1
|
Yu H, Ye C, Wang Y, Wang Z, Fang S, Jin H, Yang L, Zheng W, Wu J. Enhancing Substrate Preference of Iridoid Synthase via Focused Polarity-Steric Mutagenesis Scanning. CHEM & BIO ENGINEERING 2024; 1:826-835. [PMID: 39974581 PMCID: PMC11835258 DOI: 10.1021/cbe.4c00012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 02/21/2025]
Abstract
Nepetalactol serves as the scaffold for most iridoids, which exhibit a wide range of biological and pharmacological activities. Iridoid synthase (ISY) plays a crucial role in the in vivo synthesis of nepetalactol from 8-oxogeranial. However, the substrate promiscuity of ISY could result in a deviation of flux toward off-target routes. In this work, the substrate preference (SP, the ratio of activity for 8-oxogeranial to geranial) of ISY for nepetalactol was improved by directed evolution. First, the strategy of focused polarity-steric mutagenesis scanning (FPSMS) was performed to construct a small mutant library with NmISY2 from Nepeta mussinii as an object. Four amino acid residues with varying polarity and steric hindrance, including alanine, aspartic acid, serine, and arginine, were incorporated to scan hot spots. Consequently, four sites of W109, M217, K343, and W345 with a significant impact on the substrate preference of NmISY2 were found. Then, the four sites were combined by a combinatorial active-site saturation test/iterative saturation mutagenesis (CAST/ISM) strategy. As a result, the mutant W345D/K343M/W109Y (3M+) was obtained with a significantly increased SP value for 6 from 8.5 to 293.1. Molecular dynamics simulations revealed that the steric hindrance and polarity of the substrate tunnel played pivotal roles in the SP value of NmISY2. Notably, upon integration of 3M+ into Pichia pastoris, the de novo titer of 6 increased by 24.9 times, reaching 15.8 mg/L. This study offers a strategic approach to improving the substrate preference of enzymes.
Collapse
Affiliation(s)
- Huifen Yu
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, No. 38 Zhe-da Road, Hangzhou, Zhejiang 310027, China
| | - Cuifang Ye
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, No. 38 Zhe-da Road, Hangzhou, Zhejiang 310027, China
| | - Yong Wang
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, No. 38 Zhe-da Road, Hangzhou, Zhejiang 310027, China
| | - Zhe Wang
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, No. 38 Zhe-da Road, Hangzhou, Zhejiang 310027, China
| | - Sai Fang
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, No. 38 Zhe-da Road, Hangzhou, Zhejiang 310027, China
| | - Huanhuan Jin
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, No. 38 Zhe-da Road, Hangzhou, Zhejiang 310027, China
| | - Lirong Yang
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, No. 38 Zhe-da Road, Hangzhou, Zhejiang 310027, China
- ZJU-Hangzhou
Global Scientific and Technological Innovation Centre, No. 733 Jianshe 3rd Road, Xiaoshan
District, Hangzhou, Zhejiang 311200, China
| | - Wenlong Zheng
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, No. 38 Zhe-da Road, Hangzhou, Zhejiang 310027, China
- ZJU-Hangzhou
Global Scientific and Technological Innovation Centre, No. 733 Jianshe 3rd Road, Xiaoshan
District, Hangzhou, Zhejiang 311200, China
| | - Jianping Wu
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, No. 38 Zhe-da Road, Hangzhou, Zhejiang 310027, China
- ZJU-Hangzhou
Global Scientific and Technological Innovation Centre, No. 733 Jianshe 3rd Road, Xiaoshan
District, Hangzhou, Zhejiang 311200, China
| |
Collapse
|
2
|
Wang X, Lu L, Liu Q, Li J, Wang T, Wang J, Sun X, Shen X, Yuan Q. Integration Site Library for Efficient Construction of Plasmid-Free Microbial Cell Factories in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24687-24696. [PMID: 39460699 DOI: 10.1021/acs.jafc.4c08290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Enhanced production stability and efficiency along with a decrease in production costs are required to build efficient microbial cell factories. Target genes can be integrated into the genome to enhance genetic stability, reduce reliance on antibiotics, and alleviate the metabolic burden. However, selecting the optimal insertion site for the desired gene expression levels remains challenging. Therefore, 18 commonly usedEscherichia coliintegration sites were systematically characterized in this study. Promoters of different strengths were combined with integration sites, yielding a differential intensity range of up to 93-fold. This indicated the versatility and precision of this approach for controlling gene expression levels. Referring to the library, pathway genes were strategically integrated into theE. coligenome based on their respective expression levels. Genetically stable and highly efficient engineered strains that could biosynthesize arbutin and p-aminobenzoic acid were constructed.
Collapse
Affiliation(s)
- Xiaolei Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liangyu Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiyuan Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jinyi Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tong Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Zhou HY, Ding WQ, Zhang X, Zhang HY, Hu ZC, Liu ZQ, Zheng YG. Fine and combinatorial regulation of key metabolic pathway for enhanced β-alanine biosynthesis with non-inducible Escherichia coli. Biotechnol Bioeng 2024; 121:3297-3310. [PMID: 38978393 DOI: 10.1002/bit.28799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
β-Alanine is the only β-amino acid in nature and one of the most important three-carbon chemicals. This work was aimed to construct a non-inducible β-alanine producer with enhanced metabolic flux towards β-alanine biosynthesis in Escherichia coli. First of all, the assembled E. coli endogenous promoters and 5'-untranslated regions (PUTR) were screened to finely regulate the combinatorial expression of genes panDBS and aspBCG for an optimal flux match between two key pathways. Subsequently, additional copies of key genes (panDBS K104S and ppc) were chromosomally introduced into the host A1. On these bases, dynamical regulation of the gene thrA was performed to reduce the carbon flux directed in the competitive pathway. Finally, the β-alanine titer reached 10.25 g/L by strain A14-R15, 361.7% higher than that of the original strain. Under fed-batch fermentation in a 5-L fermentor, a titer of 57.13 g/L β-alanine was achieved at 80 h. This is the highest titer of β-alanine production ever reported using non-inducible engineered E. coli. This metabolic modification strategy for optimal carbon flux distribution developed in this work could also be used for the production of various metabolic products.
Collapse
Affiliation(s)
- Hai-Yan Zhou
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Wen-Qing Ding
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xi Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Hong-Yu Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhong-Ce Hu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
4
|
Murthy HN, Yadav GG, Paek KY, Park SY. Production of Terpene Trilactones from Cell and Organ Cultures of Ginkgo biloba. PLANTS (BASEL, SWITZERLAND) 2024; 13:2575. [PMID: 39339550 PMCID: PMC11434717 DOI: 10.3390/plants13182575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Ginkgo biloba is an ancient plant that has survived up until the present day. Gingko biloba is a rich source of valuable secondary metabolites, particularly terpene trilactones (TTLs) such as ginkgolides and bilobalides, which are obtained from the leaves and seeds of the plant. TTLs have pharmacological properties, including anticancer, anti-dementia, antidepressant, antidiabetic, anti-inflammatory, anti-hypertensive, antiplatelet, immunomodulatory, and neuroprotective effects. However, ginkgo is a very-slow-growing tree that takes approximately 30 years to reach maturity. In addition, the accumulation of TTLs in these plants is affected by age, sex, and seasonal and geographical variations. Therefore, plant cell cultures have been established in ginkgo to produce TTLs. Extensive investigations have been conducted to optimize the culture media, growth regulators, nutrients, immobilization, elicitation, and precursor-feeding strategies for the production of TTLs in vitro. In addition, metabolic engineering and synthetic biology methods have been used for the heterologous production of TTLs. In this review, we present the research strategies applied to cell cultures for the production of TTLs.
Collapse
Affiliation(s)
- Hosakatte Niranjana Murthy
- Department of Botany, Karnatak University, Dharwad 580003, India
- Department of Horticultural Science, Chungbuk National University, Cheongju 28644, Republic of Korea
- Department of Biotechnology, KLE Technological University, Hubballi 580031, India
| | | | - Kee Yoeup Paek
- Department of Horticultural Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - So-Young Park
- Department of Horticultural Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
5
|
Winegar PH, Hudson GA, Dell LB, Astolfi MCT, Reed J, Payet RD, Ombredane HCJ, Iavarone AT, Chen Y, Gin JW, Petzold CJ, Osbourn AE, Keasling JD. Verazine biosynthesis from simple sugars in engineered Saccharomyces cerevisiae. Metab Eng 2024; 85:145-158. [PMID: 39074544 PMCID: PMC11421371 DOI: 10.1016/j.ymben.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Steroidal alkaloids are FDA-approved drugs (e.g., Zytiga) and promising drug candidates/leads (e.g., cyclopamine); yet many of the ≥697 known steroidal alkaloid natural products remain underutilized as drugs because it can be challenging to scale their biosynthesis in their producing organisms. Cyclopamine is a steroidal alkaloid produced by corn lily (Veratrum spp.) plants, and it is an inhibitor of the Hedgehog (Hh) signaling pathway. Therefore, cyclopamine is an important drug candidate/lead to treat human diseases that are associated with dysregulated Hh signaling, such as basal cell carcinoma and acute myeloid leukemia. Cyclopamine and its semi-synthetic derivatives have been studied in (pre)clinical trials as Hh inhibitor-based drugs. However, challenges in scaling the production of cyclopamine have slowed efforts to improve its efficacy and safety profile through (bio)synthetic derivatization, often limiting drug development to synthetic analogs of cyclopamine such as the FDA-approved drugs Odomzo, Daurismo, and Erivedge. If a platform for the scalable and sustainable production of cyclopamine were established, then its (bio)synthetic derivatization, clinical development, and, ultimately, widespread distribution could be accelerated. Ongoing efforts to achieve this goal include the biosynthesis of cyclopamine in Veratrum plant cell culture and the semi-/total chemical synthesis of cyclopamine. Herein, this work advances efforts towards a promising future approach: the biosynthesis of cyclopamine in engineered microorganisms. We completed the heterologous microbial production of verazine (biosynthetic precursor to cyclopamine) from simple sugars (i.e., glucose and galactose) in engineered Saccharomyces cerevisiae (S. cerevisiae) through the inducible upregulation of the native yeast mevalonate and lanosterol biosynthetic pathways, diversion of biosynthetic flux from ergosterol (i.e., native sterol in S. cerevisiae) to cholesterol (i.e., biosynthetic precursor to verazine), and expression of a refactored five-step verazine biosynthetic pathway. The engineered S. cerevisiae strain that produced verazine contains eight heterologous enzymes sourced from seven different species. Importantly, S. cerevisiae-produced verazine was indistinguishable via liquid chromatography-mass spectrometry from both a commercial standard (Veratrum spp. plant-produced) and Nicotiana benthamiana-produced verazine. To the best of our knowledge, this is the first report describing the heterologous production of a steroidal alkaloid in an engineered yeast. Verazine production was ultimately increased through design-build-test-learn cycles to a final titer of 83 ± 3 μg/L (4.1 ± 0.1 μg/g DCW). Together, this research lays the groundwork for future microbial biosynthesis of cyclopamine, (bio)synthetic derivatives of cyclopamine, and other steroidal alkaloid natural products.
Collapse
Affiliation(s)
- Peter H Winegar
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences (QB3 Institute), University of California, Berkeley, CA, 94720, USA
| | - Graham A Hudson
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences (QB3 Institute), University of California, Berkeley, CA, 94720, USA
| | - Luisa B Dell
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Maria C T Astolfi
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - James Reed
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Rocky D Payet
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Anthony T Iavarone
- California Institute for Quantitative Biosciences (QB3 Institute), University of California, Berkeley, CA, 94720, USA
| | - Yan Chen
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jennifer W Gin
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anne E Osbourn
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jay D Keasling
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences (QB3 Institute), University of California, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, CA, 94720, USA; The Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, Kemitorvet, Building 220, Kongens, Lyngby, 2800, Denmark.
| |
Collapse
|
6
|
Chen F, Fang H, Zhao J, Jiang P, Dong H, Zhao Y, Wang H, Zhang T, Zhang D. Multivariate modular metabolic engineering and medium optimization for vitamin B 12 production by Escherichia coli. Synth Syst Biotechnol 2024; 9:453-461. [PMID: 38634001 PMCID: PMC11021867 DOI: 10.1016/j.synbio.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
Vitamin B12 is a complex compound synthesized by microorganisms. The industrial production of vitamin B12 relies on specific microbial fermentation processes. E. coli has been utilized as a host for the de novo biosynthesis of vitamin B12, incorporating approximately 30 heterologous genes. However, a metabolic imbalance in the intricate pathway significantly limits vitamin B12 production. In this study, we employed multivariate modular metabolic engineering to enhance vitamin B12 production in E. coli by manipulating two modules comprising a total of 10 genes within the vitamin B12 biosynthetic pathway. These two modules were integrated into the chromosome of a chassis cell, regulated by T7, J23119, and J23106 promoters to achieve combinatorial pathway optimization. The highest vitamin B12 titer was attained by engineering the two modules controlled by J23119 and T7 promoters. The inclusion of yeast powder to the fermentation medium increased the vitamin B12 titer to 1.52 mg/L. This enhancement was attributed to the effect of yeast powder on elevating the oxygen transfer rate and augmenting the strain's isopropyl-β-d-1-thiogalactopyranoside (IPTG) tolerance. Ultimately, vitamin B12 titer of 2.89 mg/L was achieved through scaled-up fermentation in a 5-liter fermenter. The strategies reported herein will expedite the development of industry-scale vitamin B12 production utilizing E. coli.
Collapse
Affiliation(s)
- Feitao Chen
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Science, Beijing, 100049, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Jianghua Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Pingtao Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huina Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Science, Beijing, 100049, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Ying Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huiying Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Tongcun Zhang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Science, Beijing, 100049, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
7
|
Qiao Y, Huang D, Li Y, Jiang S, Chen X, Chen J, Xiao Y, Chen W. Construction of lignan glycosides biosynthetic network in Escherichia coli using mutltienzyme modules. Microb Cell Fact 2024; 23:193. [PMID: 38970026 PMCID: PMC11225284 DOI: 10.1186/s12934-024-02467-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Due to the complexity of the metabolic pathway network of active ingredients, precise targeted synthesis of any active ingredient on a synthetic network is a huge challenge. Based on a complete analysis of the active ingredient pathway in a species, this goal can be achieved by elucidating the functional differences of each enzyme in the pathway and achieving this goal through different combinations. Lignans are a class of phytoestrogens that are present abundantly in plants and play a role in various physiological activities of plants due to their structural diversity. In addition, lignans offer various medicinal benefits to humans. Despite their value, the low concentration of lignans in plants limits their extraction and utilization. Recently, synthetic biology approaches have been explored for lignan production, but achieving the synthesis of most lignans, especially the more valuable lignan glycosides, across the entire synthetic network remains incomplete. RESULTS By evaluating various gene construction methods and sequences, we determined that the pCDF-Duet-Prx02-PsVAO gene construction was the most effective for the production of (+)-pinoresinol, yielding up to 698.9 mg/L after shake-flask fermentation. Based on the stable production of (+)-pinoresinol, we synthesized downstream metabolites in vivo. By comparing different fermentation methods, including "one-cell, one-pot" and "multicellular one-pot", we determined that the "multicellular one-pot" method was more effective for producing (+)-lariciresinol, (-)-secoisolariciresinol, (-)-matairesinol, and their glycoside products. The "multicellular one-pot" fermentation yielded 434.08 mg/L of (+)-lariciresinol, 96.81 mg/L of (-)-secoisolariciresinol, and 45.14 mg/L of (-)-matairesinol. Subsequently, ultilizing the strict substrate recognition pecificities of UDP-glycosyltransferase (UGT) incorporating the native uridine diphosphate glucose (UDPG) Module for in vivo synthesis of glycoside products resulted in the following yields: (+)-pinoresinol glucoside: 1.71 mg/L, (+)-lariciresinol-4-O-D-glucopyranoside: 1.3 mg/L, (+)-lariciresinol-4'-O-D-glucopyranoside: 836 µg/L, (-)-secoisolariciresinol monoglucoside: 103.77 µg/L, (-)-matairesinol-4-O-D-glucopyranoside: 86.79 µg/L, and (-)-matairesinol-4'-O-D-glucopyranoside: 74.5 µg/L. CONCLUSIONS By using various construction and fermentation methods, we successfully synthesized 10 products of the lignan pathway in Isatis indigotica Fort in Escherichia coli, with eugenol as substrate. Additionally, we obtained a diverse range of lignan products by combining different modules, setting a foundation for future high-yield lignan production.
Collapse
Affiliation(s)
- Yuqi Qiao
- Research and Development Center of Chinese Medicine Resources and Biotechnology, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Doudou Huang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yajing Li
- Research and Development Center of Chinese Medicine Resources and Biotechnology, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Songfan Jiang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Junfeng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Xiao
- Research and Development Center of Chinese Medicine Resources and Biotechnology, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
8
|
Li T, Liu X, Xiang H, Zhu H, Lu X, Feng B. Two-Phase Fermentation Systems for Microbial Production of Plant-Derived Terpenes. Molecules 2024; 29:1127. [PMID: 38474639 PMCID: PMC10934027 DOI: 10.3390/molecules29051127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Microbial cell factories, renowned for their economic and environmental benefits, have emerged as a key trend in academic and industrial areas, particularly in the fermentation of natural compounds. Among these, plant-derived terpenes stand out as a significant class of bioactive natural products. The large-scale production of such terpenes, exemplified by artemisinic acid-a crucial precursor to artemisinin-is now feasible through microbial cell factories. In the fermentation of terpenes, two-phase fermentation technology has been widely applied due to its unique advantages. It facilitates in situ product extraction or adsorption, effectively mitigating the detrimental impact of product accumulation on microbial cells, thereby significantly bolstering the efficiency of microbial production of plant-derived terpenes. This paper reviews the latest developments in two-phase fermentation system applications, focusing on microbial fermentation of plant-derived terpenes. It also discusses the mechanisms influencing microbial biosynthesis of terpenes. Moreover, we introduce some new two-phase fermentation techniques, currently unexplored in terpene fermentation, with the aim of providing more thoughts and explorations on the future applications of two-phase fermentation technology. Lastly, we discuss several challenges in the industrial application of two-phase fermentation systems, especially in downstream processing.
Collapse
Affiliation(s)
- Tuo Li
- Correspondence: (T.L.); (B.F.)
| | | | | | | | | | - Baomin Feng
- College of Life and Health, Dalian University, Dalian 116622, China; (X.L.); (H.X.); (H.Z.); (X.L.)
| |
Collapse
|
9
|
Lu Y, Liu Y, Zhang Y, Gao H, Chen X, Tu L, Luo Y, Jiang Z, Yin Y, Zhou J, Hu T, Wu X, Wang J, Gao W, Huang L. Characterization of the Cytochrome P450 CYP716C52 in Celastrol Biosynthesis and Its Applications in Engineered Saccharomyces cerevisiae. JOURNAL OF NATURAL PRODUCTS 2024; 87:176-185. [PMID: 38277488 DOI: 10.1021/acs.jnatprod.3c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Celastrol is a bioactive pentacyclic triterpenoid with promising therapeutic effects that is mainly distributed in Celastraceae plants. Although some enzymes involved in the celastrol biosynthesis pathway have been reported, many biosynthetic steps remain unknown. Herein, transcriptomics and metabolic profiles of multiple species in Celastraceae were integrated to screen for cytochrome P450s (CYPs) that are closely related to celastrol biosynthesis. The CYP716 enzyme, TwCYP716C52, was found to be able to oxidize the C-2 position of polpunonic acid, a precursor of celastrol, to form the wilforic acid C. RNAi-mediated repression of TwCYP716C52 in Tripterygium wilfordii suspension cells further confirmed its involvement in celastrol biosynthesis. The C-2 catalytic mechanisms of TwCYP716C52 were further explored by using molecular docking and site-directed mutagenesis experiments. Moreover, a modular optimization strategy was used to construct an engineered yeast to produce wilforic acid C at a titer of 5.8 mg·L-1. This study elucidates the celastrol biosynthetic pathway and provides important functional genes and sufficient precursors for further enzyme discovery.
Collapse
Affiliation(s)
- Yun Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
- Chengdu Second People's Hospital, Chengdu 610017, China
| | - Yuan Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yifeng Zhang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100050, China
| | - Haiyun Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xiaochao Chen
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Lichan Tu
- School of Medicine, Zhejiang University City College, Hangzhou 310027, China
| | - Yunfeng Luo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Zhouqian Jiang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yan Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiawei Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310027, China
| | - Tianyuan Hu
- School of Pharmacy, College of Medicine, Hangzhou Normal University, Hangzhou 310027, China
| | - Xiaoyi Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Jiadian Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100050, China
| |
Collapse
|
10
|
Guo M, Lv H, Chen H, Dong S, Zhang J, Liu W, He L, Ma Y, Yu H, Chen S, Luo H. Strategies on biosynthesis and production of bioactive compounds in medicinal plants. CHINESE HERBAL MEDICINES 2024; 16:13-26. [PMID: 38375043 PMCID: PMC10874775 DOI: 10.1016/j.chmed.2023.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/05/2023] [Accepted: 01/26/2023] [Indexed: 02/21/2024] Open
Abstract
Medicinal plants are a valuable source of essential medicines and herbal products for healthcare and disease therapy. Compared with chemical synthesis and extraction, the biosynthesis of natural products is a very promising alternative for the successful conservation of medicinal plants, and its rapid development will greatly facilitate the conservation and sustainable utilization of medicinal plants. Here, we summarize the advances in strategies and methods concerning the biosynthesis and production of natural products of medicinal plants. The strategies and methods mainly include genetic engineering, plant cell culture engineering, metabolic engineering, and synthetic biology based on multiple "OMICS" technologies, with paradigms for the biosynthesis of terpenoids and alkaloids. We also highlight the biosynthetic approaches and discuss progress in the production of some valuable natural products, exemplifying compounds such as vindoline (alkaloid), artemisinin and paclitaxel (terpenoids), to illustrate the power of biotechnology in medicinal plants.
Collapse
Affiliation(s)
- Miaoxian Guo
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Haizhou Lv
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hongyu Chen
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shuting Dong
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianhong Zhang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wanjing Liu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Liu He
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Yimian Ma
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Hua Yu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shilin Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongmei Luo
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| |
Collapse
|
11
|
Bibik JD, Hamberger B. Plant Engineering to Enable Platforms for Sustainable Bioproduction of Terpenoids. Methods Mol Biol 2024; 2760:3-20. [PMID: 38468079 DOI: 10.1007/978-1-0716-3658-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Terpenoids represent the most diverse class of natural products, with a broad spectrum of industrial relevance including applications in green solvents, flavors and fragrances, nutraceuticals, colorants, and therapeutics. They are typically challenging to extract from their natural sources, where they occur in small amounts and mixtures of related but unwanted byproducts. Formal chemical synthesis, where established, is reliant on petrochemistry. Hence, there is great interest in developing sustainable solutions to assemble biosynthetic pathways in engineered host organisms. Metabolic engineering for chemical production has largely focused on microbial hosts, yet plants offer a sustainable production platform. In addition to containing the precursor pathways that generate the terpenoid building blocks as well as the cell structures and compartments required, or tractable localization for the enzymes involved, plants may provide a low input system to produce these chemicals using carbon dioxide and sunlight only. There have been significant recent advancements in the discovery of pathways to terpenoids of interest as well as strategies to boost yields in host plants. While part of the phytochemical field is focusing on the discovery of biosynthetic pathways, this review will focus on advancements using the pathway toolbox and toward engineering plants for the production of terpenoids. We will highlight strategies currently used to produce target products, optimization of known pathways to improve yields, compartmentalization of pathways within cells, and genetic tools developed to facilitate complex engineering of biosynthetic pathways. These advancements in Synthetic Biology are bringing engineered plant systems closer to commercially relevant hosts for the bioproduction of terpenoids.
Collapse
Affiliation(s)
- Jacob D Bibik
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA
- MelaTech, LLC, Baltimore, MD, USA
| | - Björn Hamberger
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
12
|
Zhou P, Gao C, Song W, Wei W, Wu J, Liu L, Chen X. Engineering status of protein for improving microbial cell factories. Biotechnol Adv 2024; 70:108282. [PMID: 37939975 DOI: 10.1016/j.biotechadv.2023.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
With the development of metabolic engineering and synthetic biology, microbial cell factories (MCFs) have provided an efficient and sustainable method to synthesize a series of chemicals from renewable feedstocks. However, the efficiency of MCFs is usually limited by the inappropriate status of protein. Thus, engineering status of protein is essential to achieve efficient bioproduction with high titer, yield and productivity. In this review, we summarize the engineering strategies for metabolic protein status, including protein engineering for boosting microbial catalytic efficiency, protein modification for regulating microbial metabolic capacity, and protein assembly for enhancing microbial synthetic capacity. Finally, we highlight future challenges and prospects of improving microbial cell factories by engineering status of protein.
Collapse
Affiliation(s)
- Pei Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
13
|
Bhat S, Banerjee A, Alagesan S. AraC-Based Biosensor for the Detection of Isoprene in E. coli. ACS OMEGA 2023; 8:26806-26815. [PMID: 37546622 PMCID: PMC10399174 DOI: 10.1021/acsomega.3c01164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023]
Abstract
Isoprene is a valuable platform chemical, which is produced by engineered microorganisms, albeit in low quantities. The amount of isoprene produced is usually measured by gas chromatography, which can be time-consuming and expensive. Alternatively, biosensors have evolved as a powerful tool for real-time high-throughput screening and monitoring of product synthesis. The AraC-pBAD-inducible system has been widely studied, evolved, and engineered to develop biosensors for small molecules. In our preliminary studies, the AraC-pBAD system was mildly induced at higher isoprene concentrations when arabinose was also available. Hence, in the present study, we designed and constructed a synthetic biosensor based on the AraC-pBAD system, wherein the ligand-binding domain of AraC was replaced with IsoA. On introducing this chimeric AraC-IsoA (AcIa) transcription factor with the native PBAD promoter system regulating rfp gene expression, fluorescence output was observed only when wild-type Escherichia coli cells were induced with both isoprene and arabinose. The biosensor sensitivity and dynamic range were further enhanced by removing operator sequences and by substituting the native promoter (PAraC) with the strong tac promoter (Ptac). The chimeric sensor did not work in AraC knockout strains; however, functionality was restored by reintroducing AraC. Hence, AraC is essential for the functioning of our biosensor, while AcIa provides enhanced sensitivity and specificity for isoprene. However, insights into how AraC-AcIa interacts and the possible working mechanism remain to be explored. This study provides a prototype for developing chimeric AraC-based biosensors with proteins devoid of known dimerizing domains and opens a new avenue for further study and exploration.
Collapse
|
14
|
Tiwari P, Dufossé L. Focus and Insights into the Synthetic Biology-Mediated Chassis of Economically Important Fungi for the Production of High-Value Metabolites. Microorganisms 2023; 11:1141. [PMID: 37317115 PMCID: PMC10222946 DOI: 10.3390/microorganisms11051141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/16/2023] Open
Abstract
Substantial progress has been achieved and knowledge gaps addressed in synthetic biology-mediated engineering of biological organisms to produce high-value metabolites. Bio-based products from fungi are extensively explored in the present era, attributed to their emerging importance in the industrial sector, healthcare, and food applications. The edible group of fungi and multiple fungal strains defines attractive biological resources for high-value metabolites comprising food additives, pigments, dyes, industrial chemicals, and antibiotics, including other compounds. In this direction, synthetic biology-mediated genetic chassis of fungal strains to enhance/add value to novel chemical entities of biological origin is opening new avenues in fungal biotechnology. While substantial success has been achieved in the genetic manipulation of economically viable fungi (including Saccharomyces cerevisiae) in the production of metabolites of socio-economic relevance, knowledge gaps/obstacles in fungal biology and engineering need to be remedied for complete exploitation of valuable fungal strains. Herein, the thematic article discusses the novel attributes of bio-based products from fungi and the creation of high-value engineered fungal strains to promote yield, bio-functionality, and value-addition of the metabolites of socio-economic value. Efforts have been made to discuss the existing limitations in fungal chassis and how the advances in synthetic biology provide a plausible solution.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, Université de La Réunion, ESIROI Agroalimentaire, 15 Avenue René Cassin, F-97490 Saint-Denis, France
| |
Collapse
|
15
|
Liu Y, Chen X, Zhang C. Sustainable biosynthesis of valuable diterpenes in microbes. ENGINEERING MICROBIOLOGY 2023; 3:100058. [PMID: 39628524 PMCID: PMC11611012 DOI: 10.1016/j.engmic.2022.100058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 12/06/2024]
Abstract
Diterpenes, or diterpenoids, are the most abundant and diverse subgroup of terpenoids, the largest family of secondary metabolites. Most diterpenes possess broad biological activities including anti-inflammatory, antiviral, anti-tumoral, antimicrobial, anticancer, antifungal, antidiabetic, cardiovascular protective, and phytohormone activities. As such, diterpenes have wide applications in medicine (e.g., the anticancer drug Taxol and the antibiotic pleuromutilin), agriculture (especially as phytohormones such as gibberellins), personal care (e.g., the fragrance sclareol) and food (e.g., steviol glucosides as low-calorie sweeteners) industries. Diterpenes are biosynthesized in a common route with various diterpene synthases and decoration enzymes like cytochrome P450 oxidases, glycosidases, and acyltransferases. Recent advances in DNA sequencing and synthesis, omics analysis, synthetic biology, and metabolic engineering have enabled efficient production of diterpenes in several chassis hosts like Escherichia coli, Saccharomyces cerevisiae, Yarrowia lipolytica, Rhodosporidium toruloides, and Fusarium fujikuroi. This review summarizes the recently discovered diterpenes, their related enzymes and biosynthetic pathways, particularly highlighting the microbial synthesis of high-value diterpenes directly from inexpensive carbon sources (e.g., sugars). The high titers (>4 g/L) achieved mean that some of these endeavors are reaching or close to commercialization. As such, we envisage a bright future in translating microbial synthesis of diterpenes into commercialization.
Collapse
Affiliation(s)
- Yanbin Liu
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Level 6 Nanos building, Singapore 138669, Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Level 6 Nanos building, Singapore 138669, Singapore
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Level 6 Nanos building, Singapore 138669, Singapore
| |
Collapse
|
16
|
Xiao F, Zhang Y, Zhang L, Ding Z, Shi G, Li Y. Construction of the genetic switches in response to mannitol based on artificial MtlR box. BIORESOUR BIOPROCESS 2023; 10:9. [PMID: 38647829 PMCID: PMC10992428 DOI: 10.1186/s40643-023-00634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Synthetic biology has rapidly advanced from the setup of native genetic devices to the design of artificial elements able to provide organisms with highly controllable functions. In particular, genetic switches are crucial for deploying new layers of regulation into the engineered organisms. While the assembly and mutagenesis of native elements have been extensively studied, limited progress has been made in rational design of genetic switches due to a lack of understanding of the molecular mechanism by which a specific transcription factor interacts with its target gene. Here, a reliable workflow is presented for designing two categories of genetic elements, one is the switch element-MtlR box and the other is the transcriptional regulatory element- catabolite control protein A (CcpA) box. The MtlR box was designed for ON/OFF-state selection and is controlled by mannitol. The rational design of MtlR box-based molecular structures can flexibly tuned the selection of both ON and OFF states with different output switchability in response to varied kind effectors. Different types of CcpA boxes made the switches with more markedly inducer sensitivities. Ultimately, the OFF-state value was reduced by 90.69%, and the maximum change range in the presence of two boxes was 15.31-fold. This study presents a specific design of the switch, in a plug-and-play manner, which has great potential for controlling the flow of the metabolic pathway in synthetic biology.
Collapse
Affiliation(s)
- Fengxu Xiao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yupeng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
17
|
Cao X, Yu W, Chen Y, Yang S, Zhao ZK, Nielsen J, Luan H, Zhou YJ. Engineering yeast for high-level production of diterpenoid sclareol. Metab Eng 2023; 75:19-28. [PMID: 36371032 DOI: 10.1016/j.ymben.2022.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
The diterpenoid sclareol is an industrially important precursor for alternative sustainable supply of ambergris. However, its current production from plant extraction is neither economical nor environmental-friendly, since it requires laborious and cost-intensive purification procedures and plants cultivation is susceptible to environmental factors. Engineering cell factories for bio-manufacturing can enable sustainable production of natural products. However, stringent metabolic regulation poses challenges to rewire cellular metabolism for overproduction of compounds of interest. Here we used a modular approach to globally rewire the cellular metabolism for improving sclareol production to 11.4 g/L in budding yeast Saccharomyces cerevisiae, the highest reported diterpenoid titer in microbes. Metabolic flux analysis showed that modular balanced metabolism drove the metabolic flux toward the biosynthesis of targeted molecules, and transcriptomic analysis revealed that the expression of central metabolism genes was shaped for a new balanced metabolism, which laid a foundation in extensive metabolic engineering of other microbial species for sustainable bio-production.
Collapse
Affiliation(s)
- Xuan Cao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China
| | - Wei Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Shan Yang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zongbao K Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Hongwei Luan
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
18
|
Volk MJ, Tran VG, Tan SI, Mishra S, Fatma Z, Boob A, Li H, Xue P, Martin TA, Zhao H. Metabolic Engineering: Methodologies and Applications. Chem Rev 2022; 123:5521-5570. [PMID: 36584306 DOI: 10.1021/acs.chemrev.2c00403] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metabolic engineering aims to improve the production of economically valuable molecules through the genetic manipulation of microbial metabolism. While the discipline is a little over 30 years old, advancements in metabolic engineering have given way to industrial-level molecule production benefitting multiple industries such as chemical, agriculture, food, pharmaceutical, and energy industries. This review describes the design, build, test, and learn steps necessary for leading a successful metabolic engineering campaign. Moreover, we highlight major applications of metabolic engineering, including synthesizing chemicals and fuels, broadening substrate utilization, and improving host robustness with a focus on specific case studies. Finally, we conclude with a discussion on perspectives and future challenges related to metabolic engineering.
Collapse
Affiliation(s)
- Michael J Volk
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Vinh G Tran
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shih-I Tan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shekhar Mishra
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zia Fatma
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Aashutosh Boob
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hongxiang Li
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pu Xue
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Teresa A Martin
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
Khandy MT, Sofronova AK, Gorpenchenko TY, Chirikova NK. Plant Pyranocoumarins: Description, Biosynthesis, Application. PLANTS (BASEL, SWITZERLAND) 2022; 11:3135. [PMID: 36432864 PMCID: PMC9693251 DOI: 10.3390/plants11223135] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 05/23/2023]
Abstract
This overview article contains information about pyranocoumarins over the last 55 years. The article is based on the authors' phytochemical and physiological studies in vivo and in vitro as well as search and analysis of data in literature available on Google Scholar, Web of Science, PubMed, and ScienceDirect before January 2022. Pyranocoumarins are synthesized in plants of the Apiaceae, Rutaceae families, and one species in each of the Cornaceae, Calophyllaceae, and Fabaceae families can synthesize this class of compounds. The physiological role of these compounds in plants is not clear. It has been proven that these substances have a wide range of biological activities: anti-cancer, anti-spasmatic, and anticoagulant, and they also inhibit erythrocyte lysis and accumulation of triacylglycerides. The overview generalizes the modern understanding of the classification, structure, and biological activity of natural pyranocoumarins, and summarizes dispersed data into a unified scheme of biosynthesis. The review analyzes data on the localization and productivity of these substances in individual organs and the whole plant. It discusses a link between the unique structure of these substances and their biological activity, as well as new opportunities for pyranocoumarins in pharmacology. The article evaluates the potential of different plant species as producers of pyranocoumarins and considers the possibilities of cell cultures to obtain the end product.
Collapse
Affiliation(s)
- Maria T. Khandy
- Laboratory of Cell and Developmental Biology, Federal Scientific Center of East-Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Stoletiya Vladivostoka Ave. 159, Vladivostok 690022, Russia
- Laboratory of Biomedical Cell Technologies of the Center for Genomic and Regenerative Medicine, Institute of Life Sciences and Biomedicine, Far Eastern Federal University, FEFU Campus, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Anastasia K. Sofronova
- Laboratory of Biomedical Cell Technologies of the Center for Genomic and Regenerative Medicine, Institute of Life Sciences and Biomedicine, Far Eastern Federal University, FEFU Campus, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Tatiana Y. Gorpenchenko
- Laboratory of Cell and Developmental Biology, Federal Scientific Center of East-Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Stoletiya Vladivostoka Ave. 159, Vladivostok 690022, Russia
| | - Nadezhda K. Chirikova
- Department of Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, 58 Belinsky Str., Yakutsk 677000, Russia
| |
Collapse
|
20
|
Rautela A, Kumar S. Engineering plant family TPS into cyanobacterial host for terpenoids production. PLANT CELL REPORTS 2022; 41:1791-1803. [PMID: 35789422 PMCID: PMC9253243 DOI: 10.1007/s00299-022-02892-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/05/2022] [Indexed: 05/03/2023]
Abstract
Terpenoids are synthesized naturally by plants as secondary metabolites, and are diverse and complex in structure with multiple applications in bioenergy, food, cosmetics, and medicine. This makes the production of terpenoids such as isoprene, β-phellandrene, farnesene, amorphadiene, and squalene valuable, owing to which their industrial demand cannot be fulfilled exclusively by plant sources. They are synthesized via the Methylerythritol phosphate pathway (MEP) and the Mevalonate pathway (MVA), both existing in plants. The advent of genetic engineering and the latest accomplishments in synthetic biology and metabolic engineering allow microbial synthesis of terpenoids. Cyanobacteria manifest to be the promising hosts for this, utilizing sunlight and CO2. Cyanobacteria possess MEP pathway to generate precursors for terpenoid synthesis. The terpenoid synthesis can be amplified by overexpressing the MEP pathway and engineering MVA pathway genes. According to the desired terpenoid, terpene synthases unique to the plant kingdom must be incorporated in cyanobacteria. Engineering an organism to be used as a cell factory comes with drawbacks such as hampered cell growth and disturbance in metabolic flux. This review set forth a comparison between MEP and MVA pathways, strategies to overexpress these pathways with their challenges.
Collapse
Affiliation(s)
- Akhil Rautela
- School of Biochemical Engineering, IIT (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Sanjay Kumar
- School of Biochemical Engineering, IIT (BHU), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
21
|
A gene cluster in Ginkgo biloba encodes unique multifunctional cytochrome P450s that initiate ginkgolide biosynthesis. Nat Commun 2022; 13:5143. [PMID: 36050299 PMCID: PMC9436924 DOI: 10.1038/s41467-022-32879-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 08/22/2022] [Indexed: 11/08/2022] Open
Abstract
The ginkgo tree (Ginkgo biloba) is considered a living fossil due to its 200 million year's history under morphological stasis. Its resilience is partly attributed to its unique set of specialized metabolites, in particular, ginkgolides and bilobalide, which are chemically complex terpene trilactones. Here, we use a gene cluster-guided mining approach in combination with co-expression analysis to reveal the primary steps in ginkgolide biosynthesis. We show that five multifunctional cytochrome P450s with atypical catalytic activities generate the tert-butyl group and one of the lactone rings, characteristic of all G. biloba trilactone terpenoids. The reactions include scarless C-C bond cleavage as well as carbon skeleton rearrangement (NIH shift) occurring on a previously unsuspected intermediate. The cytochrome P450s belong to CYP families that diversifies in pre-seed plants and gymnosperms, but are not preserved in angiosperms. Our work uncovers the early ginkgolide pathway and offers a glance into the biosynthesis of terpenoids of the Mesozoic Era.
Collapse
|
22
|
Prasanna D, Runthala A. Computationally Decoding NudF Residues To Enhance the Yield of the DXP Pathway. ACS OMEGA 2022; 7:19898-19912. [PMID: 35721994 PMCID: PMC9202048 DOI: 10.1021/acsomega.2c01677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Terpenoids form a large pool of highly diverse organic compounds possessing several economically important properties, including nutritional, aromatic, and pharmacological properties. The 1-deoxy-d-xylulose 5-phosphate (DXP) pathway's end enzyme, nuclear distribution protein (NudF), interacting with isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), is critical for the synthesis of isoprenol/prenol/downstream compounds. The enzyme is yet to be thoroughly investigated to increase the overall yield of terpenoids in the Bacillus subtilis, which is widely used in industry and is generally regarded as a safe (GRAS) bacterium. The study aims to analyze the evolutionary conservation across the active site for mapping the key residues for mutagenesis studies. The 37-sequence data set, extracted from 103 Bacillus subtilis entries, shows a high phylogenetic divergence, and only six one-motif sequences ASB92783.1, ASB69297.1, ASB56714.1, AOR97677.1, AOL97023.1, and OAZ71765.1 show a monophyly relationship, unlike a complete polyphyly relationship between the other 31 three-motif sequences. Furthermore, only 47 of 179 residues of the representative sequence CUB50584.1 are observed to be significantly conserved. Docking analysis suggests a preferential bias of adenosine diphosphate (ADP)-ribose pyrophosphatase toward IPP, and a nearly threefold energetic difference is observed between IPP and DMAPP. The loops are hereby shown to play a regulatory role in guiding the promiscuity of NudF toward a specific ligand. Computational saturation mutagenesis of the seven hotspot residues identifies two key positions LYS78 and PHE116, orderly encoded within loop1 and loop7, majorly interacting with the ligands DMAPP and IPP, and their mutants K78I/K78L and PHE116D/PHE116E are found to stabilize the overall conformation. Molecular dynamics analysis shows that the IPP complex is significantly more stable than the DMAPP complex, and the NudF structure is very unstable. Besides showing a promiscuous binding of NudF with ligands, the analysis suggests its rate-limiting nature. The study would allow us to customize the metabolic load toward the synthesis of any of the downstream molecules. The findings would pave the way for the development of catalytically improved NudF mutants for the large-scale production of specific terpenoids with significant nutraceutical or commercial value.
Collapse
|
23
|
Bibik JD, Weraduwage SM, Banerjee A, Robertson K, Espinoza-Corral R, Sharkey TD, Lundquist PK, Hamberger BR. Pathway Engineering, Re-targeting, and Synthetic Scaffolding Improve the Production of Squalene in Plants. ACS Synth Biol 2022; 11:2121-2133. [PMID: 35549088 PMCID: PMC9208017 DOI: 10.1021/acssynbio.2c00051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plants are increasingly becoming an option for sustainable bioproduction of chemicals and complex molecules like terpenoids. The triterpene squalene has a variety of biotechnological uses and is the precursor to a diverse array of triterpenoids, but we currently lack a sustainable strategy to produce large quantities for industrial applications. Here, we further establish engineered plants as a platform for production of squalene through pathway re-targeting and membrane scaffolding. The squalene biosynthetic pathway, which natively resides in the cytosol and endoplasmic reticulum, was re-targeted to plastids, where screening of diverse variants of enzymes at key steps improved squalene yields. The highest yielding enzymes were used to create biosynthetic scaffolds on co-engineered, cytosolic lipid droplets, resulting in squalene yields up to 0.58 mg/gFW or 318% higher than a cytosolic pathway without scaffolding during transient expression. These scaffolds were also re-targeted to plastids where they associated with membranes throughout, including the formation of plastoglobules or plastidial lipid droplets. Plastid scaffolding ameliorated the negative effects of squalene biosynthesis and showed up to 345% higher rates of photosynthesis than without scaffolding. This study establishes a platform for engineering the production of squalene in plants, providing the opportunity to expand future work into production of higher-value triterpenoids.
Collapse
Affiliation(s)
- Jacob D. Bibik
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan 48824, United States
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Sarathi M. Weraduwage
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
| | - Aparajita Banerjee
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Ka’shawn Robertson
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States
| | - Roberto Espinoza-Corral
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, United States
| | - Thomas D. Sharkey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, United States
| | - Peter K. Lundquist
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, United States
| | - Björn R. Hamberger
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan 48824, United States
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
24
|
Ye Z, Shi B, Huang Y, Ma T, Xiang Z, Hu B, Kuang Z, Huang M, Lin X, Tian Z, Deng Z, Shen K, Liu T. Revolution of vitamin E production by starting from microbial fermented farnesene to isophytol. Innovation (N Y) 2022; 3:100228. [PMID: 35373168 PMCID: PMC8968663 DOI: 10.1016/j.xinn.2022.100228] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin E is one of the most widely used vitamins. In the classical commercial synthesis of vitamin E (α-tocopherol), the chemical synthesis of isophytol is the key technical barrier. Here, we establish a new process for isophytol synthesis from microbial fermented farnesene. To achieve an efficient pathway for farnesene production, Saccharomyces cerevisiae was selected as the host strain. First, β-farnesene synthase genes from different sources were screened, and through protein engineering and system metabolic engineering, a high production of β-farnesene in S. cerevisiae was achieved (55.4 g/L). This farnesene can be chemically converted into isophytol in three steps with approximately 92% yield, which is economically equal to that from the best total chemical synthesis. Furthermore, we co-produced lycopene and farnesene to reduce the cost of farnesene. A factory based on this new process was successfully operated in Hubei Province, China, in 2017, with an annual output of 30,000 tons of vitamin E. This new process has completely changed the vitamin E market due to its low cost and safety. The traditional chemical synthesis of vitamin E is complex and could be explosive An innovative way to synthesize isophytol from biofermented farnesene is established This process is safer and cheaper, changing the production and marketing of vitamin E Co-production of β-farnesene and lycopene improves the competitiveness of this process
Collapse
Affiliation(s)
- Ziling Ye
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- J1 Biotech Co., Ltd., Wuhan 430075, China
| | - Bin Shi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- J1 Biotech Co., Ltd., Wuhan 430075, China
| | - Yanglei Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Tian Ma
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zilei Xiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Ben Hu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhaolin Kuang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Man Huang
- J1 Biotech Co., Ltd., Wuhan 430075, China
| | - Xiaoying Lin
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhu Tian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Kun Shen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Corresponding author
| |
Collapse
|
25
|
Dong C, Qu G, Guo J, Wei F, Gao S, Sun Z, Jin L, Sun X, Rochaix JD, Miao Y, Wang R. Rational design of geranylgeranyl diphosphate synthase enhances carotenoid production and improves photosynthetic efficiency in Nicotiana tabacum. Sci Bull (Beijing) 2022; 67:315-327. [PMID: 36546080 DOI: 10.1016/j.scib.2021.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/01/2021] [Accepted: 06/24/2021] [Indexed: 01/06/2023]
Abstract
Restricted genetic diversity can supply only a limited number of elite genes for modern plant cultivation and transgenesis. In this study, we demonstrate that rational design enables the engineering of geranylgeranyl diphosphate synthase (NtGGPPS), an enzyme of the methylerythritol phosphate pathway (MEP) in the model plant Nicotiana tabacum. As the crucial bottleneck in carotenoid biosynthesis, NtGGPPS1 interacts with phytoene synthase (NtPSY1) to channel GGPP into the production of carotenoids. Loss of this enzyme in the ntggpps1 mutant leads to decreased carotenoid accumulation. With the aim of enhancing NtGGPPS1 activity, we undertook structure-guided rational redesign of its substrate binding pocket in combination with sequence alignment. The activity of the designed NtGGPPS1 (a pentuple mutant of five sites V154A/I161L/F218Y/I209S/V233E, d-NtGGPPS1) was measured by a high-throughput colorimetric assay. d-NtGGPPS1 exhibited significantly higher conversion of IPP and each co-substrate (DMAPP ~1995.5-fold, GPP ~25.9-fold, and FPP ~16.7-fold) for GGPP synthesis compared with wild-type NtGGPPS1. Importantly, the transient and stable expression of d-NtGGPPS1 in the ntggpps1 mutant increased carotenoid levels in leaves, improved photosynthetic efficiency, and increased biomass relative to NtGGPPS1. These findings provide a firm basis for the engineering of GGPPS and will facilitate the development of quality and yield traits. Our results open the door for the structure-guided rational design of elite genes in higher plants.
Collapse
Affiliation(s)
- Chen Dong
- Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China; Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China; College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jinggong Guo
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Fang Wei
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shuwen Gao
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Lifeng Jin
- Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China
| | - Xuwu Sun
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, Geneva 1211, Switzerland
| | - Yuchen Miao
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China.
| | - Ran Wang
- Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
26
|
Kabernick DC, Gostick JT, Ward VCA. Kinetic characterization and modelling of sequentially entrapped enzymes in 3D-printed PMMA microfluidic reactors for the synthesis of amorphadiene via the isopentenol utilization pathway. Biotechnol Bioeng 2022; 119:1239-1251. [PMID: 35099806 DOI: 10.1002/bit.28046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/27/2021] [Accepted: 01/16/2022] [Indexed: 11/06/2022]
Abstract
The development of cascade cell-free systems reduces the requirement for extensive metabolic engineering and optimization to increase in vivo pathway flux. For continuous operation and increased stability, direct enzyme entrapment during reactor fabrication by 3D-printing allows for simple immobilization procedures without enzyme-specific optimization. In this work, the isopentenol utilization pathway (IUP) was selected for the synthesis of amorphadiene, an anti-malaria drug precursor, using a 3D-printed, sequentially immobilized, microfluidic reactor. As an initial proof-of-concept, alkaline phosphatase (ALP) was entrapped in a poly(methyl methacrylate) (PMMA)-based matrix during stereolithographic 3D-printing and was kinetically characterized. No significant shift of the kinetically modelled substrate binding affinity was observed during immobilization and continuous operation of an entrapped ALP microfluidic reactor displayed high stability. The IUP enzymes retained moderate activity during entrapment (6.6-9.6 %) relative to the free enzyme solutions, however the sequentially immobilized IUP microfluidic reactor was severely limited by low pathway flux due to the use of stereolithographic 3D-printing which significantly diluted enzyme concentrations for printing. Although this study demonstrated the use of additive manufacturing for the synthesis of amorphadiene using a complex five-enzyme cascade microfluidic reactor, stereolithographic enzyme entrapment remains limited in scope and dependent on advancements to additive manufacturing technologies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Derek C Kabernick
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1
| | - Jeff T Gostick
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1
| | - Valerie C A Ward
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1
| |
Collapse
|
27
|
Rinaldi MA, Ferraz CA, Scrutton NS. Alternative metabolic pathways and strategies to high-titre terpenoid production in Escherichia coli. Nat Prod Rep 2022; 39:90-118. [PMID: 34231643 PMCID: PMC8791446 DOI: 10.1039/d1np00025j] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Terpenoids are a diverse group of chemicals used in a wide range of industries. Microbial terpenoid production has the potential to displace traditional manufacturing of these compounds with renewable processes, but further titre improvements are needed to reach cost competitiveness. This review discusses strategies to increase terpenoid titres in Escherichia coli with a focus on alternative metabolic pathways. Alternative pathways can lead to improved titres by providing higher orthogonality to native metabolism that redirects carbon flux, by avoiding toxic intermediates, by bypassing highly-regulated or bottleneck steps, or by being shorter and thus more efficient and easier to manipulate. The canonical 2-C-methyl-D-erythritol 4-phosphate (MEP) and mevalonate (MVA) pathways are engineered to increase titres, sometimes using homologs from different species to address bottlenecks. Further, alternative terpenoid pathways, including additional entry points into the MEP and MVA pathways, archaeal MVA pathways, and new artificial pathways provide new tools to increase titres. Prenyl diphosphate synthases elongate terpenoid chains, and alternative homologs create orthogonal pathways and increase product diversity. Alternative sources of terpenoid synthases and modifying enzymes can also be better suited for E. coli expression. Mining the growing number of bacterial genomes for new bacterial terpenoid synthases and modifying enzymes identifies enzymes that outperform eukaryotic ones and expand microbial terpenoid production diversity. Terpenoid removal from cells is also crucial in production, and so terpenoid recovery and approaches to handle end-product toxicity increase titres. Combined, these strategies are contributing to current efforts to increase microbial terpenoid production towards commercial feasibility.
Collapse
Affiliation(s)
- Mauro A Rinaldi
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Clara A Ferraz
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
28
|
Fordjour E, Mensah EO, Hao Y, Yang Y, Liu X, Li Y, Liu CL, Bai Z. Toward improved terpenoids biosynthesis: strategies to enhance the capabilities of cell factories. BIORESOUR BIOPROCESS 2022; 9:6. [PMID: 38647812 PMCID: PMC10992668 DOI: 10.1186/s40643-022-00493-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/04/2022] [Indexed: 02/22/2023] Open
Abstract
Terpenoids form the most diversified class of natural products, which have gained application in the pharmaceutical, food, transportation, and fine and bulk chemical industries. Extraction from naturally occurring sources does not meet industrial demands, whereas chemical synthesis is often associated with poor enantio-selectivity, harsh working conditions, and environmental pollutions. Microbial cell factories come as a suitable replacement. However, designing efficient microbial platforms for isoprenoid synthesis is often a challenging task. This has to do with the cytotoxic effects of pathway intermediates and some end products, instability of expressed pathways, as well as high enzyme promiscuity. Also, the low enzymatic activity of some terpene synthases and prenyltransferases, and the lack of an efficient throughput system to screen improved high-performing strains are bottlenecks in strain development. Metabolic engineering and synthetic biology seek to overcome these issues through the provision of effective synthetic tools. This review sought to provide an in-depth description of novel strategies for improving cell factory performance. We focused on improving transcriptional and translational efficiencies through static and dynamic regulatory elements, enzyme engineering and high-throughput screening strategies, cellular function enhancement through chromosomal integration, metabolite tolerance, and modularization of pathways.
Collapse
Affiliation(s)
- Eric Fordjour
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Emmanuel Osei Mensah
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Yunpeng Hao
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Ye Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Chun-Li Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
29
|
Kim M, Jang S, Jung GY. Development of Synthetic Riboswitches to Guide the Evolution of Metabolite Production in Microorganisms. Methods Mol Biol 2022; 2518:135-155. [PMID: 35666444 DOI: 10.1007/978-1-0716-2421-0_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The untranslated region (UTR) of prokaryotic mRNA contains riboswitches, which are gene regulating modules. Riboswitches can be used as biosensors to regulate the expression of a gene or an operon depending on the intracellular level of a target molecule and consequently modulate the cellular responses. In evolutionary engineering, riboswitch-based biosensors have been widely applied for high-throughput screening or selection of target phenotypes. Evolutionary approaches can overcome the limitations of rational approaches in metabolic engineering. Previous studies have reported synthetic riboswitches equipped with novel aptamers and marker genes based on a deep understanding of the operation mechanism of the riboswitch. Here, we introduce the development process of novel synthetic riboswitches for applications in metabolic engineering.
Collapse
Affiliation(s)
- Minsun Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Sungho Jang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, Korea
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
- Research Center for Bio Materials & Process Development, Incheon National University, Incheon, Korea
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea.
| |
Collapse
|
30
|
Cui X, Ma X, Prather K, Zhou K. Controlling protein expression by using intron-aided promoters in Saccharomyces cerevisiae. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Liu HR, Ahmad N, Lv B, Li C. Advances in production and structural derivatization of the promising molecule ursolic acid. Biotechnol J 2021; 16:e2000657. [PMID: 34096160 DOI: 10.1002/biot.202000657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023]
Abstract
Ursolic acid (UA) is a ursane-type pentacyclic triterpenoid compound, naturally produced in plants via specialized metabolism and exhibits vast range of remarkable physiological activities and pharmacological manifestations. Owing to significant safety and efficacy in different medical conditions, UA may serve as a backbone to produce its derivatives with novel therapeutic functions. This review aims to provide ideas for exploring more diverse structures to improve UA pharmacological activity and increasing its biological yield to meet the industrial requirements by systematically reviewing the current research progress of UA. We first provides an overview of the pharmacological activities, acquisition methods and structural modifications of UA. Among them, we focused on the synthetic modifications of UA to yield valuable derivatives with enhanced therapeutic potential. Furthermore, harnessing the essential advances for green synthesis of UA and its derivatives by advent of metabolic engineering and synthetic biology are of great concern. In this regard, all pivotal advances for enhancing the production of UA have been discussed. In combination with the advantages of UA biosynthesis and transformation strategy, large-scale microbial production of UA is a promising platform for further exploration.
Collapse
Affiliation(s)
- Hao-Ran Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Nadeem Ahmad
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, P. R. China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| |
Collapse
|
32
|
Liu XG, Lu X, Gao W, Li P, Yang H. Structure, synthesis, biosynthesis, and activity of the characteristic compounds from Ginkgo biloba L. Nat Prod Rep 2021; 39:474-511. [PMID: 34581387 DOI: 10.1039/d1np00026h] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: 1928-2021Ginkgo biloba L. is one of the most distinctive plants to have emerged on earth and has no close living relatives. Owing to its phylogenetic divergence from other plants, G. biloba contains many compounds with unique structures that have served to broaden the chemical diversity of herbal medicine. Examples of such compounds include terpene trilactones (ginkgolides), acylated flavonol glycosides (ginkgoghrelins), biflavones (ginkgetin), ginkgotides and ginkgolic acids. The extract of G. biloba leaf is used to prevent and/or treat cardiovascular diseases, while many ginkgo-derived compounds are currently at various stages of preclinical and clinical trials worldwide. The global annual sales of G. biloba products are estimated to total US$10 billion. However, the content and purity of the active compounds isolated by traditional methods are usually low and subject to varying environmental factors, making it difficult to meet the huge demand of the international market. This highlights the need to develop new strategies for the preparation of these characteristic compounds from G. biloba. In this review, we provide a detailed description of the structures and bioactivities of these compounds and summarize the recent research on the development of strategies for the synthesis, biosynthesis, and biotechnological production of the characteristic terpenoids, flavonoids, and alkylphenols/alkylphenolic acids of G. biloba. Our aim is to provide an important point of reference for all scientists who research ginkgo-related compounds for medicinal or other purposes.
Collapse
Affiliation(s)
- Xin-Guang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Xu Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
33
|
Galanie S, Entwistle D, Lalonde J. Engineering biosynthetic enzymes for industrial natural product synthesis. Nat Prod Rep 2021; 37:1122-1143. [PMID: 32364202 DOI: 10.1039/c9np00071b] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2000 to 2020 Natural products and their derivatives are commercially important medicines, agrochemicals, flavors, fragrances, and food ingredients. Industrial strategies to produce these structurally complex molecules encompass varied combinations of chemical synthesis, biocatalysis, and extraction from natural sources. Interest in engineering natural product biosynthesis began with the advent of genetic tools for pathway discovery. Genes and strains can now readily be synthesized, mutated, recombined, and sequenced. Enzyme engineering has succeeded commercially due to the development of genetic methods, analytical technologies, and machine learning algorithms. Today, engineered biosynthetic enzymes from organisms spanning the tree of life are used industrially to produce diverse molecules. These biocatalytic processes include single enzymatic steps, multienzyme cascades, and engineered native and heterologous microbial strains. This review will describe how biosynthetic enzymes have been engineered to enable commercial and near-commercial syntheses of natural products and their analogs.
Collapse
Affiliation(s)
- Stephanie Galanie
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
| | - David Entwistle
- Process Chemistry, Codexis, Inc., Redwood City, California, USA
| | - James Lalonde
- Microbial Digital Genome Engineering, Inscripta, Inc., Pleasanton, California, USA
| |
Collapse
|
34
|
Amorpha-4,11-diene synthase: a key enzyme in artemisinin biosynthesis and engineering. ABIOTECH 2021; 2:276-288. [PMID: 36303880 PMCID: PMC9590458 DOI: 10.1007/s42994-021-00058-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Amorpha-4,11-diene synthase (ADS) catalyzes the first committed step in the artemisinin biosynthetic pathway, which is the first catalytic reaction enzymatically and genetically characterized in artemisinin biosynthesis. The advent of ADS in Artemisia annua is considered crucial for the emergence of the specialized artemisinin biosynthetic pathway in the species. Microbial production of amorpha-4,11-diene is a breakthrough in metabolic engineering and synthetic biology. Recently, numerous new techniques have been used in ADS engineering; for example, assessing the substrate promiscuity of ADS to chemoenzymatically produce artemisinin. In this review, we discuss the discovery and catalytic mechanism of ADS, its application in metabolic engineering and synthetic biology, as well as the role of sesquiterpene synthases in the evolutionary origin of artemisinin.
Collapse
|
35
|
Hong K, Wang L, Johnpaul A, Lv C, Ma C. Key Enzymes Involved in the Synthesis of Hops Phytochemical Compounds: From Structure, Functions to Applications. Int J Mol Sci 2021; 22:9373. [PMID: 34502286 PMCID: PMC8430942 DOI: 10.3390/ijms22179373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Humulus lupulus L. is an essential source of aroma compounds, hop bitter acids, and xanthohumol derivatives mainly exploited as flavourings in beer brewing and with demonstrated potential for the treatment of certain diseases. To acquire a comprehensive understanding of the biosynthesis of these compounds, the primary enzymes involved in the three major pathways of hops' phytochemical composition are herein critically summarized. Hops' phytochemical components impart bitterness, aroma, and antioxidant activity to beers. The biosynthesis pathways have been extensively studied and enzymes play essential roles in the processes. Here, we introduced the enzymes involved in the biosynthesis of hop bitter acids, monoterpenes and xanthohumol derivatives, including the branched-chain aminotransferase (BCAT), branched-chain keto-acid dehydrogenase (BCKDH), carboxyl CoA ligase (CCL), valerophenone synthase (VPS), prenyltransferase (PT), 1-deoxyxylulose-5-phosphate synthase (DXS), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR), Geranyl diphosphate synthase (GPPS), monoterpene synthase enzymes (MTS), cinnamate 4-hydroxylase (C4H), chalcone synthase (CHS_H1), chalcone isomerase (CHI)-like proteins (CHIL), and O-methyltransferase (OMT1). Furthermore, research advancements of each enzyme in terms of reaction conditions, substrate recognition, enzyme structures, and use in engineered microbes are described in depth. Hence, an extensive review of the key enzymes involved in the phytochemical compounds of hops will provide fundamentals for their applications in beer production.
Collapse
Affiliation(s)
| | | | | | - Chenyan Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua Donglu Road, Haidian District, Beijing 100083, China; (K.H.); (L.W.); (A.J.)
| | - Changwei Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua Donglu Road, Haidian District, Beijing 100083, China; (K.H.); (L.W.); (A.J.)
| |
Collapse
|
36
|
Li W, Ma X, Li G, Zhang A, Wang D, Fan F, Ma X, Zhang X, Dai Z, Qian Z. De Novo Biosynthesis of the Oleanane-Type Triterpenoids of Tunicosaponins in Yeast. ACS Synth Biol 2021; 10:1874-1881. [PMID: 34259519 DOI: 10.1021/acssynbio.1c00065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tunicosaponins are natural products extracted from Psammosilene tunicoides, which is an important ingredient of Yunnan Baiyao Powder, an ancient and famous Asian herbal medicine. The representative aglycones of tunicosaponins are the oleanane-type triterpenoids of gypsogenin and quillaic acid, which were found to manipulate a broad range of virus-host fusion via wrapping the heptad repeat-2 (HR2) domain prevalent in viral envelopes. However, the unknown biosynthetic pathway and difficulty in chemical synthesis hinder the therapeutic use of tunicosaponins. Here, two novel cytochrome P450-dependent monooxygenases that take part in the biosynthesis of tunicosaponins, CYP716A262 (CYP091) and CYP72A567 (CYP099), were identified from P. tunicoides. In addition, the whole biosynthesis pathway of the tunicosaponin aglycones was reconstituted in yeast by transforming the platform strain BY-bAS with the CYP716A262 and CYP716A567 genes, the resulting strain could produce 146.84 and 314.01 mg/L of gypsogenin and quillaic acid, respectively. This synthetic biology platform for complicated metabolic pathways elucidation and microbial cell factories construction can provide alternative sources of important natural products, helping conserve natural plant resources.
Collapse
Affiliation(s)
- Weixian Li
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650500, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Department of Pharmacy, The Third People’s Hospital of Kunming, Kunming, 650000, China
| | - Xiaohui Ma
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Guodong Li
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Aili Zhang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Dong Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Feiyu Fan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xiaolin Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhubo Dai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zigang Qian
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650500, China
| |
Collapse
|
37
|
Han Y, Chen W, Sun Z. Antimicrobial activity and mechanism of limonene against
Staphylococcus aureus. J Food Saf 2021. [DOI: 10.1111/jfs.12918] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yingjie Han
- College of Food Sciences & Engineering, Hainan University Haikou China
| | - Wenxue Chen
- College of Food Sciences & Engineering, Hainan University Haikou China
| | - Zhichang Sun
- College of Food Sciences & Engineering, Hainan University Haikou China
| |
Collapse
|
38
|
Hu Z, Liu X, Tian M, Ma Y, Jin B, Gao W, Cui G, Guo J, Huang L. Recent progress and new perspectives for diterpenoid biosynthesis in medicinal plants. Med Res Rev 2021; 41:2971-2997. [PMID: 33938025 DOI: 10.1002/med.21816] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022]
Abstract
Diterpenoids, including more than 18,000 compounds, represent an important class of metabolites that encompass both phytohormones and some industrially relevant compounds. These molecules with complex, diverse structures and physiological activities, have high value in the pharmaceutical industry. Most medicinal diterpenoids are extracted from plants. Major advances in understanding the biosynthetic pathways of these active compounds are providing unprecedented opportunities for the industrial production of diterpenoids by metabolic engineering and synthetic biology. Here, we summarize recent developments in the field of diterpenoid biosynthesis from medicinal herbs. An overview of the pathways and known biosynthetic enzymes is presented. In particular, we look at the main findings from the past decade and review recent progress in the biosynthesis of different groups of ringed compounds. We also discuss diterpenoid production using synthetic biology and metabolic engineering strategies, and draw on new technologies and discoveries to bring together many components into a useful framework for diterpenoid production.
Collapse
Affiliation(s)
- Zhimin Hu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiuyu Liu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,School of Pharmaceutical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Mei Tian
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Ma
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baolong Jin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Gao
- School of Pharmaceutical, Sciences, Capital Medical University, Beijing, China
| | - Guanghong Cui
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
39
|
Hammock HA, Kopsell DA, Sams CE. Narrowband Blue and Red LED Supplements Impact Key Flavor Volatiles in Hydroponically Grown Basil Across Growing Seasons. FRONTIERS IN PLANT SCIENCE 2021; 12:623314. [PMID: 33719295 PMCID: PMC7952523 DOI: 10.3389/fpls.2021.623314] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
The use of light-emitting diodes (LEDs) in commercial greenhouse production is rapidly increasing because of technological advancements, increased spectral control, and improved energy efficiency. Research is needed to determine the value and efficacy of LEDs in comparison to traditional lighting systems. The objective of this study was to establish the impact of narrowband blue (B) and red (R) LED lighting ratios on flavor volatiles in hydroponic basil (Ocimum basilicum var. "Genovese") in comparison to a non-supplemented natural light (NL) control and traditional high-pressure sodium (HPS) lighting. "Genovese" basil was chosen because of its high market value and demand among professional chefs. Emphasis was placed on investigating concentrations of important flavor volatiles in response to specific ratios of narrowband B/R LED supplemental lighting (SL) and growing season. A total of eight treatments were used: one non-supplemented NL control, one HPS treatment, and six LED treatments (peaked at 447 nm/627 nm, ±20 nm) with progressive B/R ratios (10B/90R, 20B/80R, 30B/70R, 40B/60R, 50B/50R, and 60B/40R). Each SL treatment provided 8.64 mol ⋅ m-2 ⋅ d-1 (100 μmol ⋅ m-2 ⋅ s-1, 24 h ⋅ d-1). The daily light integral (DLI) of the NL control averaged 9.5 mol ⋅ m-2 ⋅ d-1 during the growth period (ranging from 4 to 18 mol ⋅ m-2 ⋅ d-1). Relative humidity averaged 50%, with day/night temperatures averaging 27.4°C/21.8°C, respectively. Basil plants were harvested 45 days after seeding, and volatile organic compound profiles were obtained by gas chromatography-mass spectrometry. Total terpenoid concentrations were dramatically increased during winter months under LED treatments, but still showed significant impacts during seasons with sufficient DLI and spectral quality. Many key flavor volatile concentrations varied significantly among lighting treatments and growing season. However, the concentrations of some compounds, such as methyl eugenol, were three to four times higher in the control and decreased significantly for basil grown under SL treatments. Maximum concentrations for each compound varied among lighting treatments, but most monoterpenes and diterpenes evaluated were highest under 20B/80R to 50B/50R. This study shows that supplemental narrowband light treatments from LED sources may be used to manipulate secondary metabolic resource allocation. The application of narrowband LED SL has great potential for improving overall flavor quality of basil and other high-value specialty herbs.
Collapse
|
40
|
Zhang C, Chen X, Lee RTC, T R, Maurer-Stroh S, Rühl M. Bioinformatics-aided identification, characterization and applications of mushroom linalool synthases. Commun Biol 2021; 4:223. [PMID: 33597725 PMCID: PMC7890063 DOI: 10.1038/s42003-021-01715-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/18/2021] [Indexed: 11/27/2022] Open
Abstract
Enzymes empower chemical industries and are the keystone for metabolic engineering. For example, linalool synthases are indispensable for the biosynthesis of linalool, an important fragrance used in 60-80% cosmetic and personal care products. However, plant linalool synthases have low activities while expressed in microbes. Aided by bioinformatics analysis, four linalool/nerolidol synthases (LNSs) from various Agaricomycetes were accurately predicted and validated experimentally. Furthermore, we discovered a linalool synthase (Ap.LS) with exceptionally high levels of selectivity and activity from Agrocybe pediades, ideal for linalool bioproduction. It effectively converted glucose into enantiopure (R)-linalool in Escherichia coli, 44-fold and 287-fold more efficient than its bacterial and plant counterparts, respectively. Phylogenetic analysis indicated the divergent evolution paths for plant, bacterial and fungal linalool synthases. More critically, structural comparison provided catalytic insights into Ap.LS superior specificity and activity, and mutational experiments validated the key residues responsible for the specificity.
Collapse
Affiliation(s)
- Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Raphael Tze Chuen Lee
- Bioinformatics Institute (BII), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Rehka T
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Department of Biological Sciences (DBS), National University of Singapore (NUS), Singapore, Singapore
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
41
|
Katsimpouras C, Stephanopoulos G. Enzymes in biotechnology: Critical platform technologies for bioprocess development. Curr Opin Biotechnol 2021; 69:91-102. [PMID: 33422914 DOI: 10.1016/j.copbio.2020.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/09/2020] [Accepted: 12/08/2020] [Indexed: 01/02/2023]
Abstract
Enzymes are core elements of biosynthetic pathways employed in the synthesis of numerous bioproducts. Here, we review enzyme promiscuity, enzyme engineering, enzyme immobilization, and cell-free systems as fundamental strategies of bioprocess development. Initially, promiscuous enzymes are the first candidates in the quest for new activities to power new, artificial, or bypass pathways that expand substrate range and catalyze the production of new products. If the activity or regulation of available enzymes is unsuitable for a process, protein engineering can be applied to improve them to the required level. When cell toxicity and low productivity cannot be engineered away, cell-free systems are an attractive option, especially in combination with enzyme immobilization that allows extended enzyme use. Overall, the above methods support powerful platforms for bioprocess development and optimization.
Collapse
Affiliation(s)
- Constantinos Katsimpouras
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139 MA, USA
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139 MA, USA.
| |
Collapse
|
42
|
Navale GR, Dharne MS, Shinde SS. Metabolic engineering and synthetic biology for isoprenoid production in Escherichia coli and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2021; 105:457-475. [PMID: 33394155 DOI: 10.1007/s00253-020-11040-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 12/29/2022]
Abstract
Isoprenoids, often called terpenoids, are the most abundant and highly diverse family of natural organic compounds. In plants, they play a distinct role in the form of photosynthetic pigments, hormones, electron carrier, structural components of membrane, and defence. Many isoprenoids have useful applications in the pharmaceutical, nutraceutical, and chemical industries. They are synthesized by various isoprenoid synthase enzymes by several consecutive steps. Recent advancement in metabolic engineering and synthetic biology has enabled the production of these isoprenoids in the heterologous host systems like Escherichia coli and Saccharomyces cerevisiae. Both heterologous systems have been engineered for large-scale production of value-added isoprenoids. This review article will provide the detailed description of various approaches used for engineering of methyl-D-erythritol-4-phosphate (MEP) and mevalonate (MVA) pathway for synthesizing isoprene units (C5) and ultimate production of diverse isoprenoids. The review particularly highlighted the efforts taken for the production of C5-C20 isoprenoids by metabolic engineering techniques in E. coli and S. cerevisiae over a decade. The challenges and strategies are also discussed in detail for scale-up and engineering of isoprenoids in the heterologous host systems.Key points• Isoprenoids are beneficial and valuable natural products.• E. coli and S. cerevisiae are the promising host for isoprenoid biosynthesis.• Emerging techniques in synthetic biology enabled the improved production.• Need to expand the catalogue and scale-up of un-engineered isoprenoids. Metabolic engineering and synthetic biology for isoprenoid production in Escherichia coli and Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Govinda R Navale
- NCIM Resource Centre, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 001, India
| | - Mahesh S Dharne
- NCIM Resource Centre, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 001, India.
| | - Sandip S Shinde
- NCIM Resource Centre, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India. .,Department Industrial and Chemical Engineering, Institute of Chemical Technology Mumbai Marathwada Campus, Jalna, 431213, India.
| |
Collapse
|
43
|
Motwalli O, Uludag M, Mijakovic I, Alazmi M, Bajic VB, Gojobori T, Gao X, Essack M. PATH cre8: A Tool That Facilitates the Searching for Heterologous Biosynthetic Routes. ACS Synth Biol 2020; 9:3217-3227. [PMID: 33198455 DOI: 10.1021/acssynbio.0c00058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Developing computational tools that can facilitate the rational design of cell factories producing desired products at increased yields is challenging, as the tool needs to take into account that the preferred host organism usually has compounds that are consumed by competing reactions that reduce the yield of the desired product. On the other hand, the preferred host organisms may not have the native metabolic reactions needed to produce the compound of interest; thus, the computational tool needs to identify the metabolic reactions that will most efficiently produce the desired product. In this regard, we developed the generic tool PATHcre8 to facilitate an optimized search for heterologous biosynthetic pathway routes. PATHcre8 finds and ranks biosynthesis routes in a large number of organisms, including Cyanobacteria. The tool ranks the pathways based on feature scores that reflect reaction thermodynamics, the potentially toxic products in the pathway (compound toxicity), intermediate products in the pathway consumed by competing reactions (product consumption), and host-specific information such as enzyme copy number. A comparison with several other similar tools shows that PATHcre8 is more efficient in ranking functional pathways. To illustrate the effectiveness of PATHcre8, we further provide case studies focused on isoprene production and the biodegradation of cocaine. PATHcre8 is free for academic and nonprofit users and can be accessed at https://www.cbrc.kaust.edu.sa/pathcre8/.
Collapse
Affiliation(s)
- Olaa Motwalli
- Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Saudi Electronic University (SEU), College of Computing and Informatics, Madinah 41538-53307, Kingdom of Saudi Arabia
| | - Mahmut Uludag
- Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ivan Mijakovic
- Chalmers University of Technology, Division of Systems & Synthetic Biology, Department of Biology and Biological Engineering, Kemivägen 10, 41296 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Meshari Alazmi
- Department of Information and Computer Science, College of Computer Science and Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81411, Kingdom of Saudi Arabia
| | - Vladimir B. Bajic
- Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Takashi Gojobori
- Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Magbubah Essack
- Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
44
|
Combining protein and metabolic engineering to construct efficient microbial cell factories. Curr Opin Biotechnol 2020; 66:27-35. [DOI: 10.1016/j.copbio.2020.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 11/17/2022]
|
45
|
Daletos G, Stephanopoulos G. Protein engineering strategies for microbial production of isoprenoids. Metab Eng Commun 2020; 11:e00129. [PMID: 32612930 PMCID: PMC7322351 DOI: 10.1016/j.mec.2020.e00129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 01/16/2023] Open
Abstract
Isoprenoids comprise one of the most chemically diverse family of natural products with high commercial interest. The structural diversity of isoprenoids is mainly due to the modular activity of three distinct classes of enzymes, including prenyl diphosphate synthases, terpene synthases, and cytochrome P450s. The heterologous expression of these enzymes in microbial systems is suggested to be a promising sustainable way for the production of isoprenoids. Several limitations are associated with native enzymes, such as low stability, activity, and expression profiles. To address these challenges, protein engineering has been applied to improve the catalytic activity, selectivity, and substrate turnover of enzymes. In addition, the natural promiscuity and modular fashion of isoprenoid enzymes render them excellent targets for combinatorial studies and the production of new-to-nature metabolites. In this review, we discuss key individual and multienzyme level strategies for the successful implementation of enzyme engineering towards efficient microbial production of high-value isoprenoids. Challenges and future directions of protein engineering as a complementary strategy to metabolic engineering are likewise outlined.
Collapse
Affiliation(s)
- Georgios Daletos
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| |
Collapse
|
46
|
Pramastya H, Song Y, Elfahmi EY, Sukrasno S, Quax WJ. Positioning Bacillus subtilis as terpenoid cell factory. J Appl Microbiol 2020; 130:1839-1856. [PMID: 33098223 PMCID: PMC8247319 DOI: 10.1111/jam.14904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022]
Abstract
Increasing demands for bioactive compounds have motivated researchers to employ micro‐organisms to produce complex natural products. Currently, Bacillus subtilis has been attracting lots of attention to be developed into terpenoids cell factories due to its generally recognized safe status and high isoprene precursor biosynthesis capacity by endogenous methylerythritol phosphate (MEP) pathway. In this review, we describe the up‐to‐date knowledge of each enzyme in MEP pathway and the subsequent steps of isomerization and condensation of C5 isoprene precursors. In addition, several representative terpene synthases expressed in B. subtilis and the engineering steps to improve corresponding terpenoids production are systematically discussed. Furthermore, the current available genetic tools are mentioned as along with promising strategies to improve terpenoids in B. subtilis, hoping to inspire future directions in metabolic engineering of B. subtilis for further terpenoid cell factory development.
Collapse
Affiliation(s)
- H Pramastya
- University of Groningen, Groningen, The Netherlands.,Pharmaceutical Biology Research Group, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| | - Y Song
- University of Groningen, Groningen, The Netherlands
| | - E Y Elfahmi
- Pharmaceutical Biology Research Group, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| | - S Sukrasno
- Pharmaceutical Biology Research Group, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| | - W J Quax
- University of Groningen, Groningen, The Netherlands
| |
Collapse
|
47
|
Yu Y, Rasool A, Liu H, Lv B, Chang P, Song H, Wang Y, Li C. Engineering Saccharomyces cerevisiae for high yield production of α-amyrin via synergistic remodeling of α-amyrin synthase and expanding the storage pool. Metab Eng 2020; 62:72-83. [DOI: 10.1016/j.ymben.2020.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/15/2020] [Accepted: 08/15/2020] [Indexed: 12/19/2022]
|
48
|
Shao J, Sun Y, Liu H, Wang Y. Pathway elucidation and engineering of plant-derived diterpenoids. Curr Opin Biotechnol 2020; 69:10-16. [PMID: 33032240 DOI: 10.1016/j.copbio.2020.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/26/2022]
Abstract
Plant-derived diterpenoids are indispensable to plant development, stress-resistance and interaction with environmental microorganisms. Besides significant roles in plant fitness and adaption, many bioactivities beneficial to human beings are also found in diterpenoids from terrestrial plants. However, these high-value compounds are always present in limited species with low-abundance. Complicated chemosynthesis hardly meets the needs of sufficient supplies. To overcome these obstacles, it is necessary to investigate how diterpenoids are biosynthesized in planta, and followed by engineering the biosynthetic pathway to achieve high yield production. This review will summarize the recent progress of plant diterpenoid biosynthetic pathway discovery and engineering, hoping to offer an inspiration for concerned researchers.
Collapse
Affiliation(s)
- Jie Shao
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuwei Sun
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Haili Liu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yong Wang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
49
|
Lim H, Park J, Woo HM. Overexpression of the Key Enzymes in the Methylerythritol 4-phosphate Pathway in Corynebacterium glutamicum for Improving Farnesyl Diphosphate-Derived Terpene Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10780-10786. [PMID: 32854502 DOI: 10.1021/acs.jafc.0c04307] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A systematic and combinatorial optimization has been employed to metabolically engineer microbes for identifying key gene targets for overexpression to increase the intermediate pools for terpenoid production. Herein, the methylerythritol 4-phosphate (MEP) pathway in Corynebacterium glutamicum, an industrial host, was investigated to identify the key genes whose overexpression would improve the production of farnesyl diphosphate (FPP)-derived terpenoids (squalene and α-farnesene). Using a combinatorial approach with the single, double, and triple expression of genes in the MEP pathway in a high-throughput fermentation, overexpression of the ispDF genes, along with the known dxs and idi genes, was most effective at increasing the squalene contents, i.e., by 14-fold. The dxr gene was identified as the key target enzyme for α-farnesene production. This result could provide fundamental information for improving the metabolic engineering of C. glutamicum for terpene production via an optimized MEP pathway.
Collapse
Affiliation(s)
- Hyeonbae Lim
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jaehyun Park
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- BioFoundry Research Center, Institute of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
50
|
Bu XL, He BB, Weng JY, Jiang CC, Zhao YL, Li SM, Xu J, Xu MJ. Constructing Microbial Hosts for the Production of Benzoheterocyclic Derivatives. ACS Synth Biol 2020; 9:2282-2290. [PMID: 32786357 DOI: 10.1021/acssynbio.9b00405] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Natural products containing benzoheterocyclic skeletons are widely found in plants and exhibit various pharmacological activities. To address the current limited availability of these compounds, we herein demonstrate the production of benzopyran, furanocoumarins, and pyranocoumarins in Streptomyces xiamenensis by employing prenyltransferases and two substrate-promiscuous enzymes, XimD and XimE. To avoid the degradation in S. xiamenensis, furanocoumarins and pyranocoumarins were also successfully produced in Escherichia coli. The production of linear furanocoumarins (marmesin) and angular pyranocoumarins (decursinol) reached 3.6 and 3.7 mg/L in shake flasks, respectively. To the best of our knowledge, this is the first report of the microbial production of the plant metabolites furanocoumarins and pyranocoumarins. Our study complements the missing link in the biosynthesis of pyranocoumarins by leveraging the catalytic promiscuity of microbial enzymes.
Collapse
Affiliation(s)
- Xu-Liang Bu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Bei-Bei He
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jing-Yi Weng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Chu-Chu Jiang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Min-Juan Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|