the one obtained by existing artifact removal methods. The EEGLAB-based NEAR pipeline is freely available at https://github.com/vpKumaravel/NEAR.
Collapse
|
8
|
Sun X, Xue F, Wen J, Gao L, Li Y, Yang L, Cui H. Longitudinal Analysis of Sleep-Wake States in Neonatal Rats Subjected to Hypoxia-Ischemia. Nat Sci Sleep 2022; 14:335-346. [PMID: 35256868 PMCID: PMC8898167 DOI: 10.2147/nss.s352035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Sleep is necessary for brain maturation in infants. Perinatal hypoxic-ischemic encephalopathy (HIE) is a major cause of chronic neurological disease in infants. Although the developmental changes of electroencephalogram (EEG) in human newborns have been described, little is known about the EEG normal maturation characteristics in rodents and the changes in sleep-awake states caused by hypoxia-ischemia (HI). This study aimed to investigate the pathological response of sleep-wake states in neonatal rats with HIE. METHODS We constructed HIE and sham models on postnatal day (P) 3 rats and continuously monitored them using electroencephalography and electromyography for up to P12. The distribution of sleep-wake states was analyzed to estimate the effects of HIE. RESULTS Compared with the sham group, the HI group showed lower rapid eye movement (REM) sleep percentage, but wake percentage and frequency was higher during P4-P12. The frequency of REM and non-rapid eye movement (NREM) sleep increased and the duration of REM and NREM sleep decreased after HI induction. However, it gradually returned to the normal level with an increase in daytime. CONCLUSION HI damage alters the sleep-wake patterns during early neural development. The findings provide a comprehensive assessment of serial sleep-wake state recordings in neonatal rats from P4-P12.
Collapse
Affiliation(s)
- Xiaowei Sun
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Fenqin Xue
- Department of Core Facility Center, Capital Medical University, Beijing, People's Republic of China
| | - Jialin Wen
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Limin Gao
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yang Li
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lijun Yang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hong Cui
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
9
|
Influence of mothers' nighttime responses on the sleep-wake rhythm of 1-month-old infants. Sci Rep 2021; 11:24363. [PMID: 34934114 PMCID: PMC8692310 DOI: 10.1038/s41598-021-03717-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/09/2021] [Indexed: 11/08/2022] Open
Abstract
The purpose of this study was to analyze the influence of the mothers' nighttime responses on the sleep-wake rhythm of their 1-month-old infants. This study used an anonymous self-administered survey questionnaire with 1133 mothers of 1-month-old infants. The questionnaire investigated basic information about the parents, growth environment of infants, mothers' sleep patterns during pregnancy, and infants' sleep patterns at the age of one month. Logistic regression analysis was used to analyze the influence of nighttime responses on the risk of infants sleeping longer during the day than at night. Regarding nighttime response behavior, it was found that immediately picking up 1-month-old infants results in longer sleep during the day than at night (OR 1.616 [1.017 - 2.566], p = 0.042), compared to delaying picking up the infant. It was suggested that the stimulation due to picking up an infant may affect sleep-wake rhythm formation.
Collapse
|
10
|
Yu J, Jin H, Wen L, Zhang W, Saffery R, Tong C, Qi H, Kilby MD, Baker PN. Insufficient sleep during infancy is correlated with excessive weight gain in childhood: a longitudinal twin cohort study. J Clin Sleep Med 2021; 17:2147-2154. [PMID: 34666881 DOI: 10.5664/jcsm.9350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES To examine total sleep duration in infancy and the associations of insufficient sleep duration with later weight gain and the risk of overweight in a longitudinal twin cohort study. METHODS The data for this study are from the Longitudinal Twin Study (LoTiS), a twin-pregnancy birth cohort study that was carried out in China (n = 186 pairs). The sleep data were collected at 6 months using the Brief Infant Sleep Questionnaire that was completed by parents with the assistance of a research assistant. Anthropometric data were obtained from the children's health clinic records at 6, 12, 18, and 24 months. RESULTS There were no significant differences between infants with insufficient sleep and those with sufficient sleep in terms of height, weight, body mass index, incidence of overweight, and body fat mass, while infants with insufficient sleep duration were predisposed to gain excessive weight from 6 to 12 and 6 to 18 months of age (all P < .05). After adjusting for confounding variables, insufficient sleep duration was found to be correlated with excessive weight gain from 6 to 18 months of age (odds ratio: 3.47; 95% confidence interval, 1.23-9.78). The relationship was more pronounced in monozygotic twins than in dizygotic twins. CONCLUSIONS Insufficient total sleep duration at the age of 6 months is correlated with the risk of excessive weight gain at 18 months of age in twins, particularly in monozygotic twins. CLINICAL TRIAL REGISTRATION Registry: Chinese Clinical Trial Register; Name: Unraveling the complex interplay between genes and environment in specifying early life determinants of illness in infancy: a longitudinal prenatal study of Chinese Twins. URL: http://www.chictr.org.cn/showproj.aspx?proj=13839; Identifier: ChiCTR-OOC-16008203. CITATION Yu J, Jin H, Wen L, et al. Insufficient sleep during infancy is correlated with excessive weight gain in childhood: a longitudinal twin cohort study. J Clin Sleep Med. 2021;17(11):2147-2154.
Collapse
Affiliation(s)
- Jiaxiao Yu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huili Jin
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Wen
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjin Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Richard Saffery
- Cancer, Disease, and Developmental Epigenetics, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Pediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Chao Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Mark D Kilby
- Centre for Women's and Newborn Health, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Philip N Baker
- College of Life Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
11
|
Abstract
The perinatal brain is well equipped to react to the environment during sleep. Several lines of research in animals and humans prior to and immediately after birth have documented the capability to respond, to process and remember patterns of stimulation. In this article, we will summarize recent findings as well as previous work documenting the memory and learning capacities of the developing brain during sleep and wake states. The role of these sleep state dependent processes may play in the ability to adapt to the postnatal environment will be discussed.
Collapse
Affiliation(s)
- Bridget Callaghan
- Department of Psychiatry, Columbia University et à la Division of Developmental Neuroscience, New York State, Psychiatric Institute, New York, New York, États-Unis
| | - William P Fifer
- Department of Psychiatry, Columbia University et à la Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York, États-Unis
| |
Collapse
|
12
|
Georgoulas A, Jones L, Laudiano-Dray MP, Meek J, Fabrizi L, Whitehead K. Sleep-wake regulation in preterm and term infants. Sleep 2021; 44:5889156. [PMID: 32770211 PMCID: PMC7819838 DOI: 10.1093/sleep/zsaa148] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/25/2020] [Indexed: 11/19/2022] Open
Abstract
Study Objectives In adults, wakefulness can be markedly prolonged at the expense of sleep, e.g. to stay vigilant in the presence of a stressor. These extra-long wake bouts result in a heavy-tailed distribution (highly right-skewed) of wake but not sleep durations. In infants, the relative importance of wakefulness and sleep are reversed, as sleep is necessary for brain maturation. Here, we tested whether these developmental pressures are associated with the unique regulation of sleep–wake states. Methods In 175 infants of 28–40 weeks postmenstrual age (PMA), we monitored sleep–wake states using electroencephalography and behavior. We constructed survival models of sleep–wake bout durations and the effect of PMA and other factors, including stress (salivary cortisol), and examined whether sleep is resilient to nociceptive perturbations (a clinically necessary heel lance). Results Wake durations followed a heavy-tailed distribution as in adults and lengthened with PMA and stress. However, differently from adults, active sleep durations also had a heavy-tailed distribution, and with PMA, these shortened and became vulnerable to nociception-associated awakenings. Conclusions Sleep bouts are differently regulated in infants, with especially long active sleep durations that could consolidate this state’s maturational functions. Curtailment of sleep by stress and nociception may be disadvantageous, especially for preterm infants given the limited value of wakefulness at this age. This could be addressed by environmental interventions in the future.
Collapse
Affiliation(s)
| | - Laura Jones
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Maria Pureza Laudiano-Dray
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Judith Meek
- Elizabeth Garrett Anderson Wing, University College London Hospitals, London, United Kingdom
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Kimberley Whitehead
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
13
|
Shedding light on excessive crying in babies. Pediatr Res 2021; 89:1239-1244. [PMID: 32629458 DOI: 10.1038/s41390-020-1048-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 05/29/2020] [Accepted: 06/20/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Excessive and inconsolable crying behavior in otherwise healthy infants (a condition called infant colic (IC)) is very distressing to parents, may lead to maternal depression, and in extreme cases, may result in shaken baby syndrome. Despite the high prevalence of this condition (20% of healthy infants), the underlying neural mechanisms of IC are still unknown. METHODS By employing the latest magnetic resonance imaging (MRI) techniques in newborns, we prospectively investigated whether newborns' early brain responses to a sensory stimulus (smell) is associated with a subsequent crying behavior. RESULTS In our sample population of 21 healthy breastfed newborns, those who developed IC at 6 weeks exhibited brain activation and functional connectivity in primary and secondary olfactory brain areas that were distinct from those in babies that did not develop IC. Different activation in brain regions known to be involved in sensory integration was also observed in colicky babies. These responses measured shortly after birth were highly correlated with the mean crying time at 6 weeks of age. CONCLUSIONS Our results offer novel insights into IC pathophysiology by demonstrating that, shortly after birth, the central nervous system of babies developing IC has already greater reactivity to sensory stimuli than that of their noncolicky peers. IMPACT Shortly after birth, the central nervous system of colicky infants has a greater sensitivity to olfactory stimuli than that of their noncolicky peers. This early sensitivity explains as much as 48% of their subsequent crying behavior at 6 weeks of life. Brain activation patterns to olfactory stimuli in colicky infants include not only primary olfactory areas but also brain regions involved in pain processing, emotional valence attribution, and self-regulation. This study links earlier findings in fields as diverse as gastroenterology and behavioral psychology and has the potential of helping healthcare professionals to define strategies to advise families.
Collapse
|
14
|
Heller NA, Shrestha H, Morrison DG, Daigle KM, Logan BA, Paul JA, Brown MS, Hayes MJ. Neonatal sleep development and early learning in infants with prenatal opioid exposure. ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2021; 60:199-228. [PMID: 33641794 DOI: 10.1016/bs.acdb.2020.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of this chapter is to examine the role of sleep and cognition in the context of the cumulative risk model examining samples of at-risk infants and maternal-infant dyads. The cumulative risk model posits that non-optimal developmental outcomes are the result of multiple factors in a child's life including, but not limited to, prenatal teratogenic exposures, premature birth, family socioeconomic status, parenting style and cognitions as well as the focus of this volume, sleep. We highlight poor neonatal sleep as both an outcome of perinatal risk as well as a risk factor to developing attentional and cognitive capabilities during early childhood. Outcomes associated with and contributing to poor sleep and cognition during infancy are examined in relation to other known risks in our clinical population. Implications of this research and recommendations for interventions for this population are provided.
Collapse
Affiliation(s)
- Nicole A Heller
- Department of Psychology, Siena College, Loudonville, NY, United States
| | - Hira Shrestha
- Department of Pediatrics, Boston Medical Center, Boston, MA, United States
| | - Deborah G Morrison
- Department of Psychiatry, University of Florida, Gainesville, FL, United States
| | - Katrina M Daigle
- Department of Psychology, Suffolk University, Boston, MA, United States
| | - Beth A Logan
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Jonathan A Paul
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| | - Mark S Brown
- Department of Pediatrics, Northern Light Eastern Maine Medical Center, Bangor, ME, United States
| | - Marie J Hayes
- Department of Psychology and Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States.
| |
Collapse
|
15
|
Ortiz Barajas MC, Guevara R, Gervain J. The origins and development of speech envelope tracking during the first months of life. Dev Cogn Neurosci 2021; 48:100915. [PMID: 33515956 PMCID: PMC7847966 DOI: 10.1016/j.dcn.2021.100915] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/25/2020] [Accepted: 01/08/2021] [Indexed: 11/30/2022] Open
Abstract
The adult brain tracks the modulation of the amplitude of speech, i.e. its envelope. We tested if preverbal infants, i.e. newborns & 6-month-olds, track the speech envelope. Infants track the envelope phase at both ages in the native language & in unfamiliar languages. Infants track the envelope amplitude in the native language at birth but not at 6 months. This suggests that phase tracking is unrelated to language experience, whereas amplitude tracking is shaped by experience.
When humans listen to speech, their neural activity tracks the slow amplitude fluctuations of the speech signal over time, known as the speech envelope. Studies suggest that the quality of this tracking is related to the quality of speech comprehension. However, a critical unanswered question is how envelope tracking arises and what role it plays in language development. Relatedly, its causal role in comprehension remains unclear, as some studies have found it to be present even for unintelligible speech. Using electroencephalography, we investigated whether the neural activity of newborns and 6-month-olds is able to track the speech envelope of familiar and unfamiliar languages in order to explore the developmental origins and functional role of envelope tracking. Our results show that amplitude and phase tracking take place at birth for familiar and unfamiliar languages alike, i.e. independently of prenatal experience. However, by 6 months language familiarity modulates the ability to track the amplitude of the speech envelope, while phase tracking continues to be universal. Our findings support the hypothesis that amplitude and phase tracking could represent two different neural mechanisms of oscillatory synchronisation and may thus play different roles in speech perception.
Collapse
Affiliation(s)
| | - Ramón Guevara
- Department of Physics and Astronomy, University of Padua, Padua, Italy
| | - Judit Gervain
- Integrative Neuroscience and Cognition Center, CNRS & Université de Paris, Paris, France; Department of Developmental Psychology and Socialization, University of Padua, Padua, Italy
| |
Collapse
|
16
|
Kahn M, Barnett N, Glazer A, Gradisar M. Infant sleep during COVID-19: Longitudinal analysis of infants of US mothers in home confinement versus working as usual. Sleep Health 2020; 7:19-23. [PMID: 33243718 DOI: 10.1016/j.sleh.2020.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/02/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES This study longitudinally compared the sleep of infants in the United States whose mothers were in home confinement to those whose mothers were working as usual throughout the COVID-19 pandemic. METHODS Mothers of 572 infants (46% girls) aged 1-12 months (M = 5.9, standard deviation = 2.9) participated. Assessments were conducted on 4 occasions from late March to May 2020. Infant sleep was measured objectively using auto-videosomnography. Mothers reported their sheltering status, demographic characteristics, and infant sleep. RESULTS Infants of mothers in home confinement had later sleep offset times and longer nighttime sleep durations, compared to infants of mothers who were working as usual. At the end of March, these infants also had earlier bedtimes, more nighttime awakenings, and more parental nighttime visits, but differences were not apparent during April and May. CONCLUSIONS Living restrictions issued in the United States may have led to longer sleep durations and temporary delays in sleep consolidation for infants of mothers in home confinement.
Collapse
Affiliation(s)
- Michal Kahn
- Flinders University, College of Education, Psychology and Social Work, Adelaide, SA, Australia.
| | | | - Assaf Glazer
- Research Department, Nanit, New York, New York, USA
| | - Michael Gradisar
- Flinders University, College of Education, Psychology and Social Work, Adelaide, SA, Australia
| |
Collapse
|
17
|
Dall'Orso S, Fifer WP, Balsam PD, Brandon J, O'Keefe C, Poppe T, Vecchiato K, Edwards AD, Burdet E, Arichi T. Cortical Processing of Multimodal Sensory Learning in Human Neonates. Cereb Cortex 2020; 31:1827-1836. [PMID: 33207366 PMCID: PMC7869081 DOI: 10.1093/cercor/bhaa340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Following birth, infants must immediately process and rapidly adapt to the array of unknown sensory experiences associated with their new ex-utero environment. However, although it is known that unimodal stimuli induce activity in the corresponding primary sensory cortices of the newborn brain, it is unclear how multimodal stimuli are processed and integrated across modalities. The latter is essential for learning and understanding environmental contingencies through encoding relationships between sensory experiences; and ultimately likely subserves development of life-long skills such as speech and language. Here, for the first time, we map the intracerebral processing which underlies auditory-sensorimotor classical conditioning in a group of 13 neonates (median gestational age at birth: 38 weeks + 4 days, range: 32 weeks + 2 days to 41 weeks + 6 days; median postmenstrual age at scan: 40 weeks + 5 days, range: 38 weeks + 3 days to 42 weeks + 1 days) with blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (MRI) and magnetic resonance (MR) compatible robotics. We demonstrate that classical conditioning can induce crossmodal changes within putative unimodal sensory cortex even in the absence of its archetypal substrate. Our results also suggest that multimodal learning is associated with network wide activity within the conditioned neural system. These findings suggest that in early life, external multimodal sensory stimulation and integration shapes activity in the developing cortex and may influence its associated functional network architecture.
Collapse
Affiliation(s)
- S Dall'Orso
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.,Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, London SE1 7EH, UK.,Department of Electrical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - W P Fifer
- Department of Psychiatry, Columbia University, New York 10032, NY
| | - P D Balsam
- Department of Psychiatry, Columbia University, New York 10032, NY
| | - J Brandon
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, London SE1 7EH, UK
| | - C O'Keefe
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, London SE1 7EH, UK
| | - T Poppe
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, London SE1 7EH, UK
| | - K Vecchiato
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, London SE1 7EH, UK
| | - A D Edwards
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.,Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, London SE1 7EH, UK
| | - E Burdet
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - T Arichi
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.,Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, London SE1 7EH, UK.,Paediatric Neurosciences, Evelina London Children's Hospital, St Thomas' Hospital, London SE1 7EH, UK
| |
Collapse
|
18
|
Karino G, Senoo A, Kunikata T, Kamei Y, Yamanouchi H, Nakamura S, Shukuya M, Colman RJ, Koshiba M. Inexpensive Home Infrared Living/Environment Sensor with Regional Thermal Information for Infant Physical and Psychological Development. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186844. [PMID: 32961676 PMCID: PMC7559736 DOI: 10.3390/ijerph17186844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/24/2022]
Abstract
The use of home-based image sensors for biological and environmental monitoring provides novel insight into health and development but it is difficult to evaluate people during their normal activities in their home. Therefore, we developed a low-cost infrared (IR) technology-based motion, location, temperature and thermal environment detection system that can be used non-invasively for long-term studies in the home environment. We tested this technology along with the associated analysis algorithm to visualize the effects of parental care and thermal environment on developmental state change in a non-human primate model, the common marmoset (Callithrix jacchus). To validate this system, we first compared it to a manual analysis technique and we then assessed the development of circadian rhythms in common marmosets from postnatal day 15–45. The semi-automatically tracked biological indices of locomotion velocity (BV) and body surface temperature (BT) and the potential psychological index of place preference toward the door (BD), showed age-dependent shifts in circadian phase patterns. Although environmental variables appeared to affect circadian rhythm development, principal component analysis and signal superimposing imaging methods revealed a novel phasic pattern of BD-BT correlation day/night switching in animals older than postnatal day 38 (approximately equivalent to one year of age in humans). The origin of this switch was related to earlier development of body temperature (BT) rhythms and alteration of psychological behavior rhythms (BD) around earlier feeding times. We propose that this cost-effective, inclusive sensing and analytic technique has value for understanding developmental care conditions for which continual home non-invasive monitoring would be beneficial and further suggest the potential to adapt this technique for use in humans.
Collapse
Affiliation(s)
- Genta Karino
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (G.K.); (A.S.); (S.N.)
- Department of Pediatrics, Saitama Medical University, Saitama 350-0495, Japan; (T.K.); (H.Y.)
- Research Fellow of the Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Aya Senoo
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (G.K.); (A.S.); (S.N.)
| | - Tetsuya Kunikata
- Department of Pediatrics, Saitama Medical University, Saitama 350-0495, Japan; (T.K.); (H.Y.)
| | - Yoshimasa Kamei
- Department of Obstetrics and Gynecology, Saitama Medical University, Saitama 350-0495, Japan;
| | - Hideo Yamanouchi
- Department of Pediatrics, Saitama Medical University, Saitama 350-0495, Japan; (T.K.); (H.Y.)
| | - Shun Nakamura
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (G.K.); (A.S.); (S.N.)
| | - Masanori Shukuya
- Faculty of Environmental Studies Department of Restoration Ecology and Built Environment, Tokyo City University, Kanagawa 224-8551, Japan;
| | - Ricki J. Colman
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
- Department of Cell & Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
- Correspondence: (R.J.C.); (M.K.)
| | - Mamiko Koshiba
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (G.K.); (A.S.); (S.N.)
- Department of Pediatrics, Saitama Medical University, Saitama 350-0495, Japan; (T.K.); (H.Y.)
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 755-8611, Japan
- Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan
- Correspondence: (R.J.C.); (M.K.)
| |
Collapse
|
19
|
Konrad C, Adolph D, Herbert JS, Neuhoff L, Mohr C, Jagusch-Poirier J, Seehagen S, Weigelt S, Schneider S. A New 3-Day Standardized Eyeblink Conditioning Protocol to Assess Extinction Learning From Infancy to Adulthood. Front Behav Neurosci 2020; 14:135. [PMID: 32922270 PMCID: PMC7457038 DOI: 10.3389/fnbeh.2020.00135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/13/2020] [Indexed: 11/25/2022] Open
Abstract
Associative learning can be observed from the neonatal period onward, providing opportunities to examine changes in basic learning and memory abilities. One method that is suitable to study associative learning is classical eyeblink conditioning (EBC) which is dependent on the cerebellum. Extinction learning can be systematically investigated in this paradigm by varying the context during learning and extinction. Because of methodological difficulties and ethical challenges, no studies have compared extinction learning using EBC across human development. Our goal was to test feasibility of a 3-day delay EBC paradigm that can be used from infancy to adulthood. Acceptance/safety was tested especially for infancy by investigating attrition rates and parental report on infant wellbeing. On a paradigm side, we tested if the paradigm leads to successful acquisition and extinction. An air puff served as unconditional stimulus (US) and a tone as conditional stimulus (CS). On day 1 during acquisition, participants received 36 US–CS pairings in context A. On day 2, participants received 12 acquisition trials in context A to consolidate association learning, followed by 48 extinction trials (tone alone presentations) in context B. Renewal was assessed on day 3 and incorporated 12 CS alone trials presented in both the acquisition context and the extinction context. Eyeblink responses were videotaped and coded offline. The protocol was tested with 12–36-months-old infants (N = 72), adolescents (N = 8), and adults (N = 8). Concerning the acceptance/safety side, attrition ranged from 21 to 58% in infant samples due to the complex preparation of the children for the paradigm. However, attrition is equal to or lower than other infant learning paradigms. Parents of infant samples were very interested in the paradigm and reported low levels of infant stress, exhaustion, and negative feelings during the sessions. Data quality was very high, and no participant had to be excluded because of insufficient data. Concerning the paradigm side, participants showed successful acquisition and extinction as a group. The procedure is ethically sound, feasible, tolerated by many infants, and acceptable among parents. The data show successful acquisition and extinction rates, making the paradigm a valuable tool for investigating developmental changes in extinction learning over the lifespan.
Collapse
Affiliation(s)
- Carolin Konrad
- Faculty of Psychology, Clinical Child and Adolescent Psychology, Mental Health Research and Treatment Center, Ruhr University Bochum, Bochum, Germany
| | - Dirk Adolph
- Faculty of Psychology, Clinical Child and Adolescent Psychology, Mental Health Research and Treatment Center, Ruhr University Bochum, Bochum, Germany
| | - Jane S Herbert
- Wollongong Infant Learning Lab, School of Psychology and Early Start, University of Wollongong, Wollongong, NSW, Australia
| | - Lina Neuhoff
- Faculty of Psychology, Clinical Child and Adolescent Psychology, Mental Health Research and Treatment Center, Ruhr University Bochum, Bochum, Germany
| | - Cornelia Mohr
- Abteilung für Kinderschutz, Vestische Kinder- und Jugendklinik Datteln, Universität Witten/Herdecke, Datteln, Germany
| | - Julie Jagusch-Poirier
- Vision, Visual Impairments & Blindness, Faculty of Rehabilitation Sciences, Technical University, Dortmund University, Dortmund, Germany
| | - Sabine Seehagen
- Developmental Psychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Sarah Weigelt
- Vision, Visual Impairments & Blindness, Faculty of Rehabilitation Sciences, Technical University, Dortmund University, Dortmund, Germany
| | - Silvia Schneider
- Faculty of Psychology, Clinical Child and Adolescent Psychology, Mental Health Research and Treatment Center, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
20
|
Hakuno Y, Hata M, Naoi N, Hoshino EI, Minagawa Y. Interactive live fNIRS reveals engagement of the temporoparietal junction in response to social contingency in infants. Neuroimage 2020; 218:116901. [DOI: 10.1016/j.neuroimage.2020.116901] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 04/18/2020] [Accepted: 04/30/2020] [Indexed: 10/24/2022] Open
|
21
|
Sleep, Little Baby: The Calming Effects of Prenatal Speech Exposure on Newborns' Sleep and Heartrate. Brain Sci 2020; 10:brainsci10080511. [PMID: 32748860 PMCID: PMC7464711 DOI: 10.3390/brainsci10080511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 01/08/2023] Open
Abstract
In a pilot study, 34 fetuses were stimulated daily with a maternal spoken nursery rhyme from week 34 of gestation onward and re-exposed two and five weeks after birth to this familiar, as well as to an unfamiliar rhyme, both spoken with the maternal and an unfamiliar female voice. During auditory stimulation, newborns were continuously monitored with polysomnography using video-monitored hdEEG. Afterward, changes in sleep–wake-state proportions during familiar and unfamiliar voice stimulation were analyzed. Our preliminary results demonstrate a general calming effect of auditory stimulation exclusively in infants who were prenatally “familiarized” with a spoken nursery rhyme, as evidenced by less waking states, more time spent in quiet (deep) sleep, and lower heartrates. A stimulation naïve group, on the other hand, demonstrated no such effects. Stimulus-specific effects related to the familiarity of the prenatally replayed voice or rhyme were not evident in newborns. Together, these results suggest “fetal learning” at a basic level and point to a familiarization with auditory stimuli prior to birth, which is evident in the first weeks of life in behavioral states and heartrate physiology of the newborn.
Collapse
|
22
|
Padilla N, Lagercrantz H. Making of the mind. Acta Paediatr 2020; 109:883-892. [PMID: 31922622 DOI: 10.1111/apa.15167] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 12/23/2022]
Abstract
The essence of the mind is consciousness. It emerged early during evolution and ontogeny appears to follow the same process as phylogeny. Consciousness comes from multiple sources, including visual, auditory, sensorimotor and proprioceptive senses. These gradually combine during development to build a unified consciousness, due to the constant interactions between the brain, body, and environment. In the human the emergence of consciousness depends on the activation of the cortex by thalamocortical connections around 24 weeks after conception. Then, the human foetus can be potentially conscious, as it is aware of its body and reacts to touch, smell and sound and shows social expressions in response to external stimuli. However, it is mainly asleep and probably not aware of itself and its environment. In contrast, the newborn infant is awake after its first breaths of air and can be aware of its own self and others, express emotions and share feelings. The development of consciousness is a progressive, stepwise, structural and functional evolution of multiple intricate components. The infant fulfils some of the more basic criteria for consciousness. However, there are some important missing pieces at this stage, as it cannot remember the past and anticipate the future.
Collapse
Affiliation(s)
- Nelly Padilla
- Department of Women's and Children's Health Karolinska Institute Stockholm Sweden
| | - Hugo Lagercrantz
- Department of Women's and Children's Health Karolinska Institute Stockholm Sweden
| |
Collapse
|
23
|
De Zeeuw CI, Canto CB. Sleep deprivation directly following eyeblink-conditioning impairs memory consolidation. Neurobiol Learn Mem 2020; 170:107165. [PMID: 31953233 PMCID: PMC7184677 DOI: 10.1016/j.nlm.2020.107165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 12/05/2019] [Accepted: 01/12/2020] [Indexed: 10/31/2022]
Abstract
The relation between sleep and different forms of memory formation continues to be a relevant topic in our daily life. Sleep has been found to affect cerebellum-dependent procedural memory formation, but it remains to be elucidated to what extent the level of sleep deprivation directly after motor training also influences our ability to store and retrieve memories. Here, we studied the effect of disturbed sleep in mice during two different time-windows, one covering the first four hours following eyeblink conditioning (EBC) and another window following the next period of four hours. Compared to control mice with sleep ad libitum, the percentage of conditioned responses and their amplitude were impaired when mice were deprived of sleep directly after conditioning. This impairment was still significant when the learned EBC responses were extinguished and later reacquired. However, consolidation of eyeblink responses was not affected when mice were deprived later than four hours after acquisition, not even when tested during a different day-night cycle for control. Moreover, mice that slept longer directly following EBC showed a tendency for more conditioned responses. Our data indicate that consolidation of motor memories can benefit from sleep directly following memory formation.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Netherlands Institute for Neuroscience, KNAW, 1105 BA Amsterdam, the Netherlands; Department of Neuroscience, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Cathrin B Canto
- Netherlands Institute for Neuroscience, KNAW, 1105 BA Amsterdam, the Netherlands; Department of Neuroscience, Erasmus MC, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
24
|
Laidi C, Levenes C, Suarez-Perez A, Février C, Durand F, Bouaziz N, Januel D. Cognitive Impact of Cerebellar Non-invasive Stimulation in a Patient With Schizophrenia. Front Psychiatry 2020; 11:174. [PMID: 32256404 PMCID: PMC7090138 DOI: 10.3389/fpsyt.2020.00174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 02/24/2020] [Indexed: 12/25/2022] Open
Abstract
Cerebellum plays a role in the regulation of cognitive processes. Cerebellar alterations could explain cognitive impairments in schizophrenia. We describe the case of a 50 years old patient with schizophrenia whom underwent cerebellar transcranial direct current stimulation (tDCS). In order to study the effect of cerebellar stimulation on cognitive functions, the patient underwent a neuropsychological assessment and an eyeblink conditioning (EBC) protocol. Although the effect of brain stimulation cannot be only assessed in a single-case study, our results suggest that cerebellar stimulation may have an effect on a broad range of cognitive functions typically impaired in patients with schizophrenia, including verbal episodic, short term, and working memory. In addition to neuropsychological tests, we evaluated the cerebellar function by performing EBC before and after tDCS. Our data suggest that tDCS can improve EBC. Further clinical trials are required for better understanding of how cerebellar stimulation can modulate cognitive processes in patients with schizophrenia and healthy controls.
Collapse
Affiliation(s)
- Charles Laidi
- Pôle de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Faculté de Médecine de Créteil, DMU IMPACT, Hôpitaux Universitaires Mondor, Créteil, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U955, Institut Mondor de Recherche Biomédicale, Psychiatrie Translationnelle, Créteil, France.,UNIACT, Psychiatry Team, Neurospin Neuroimaging Platform, CEA Saclay, Gif-sur-Yvette, France.,Fondation Fondamental, Créteil, France
| | - Carole Levenes
- Integrative Neuroscience and Cognition Center (INCC UMR8002), Centre National de la Recherche Scientifique (CNRS), Institute for Neuroscience and Cognition, University of Paris, Paris, France
| | - Alex Suarez-Perez
- Integrative Neuroscience and Cognition Center (INCC UMR8002), Centre National de la Recherche Scientifique (CNRS), Institute for Neuroscience and Cognition, University of Paris, Paris, France
| | - Caroline Février
- Pôle de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Faculté de Médecine de Créteil, DMU IMPACT, Hôpitaux Universitaires Mondor, Créteil, France
| | - Florence Durand
- Hôpital de Ville Evrard, Unité de Recherche Clinique, Neuilly-sur-Marne, France
| | - Noomane Bouaziz
- Hôpital de Ville Evrard, Unité de Recherche Clinique, Neuilly-sur-Marne, France
| | - Dominique Januel
- Hôpital de Ville Evrard, Unité de Recherche Clinique, Neuilly-sur-Marne, France
| |
Collapse
|
25
|
Whitehead K, Jones L, Laudiano-Dray MP, Meek J, Fabrizi L. Event-related potentials following contraction of respiratory muscles in pre-term and full-term infants. Clin Neurophysiol 2019; 130:2216-2221. [PMID: 31677560 PMCID: PMC6907098 DOI: 10.1016/j.clinph.2019.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/17/2019] [Accepted: 09/15/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Involuntary isolated body movements are prominent in pre-term and full-term infants. Proprioceptive and tactile afferent feedback following limb muscle contractions is associated with somatotopic EEG responses. Involuntary contractions of respiratory muscles, primarily the diaphragm - hiccups - are also frequent throughout the human perinatal period during active behavioural states. Here we tested whether diaphragm contraction provides afferent input to the developing brain, as following limb muscle contraction. METHODS In 13 infants on the neonatal ward (30-42 weeks corrected gestational age), we analysed EEG activity (18-electrode recordings in six subjects; 17-electrode recordings in five subjects; 16-electrode recordings in two subjects), time-locked to diaphragm contractions (n = 1316) recorded with a movement transducer affixed to the trunk. RESULTS All bouts of hiccups occurred during wakefulness or active sleep. Each diaphragm contraction evoked two initial event-related potentials with negativity predominantly across the central region, and a third event-related potential with positivity maximal across the central region. CONCLUSIONS Involuntary contraction of the diaphragm can be encoded by the brain from as early as ten weeks prior to the average time of birth. SIGNIFICANCE Hiccups - frequently observed in neonates - can provide afferent input to developing sensory cortices in pre-term and full-term infants.
Collapse
Affiliation(s)
- Kimberley Whitehead
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom.
| | - Laura Jones
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom.
| | - Maria Pureza Laudiano-Dray
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom.
| | - Judith Meek
- Elizabeth Garrett Anderson Obstetric Wing, University College London Hospitals, London WC1E 6DB, United Kingdom.
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
26
|
Puchkova AN. [Learning during sleep: pitfalls, advances and promises]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:8-14. [PMID: 31317909 DOI: 10.17116/jnevro20191190428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sleep plays a crucial role in memory consolidation. Research dedicated to learning during sleep is based on a theory that new information can be also acquired in a sleep state. This review covers the studies that aim to form new memory traces during sleep that persist into wakefulness or try to uncover the mechanisms of such learning. The possibility of associative, perceptive and other forms of learning, primarily implicit learning, is shown.
Collapse
Affiliation(s)
- A N Puchkova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow ,Russia
| |
Collapse
|
27
|
Pennartz CMA, Farisco M, Evers K. Indicators and Criteria of Consciousness in Animals and Intelligent Machines: An Inside-Out Approach. Front Syst Neurosci 2019; 13:25. [PMID: 31379521 PMCID: PMC6660257 DOI: 10.3389/fnsys.2019.00025] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/24/2019] [Indexed: 01/02/2023] Open
Abstract
In today's society, it becomes increasingly important to assess which non-human and non-verbal beings possess consciousness. This review article aims to delineate criteria for consciousness especially in animals, while also taking into account intelligent artifacts. First, we circumscribe what we mean with "consciousness" and describe key features of subjective experience: qualitative richness, situatedness, intentionality and interpretation, integration and the combination of dynamic and stabilizing properties. We argue that consciousness has a biological function, which is to present the subject with a multimodal, situational survey of the surrounding world and body, subserving complex decision-making and goal-directed behavior. This survey reflects the brain's capacity for internal modeling of external events underlying changes in sensory state. Next, we follow an inside-out approach: how can the features of conscious experience, correlating to mechanisms inside the brain, be logically coupled to externally observable ("outside") properties? Instead of proposing criteria that would each define a "hard" threshold for consciousness, we outline six indicators: (i) goal-directed behavior and model-based learning; (ii) anatomic and physiological substrates for generating integrative multimodal representations; (iii) psychometrics and meta-cognition; (iv) episodic memory; (v) susceptibility to illusions and multistable perception; and (vi) specific visuospatial behaviors. Rather than emphasizing a particular indicator as being decisive, we propose that the consistency amongst these indicators can serve to assess consciousness in particular species. The integration of scores on the various indicators yields an overall, graded criterion for consciousness, somewhat comparable to the Glasgow Coma Scale for unresponsive patients. When considering theoretically derived measures of consciousness, it is argued that their validity should not be assessed on the basis of a single quantifiable measure, but requires cross-examination across multiple pieces of evidence, including the indicators proposed here. Current intelligent machines, including deep learning neural networks (DLNNs) and agile robots, are not indicated to be conscious yet. Instead of assessing machine consciousness by a brief Turing-type of test, evidence for it may gradually accumulate when we study machines ethologically and across time, considering multiple behaviors that require flexibility, improvisation, spontaneous problem-solving and the situational conspectus typically associated with conscious experience.
Collapse
Affiliation(s)
- Cyriel M. A. Pennartz
- Department of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Research Priority Area, Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Michele Farisco
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden
- Biogem, Biology and Molecular Genetics Institute, Ariano Irpino, Italy
| | - Kathinka Evers
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Barone I, Hawks-Mayer H, Lipton JO. Mechanisms of sleep and circadian ontogeny through the lens of neurodevelopmental disorders. Neurobiol Learn Mem 2019; 160:160-172. [DOI: 10.1016/j.nlm.2019.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 12/05/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022]
|
29
|
Brito NH, Fifer WP, Amso D, Barr R, Bell MA, Calkins S, Flynn A, Montgomery-Downs HE, Oakes LM, Richards JE, Samuelson LM, Colombo J. Beyond the Bayley: Neurocognitive Assessments of Development During Infancy and Toddlerhood. Dev Neuropsychol 2019; 44:220-247. [PMID: 30616391 PMCID: PMC6399032 DOI: 10.1080/87565641.2018.1564310] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
Abstract
The use of global, standardized instruments is conventional among clinicians and researchers interested in assessing neurocognitive development. Exclusively relying on these tests for evaluating effects may underestimate or miss specific effects on early cognition. The goal of this review is to identify alternative measures for possible inclusion in future clinical trials and interventions evaluating early neurocognitive development. The domains included for consideration are attention, memory, executive function, language, and socioemotional development. Although domain-based tests are limited, as psychometric properties have not yet been well-established, this review includes tasks and paradigms that have been reliably used across various developmental psychology laboratories.
Collapse
Affiliation(s)
- Natalie H Brito
- a Department of Applied Psychology , New York University , New York , NY , USA
| | - William P Fifer
- b Division of Developmental Neuroscience , New York State Psychiatric Institute , New York , NY , USA
| | - Dima Amso
- c Department of Cognitive, Linguistic, and Psychological Sciences , Brown University , Providence , RI , USA
| | - Rachel Barr
- d Department of Psychology , Georgetown University , Washington , DC , USA
| | - Martha Ann Bell
- e Department of Psychology , Virginia Tech , Blacksburg , VA , USA
| | - Susan Calkins
- f Department of Human Development and Family Studies , University of North Carolina at Greensboro , Greensboro , NC , USA
| | - Albert Flynn
- g School of Food and Nutritional Sciences , University College Cork , Cork , Ireland
| | | | - Lisa M Oakes
- i Department of Psychology , University of California , Davis , CA , USA
| | - John E Richards
- j Department of Psychology , University of South Carolina , Columbia , SC , USA
| | | | - John Colombo
- l Department of Psychology , University of Kansas , Lawrence , KS , USA
| |
Collapse
|
30
|
Zores C, Dufour A, Pebayle T, Dahan I, Astruc D, Kuhn P. Observational study found that even small variations in light can wake up very preterm infants in a neonatal intensive care unit. Acta Paediatr 2018; 107:1191-1197. [PMID: 29412484 DOI: 10.1111/apa.14261] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 12/13/2017] [Accepted: 01/30/2018] [Indexed: 10/18/2022]
Abstract
AIM This prospective observational study evaluated the behavioural responses of very preterm infants to spontaneous light variations. METHODS We measured spontaneous light variations in the incubators of 27 very preterm infants, with a median gestational age of 28 weeks (range 26-31 weeks), over 10 hours. All of them had been admitted to the neonatal care unit of the Strasbourg University Hospital, France, between April 2008 and July 2009. Two independent raters examined changes in the infants' behavioural states using video recordings. The percentage of awakenings was recorded when there were light variations and during control periods with no changes. RESULTS We analysed 275 periods following light variations and 275 control periods. The overall percentage of awakenings was greater during periods following a change in light than during control periods (16.3% vs 11%, p = 0.03). The extent of light protection affected the percentage of awakenings. In mild light protection, there were more awakenings following changes in light than in control periods (25.6% vs 6.7%, p = 0.01). This difference was not found in high light protection. CONCLUSION Very preterm infants can be woken up by small variations in light, when the light protection in their incubator is insufficient.
Collapse
Affiliation(s)
- Claire Zores
- Laboratoire de Neurosciences Cognitives et Adaptatives; UMR 7364 CNRS/Université de Strasbourg; Strasbourg France
- Médecine et Réanimation du nouveau-né; Service de Pédiatrie 2; Pôle Médico-Chirurgical Pédiatrique; Hôpital de Hautepierre; Centre Hospitalier Universitaire de Strasbourg; Strasbourg France
| | - André Dufour
- Laboratoire de Neurosciences Cognitives et Adaptatives; UMR 7364 CNRS/Université de Strasbourg; Strasbourg France
| | - Thierry Pebayle
- Laboratoire de Neurosciences Cognitives et Adaptatives; UMR 7364 CNRS/Université de Strasbourg; Strasbourg France
| | - Ilana Dahan
- Médecine et Réanimation du nouveau-né; Service de Pédiatrie 2; Pôle Médico-Chirurgical Pédiatrique; Hôpital de Hautepierre; Centre Hospitalier Universitaire de Strasbourg; Strasbourg France
| | - Dominique Astruc
- Médecine et Réanimation du nouveau-né; Service de Pédiatrie 2; Pôle Médico-Chirurgical Pédiatrique; Hôpital de Hautepierre; Centre Hospitalier Universitaire de Strasbourg; Strasbourg France
| | - Pierre Kuhn
- Laboratoire de Neurosciences Cognitives et Adaptatives; UMR 7364 CNRS/Université de Strasbourg; Strasbourg France
- Institut des Neurosciences Cellulaires et Intégratives; UPR 3212 CNRS/Université de Strasbourg; Strasbourg France
| |
Collapse
|
31
|
Dumont V, Bulla J, Bessot N, Gonidec J, Zabalia M, Guillois B, Roche-Labarbe N. The manual orienting response habituation to repeated tactile stimuli in preterm neonates: Discrimination of stimulus locations and interstimulus intervals. Dev Psychobiol 2018; 59:590-602. [PMID: 28605017 DOI: 10.1002/dev.21526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/21/2017] [Accepted: 04/18/2017] [Indexed: 11/06/2022]
Abstract
Preterm infants frequently develop atypical sensory profiles, the tactile modality being particularly affected. However, there is a lack of recent investigation of neonatal tactile perception in a passive context, especially in preterms who are particularly exposed to this tactile stimuli. Our aims were to provide evidence of orienting responses (behavioral modifications directing subject's attention towards stimuli) and habituation to passive tactile stimuli in preterm neonates, to explore their ability to perceive spatial and temporal aspects of the stimulus, and to evaluate the effect of clinical factors on these abilities. We included 61 preterm neonates, born between 32 and 34 weeks of gestational age. At 35 weeks of corrected gestational age, we measured orienting responses (forearm, hand, and fingers movements) during vibrotactile stimulation of their hand and forearm; during a habituation and dishabituation paradigm, the dishabituation being either a location change or a pause in the stimulation sequence. Preterm newborns displayed a manual orienting response to vibrotactile stimuli which significantly decreased when the stimulus was repeated, regardless of the stimulated location on the limb. Habituation was delayed in subjects born at a younger gestational age, smaller birth weight, and having experienced more painful care procedures. Preterm neonates perceived changes in stimulus location and interstimulus time interval. Our findings provide insights on several aspects of the perception of repeated tactile stimuli by preterm neonates, and the first evidence of the early development of temporal processing abilities in the tactile modality. Future work will investigate the links between this ability and neurodevelopmental disorders.
Collapse
Affiliation(s)
| | - Jan Bulla
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Nicolas Bessot
- Normandie University, UNICAEN, INSERM, COMETE, Caen, France
| | | | - Marc Zabalia
- Normandie University, UNICAEN, EA7452, Caen, France
| | - Bernard Guillois
- Normandie University, UNICAEN, EA7452, Caen, France.,Service de Néonatologie, CHU de Caen, Caen, France
| | - Nadège Roche-Labarbe
- Normandie University, UNICAEN, EA7452, Caen, France.,Normandie University, UNICAEN, INSERM, COMETE, Caen, France
| |
Collapse
|
32
|
Association of Sleep and Circadian Activity Rhythm with Emotional Face Processing among 12-month-old Infants. Sci Rep 2018; 8:3200. [PMID: 29453399 PMCID: PMC5816664 DOI: 10.1038/s41598-018-21448-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/29/2018] [Indexed: 01/08/2023] Open
Abstract
Sleep and circadian rhythmicity both play an important role in human’s cognitive functioning, yet the way in which early development of sleep and circadian rhythm affects cognitive processes and social learning in infants remains less understood. We examined the association of sleep and circadian activity rhythm (CAR) with face and emotional information processing in 12-month old infants. Face processing was measured by eye tracking, whereby infants’ scanning patterns and pupil dilations were calculated when they were presented with neutral, pleasant and unpleasant faces. Infants with better sleep quality (i.e., less waking after sleep onset) and lower sleep-wake pattern variability (i.e., higher inter-daily stability) exhibited a higher eyes over mouth fixation ratio (EMR). Infants with longer total sleep time showed larger pupil diameter changes in response to emotional facial expressions, more closely resembling the responses of adults. Our findings suggest the role of sleep and circadian rhythm in waking cognition and have implications for understanding the early development of social learning in young children.
Collapse
|
33
|
Cerebellar-dependent associative learning is impaired in very preterm born children and young adults. Sci Rep 2017; 7:18028. [PMID: 29269751 PMCID: PMC5740078 DOI: 10.1038/s41598-017-18316-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/08/2017] [Indexed: 11/21/2022] Open
Abstract
Preterm birth incorporates an increased risk for cerebellar developmental disorders likely contributing to motor and cognitive abnormalities. Experimental evidence of cerebellar dysfunction in preterm subjects, however, is sparse. In this study, classical eyeblink conditioning was used as a marker of cerebellar dysfunction. Standard delay conditioning was investigated in 20 adults and 32 preschool children born very preterm. Focal lesions were excluded based on structural magnetic resonance imaging. For comparison, an equal number of matched term born healthy peers were tested. Subgroups of children (12 preterm, 12 controls) were retested. Preterm subjects acquired significantly less conditioned responses (CR) compared to controls with slower learning rates. A likely explanation for these findings is that preterm birth impedes function of the cerebellum even in the absence of focal cerebellar lesions. The present findings are consistent with the assumption that prematurity results in long-term detrimental effects on the integrity of the cerebellum. It cannot be excluded, however, that extra-cerebellar pathology contributed to the present findings.
Collapse
|
34
|
Callaghan B, Fifer WP. Perinatal attention, memory and learning during sleep. ENFANCE 2017. [DOI: 10.3917/enf1.173.0349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
35
|
Tarullo AR, Isler JR, Condon C, Violaris K, Balsam PD, Fifer WP. Neonatal eyelid conditioning during sleep. Dev Psychobiol 2017; 58:875-882. [PMID: 27753460 DOI: 10.1002/dev.21424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/18/2016] [Indexed: 01/09/2023]
Abstract
Using an eyelid conditioning paradigm modeled after that developed by Little, Lipsitt, and Rovee-Collier (1984), Fifer et al. (2010) demonstrated that newborn infants learn during sleep. This study examined the role of sleep state in neonatal learning. We recorded electroencephalogram (EEG), respiratory, and cardiovascular activity from sleeping full term newborn infants during delay eyelid conditioning. In the experimental group (n = 21), a tone was paired with an air puff to the eye. Consistent with Fifer et al. (2010), newborn infants reliably learned during sleep. The experimental group more than doubled EMR rates to a tone alone, while a control group (n = 17) presented with unpaired tones and puffs maintained low EMR rates. Infant learners were more likely to produce a conditioned EMR during quiet sleep compared to active sleep. Understanding the influence of sleep state on conditioned responses will inform the potential use of eyelid conditioning for early screening.
Collapse
Affiliation(s)
- Amanda R Tarullo
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts.
| | - Joseph R Isler
- Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Carmen Condon
- New York State Psychiatric Institute, New York, New York
| | - Kimon Violaris
- Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Peter D Balsam
- Department of Psychiatry, Columbia University Medical Center, New York, New York.,Department of Psychology, Barnard College, Columbia University, New York, New York
| | - William P Fifer
- Department of Pediatrics, Columbia University Medical Center, New York, New York.,New York State Psychiatric Institute, New York, New York.,Department of Psychiatry, Columbia University Medical Center, New York, New York
| |
Collapse
|
36
|
Formation and suppression of acoustic memories during human sleep. Nat Commun 2017; 8:179. [PMID: 28790302 PMCID: PMC5548898 DOI: 10.1038/s41467-017-00071-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/30/2017] [Indexed: 11/09/2022] Open
Abstract
Sleep and memory are deeply related, but the nature of the neuroplastic processes induced by sleep remains unclear. Here, we report that memory traces can be both formed or suppressed during sleep, depending on sleep phase. We played samples of acoustic noise to sleeping human listeners. Repeated exposure to a novel noise during Rapid Eye Movements (REM) or light non-REM (NREM) sleep leads to improvements in behavioral performance upon awakening. Strikingly, the same exposure during deep NREM sleep leads to impaired performance upon awakening. Electroencephalographic markers of learning extracted during sleep confirm a dissociation between sleep facilitating memory formation (light NREM and REM sleep) and sleep suppressing learning (deep NREM sleep). We can trace these neural changes back to transient sleep events, such as spindles for memory facilitation and slow waves for suppression. Thus, highly selective memory processes are active during human sleep, with intertwined episodes of facilitative and suppressive plasticity.Though memory and sleep are related, it is still unclear whether new memories can be formed during sleep. Here, authors show that people could learn new sounds during REM or light non-REM sleep, but that learning was suppressed when sounds were played during deep NREM sleep.
Collapse
|
37
|
Canto CB, Onuki Y, Bruinsma B, van der Werf YD, De Zeeuw CI. The Sleeping Cerebellum. Trends Neurosci 2017; 40:309-323. [PMID: 28431742 DOI: 10.1016/j.tins.2017.03.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/24/2017] [Accepted: 03/02/2017] [Indexed: 12/24/2022]
Abstract
We sleep almost one-third of our lives and sleep plays an important role in critical brain functions like memory formation and consolidation. The role of sleep in cerebellar processing, however, constitutes an enigma in the field of neuroscience; we know little about cerebellar sleep-physiology, cerebro-cerebellar interactions during sleep, or the contributions of sleep to cerebellum-dependent memory consolidation. Likewise, we do not understand why cerebellar malfunction can lead to changes in the sleep-wake cycle and sleep disorders. In this review, we evaluate how sleep and cerebellar processing may influence one another and highlight which scientific routes and technical approaches could be taken to uncover the mechanisms underlying these interactions.
Collapse
Affiliation(s)
- Cathrin B Canto
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands.
| | - Yoshiyuki Onuki
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Bastiaan Bruinsma
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Ysbrand D van der Werf
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands; Department of Anatomy and Neurosciences, VU University Medical Center, 1007 MC, Amsterdam, The Netherlands
| | - Chris I De Zeeuw
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands; Department of Neuroscience, Erasmus MC, 3000 DR, Rotterdam, The Netherlands
| |
Collapse
|
38
|
Faivre N, Arzi A, Lunghi C, Salomon R. Consciousness is more than meets the eye: a call for a multisensory study of subjective experience. Neurosci Conscious 2017; 2017:nix003. [PMID: 30042838 PMCID: PMC6007148 DOI: 10.1093/nc/nix003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/06/2017] [Accepted: 02/16/2017] [Indexed: 11/17/2022] Open
Abstract
Over the last 30 years, our understanding of the neurocognitive bases of consciousness has improved, mostly through studies employing vision. While studying consciousness in the visual modality presents clear advantages, we believe that a comprehensive scientific account of subjective experience must not neglect other exteroceptive and interoceptive signals as well as the role of multisensory interactions for perceptual and self-consciousness. Here, we briefly review four distinct lines of work which converge in documenting how multisensory signals are processed across several levels and contents of consciousness. Namely, how multisensory interactions occur when consciousness is prevented because of perceptual manipulations (i.e. subliminal stimuli) or because of low vigilance states (i.e. sleep, anesthesia), how interactions between exteroceptive and interoceptive signals give rise to bodily self-consciousness, and how multisensory signals are combined to form metacognitive judgments. By describing the interactions between multisensory signals at the perceptual, cognitive, and metacognitive levels, we illustrate how stepping out the visual comfort zone may help in deriving refined accounts of consciousness, and may allow cancelling out idiosyncrasies of each sense to delineate supramodal mechanisms involved during consciousness.
Collapse
Affiliation(s)
- Nathan Faivre
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
- Centre d’Economie de la Sorbonne, CNRS UMR 8174, Paris, France
| | - Anat Arzi
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Claudia Lunghi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - Roy Salomon
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
39
|
Greenwood MA, Hammock EAD. Oxytocin receptor binding sites in the periphery of the neonatal mouse. PLoS One 2017; 12:e0172904. [PMID: 28235051 PMCID: PMC5325587 DOI: 10.1371/journal.pone.0172904] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/10/2017] [Indexed: 01/08/2023] Open
Abstract
Oxytocin (OXT) is a pleiotropic regulator of physiology and behavior. An emerging body of evidence demonstrates a role for OXT in the transition to postnatal life of the infant. To identify potential sites of OXT action via the OXT receptor (OXTR) in the newborn mouse, we performed receptor autoradiography on 20 μm sagittal sections of whole postnatal day 0 male and female mice on a C57BL/6J background using the 125iodinated ornithine vasotocin analog ([125I]-OVTA) radioligand. A competitive binding assay on both wild-type (WT) and OXTR knockout (OXTR KO) tissue was used to assess the selectivity of [125I]-OVTA for neonatal OXTR. Radioactive ligand (0.05 nM [125I]-OVTA) was competed against concentrations of 0 nM, 10 nM, and 1000 nM excess unlabeled OXT. Autoradiographs demonstrated the high selectivity of the radioligand for infant peripheral OXTR. Specific ligand binding activity for OXTR was observed in the oronasal cavity, the eye, whisker pads, adrenal gland, and anogenital region in the neonatal OXTR WT mouse, but was absent in neonatal OXTR KO. Nonspecific binding was observed in areas with a high lipid content such as the scapular brown adipose tissue and the liver: in these regions, binding was present in both OXTR WT and KO mice, and could not be competed away with OXT in either WT or KO mice. Collectively, these data confirm novel OXT targets in the periphery of the neonate. These peripheral OXTR sites, coupled with the immaturity of the neonate’s own OXT system, suggest a role for exogenous OXT in modulating peripheral physiology and development.
Collapse
Affiliation(s)
- Maria A. Greenwood
- Program in Neuroscience, The Florida State University, Tallahassee, FL, United States of America
- Department of Psychology, The Florida State University, Tallahassee, FL, United States of America
| | - Elizabeth A. D. Hammock
- Program in Neuroscience, The Florida State University, Tallahassee, FL, United States of America
- Department of Psychology, The Florida State University, Tallahassee, FL, United States of America
- * E-mail:
| |
Collapse
|
40
|
Orsi KCSC, Avena MJ, Lurdes de Cacia Pradella-Hallinan M, da Luz Gonçalves Pedreira M, Tsunemi MH, Machado Avelar AF, Pinheiro EM. Effects of Handling and Environment on Preterm Newborns Sleeping in Incubators. J Obstet Gynecol Neonatal Nurs 2017; 46:238-247. [PMID: 28056335 DOI: 10.1016/j.jogn.2016.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2016] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE To describe the total sleep time, stages of sleep, and wakefulness of preterm newborns and correlate them to levels of sound pressure, light, temperature, relative air humidity, and handling inside incubators. DESIGN Observational, correlational study. SETTING A neonatal intermediate care unit. PARTICIPANTS Twelve preterm newborns, who were 32.2 ± 4.2 weeks gestational age and weighed 1,606 ± 317 g. METHODS Sleep records were assessed by polysomnograph. Environmental variables were measured with a noise dosimeter, light meter, and thermohygrometer. To record time and frequency of handling, a video camera was used. All recordings were made for an uninterrupted 24-hour period. RESULTS Mean total sleep time in 24 hours was 899 ± 71.8 minutes (daytime = 446 ± 45.3 and nighttime = 448 ± 60.2). Mean wakefulness was 552 ± 94.0 minutes. The predominant stage was quiet sleep. A significant correlation was identified only between the levels of light and wakefulness (r = 0.65 and p = .041). CONCLUSION The environmental conditions and care provided to hospitalized preterm newborns did not influence sleep except for high light levels, which increased wakefulness. Nurses in clinical practice should implement strategies to promote and protect sleep by decreasing newborns' exposure to excessive light.
Collapse
|
41
|
Schneider N, Mutungi G, Cubero J. Diet and nutrients in the modulation of infant sleep: A review of the literature. Nutr Neurosci 2016; 21:151-161. [PMID: 27868947 DOI: 10.1080/1028415x.2016.1258446] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The establishment of organized sleep patterns is an important developmental process during infancy. Little is known about the role of nutrition in sleep maturation. This review focuses on exploring the link between infant sleep and nutrition with the aim to provide an overview of existing literature on the impact of diet and specific nutrients on sleep modulation in infants. METHODS An exploratory literature search was performed on the topic in Medline, Scopus and Cochrane Library databases, with a focus on publications in English. RESULTS Both the type of nutrients consumed and the timing at which they were consumed, relative to sleeping time, have been reported to influence infant sleep. Some nutrients have been shown to naturally fluctuate in maternal breast milk with circadian rhythm, and nutrients such as tryptophan, nucleotides, essential fatty acids and Omega-3 long-chain fatty acids have been suggested to impact infant sleep. DISCUSSION In summary, little is known about the nutritional impact on infant sleep and sleep maturation, particularly with regard to specific nutrients. While nutrients like tryptophan and nucleotides seem to impact sleep at the level of brain activity, some fatty acids may affect sleep as a result of their role in supporting the maturity of the central nervous system. In our view, the existing literature indicates that the link between nutrition and infant sleep may be a promising concept to support this crucial phase of early development.
Collapse
Affiliation(s)
- Nora Schneider
- a Nestec Ltd, Nestlé Research Center , Vers-Chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | | | - Javier Cubero
- c Health Education Lab, Experimental Science Education Area , University of Extremadura , Badajoz , Spain
| |
Collapse
|
42
|
Affiliation(s)
- R D White
- Pediatrix Medical Group Director, Regional Newborn Program, Memorial Hospital, South Bend, IN, USA
| |
Collapse
|
43
|
DiPietro JA, Costigan KA, Voegtline KM. STUDIES IN FETAL BEHAVIOR: REVISITED, RENEWED, AND REIMAGINED. Monogr Soc Res Child Dev 2015; 80:vii;1-94. [PMID: 26303396 DOI: 10.1111/mono.v80.3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Among the earliest volumes of this monograph series was a report by Lester Sontag and colleagues, of the esteemed Fels Institute, on the heart rate of the human fetus as an expression of the developing nervous system. Here, some 75 years later, we commemorate this work and provide historical and contemporary context on knowledge regarding fetal development, as well as results from our own research. These are based on synchronized monitoring of maternal and fetal parameters assessed between 24 and 36 weeks gestation on 740 maternal-fetal pairs compiled from eight separate longitudinal studies, which commenced in the early 1990s. Data include maternal heart rate, respiratory sinus arrhythmia, and electrodrmal activity and fetal heartrate, motor activity, and their integration. Hierarchical linear modeling of developmental trajectories reveals that the fetus develops in predictable ways consistent with advancing parasympathetic regulation. Findings also include:within-fetus stability (i.e., preservation of rank ordering over time) for heart rate, motor, and coupling measures; a transitional period of decelerating development near 30 weeks gestation; sex differences in fetal heart rate measures but not in most fetal motor activity measures; modest correspondence in fetal neurodevelopment among siblings as compared to unrelated fetuses; and deviations from normative fetal development in fetuses affected by intrauterine growth restriction and other conditions. Maternal parameters also change during this period of gestation and there is evidence that fetal sex and individual variation in fetal neurobehavior influence maternal physio-logical processes and the local intrauterine context. Results are discussed within the framework of neuromaturation, the emergence of individual differences, and the bidirectional nature of the maternal-fetal relationship.We pose a number of open questions for future research. Although the human fetus remains just out of reach, new technologies portend an era of accelerated discovery of the earliest period of development
Collapse
|
44
|
White RD. Perception of stimuli by preterm infants. Acta Paediatr 2015; 104:964. [PMID: 26378632 DOI: 10.1111/apa.13125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
45
|
Mosconi MW, Wang Z, Schmitt LM, Tsai P, Sweeney JA. The role of cerebellar circuitry alterations in the pathophysiology of autism spectrum disorders. Front Neurosci 2015; 9:296. [PMID: 26388713 PMCID: PMC4555040 DOI: 10.3389/fnins.2015.00296] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/06/2015] [Indexed: 01/23/2023] Open
Abstract
The cerebellum has been repeatedly implicated in gene expression, rodent model and post-mortem studies of autism spectrum disorder (ASD). How cellular and molecular anomalies of the cerebellum relate to clinical manifestations of ASD remains unclear. Separate circuits of the cerebellum control different sensorimotor behaviors, such as maintaining balance, walking, making eye movements, reaching, and grasping. Each of these behaviors has been found to be impaired in ASD, suggesting that multiple distinct circuits of the cerebellum may be involved in the pathogenesis of patients' sensorimotor impairments. We will review evidence that the development of these circuits is disrupted in individuals with ASD and that their study may help elucidate the pathophysiology of sensorimotor deficits and core symptoms of the disorder. Preclinical studies of monogenetic conditions associated with ASD also have identified selective defects of the cerebellum and documented behavioral rescues when the cerebellum is targeted. Based on these findings, we propose that cerebellar circuits may prove to be promising targets for therapeutic development aimed at rescuing sensorimotor and other clinical symptoms of different forms of ASD.
Collapse
Affiliation(s)
- Matthew W Mosconi
- Clinical Child Psychology Program and Schiefelbusch Institute for Life Span Studies, University of Kansas Lawrence, KS, USA ; Center for Autism and Developmental Disabilities, University of Texas Southwestern Dallas, TX, USA ; Department of Psychiatry, University of Texas Southwestern Dallas, TX, USA ; Department of Pediatrics, University of Texas Southwestern Dallas, TX, USA
| | - Zheng Wang
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Dallas, TX, USA ; Department of Psychiatry, University of Texas Southwestern Dallas, TX, USA
| | - Lauren M Schmitt
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Dallas, TX, USA ; Department of Psychiatry, University of Texas Southwestern Dallas, TX, USA
| | - Peter Tsai
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Dallas, TX, USA ; Department of Psychiatry, University of Texas Southwestern Dallas, TX, USA ; Department of Pediatrics, University of Texas Southwestern Dallas, TX, USA ; Department of Neurology and Neurotherapeutics, University of Texas Southwestern Dallas, TX, USA ; Department of Neuroscience, University of Texas Southwestern Dallas, TX, USA
| | - John A Sweeney
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Dallas, TX, USA ; Department of Psychiatry, University of Texas Southwestern Dallas, TX, USA ; Department of Pediatrics, University of Texas Southwestern Dallas, TX, USA
| |
Collapse
|
46
|
Reeb-Sutherland BC, Fox NA. Eyeblink conditioning: a non-invasive biomarker for neurodevelopmental disorders. J Autism Dev Disord 2015; 45:376-94. [PMID: 23942847 DOI: 10.1007/s10803-013-1905-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Eyeblink conditioning (EBC) is a classical conditioning paradigm typically used to study the underlying neural processes of learning and memory. EBC has a well-defined neural circuitry, is non-invasive, and can be employed in human infants shortly after birth making it an ideal tool to use in both developing and special populations. In addition, abnormalities in the cerebellum, a region of the brain highly involved in EBC, have been implicated in a number of neurodevelopmental disorders including autism spectrum disorders (ASDs). In the current paper, we review studies that have employed EBC as a biomarker for several neurodevelopmental disorders including fetal alcohol syndrome, Down syndrome, fragile X syndrome, attention deficit/hyperactivity disorder, dyslexia, specific language impairment, and schizophrenia. In addition, we discuss the benefits of using such a tool in individuals with ASD.
Collapse
Affiliation(s)
- Bethany C Reeb-Sutherland
- Department of Psychology, DM 256, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA,
| | | |
Collapse
|
47
|
REFERENCES. Monogr Soc Res Child Dev 2015. [DOI: 10.1111/mono.12184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Vieites V, Nazareth A, Reeb-Sutherland BC, Pruden SM. A new biomarker to examine the role of hippocampal function in the development of spatial reorientation in children: a review. Front Psychol 2015; 6:490. [PMID: 25964770 PMCID: PMC4408750 DOI: 10.3389/fpsyg.2015.00490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/06/2015] [Indexed: 12/15/2022] Open
Abstract
Spatial navigation is an adaptive skill that involves determining the route to a particular goal or location, and then traveling that path. A major component of spatial navigation is spatial reorientation, or the ability to reestablish a sense of direction after being disoriented. The hippocampus is known to be critical for navigating, and has more recently been implicated in reorienting in adults, but relatively little is known about the development of the hippocampus in relation to these large-scale spatial abilities in children. It has been established that, compared to school-aged children, preschool children tend to perform poorly on certain spatial reorientation tasks, suggesting that their hippocampi may not be mature enough to process the demands of such a task. Currently, common techniques used to examine underlying brain activity, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), are not suitable for examining hippocampal development in young children. In the present paper, we argue instead for the use of eyeblink conditioning (EBC), a relatively under-utilized, inexpensive, and safe method that is easy to implement in developing populations. In addition, EBC has a well defined neural circuitry, which includes the hippocampus, making it an ideal tool to indirectly measure hippocampal functioning in young children. In this review, we will evaluate the literature on EBC and its relation to hippocampal development, and discuss the possibility of using EBC as an objective measure of associative learning in relation to large-scale spatial skills. We support the use of EBC as a way to indirectly access hippocampal function in typical and atypical populations in order to characterize the neural substrates associated with the development of spatial reorientation abilities in early childhood. As such, EBC is a potential, simple biomarker for success in tasks that require the hippocampus, including spatial reorientation.
Collapse
Affiliation(s)
- Vanessa Vieites
- Department of Psychology, Florida International University, Miami, FL, USA
| | | | | | | |
Collapse
|
49
|
Graham AM, Pfeifer JH, Fisher PA, Lin W, Gao W, Fair DA. The potential of infant fMRI research and the study of early life stress as a promising exemplar. Dev Cogn Neurosci 2015; 12:12-39. [PMID: 25459874 PMCID: PMC4385461 DOI: 10.1016/j.dcn.2014.09.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 09/24/2014] [Accepted: 09/29/2014] [Indexed: 01/09/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) research with infants and toddlers has increased rapidly over the past decade, and provided a unique window into early brain development. In the current report, we review the state of the literature, which has established the feasibility and utility of task-based fMRI and resting state functional connectivity MRI (rs-fcMRI) during early periods of brain maturation. These methodologies have been successfully applied beginning in the neonatal period to increase understanding of how the brain both responds to environmental stimuli, and becomes organized into large-scale functional systems that support complex behaviors. We discuss the methodological challenges posed by this promising area of research. We also highlight that despite these challenges, early work indicates a strong potential for these methods to influence multiple research domains. As an example, we focus on the study of early life stress and its influence on brain development and mental health outcomes. We illustrate the promise of these methodologies for building on, and making important contributions to, the existing literature in this field.
Collapse
Affiliation(s)
- Alice M Graham
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States.
| | - Jennifer H Pfeifer
- Department of Psychology, University of Oregon, 1715 Franklin Boulevard, Eugene, OR 97403, United States
| | - Philip A Fisher
- Department of Psychology, University of Oregon, 1715 Franklin Boulevard, Eugene, OR 97403, United States
| | - Weili Lin
- Departments of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Wei Gao
- Departments of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Damien A Fair
- Department of Psychology, University of Oregon, 1715 Franklin Boulevard, Eugene, OR 97403, United States; Department of Psychiatry, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States; Advanced Imaging Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| |
Collapse
|
50
|
Abstract
In this chapter, we review studies investigating the role of sleep in emotional functions. In particular, evidence has recently accumulated to show that brain regions involved in the processing of emotional and reward-related information are activated during sleep. We suggest that such activation of emotional and reward systems during sleep underlies the reprocessing and consolidation of memories with a high affective and motivational relevance for the organism. We also propose that these mechanisms occurring during sleep promote adapted cognitive and emotional responses in the waking state, including overnight performance improvement, creativity, and sexual functions. Activation across emotional-limbic circuits during sleep also appears to promote emotional maturation and the emergence of consciousness in the developing brain.
Collapse
|