1
|
Booncherm V, Gill H, Anderson E, Mostafa S, Mercado C, Jiang X. Probing Ligand-Induced Conformational Changes in an MFS Transporter in vivo Using Site-Directed PEGylation. J Mol Biol 2025; 437:168941. [PMID: 39799991 DOI: 10.1016/j.jmb.2025.168941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/19/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
So far, site-directed alkylation (SDA) studies on transporters in the Major Facilitator Superfamily (MFS) are mostly performed at conditions different from the native cellular environment. In this study, using GFP-based site-directed PEGylation, ligand-induced conformational changes in the lactose permease of Escherichia coli (LacY), were examined in vivo for the first time. Accessibility/reactivity of single-Cys replacements in a Cys-less LacY-eGFP fusion background was tested using methoxy polyethylene glycol-maleimide-5K (mPEG-Mal-5K) in the absence or presence of a ligand, and the band-shift of the fusion upon PEGylation was detected by in-gel fluorescence. Ligand binding increases the rate of PEGylation at five out of eight tested positions on the periplasmic side in vivo, while decreasing the rate of PEGylation at both positions tested on the cytoplasmic side in situ. Upon ligand binding, the rate of PEGylation at two periplasmic positions, K42 and Q242, slightly decreases in vivo, but increases in situ, indicating the conformational behavior of these two residues in living cells may not be identical to that in isolated cell membranes. Furthermore, abolishing the electrochemical H+ gradient (Δμ∼H+) reduces the rate of PEGylation at all tested positions on the periplasmic side. We also found that, unlike the linear form, the branched (Y-shape) mPEG-Mal-5K cannot pass the outer membrane. This work characterizes the alternating access of LacY in the context of a living cell and demonstrates that this methodology is feasible and effective for dynamical studies of MFS transporters.
Collapse
Affiliation(s)
- Vatchilasack Booncherm
- Department of Chemistry and Biochemistry, California State University, San Bernardino, 5500 University Pkwy, San Bernardino, CA 92407, USA
| | - Harjot Gill
- Department of Chemistry and Biochemistry, California State University, San Bernardino, 5500 University Pkwy, San Bernardino, CA 92407, USA
| | - Ellen Anderson
- Department of Chemistry and Biochemistry, California State University, San Bernardino, 5500 University Pkwy, San Bernardino, CA 92407, USA
| | - Sayeeda Mostafa
- Department of Chemistry and Biochemistry, California State University, San Bernardino, 5500 University Pkwy, San Bernardino, CA 92407, USA
| | - Cindy Mercado
- Department of Chemistry and Biochemistry, California State University, San Bernardino, 5500 University Pkwy, San Bernardino, CA 92407, USA
| | - Xiaoxu Jiang
- Department of Chemistry and Biochemistry, California State University, San Bernardino, 5500 University Pkwy, San Bernardino, CA 92407, USA.
| |
Collapse
|
2
|
Lin Y, Zheng L, Bogdanov M. Advanced Method for the In Vivo Measurements of Lysophospholipid Translocation Across the Inner (Cytoplasmic) Membrane of Escherichia coli. Methods Mol Biol 2025; 2888:147-165. [PMID: 39699730 PMCID: PMC11728742 DOI: 10.1007/978-1-0716-4318-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Phospholipid translocation occurs ubiquitously in biological membranes and primarily is protein catalyzed. Lipid flippases mediate the net translocation of specific phospholipids from one leaflet of a membrane to the other. In the inner (cytoplasmic) membrane (IM) of Gram-negative bacteria, lysophospholipid translocase (LplT) and cytosolic bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase (Aas) form a glycerophospholipid regeneration system, which is capable of facilitating rapid retrograde translocation of lyso forms of phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin (CL) but not exogenous (host-derived) phosphatidylcholine (PC) across the IM of Gram-negative diderm (two-membraned) bacteria in consequential order lyso-PE = lyso-PG > > lysophosphatidic acid (lyso-PA) >> lyso-PC. Although several flippases that bind and move non-glycerophosphatidyl lipids across the IM are characterized in Gram-negative bacteria, LplT appears to be the first example of a bacterial protein capable of facilitating the rapid translocation of monoacylated glycerophospholipids. On the cytoplasmic surface, Aas restores the lysophospholipids to their diacyl forms with comparable efficiency but excludes any exogenous monoacylated lipid species. This coupled remodeling enzyme tandem provides an effective means to examine substrate specificity of lipid regeneration and lysophospholipid transport per se across the membrane. The current chapter describes two distinct but complementary methods for the measurement of lysophospholipid transport across membranes using Escherichia coli spheroplasts.
Collapse
Affiliation(s)
- Yibin Lin
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA
| | - Lei Zheng
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
3
|
Weerakoon D, Marzinek JK, Pedebos C, Bond PJ, Khalid S. Polymyxin B1 in the Escherichia coli inner membrane: A complex story of protein and lipopolysaccharide-mediated insertion. J Biol Chem 2024; 300:107754. [PMID: 39260694 PMCID: PMC11497408 DOI: 10.1016/j.jbc.2024.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
The rise in multi-drug resistant Gram-negative bacterial infections has led to an increased need for "last-resort" antibiotics such as polymyxins. However, the emergence of polymyxin-resistant strains threatens to bring about a post-antibiotic era. Thus, there is a need to develop new polymyxin-based antibiotics, but a lack of knowledge of the mechanism of action of polymyxins hinders such efforts. It has recently been suggested that polymyxins induce cell lysis of the Gram-negative bacterial inner membrane (IM) by targeting trace amounts of lipopolysaccharide (LPS) localized there. We use multiscale molecular dynamics (MD), including long-timescale coarse-grained (CG) and all-atom (AA) simulations, to investigate the interactions of polymyxin B1 (PMB1) with bacterial IM models containing phospholipids (PLs), small quantities of LPS, and IM proteins. LPS was observed to (transiently) phase separate from PLs at multiple LPS concentrations, and associate with proteins in the IM. PMB1 spontaneously inserted into the IM and localized at the LPS-PL interface, where it cross-linked lipid headgroups via hydrogen bonds, sampling a wide range of interfacial environments. In the presence of membrane proteins, a small number of PMB1 molecules formed interactions with them, in a manner that was modulated by local LPS molecules. Electroporation-driven translocation of PMB1 via water-filled pores was favored at the protein-PL interface, supporting the 'destabilizing' role proteins may have within the IM. Overall, this in-depth characterization of PMB1 modes of interaction reveals how small amounts of mislocalized LPS may play a role in pre-lytic targeting and provides insights that may facilitate rational improvement of polymyxin-based antibiotics.
Collapse
Affiliation(s)
- Dhanushka Weerakoon
- School of Chemistry, University of Southampton, Southampton, UK; Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Jan K Marzinek
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Conrado Pedebos
- Department of Biochemistry, University of Oxford, Porto Alegre, UK; Programa de Pós-Graduação em Biociências (PPGBio), Universidade Federal de Ciências da Saudé de Porto Alegre - UFCSPA, Brazil
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore.
| | - Syma Khalid
- Department of Biochemistry, University of Oxford, Porto Alegre, UK.
| |
Collapse
|
4
|
Winnikoff JR, Milshteyn D, Vargas-Urbano SJ, Pedraza MA, Armando AM, Quehenberger O, Sodt A, Gillilan RE, Dennis EA, Lyman E, Haddock SHD, Budin I. Homeocurvature adaptation of phospholipids to pressure in deep-sea invertebrates. Science 2024; 384:1482-1488. [PMID: 38935710 PMCID: PMC11593575 DOI: 10.1126/science.adm7607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/17/2024] [Indexed: 06/29/2024]
Abstract
Hydrostatic pressure increases with depth in the ocean, but little is known about the molecular bases of biological pressure tolerance. We describe a mode of pressure adaptation in comb jellies (ctenophores) that also constrains these animals' depth range. Structural analysis of deep-sea ctenophore lipids shows that they form a nonbilayer phase at pressures under which the phase is not typically stable. Lipidomics and all-atom simulations identified phospholipids with strong negative spontaneous curvature, including plasmalogens, as a hallmark of deep-adapted membranes that causes this phase behavior. Synthesis of plasmalogens enhanced pressure tolerance in Escherichia coli, whereas low-curvature lipids had the opposite effect. Imaging of ctenophore tissues indicated that the disintegration of deep-sea animals when decompressed could be driven by a phase transition in their phospholipid membranes.
Collapse
Affiliation(s)
- Jacob R. Winnikoff
- Department of Chemistry and Biochemistry, University of California San Diego; 9500 Gilman Dr., La Jolla, CA 92093, USA
- Department of Organismic and Evolutionary Biology, Harvard University; 16 Divinity Ave., Cambridge, MA 02138, USA
- Monterey Bay Aquarium Research Institute; 7700 Sandholdt Rd., Moss Landing, CA 95039, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz; 1156 High St., Santa Cruz, CA 95064, USA
| | - Daniel Milshteyn
- Department of Chemistry and Biochemistry, University of California San Diego; 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Sasiri J. Vargas-Urbano
- Department of Physics and Astronomy, University of Delaware; 210 South College Ave., Newark, DE 19716, USA
| | - Miguel A. Pedraza
- Department of Physics and Astronomy, University of Delaware; 210 South College Ave., Newark, DE 19716, USA
| | - Aaron M. Armando
- Department of Pharmacology, University of California San Diego Health Sciences; 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Oswald Quehenberger
- Department of Pharmacology, University of California San Diego Health Sciences; 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Alexander Sodt
- Unit on Membrane Chemical Physics, National Institute of Child Health and Human Development; 29 Lincoln Drive, Bethesda, MD 20892
| | | | - Edward A. Dennis
- Department of Chemistry and Biochemistry, University of California San Diego; 9500 Gilman Dr., La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego Health Sciences; 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware; 210 South College Ave., Newark, DE 19716, USA
| | - Steven H. D. Haddock
- Monterey Bay Aquarium Research Institute; 7700 Sandholdt Rd., Moss Landing, CA 95039, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz; 1156 High St., Santa Cruz, CA 95064, USA
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego; 9500 Gilman Dr., La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Bogdanov M. Exploring Uniform, Dual, and Dynamic Topologies of Membrane Proteins by Substituted Cysteine Accessibility Method (SCAM™). Methods Mol Biol 2024; 2715:121-157. [PMID: 37930526 PMCID: PMC10755806 DOI: 10.1007/978-1-0716-3445-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
A described simple and advanced protocol for Substituted Cysteine Accessibility Method as applied to transmembrane (TM) orientation (SCAM™) permits a topology analysis of proteins in their native state and can be universally adapted to any membrane system to either systematically map an uniform or identify and quantify the degree of mixed topology or establish transmembrane assembly dynamics from relatively static experimental data such as endpoint topologies of membrane proteins. In this approach, noncritical individual amino acids that are thought to reside in the putative extracellular or intracellular loops of a membrane protein are replaced one at the time by cysteine residue, and the orientation with respect to the membrane is evaluated by using a pair of membrane-impermeable non-detectable and detectable thiol-reactive labeling reagents. For the most water-exposed cysteine residues in proteins, the thiol pKa lies in the range of 8-9, and formation of cysteinyl thiolate ions is optimum in aqueous rather in a nonpolar environment. These features and the ease of specific chemical modification with thiol reagents are central to SCAM™. Membrane side-specific sulfhydryl labeling allows to discriminate "exposed, protected or dynamic" cysteines strategically "implanted" at desired positions throughout cysteine less target protein template. The strategy described is widely used to map the topology of membrane protein and establish its transmembrane dynamics in intact cells of both diderm (two-membraned) Gram-negative and monoderm (one-membraned) Gram-positive bacteria, cell-derived oriented membrane vesicles, and proteoliposomes.
Collapse
Affiliation(s)
- Mikhail Bogdanov
- Department of Biochemistry & Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
6
|
Hori K, Yoshimoto S, Yoshino T, Zako T, Hirao G, Fujita S, Nakamura C, Yamagishi A, Kamiya N. Recent advances in research on biointerfaces: From cell surfaces to artificial interfaces. J Biosci Bioeng 2022; 133:195-207. [PMID: 34998688 DOI: 10.1016/j.jbiosc.2021.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Biointerfaces are regions where biomolecules, cells, and organic materials are exposed to environmental media or come in contact with other biomaterials, cells, and inorganic/organic materials. In this review article, six research topics on biointerfaces are described to show examples of state-of-art research approaches. First, biointerface design of nanoparticles for molecular detection is described. Functionalized gold nanoparticles can be used for sensitive detection of various target molecules, including chemical compounds and biomolecules, such as DNA, proteins, cells, and viruses. Second, the interaction between bacterial cell surfaces and material surfaces, including the introduction of advances in analytical methods and theoretical calculations, are explained as well as their applications to bioprocesses. Third, bioconjugation technologies for localizing functional proteins at biointerfaces are introduced, in particular, by focusing the potential of enzymes as a catalytic tool for designing different types of bioconjugates that function at biointerfaces. Forth topics is focusing on lipid-protein interaction in cell membranes as natural biointerfaces. Examples of membrane lipid engineering are introduced, and it is mentioned how their compositional profiles affect membrane protein functions. Fifth topic is the physical method for molecular delivery across the biointerface being developed currently, such as highly efficient nanoinjection, electroporation, and nanoneedle devices, in which the key is how to perforate the cell membrane. Final topic is the chemical design of lipid- or polymer-based RNA delivery carriers and their behavior on the cell interface, which are currently attracting attention as RNA vaccine technologies targeting COVID-19. Finally, future directions of biointerface studies are presented.
Collapse
Affiliation(s)
- Katsutoshi Hori
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
| | - Shogo Yoshimoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tamotsu Zako
- Faculty of Science, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Gen Hirao
- Faculty of Science, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Satoshi Fujita
- Photo BIO-OIL, National Institute of Advanced Industrial Science and Technology, Suita, Osaka 565-0871, Japan; Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chikashi Nakamura
- DAILAB, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 5 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Ayana Yamagishi
- DAILAB, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 5 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
7
|
Josts I, Kehlenbeck DM, Nitsche J, Tidow H. Studying integral membrane protein by SANS using stealth reconstitution systems. Methods Enzymol 2022; 677:417-432. [DOI: 10.1016/bs.mie.2022.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Lopez Mora N, Findlay HE, Brooks NJ, Purushothaman S, Ces O, Booth PJ. The membrane transporter lactose permease increases lipid bilayer bending rigidity. Biophys J 2021; 120:3787-3794. [PMID: 34273316 PMCID: PMC8456183 DOI: 10.1016/j.bpj.2021.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/26/2022] Open
Abstract
Cellular life relies on membranes, which provide a resilient and adaptive cell boundary. Many essential processes depend upon the ease with which the membrane is able to deform and bend, features that can be characterized by the bending rigidity. Quantitative investigations of such mechanical properties of biological membranes have primarily been undertaken in solely lipid bilayers and frequently in the absence of buffers. In contrast, much less is known about the influence of integral membrane proteins on bending rigidity under physiological conditions. We focus on an exemplar member of the ubiquitous major facilitator superfamily of transporters and assess the influence of lactose permease on the bending rigidity of lipid bilayers. Fluctuation analysis of giant unilamellar vesicles (GUVs) is a useful means to measure bending rigidity. We find that using a hydrogel substrate produces GUVs that are well suited to fluctuation analysis. Moreover, the hydrogel method is amenable to both physiological salt concentrations and anionic lipids, which are important to mimic key aspects of the native lactose permease membrane. Varying the fraction of the anionic lipid in the lipid mixture DOPC/DOPE/DOPG allows us to assess the dependence of membrane bending rigidity on the topology and concentration of an integral membrane protein in the lipid bilayer of GUVs. The bending rigidity gradually increases with the incorporation of lactose permease, but there is no further increase with greater amounts of the protein in the membrane.
Collapse
Affiliation(s)
- Nestor Lopez Mora
- Department of Chemistry, Kings College London, London, United Kingdom
| | - Heather E Findlay
- Department of Chemistry, Kings College London, London, United Kingdom
| | - Nicholas J Brooks
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Sowmya Purushothaman
- Department of Chemistry, Imperial College London, London, United Kingdom; Beyond Meat, El Segundo, California
| | - Oscar Ces
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Paula J Booth
- Department of Chemistry, Kings College London, London, United Kingdom.
| |
Collapse
|
9
|
Magnetosome membrane engineering to improve G protein-coupled receptor activities in the magnetosome display system. Metab Eng 2021; 67:125-132. [PMID: 34174423 DOI: 10.1016/j.ymben.2021.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/11/2021] [Accepted: 06/22/2021] [Indexed: 11/20/2022]
Abstract
Magnetotactic bacterium, Magnetospirillum magneticum, produces biogenic magnetic nanoparticles termed magnetosomes, which are primarily composed of a magnetite core and a surrounding lipid bilayer membrane. We have fabricated human transmembrane protein-magnetosome complexes by genetic engineering with embedding the transmembrane proteins of interest, in particular G protein-coupled receptors (GPCRs), in the magnetosome membrane. The magnetosomes provide a promising platform for high throughput ligand screening towards drug discovery, and this is a critical advantage of the magnetosome display system beyond conventional membrane platforms such as liposomes and lipid nano-discs. However, the human GPCRs expressed on the magnetosomes were not fully functionalized in bacterial membranes the most probably due to the lack of essential phospholipids such as phosphatidylcholine (PC) for GPCR functionalization. To overcome this issue, we expressed two types of PC-producing enzymes, phosphatidylcholine synthase (PCS) and phosphatidylethanolamine N-methyltransferase (PMT) in M. magneticum. As a result, generation and incorporation of PC in cell- and magnetosome-membranes were demonstrated. To the best of our knowledge, M. magneticum is the second bacterial species which had the PC-incorporated lipid membrane by genetic engineering. Subsequently, a GPCR, thyroid-stimulating hormone receptor (TSHR) and PCS were simultaneously expressed. We found that PC in the magnetosome membrane assisted the binding of TSHR and its ligand, indicating that the genetic approach demonstrated in this study is useful to enhance the function of the GPCRs displayed on the magnetosomes.
Collapse
|
10
|
Yuan Y, Yu Y, Klauda JB. Simulations of Diabetic and Non-Diabetic Peripheral Nerve Myelin Lipid Bilayers. J Phys Chem B 2021; 125:6201-6213. [PMID: 34081470 DOI: 10.1021/acs.jpcb.1c01621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The multilayered myelin sheath is a critical component of both central and peripheral nervous systems, forming a protective barrier against axonal damage and facilitating the movement of nervous impulses. It is primarily composed of cholesterol (CHL1), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), sphingomyelin (SM), and galactosylceramide (GalCer) lipids. For rat sciatic nerve myelin (part of the peripheral nervous system, PNS), it has been found that cholesterol and unsaturated fatty acid contents are significantly lower in diabetic than in non-diabetic conditions. In this study, lipid compositions from experimental data are used to create four model rat sciatic nerve myelin lipid bilayers: PI-containing (non-diabetic and diabetic) and PS-containing (non-diabetic and diabetic), which were then simulated using the all-atom CHARMM36 force field. Simulation results of diabetic membranes indicate less rigid, more laterally expansive, and thinner bilayers as well as potentially reduced interactions between GalCer on opposing myelin leaflets, supporting a direct role of the cholesterol content decrease in instigating myelin deterioration and diabetic peripheral neuropathy. Compared to PI-lipids, PS-lipids were found to cause higher inter-lipid spacing and decreased order within membranes as a result of their smaller headgroup size and higher inter-lipid hydrogen bonding potential, which allow them to more frequently reside deeper in the membrane plane and produce pushing effects on other lipids. GalCer deuterium order parameters and non-diabetic headgroup-to-headgroup bilayer thicknesses were compared to experimental data, exhibiting close alignment, supporting the future usage of these models to study the PNS myelin sheath.
Collapse
Affiliation(s)
- Yiding Yuan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Yalun Yu
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States.,Biophysics Graduate Program, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
11
|
Dowhan W, Bogdanov M. Eugene P. Kennedy's Legacy: Defining Bacterial Phospholipid Pathways and Function. Front Mol Biosci 2021; 8:666203. [PMID: 33842554 PMCID: PMC8027125 DOI: 10.3389/fmolb.2021.666203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022] Open
Abstract
In the 1950's and 1960's Eugene P. Kennedy laid out the blueprint for phospholipid biosynthesis in somatic cells and Escherichia coli, which have been coined the Kennedy Pathways for phospholipid biosynthesis. His research group continued to make seminal contributions in the area of phospholipids until his retirement in the early 1990's. During these years he mentored many young scientists that continued to build on his early discoveries and who also mentored additional scientists that continue to make important contributions in areas related to phospholipids and membrane biogenesis. This review will focus on the initial E. coli Kennedy Pathways and how his early contributions have laid the foundation for our current understanding of bacterial phospholipid genetics, biochemistry and function as carried on by his scientific progeny and others who have been inspired to study microbial phospholipids.
Collapse
Affiliation(s)
- William Dowhan
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
12
|
Orädd F, Andersson M. Tracking Membrane Protein Dynamics in Real Time. J Membr Biol 2021; 254:51-64. [PMID: 33409541 PMCID: PMC7936944 DOI: 10.1007/s00232-020-00165-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022]
Abstract
Abstract Membrane proteins govern critical cellular processes and are central to human health and associated disease. Understanding of membrane protein function is obscured by the vast ranges of structural dynamics—both in the spatial and time regime—displayed in the protein and surrounding membrane. The membrane lipids have emerged as allosteric modulators of membrane protein function, which further adds to the complexity. In this review, we discuss several examples of membrane dependency. A particular focus is on how molecular dynamics (MD) simulation have aided to map membrane protein dynamics and how enhanced sampling methods can enable observing the otherwise inaccessible biological time scale. Also, time-resolved X-ray scattering in solution is highlighted as a powerful tool to track membrane protein dynamics, in particular when combined with MD simulation to identify transient intermediate states. Finally, we discuss future directions of how to further develop this promising approach to determine structural dynamics of both the protein and the surrounding lipids. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Fredrik Orädd
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | |
Collapse
|
13
|
Corin K, Bowie JU. How bilayer properties influence membrane protein folding. Protein Sci 2020; 29:2348-2362. [PMID: 33058341 DOI: 10.1002/pro.3973] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/24/2023]
Abstract
The question of how proteins manage to organize into a unique three-dimensional structure has been a major field of study since the first protein structures were determined. For membrane proteins, the question is made more complex because, unlike water-soluble proteins, the solvent is not homogenous or even unique. Each cell and organelle has a distinct lipid composition that can change in response to environmental stimuli. Thus, the study of membrane protein folding requires not only understanding how the unfolded chain navigates its way to the folded state, but also how changes in bilayer properties can affect that search. Here we review what we know so far about the impact of lipid composition on bilayer physical properties and how those properties can affect folding. A better understanding of the lipid bilayer and its effects on membrane protein folding is not only important for a theoretical understanding of the folding process, but can also have a practical impact on our ability to work with and design membrane proteins.
Collapse
Affiliation(s)
- Karolina Corin
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute, University of California, Los Angeles, California, USA
| | - James U Bowie
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
14
|
Harris NJ, Pellowe GA, Booth PJ. Cell-free expression tools to study co-translational folding of alpha helical membrane transporters. Sci Rep 2020; 10:9125. [PMID: 32499529 PMCID: PMC7272624 DOI: 10.1038/s41598-020-66097-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/15/2020] [Indexed: 11/28/2022] Open
Abstract
Most helical membrane proteins fold co-translationally during unidirectional polypeptide elongation by the ribosome. Studies thus far, however, have largely focussed on refolding full-length proteins from artificially induced denatured states that are far removed from the natural co-translational process. Cell-free translation offers opportunities to remedy this deficit in folding studies and has previously been used for membrane proteins. We exploit this cell-free approach to develop tools to probe co-translational folding. We show that two transporters from the ubiquitous Major Facilitator Superfamily can successfully insert into a synthetic bilayer without the need for translocon insertase apparatus that is essential in vivo. We also assess the cooperativity of domain insertion, by expressing the individual transporter domains cell-free. Furthermore, we manipulate the cell-free reaction to pause and re-start protein synthesis at specific points in the protein sequence. We find that full-length protein can still be made when stalling after the first N terminal helix has inserted into the bilayer. However, stalling after the first three helices have exited the ribosome cannot be successfully recovered. These three helices cannot insert stably when ribosome-bound during co-translational folding, as they require insertion of downstream helices.
Collapse
Affiliation(s)
- Nicola J Harris
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Grant A Pellowe
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Paula J Booth
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London, SE1 1DB, UK.
| |
Collapse
|
15
|
Nilsson I, Lee SY, Sawyer WS, Baxter Rath CM, Lapointe G, Six DA. Metabolic phospholipid labeling of intact bacteria enables a fluorescence assay that detects compromised outer membranes. J Lipid Res 2020; 61:870-883. [PMID: 32156718 PMCID: PMC7269758 DOI: 10.1194/jlr.ra120000654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/03/2020] [Indexed: 01/09/2023] Open
Abstract
Gram-negative bacteria possess an asymmetric outer membrane (OM) composed primarily of lipopolysaccharides (LPSs) on the outer leaflet and phospholipids (PLs) on the inner leaflet. The loss of this asymmetry due to mutations in the LPS biosynthesis or transport pathways causes the externalization of PLs to the outer leaflet of the OM and leads to OM permeability defects. Here, we used metabolic labeling to detect a compromised OM in intact bacteria. Phosphatidylcholine synthase expression in Escherichia coli allowed for the incorporation of exogenous propargylcholine into phosphatidyl(propargyl)choline and exogenous 1-azidoethyl-choline (AECho) into phosphatidyl(azidoethyl)choline (AEPC), as confirmed by LC/MS analyses. A fluorescent copper-free click reagent poorly labeled AEPC in intact wild-type cells but readily labeled AEPC from lysed cells. Fluorescence microscopy and flow cytometry analyses confirmed the absence of significant AEPC labeling from intact wild-type E. coli strains and revealed significant AEPC labeling in an E. coli LPS transport mutant (lptD4213) and an LPS biosynthesis mutant (E. coli lpxC101). Our results suggest that metabolic PL labeling with AECho is a promising tool for detecting a compromised bacterial OM, revealing aberrant PL externalization, and identifying or characterizing novel cell-active inhibitors of LPS biosynthesis or transport.
Collapse
Affiliation(s)
- Inga Nilsson
- Infectious Diseases Area Novartis Institutes for BioMedical Research, Emeryville, CA; Global Discovery Chemistry Novartis Institutes for BioMedical Research, Emeryville, CA
| | - Sheng Y Lee
- Infectious Diseases Area Novartis Institutes for BioMedical Research, Emeryville, CA
| | - William S Sawyer
- Infectious Diseases Area Novartis Institutes for BioMedical Research, Emeryville, CA
| | | | - Guillaume Lapointe
- Global Discovery Chemistry Novartis Institutes for BioMedical Research, Emeryville, CA
| | - David A Six
- Infectious Diseases Area Novartis Institutes for BioMedical Research, Emeryville, CA. mailto:
| |
Collapse
|
16
|
Vitrac H, Mallampalli VKPS, Azinas S, Dowhan W. Structural and Functional Adaptability of Sucrose and Lactose Permeases from Escherichia coli to the Membrane Lipid Composition. Biochemistry 2020; 59:1854-1868. [PMID: 32363862 DOI: 10.1021/acs.biochem.0c00174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The lipid environment in which membrane proteins are embedded can influence their structure and function. Lipid-protein interactions and lipid-induced conformational changes necessary for protein function remain intractable in vivo using high-resolution techniques. Using Escherichia coli strains in which the normal phospholipid composition can be altered or foreign lipids can be introduced, we established the importance of membrane lipid composition for the proper folding, assembly, and function of E. coli lactose (LacY) and sucrose (CscB) permeases. However, the molecular mechanism underlying the lipid dependence for active transport remains unknown. Herein, we demonstrate that the structure and function of CscB and LacY can be modulated by the composition of the lipid environment. Using a combination of assays (transport activity of the substrate, protein topology, folding, and assembly into the membrane), we found that alterations in the membrane lipid composition lead to lipid-dependent structural changes in CscB and LacY. These changes affect the orientation of residues involved in LacY proton translocation and impact the rates of protonation and deprotonation of E325 by affecting the arrangement of transmembrane domains in the vicinity of the R302-E325 charge pair. Furthermore, the structural changes caused by changes in membrane lipid composition can be altered by a single-point mutation, highlighting the adaptability of these transporters to their environment. Altogether, our results demonstrate that direct interactions between a protein and its lipid environment uniquely contribute to membrane protein organization and function. Because members of the major facilitator superfamily present with well-conserved functional architecture, we anticipate that our findings can be extrapolated to other membrane protein transporters.
Collapse
Affiliation(s)
- Heidi Vitrac
- Department of Biochemistry and Molecular Biology and Center for Membrane Biology, University of Texas McGovern Medical School at Houston, Houston, Texas 77030, United States
| | - Venkata K P S Mallampalli
- Department of Biochemistry and Molecular Biology and Center for Membrane Biology, University of Texas McGovern Medical School at Houston, Houston, Texas 77030, United States
| | - Stavros Azinas
- Department of Biochemistry and Molecular Biology and Center for Membrane Biology, University of Texas McGovern Medical School at Houston, Houston, Texas 77030, United States
| | - William Dowhan
- Department of Biochemistry and Molecular Biology and Center for Membrane Biology, University of Texas McGovern Medical School at Houston, Houston, Texas 77030, United States
| |
Collapse
|
17
|
Abstract
Due to the heterogenous lipid environment in which integral membrane proteins are embedded, they should follow a set of assembly rules, which govern transmembrane protein folding and topogenesis accordingly to a given lipid profile. Recombinant strains of bacteria have been engineered to have different membrane phospholipid compositions by molecular genetic manipulation of endogenous and foreign genes encoding lipid biosynthetic enzymes. Such strains provide a means to investigate the in vivo role of lipids in many different aspects of membrane function, folding and biogenesis. In vitro and in vivo studies established a function of lipids as molecular chaperones and topological determinants specifically assisting folding and topogenesis of membrane proteins. These results led to the extension of the Positive Inside Rule to Charge Balance Rule, which incorporates a role for lipid-protein interactions in determining membrane protein topological organization at the time of initial membrane insertion and dynamically after initial assembly. Membrane protein topogenesis appears to be a thermodynamically driven process in which lipid-protein interactions affect the potency of charged amino acid residues as topological signals. Dual topology for a membrane protein can be established during initial assembly where folding intermediates in multiple topological conformations are in rapid equilibrium (thus separated by a low activation energy), which is determined by the lipid environment. Post-assembly changes in lipid composition or post-translational modifications can trigger a reorganization of protein topology by inducing destabilization and refolding of a membrane protein. The lipid-dependent dynamic nature of membrane protein organization provides a novel means of regulating protein function.
Collapse
|
18
|
Josey BP, Heinrich F, Silin V, Lösche M. Association of Model Neurotransmitters with Lipid Bilayer Membranes. Biophys J 2020; 118:1044-1057. [PMID: 32032504 DOI: 10.1016/j.bpj.2020.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 11/15/2022] Open
Abstract
Aimed at reproducing the results of electrophysiological studies of synaptic signal transduction, conventional models of neurotransmission are based on the specific binding of neurotransmitters to ligand-gated receptor ion channels. However, the complex kinetic behavior observed in synaptic transmission cannot be reproduced in a standard kinetic model without the ad hoc postulation of additional conformational channel states. On the other hand, if one invokes unspecific neurotransmitter adsorption to the bilayer-a process not considered in the established models-the electrophysiological data can be rationalized with only the standard set of three conformational receptor states that also depend on this indirect coupling of neurotransmitters via their membrane interaction. Experimental verification has been difficult because binding affinities of neurotransmitters to the lipid bilayer are low. We quantify this interaction with surface plasmon resonance to measure equilibrium dissociation constants in neurotransmitter membrane association. Neutron reflection measurements on artificial membranes, so-called sparsely tethered bilayer lipid membranes, reveal the structural aspects of neurotransmitters' association with zwitterionic and anionic bilayers. We thus establish that serotonin interacts nonspecifically with the membrane at physiologically relevant concentrations, whereas γ-aminobutyric acid does not. Surface plasmon resonance shows that serotonin adsorbs with millimolar affinity, and neutron reflectometry shows that it penetrates the membrane deeply, whereas γ-aminobutyric is excluded from the bilayer.
Collapse
Affiliation(s)
- Brian P Josey
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Frank Heinrich
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania; National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland
| | - Vitalii Silin
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland
| | - Mathias Lösche
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania; National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
19
|
Vitrac H, Mallampalli VKPS, Bogdanov M, Dowhan W. The lipid-dependent structure and function of LacY can be recapitulated and analyzed in phospholipid-containing detergent micelles. Sci Rep 2019; 9:11338. [PMID: 31383935 PMCID: PMC6683142 DOI: 10.1038/s41598-019-47824-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022] Open
Abstract
Membrane proteins play key roles in cellular functions, their activity mainly depending on their topological arrangement in membranes. Structural studies of membrane proteins have long adopted a protein-centric view regarding the determinants of membrane protein topology and function. Several studies have shown that the orientation of transmembrane domains of polytopic membrane proteins with respect to the plane of the lipid bilayer can be largely determined by membrane lipid composition. However, the mechanism by which membrane proteins exhibit structural and functional duality in the same membrane or different membranes is still unknown. Here we show that lipid-dependent structural and functional assessment of a membrane protein can be conducted in detergent micelles, opening the possibility for the determination of lipid-dependent high-resolution crystal structures. We found that the lactose permease purified from Escherichia coli cells exhibiting varied phospholipid compositions exhibits the same topology and similar function as in its membrane of origin. Furthermore, we found several conditions, including protein mutations and micelle lipid composition, that lead to increased protein stability, correlating with a higher yield of two-dimensional crystal formation. Altogether, our results demonstrate how the membrane lipid environment influences membrane protein topology and arrangement, both in native membranes and in mixed detergent micelles.
Collapse
Affiliation(s)
- Heidi Vitrac
- Department of Biochemistry and Molecular Biology and the Center for Membrane Biology, University of Texas McGovern Medical School at Houston, Houston, TX, 77030, USA.
| | - Venkata K P S Mallampalli
- Department of Biochemistry and Molecular Biology and the Center for Membrane Biology, University of Texas McGovern Medical School at Houston, Houston, TX, 77030, USA
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology and the Center for Membrane Biology, University of Texas McGovern Medical School at Houston, Houston, TX, 77030, USA
| | - William Dowhan
- Department of Biochemistry and Molecular Biology and the Center for Membrane Biology, University of Texas McGovern Medical School at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Lin Y, Zheng L, Bogdanov M. Measurement of Lysophospholipid Transport Across the Membrane Using Escherichia coli Spheroplasts. Methods Mol Biol 2019; 1949:165-180. [PMID: 30790256 DOI: 10.1007/978-1-4939-9136-5_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In the inner membrane of Gram-negative bacteria lysophospholipid transporter (LplT) and the bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase (Aas) form a glycerophospholipid remodeling system, which is capable of facilitating rapid retrograde translocation of lyso forms of phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin across the cytoplasmic membrane. This coupled remodeling enzyme tandem provides an effective method for the measurement of substrate specificity of the lipid regeneration and lysophospholipid transport per se across the membrane. This chapter describes two distinct but complementary methods for the measurement of lysophospholipid transport across membrane using Escherichia coli spheroplasts.
Collapse
Affiliation(s)
- Yibin Lin
- Division of Infectious Diseases, Department of Pediatrics, Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA.
| | - Lei Zheng
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA.,Department of Biochemistry and Biotechnology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|
21
|
Seki T, Furumi T, Hashimoto M, Hara H, Matsuoka S. Activation of extracytoplasmic function sigma factors upon removal of glucolipids and reduction of phosphatidylglycerol content in Bacillus subtilis cells lacking lipoteichoic acid. Genes Genet Syst 2019; 94:71-80. [PMID: 30971625 DOI: 10.1266/ggs.18-00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In Bacillus subtilis, extracytoplasmic function (ECF) sigma factors are activated by reduction of phosphatidylglycerol (PG) content, absence of glucolipids, or absence of lipoteichoic acid (LTA). LTA is synthesized by polymerization of the glycerophosphate moiety of PG onto diglucosyldiacylglycerol (DGlcDG), a major glucolipid in B. subtilis, in the plasma membrane. Thus, reduction of PG content or absence of glucolipids might cause some changes in LTA, and hence we investigated whether reduction of PG content or absence of glucolipids induces the activation of ECF sigma factors independently from an ensuing change in LTA. Disruption of ugtP, responsible for glucolipid synthesis, in cells lacking LTA caused an additive increase of activation levels of σM, σX, σV and σY (3.1-, 2.2-, 2.1- and 1.4-fold, respectively), relative to their activation levels in cells lacking LTA alone. Reduction of PG content (by repressing Pspac-pgsA) in the cells lacking LTA caused an additive increase of activation levels of σM, σW and σV (2.3-, 1.9- and 2.2-fold, respectively). These results suggested that absence of glucolipids or reduction of PG alone, not the possible secondary alteration in LTA, leads to changes that affect the regulation systems of some ECF sigma factors in the plasma membrane.
Collapse
Affiliation(s)
- Takahiro Seki
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Takuya Furumi
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Michihiro Hashimoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Hiroshi Hara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Satoshi Matsuoka
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| |
Collapse
|
22
|
Cardiolipin synthases of Escherichia coli have phospholipid class specific phospholipase D activity dependent on endogenous and foreign phospholipids. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1345-1353. [DOI: 10.1016/j.bbalip.2018.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 11/23/2022]
|
23
|
Lipids modulate the insertion and folding of the nascent chains of alpha helical membrane proteins. Biochem Soc Trans 2018; 46:1355-1366. [PMID: 30190329 DOI: 10.1042/bst20170424] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/18/2018] [Accepted: 07/31/2018] [Indexed: 02/08/2023]
Abstract
Membrane proteins must be inserted into a membrane and folded into their correct structure to function correctly. This insertion occurs during translation and synthesis by the ribosome for most α-helical membrane proteins. Precisely how this co-translational insertion and folding occurs, and the role played by the surrounding lipids, is still not understood. Most of the work on the influence of the lipid environment on folding and insertion has focussed on denatured, fully translated proteins, and thus does not replicate folding during unidirectional elongation of nascent chains that occurs in the cell. This review aims to highlight recent advances in elucidating lipid composition and bilayer properties optimal for insertion and folding of nascent chains in the membrane and in the assembly of oligomeric proteins.
Collapse
|
24
|
Bera I, Klauda JB. Structural Events in a Bacterial Uniporter Leading to Translocation of Glucose to the Cytosol. J Mol Biol 2018; 430:3337-3352. [DOI: 10.1016/j.jmb.2018.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 10/14/2022]
|
25
|
Josts I, Nitsche J, Maric S, Mertens HD, Moulin M, Haertlein M, Prevost S, Svergun DI, Busch S, Forsyth VT, Tidow H. Conformational States of ABC Transporter MsbA in a Lipid Environment Investigated by Small-Angle Scattering Using Stealth Carrier Nanodiscs. Structure 2018; 26:1072-1079.e4. [DOI: 10.1016/j.str.2018.05.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/28/2018] [Accepted: 05/14/2018] [Indexed: 12/30/2022]
|
26
|
Waldie S, Lind TK, Browning K, Moulin M, Haertlein M, Forsyth VT, Luchini A, Strohmeier GA, Pichler H, Maric S, Cárdenas M. Localization of Cholesterol within Supported Lipid Bilayers Made of a Natural Extract of Tailor-Deuterated Phosphatidylcholine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:472-479. [PMID: 29232134 DOI: 10.1021/acs.langmuir.7b02716] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cholesterol is an essential component of mammalian membranes and is known to induce a series of physicochemical changes in the lipid bilayer. Such changes include the formation of liquid-ordered phases with an increased thickness and a configurational order as compared to liquid-disordered phases. For saturated lipid membranes, cholesterol molecules localize close to the lipid head group-tail interface. However, the presence of polyunsaturated lipids was recently shown to promote relocation of cholesterol toward the inner interface between the two bilayer leaflets. Here, neutron reflection is used to study the location of cholesterol (both non-deuterated and per-deuterated versions are used) within supported lipid bilayers composed of a natural mixture of phosphatidylcholine (PC). The lipids were produced in a genetically modified strain of Escherichia coli and grown under specific deuterated conditions to give an overall neutron scattering length density (which depends on the level of deuteration) of the lipids matching that of D2O. The combination of solvent contrast variation method with specific deuteration shows that cholesterol is located closer to the lipid head group-tail interface in this natural PC extract rather than in the center of the core of the bilayer as seen for very thin or polyunsaturated membranes.
Collapse
Affiliation(s)
- Sarah Waldie
- Life Sciences Group, Institute Laue-Langevin , 71 Avenue des Martyrs, BP 156, 38042 Grenoble Cedex 9, France
- Biofilm-Research Center for Biointerfaces and Biomedical Science Department, Faculty of Health and Society, Malmö University , Malmö 20506 Sweden
| | - Tania K Lind
- Biofilm-Research Center for Biointerfaces and Biomedical Science Department, Faculty of Health and Society, Malmö University , Malmö 20506 Sweden
| | - Kathryn Browning
- Department of Pharmacy, Uppsala University , Uppsala 75237, Sweden
| | - Martine Moulin
- Life Sciences Group, Institute Laue-Langevin , 71 Avenue des Martyrs, BP 156, 38042 Grenoble Cedex 9, France
| | - Michael Haertlein
- Life Sciences Group, Institute Laue-Langevin , 71 Avenue des Martyrs, BP 156, 38042 Grenoble Cedex 9, France
| | - V Trevor Forsyth
- Life Sciences Group, Institute Laue-Langevin , 71 Avenue des Martyrs, BP 156, 38042 Grenoble Cedex 9, France
- Life Sciences Department, Faculty of Natural Sciences, Keele University , Staffordshire ST5 5BG, U.K
| | - Alessandra Luchini
- Institute Laue-Langevin , 71 Avenue des Martyrs, BP 156, 38042 Grenoble Cedex 9, France
| | - Gernot A Strohmeier
- Austrian Centre of Industrial Biotechnology , Petersgasse 14, 8010 Graz, Austria
- Graz University of Technology, Institute of Organic Chemistry, NAWI Graz , Stremayrgasse 9, 8010 Graz, Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14, 8010 Graz, Austria
- Graz University of Technology, Institute of Molecular Biotechnology, NAWI Graz, BioTechMed Graz , Petersgasse 14, 8010 Graz, Austria
| | - Selma Maric
- Biofilm-Research Center for Biointerfaces and Biomedical Science Department, Faculty of Health and Society, Malmö University , Malmö 20506 Sweden
| | - Marité Cárdenas
- Biofilm-Research Center for Biointerfaces and Biomedical Science Department, Faculty of Health and Society, Malmö University , Malmö 20506 Sweden
| |
Collapse
|
27
|
Csermely P. The Wisdom of Networks: A General Adaptation and Learning Mechanism of Complex Systems: The Network Core Triggers Fast Responses to Known Stimuli; Innovations Require the Slow Network Periphery and Are Encoded by Core-Remodeling. Bioessays 2017; 40. [PMID: 29168203 DOI: 10.1002/bies.201700150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/12/2017] [Indexed: 12/30/2022]
Abstract
I hypothesize that re-occurring prior experience of complex systems mobilizes a fast response, whose attractor is encoded by their strongly connected network core. In contrast, responses to novel stimuli are often slow and require the weakly connected network periphery. Upon repeated stimulus, peripheral network nodes remodel the network core that encodes the attractor of the new response. This "core-periphery learning" theory reviews and generalizes the heretofore fragmented knowledge on attractor formation by neural networks, periphery-driven innovation, and a number of recent reports on the adaptation of protein, neuronal, and social networks. The core-periphery learning theory may increase our understanding of signaling, memory formation, information encoding and decision-making processes. Moreover, the power of network periphery-related "wisdom of crowds" inventing creative, novel responses indicates that deliberative democracy is a slow yet efficient learning strategy developed as the success of a billion-year evolution. Also see the video abstract here: https://youtu.be/IIjP7zWGjVE.
Collapse
Affiliation(s)
- Peter Csermely
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
28
|
Zheng Y, Liu X, Samoshina NM, Samoshin VV, Franz AH, Guo X. Fliposomes: trans-2-aminocyclohexanol-based amphiphiles as pH-sensitive conformational switches of liposome membrane - a structure-activity relationship study. Chem Phys Lipids 2017; 210:129-141. [PMID: 29111431 DOI: 10.1016/j.chemphyslip.2017.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 01/20/2023]
Abstract
Recently developed lipids with the trans-2-aminocyclohexanol (TACH) moiety represent unique pH-sensitive conformational switches ("flipids") that can trigger the membrane of liposome-based drug delivery systems at lowered pH as seen in many pathological scenarios. A library of flipids with various TACH-based headgroups and hydrocarbon tails were designed, prepared, and characterized to systematically elucidate the relationship between their chemical structures and their ability to form and to trigger liposomes. Liposomes (fliposomes) consisting of a flipid, POPC and PEG-ceramide were stable at 4°C, pH 7.4 for up to several months and yet released the encapsulated fluorophore in seconds upon acidification. The colloidal properties and encapsulation efficiencies of the fliposomes depended on the structure features of the flipids such as the polarity of the headgroups and the shape and fluidity of the lipid tails. The pH-triggered release also depended on the flipid structure, where shorter linear tails yielded more efficient release. The release of fliposomes was enhanced at different narrow pH ranges, depending on the basicity of the flipid headgroup, which can be estimated either by calculated pKa or by acid/base titration of the flipids while its conformation is monitored by 1H NMR. The structure-activity relationship of the flipids supports "lipid tail conformational shortening" as the mechanism to disrupt lipid membranes and would provide great flexibility in the design of pH-sensitive drug delivery systems.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA; Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Road, Stockton, CA 95211, USA
| | - Xin Liu
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA
| | - Nataliya M Samoshina
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA; Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Road, Stockton, CA 95211, USA
| | - Vyacheslav V Samoshin
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA.
| | - Andreas H Franz
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA
| | - Xin Guo
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Road, Stockton, CA 95211, USA.
| |
Collapse
|
29
|
The folding, stability and function of lactose permease differ in their dependence on bilayer lipid composition. Sci Rep 2017; 7:13056. [PMID: 29026149 PMCID: PMC5638818 DOI: 10.1038/s41598-017-13290-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/19/2017] [Indexed: 11/22/2022] Open
Abstract
Lipids play key roles in Biology. Mechanical properties of the lipid bilayer influence their neighbouring membrane proteins, however it is unknown whether different membrane protein properties have the same dependence on membrane mechanics, or whether mechanics are tuned to specific protein processes of the protein. We study the influence of lipid lateral pressure and electrostatic effects on the in vitro reconstitution, folding, stability and function of a representative of the ubiquitous major facilitator transporter superfamily, lactose permease. Increasing the outward chain lateral pressure in the bilayer, through addition of lamellar phosphatidylethanolamine lipids, lowers lactose permease folding and reconstitution yields but stabilises the folded state. The presence of phosphatidylethanolamine is however required for correct folding and function. An increase in headgroup negative charge through the addition of phosphatidylglycerol lipids favours protein reconstitution but is detrimental to topology and function. Overall the in vitro folding, reconstitution, topology, stability and function of lactose permease are found to have different dependences on bilayer composition. A regime of lipid composition is found where all properties are favoured, even if suboptimal. This lays ground rules for rational control of membrane proteins in nanotechnology and synthetic biology by manipulating global bilayer properties to tune membrane protein behaviour.
Collapse
|
30
|
Furse S, Jakubec M, Rise F, Williams HE, Rees CED, Halskau Ø. Evidence that Listeria innocua modulates its membrane's stored curvature elastic stress, but not fluidity, through the cell cycle. Sci Rep 2017; 7:8012. [PMID: 28808346 PMCID: PMC5556093 DOI: 10.1038/s41598-017-06855-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/20/2017] [Indexed: 01/22/2023] Open
Abstract
This paper reports that the abundances of endogenous cardiolipin and phosphatidylethanolamine halve during elongation of the Gram-positive bacterium Listeria innocua. The lyotropic phase behaviour of model lipid systems that describe these modulations in lipid composition indicate that the average stored curvature elastic stress of the membrane is reduced on elongation of the cell, while the fluidity appears to be maintained. These findings suggest that phospholipid metabolism is linked to the cell cycle and that changes in membrane composition can facilitate passage to the succeding stage of the cell cycle. This therefore suggests a means by which bacteria can manage the physical properties of their membranes through the cell cycle.
Collapse
Affiliation(s)
- Samuel Furse
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, NO-5006, Bergen, Norway
| | - Martin Jakubec
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, NO-5006, Bergen, Norway
| | - Frode Rise
- Department of Chemistry, University of Oslo, P. O. Box 1033, Blindern, NO-0315, Oslo, Norway
| | - Huw E Williams
- Centre for Biomolecular Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, United Kingdom
| | - Catherine E D Rees
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, Nottinghamshire, United Kingdom
| | - Øyvind Halskau
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, NO-5006, Bergen, Norway.
| |
Collapse
|
31
|
Borrell JH, Domènech Ò. Critical Temperature of 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine Monolayers and Its Possible Biological Relevance. J Phys Chem B 2017. [PMID: 28636818 DOI: 10.1021/acs.jpcb.7b04021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Because transmembrane proteins (TMPs) can be obtained with sufficient purity for X-ray diffraction studies more frequently than decades ago, their mechanisms of action may now be elucidated. One of the pending issues is the actual interplay between transmembrane proteins and membrane lipids. There is strong evidence of the involvement of specific lipids with some membrane proteins, such as the potassium crystallographically sited activation channel (KcsA) of Streptomyces lividans and the secondary transporter of lactose LacY of Escherichia coli, the activities of which are associated with the presence of anionic phospholipids such as the phosphatidylglycerol (PG) and phosphatidyethanolamine (PE), respectively. Other proteins such as the large conductance mechanosensitive channel (MscL) of E. coli seem to depend on the adaptation of specific phospholipids to the irregular surface of the integral membrane protein. In this work we investigated the lateral compressibility of two homoacid phosphatidylethanolamines (one with both acyl chains unsaturated (DOPE), the other with the acyl chains saturated (DPPE)) and the heteroacid phosphatidyletanolamine (POPE) and their mixtures with POPG. The liquid expanded (LE) to liquid condensed (LC) transition was observed in POPE at a temperature below its critical temperature (Tc = 36 °C). Because Tc lies below the physiological temperature, the occurrence of this phase transition may have something to do with the functioning of LacY. This magnitude is discussed within the context of the experiments carried out at temperatures below the Tc of POPE at which the activity of Lac Y and other TMPs are frequently studied.
Collapse
Affiliation(s)
- Jordi H Borrell
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences and ‡Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona (UB) , E-08028 Barcelona, Spain
| | - Òscar Domènech
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences and ‡Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona (UB) , E-08028 Barcelona, Spain
| |
Collapse
|
32
|
Affiliation(s)
- Michael F. Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
- Department of Physics, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
33
|
Vitrac H, Dowhan W, Bogdanov M. Effects of mixed proximal and distal topogenic signals on the topological sensitivity of a membrane protein to the lipid environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1291-1300. [PMID: 28432030 DOI: 10.1016/j.bbamem.2017.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
The final topology of membrane proteins is thought to be dictated primarily by the encoding sequence. However, according to the Charge Balance Rule the topogenic signals within nascent membrane proteins are interpreted in agreement with the Positive Inside Rule as influenced by the protein phospholipid environment. The role of long-range protein-lipid interactions in establishing a final uniform or dual topology is unknown. In order to address this role, we determined the positional dependence of the potency of charged residues as topological signals within Escherichia coli sucrose permease (CscB) in cells in which the zwitterionic phospholipid phosphatidylethanolamine (PE), acting as topological determinant, was either eliminated or tightly titrated. Although the position of a single or paired oppositely charged amino acid residues within an extramembrane domain (EMD), either proximal, central or distal to a transmembrane domain (TMD) end, does not appear to be important, the oppositely charged residues exert their topogenic effects separately only in the absence of PE. Thus, the Charge Balance Rule can be executed in a retrograde manner from any cytoplasmic EMD or any residue within an EMD most likely outside of the translocon. Moreover, CscB is inserted into the membrane in two opposite orientations at different ratios with the native orientation proportional to the mol % of PE. The results demonstrate how the cooperative contribution of lipid-protein interactions affects the potency of charged residues as topological signals, providing a molecular mechanism for the realization of single, equal or different amounts of oppositely oriented protein within the same membrane.
Collapse
Affiliation(s)
- Heidi Vitrac
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center McGovern Medical School, Houston, TX 77030, USA
| | - William Dowhan
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center McGovern Medical School, Houston, TX 77030, USA
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center McGovern Medical School, Houston, TX 77030, USA.
| |
Collapse
|
34
|
Yu C, Li M, Sun Y, Wang X, Chen Y. Phosphatidylethanolamine Deficiency ImpairsEscherichia coliAdhesion by Downregulating Lipopolysaccharide Synthesis, Which is Reversible by High Galactose/Lactose Cultivation. ACTA ACUST UNITED AC 2017; 23:1-10. [DOI: 10.1080/15419061.2017.1282468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chuan Yu
- College of Life Sciences, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Ming Li
- College of Life Sciences, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Yanan Sun
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Xingguo Wang
- Faculty of Life Sciences, Hubei University, Wuchang, Hubei, P.R. China
| | - Yong Chen
- College of Life Sciences, Nanchang University, Nanchang, Jiangxi, P.R. China
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
35
|
Montigny C, Dieudonné T, Orlowski S, Vázquez-Ibar JL, Gauron C, Georgin D, Lund S, le Maire M, Møller JV, Champeil P, Lenoir G. Slow Phospholipid Exchange between a Detergent-Solubilized Membrane Protein and Lipid-Detergent Mixed Micelles: Brominated Phospholipids as Tools to Follow Its Kinetics. PLoS One 2017; 12:e0170481. [PMID: 28118404 PMCID: PMC5261732 DOI: 10.1371/journal.pone.0170481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 01/05/2017] [Indexed: 12/02/2022] Open
Abstract
Membrane proteins are largely dependent for their function on the phospholipids present in their immediate environment, and when they are solubilized by detergent for further study, residual phospholipids are critical, too. Here, brominated phosphatidylcholine, a phospholipid which behaves as an unsaturated phosphatidylcholine, was used to reveal the kinetics of phospholipid exchange or transfer from detergent mixed micelles to the environment of a detergent-solubilized membrane protein, the paradigmatic P-type ATPase SERCA1a, in which Trp residues can experience fluorescence quenching by bromine atoms present on phospholipid alkyl chains in their immediate environment. Using dodecylmaltoside as the detergent, exchange of (brominated) phospholipid was found to be much slower than exchange of detergent under the same conditions, and also much slower than membrane solubilization, the latter being evidenced by light scattering changes. The kinetics of this exchange was strongly dependent on temperature. It was also dependent on the total concentration of the mixed micelles, revealing the major role for such exchange of the collision of detergent micelles with the detergent-solubilized protein. Back-transfer of the brominated phospholipid from the solubilized protein to the detergent micelle was much faster if lipid-free DDM micelles instead of mixed micelles were added for triggering dissociation of brominated phosphatidylcholine from the solubilized protein, or in the additional presence of C12E8 detergent during exchange, also emphasizing the role of the chemical nature of the micelle/protein interface. This protocol using brominated lipids appears to be valuable for revealing the possibly slow kinetics of phospholipid transfer to or from detergent-solubilized membrane proteins. Independently, continuous recording of the activity of the protein can also be used in some cases to correlate changes in activity with the exchange of a specific phospholipid, as shown here by using the Drs2p/Cdc50p complex, a lipid flippase with specific binding sites for lipids.
Collapse
Affiliation(s)
- Cédric Montigny
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- * E-mail: (CM); (GL)
| | - Thibaud Dieudonné
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Stéphane Orlowski
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - José Luis Vázquez-Ibar
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Carole Gauron
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Dominique Georgin
- CEA, iBiTec-S, Service de Chimie Bioorganique et de Marquage, Gif-sur-Yvette, France
| | - Sten Lund
- Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Marc le Maire
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jesper V. Møller
- Centre for Membrane Pumps in Cells and Disease—PUMPKIN, Danish National Research Foundation, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Philippe Champeil
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Guillaume Lenoir
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- * E-mail: (CM); (GL)
| |
Collapse
|
36
|
Bogdanov M. Mapping of Membrane Protein Topology by Substituted Cysteine Accessibility Method (SCAM™). Methods Mol Biol 2017; 1615:105-128. [PMID: 28667607 DOI: 10.1007/978-1-4939-7033-9_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A described simple and advanced protocol for the substituted-cysteine accessibility method as applied to transmembrane (TM) orientation (SCAM™) permits a topology analysis of proteins in their native state and can be universally adapted to any membrane system to either systematically map an uniform topology or identify and quantify the degree of mixed topology. In this approach, noncritical individual amino acids that are thought to reside in the putative extracellular or intracellular loops of a membrane protein are replaced one at a time by cysteine residue, and the orientation with respect to the membrane is evaluated using a pair of membrane-impermeable nondetectable and detectable thiol-reactive labeling reagents.
Collapse
Affiliation(s)
- Mikhail Bogdanov
- Department of Biochemistry & Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, UT-GSBS, P.O. Box 20334, Houston, TX, 77030, USA.
| |
Collapse
|
37
|
Vitrac H, MacLean DM, Karlstaedt A, Taegtmeyer H, Jayaraman V, Bogdanov M, Dowhan W. Dynamic Lipid-dependent Modulation of Protein Topology by Post-translational Phosphorylation. J Biol Chem 2016; 292:1613-1624. [PMID: 27974465 DOI: 10.1074/jbc.m116.765719] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/13/2016] [Indexed: 01/01/2023] Open
Abstract
Membrane protein topology and folding are governed by structural principles and topogenic signals that are recognized and decoded by the protein insertion and translocation machineries at the time of initial membrane insertion and folding. We previously demonstrated that the lipid environment is also a determinant of initial protein topology, which is dynamically responsive to post-assembly changes in membrane lipid composition. However, the effect on protein topology of post-assembly phosphorylation of amino acids localized within initially cytoplasmically oriented extramembrane domains has never been investigated. Here, we show in a controlled in vitro system that phosphorylation of a membrane protein can trigger a change in topological arrangement. The rate of change occurred on a scale of seconds, comparable with the rates observed upon changes in the protein lipid environment. The rate and extent of topological rearrangement were dependent on the charges of extramembrane domains and the lipid bilayer surface. Using model membranes mimicking the lipid compositions of eukaryotic organelles, we determined that anionic lipids, cholesterol, sphingomyelin, and membrane fluidity play critical roles in these processes. Our results demonstrate how post-translational modifications may influence membrane protein topology in a lipid-dependent manner, both along the organelle trafficking pathway and at their final destination. The results provide further evidence that membrane protein topology is dynamic, integrating for the first time the effect of changes in lipid composition and regulators of cellular processes. The discovery of a new topology regulatory mechanism opens additional avenues for understanding unexplored structure-function relationships and the development of optimized topology prediction tools.
Collapse
Affiliation(s)
- Heidi Vitrac
- From the Department of Biochemistry and Molecular Biology and Center for Membrane Biology, University of Texas McGovern Medical School, Houston, Texas 77030.
| | - David M MacLean
- From the Department of Biochemistry and Molecular Biology and Center for Membrane Biology, University of Texas McGovern Medical School, Houston, Texas 77030
| | - Anja Karlstaedt
- the Department of Internal Medicine, Division of Cardiology, University of Texas McGovern Medical School, Houston, Texas 77030
| | - Heinrich Taegtmeyer
- the Department of Internal Medicine, Division of Cardiology, University of Texas McGovern Medical School, Houston, Texas 77030
| | - Vasanthi Jayaraman
- From the Department of Biochemistry and Molecular Biology and Center for Membrane Biology, University of Texas McGovern Medical School, Houston, Texas 77030
| | - Mikhail Bogdanov
- From the Department of Biochemistry and Molecular Biology and Center for Membrane Biology, University of Texas McGovern Medical School, Houston, Texas 77030
| | - William Dowhan
- From the Department of Biochemistry and Molecular Biology and Center for Membrane Biology, University of Texas McGovern Medical School, Houston, Texas 77030.
| |
Collapse
|
38
|
Grønberg C, Sitsel O, Lindahl E, Gourdon P, Andersson M. Membrane Anchoring and Ion-Entry Dynamics in P-type ATPase Copper Transport. Biophys J 2016; 111:2417-2429. [PMID: 27926843 PMCID: PMC5153542 DOI: 10.1016/j.bpj.2016.10.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/29/2016] [Accepted: 10/17/2016] [Indexed: 12/23/2022] Open
Abstract
Cu+-specific P-type ATPase membrane protein transporters regulate cellular copper levels. The lack of crystal structures in Cu+-binding states has limited our understanding of how ion entry and binding are achieved. Here, we characterize the molecular basis of Cu+ entry using molecular-dynamics simulations, structural modeling, and in vitro and in vivo functional assays. Protein structural rearrangements resulting in the exposure of positive charges to bulk solvent rather than to lipid phosphates indicate a direct molecular role of the putative docking platform in Cu+ delivery. Mutational analyses and simulations in the presence and absence of Cu+ predict that the ion-entry path involves two ion-binding sites: one transient Met148-Cys382 site and one intramembranous site formed by trigonal coordination to Cys384, Asn689, and Met717. The results reconcile earlier biochemical and x-ray absorption data and provide a molecular understanding of ion entry in Cu+-transporting P-type ATPases.
Collapse
Affiliation(s)
| | | | - Erik Lindahl
- Biochemistry & Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Pontus Gourdon
- University of Copenhagen, Copenhagen, Denmark; Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Magnus Andersson
- Theoretical Physics and Swedish e-Science Research Center, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden.
| |
Collapse
|
39
|
Duneau JP, Khao J, Sturgis JN. Lipid perturbation by membrane proteins and the lipophobic effect. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:126-134. [PMID: 27794424 DOI: 10.1016/j.bbamem.2016.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 11/26/2022]
Abstract
Understanding how membrane proteins interact with their environment is fundamental to the understanding of their structure, function and interactions. We have performed coarse-grained molecular dynamics simulations on a series of membrane proteins in a membrane environment to examine the perturbations of the lipids by the presence of protein. We analyze these perturbations in terms of elastic membrane deformations and local lipid protein interactions. However these two factors are insufficient to describe the variety of effects that we observe and the changes caused by membranes proteins to the structure and dynamics of their lipid environment. Other factors that change the conformation available to lipid molecules are evident and are able to modify lipid structure far from the protein surface, and thus mediate long-range interactions between membrane proteins. We suggest that these multiple modifications to lipid behavior are responsible, at the molecular level, for the lipophobic effect we have proposed to account for our observations of membrane protein organization.
Collapse
Affiliation(s)
- Jean-Pierre Duneau
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, CNRS and Aix-Marseille Univ, Marseille 13402 cedex 20, France.
| | - Jonathan Khao
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, CNRS and Aix-Marseille Univ, Marseille 13402 cedex 20, France
| | - James N Sturgis
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, CNRS and Aix-Marseille Univ, Marseille 13402 cedex 20, France.
| |
Collapse
|
40
|
Matsuoka S, Seki T, Matsumoto K, Hara H. Suppression of abnormal morphology and extracytoplasmic function sigma activity in Bacillus subtilis ugtP mutant cells by expression of heterologous glucolipid synthases from Acholeplasma laidlawii. Biosci Biotechnol Biochem 2016; 80:2325-2333. [PMID: 27684739 DOI: 10.1080/09168451.2016.1217147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Glucolipids in Bacillus subtilis are synthesized by UgtP processively transferring glucose from UDP-glucose to diacylglycerol. Here we conclude that the abnormal morphology of a ugtP mutant is caused by lack of glucolipids, since the same morphology arises after abolition of glucolipid production by disruption of pgcA and gtaB, which are involved in UDP-glucose synthesis. Conversely, expression of a monoglucosyldiacylglycerol (MGlcDG) produced by 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii (alMGS) almost completely suppressed the ugtP disruptant phenotype. Activation of extracytoplasmic function (ECF) sigmas (SigM, SigV, and SigX) in the ugtP mutant was decreased by alMGS expression, and was suppressed to low levels by MgSO4 addition. When alMGS and alDGS (A. laidlawii 1,2-diacylglycerol-3-glucose (1-2)-glucosyltransferase producing diglucosyldiacylglycerol (DGlcDG)) were simultaneously expressed, SigX activation was repressed to wild type level. These observations suggest that MGlcDG molecules are required for maintenance of B. subtilis cell shape and regulation of ECF sigmas, and DGlcDG regulates SigX activity.
Collapse
Affiliation(s)
- Satoshi Matsuoka
- a Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering , Saitama University , Saitama , Japan
| | - Takahiro Seki
- a Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering , Saitama University , Saitama , Japan
| | - Kouji Matsumoto
- a Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering , Saitama University , Saitama , Japan
| | - Hiroshi Hara
- a Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering , Saitama University , Saitama , Japan
| |
Collapse
|
41
|
Li M, Gan C, Shao W, Yu C, Wang X, Chen Y. Effects of membrane lipid composition and antibacterial drugs on the rigidity of Escherichia coli: Different contributions of various bacterial substructures. SCANNING 2016; 38:70-79. [PMID: 26153236 DOI: 10.1002/sca.21243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 06/04/2023]
Abstract
The rigidity/stiffness is an important biomechanical property of bacteria and potentially correlated with many bacterial activities. While the rigidity or fluidity of the bacterial membrane has been extensively studied, the contributions of different bacterial substructures to the bacterial rigidity are less investigated. Here, we utilized four Escherichia coli (E. coli) strains with different membrane lipid compositions and three antibacterial drugs (EDTA, lysozyme, and streptomycin) to specifically alter bacterial substructures. By using atomic force microscopy (AFM), we found that the average height and Young's modulus of phosphatidylethanolamine (PE)-deficient E. coli strains were larger than those of PE(+) strains and that EDTA, EDTA plus lysozyme instead of lysozyme alone, and streptomycin all caused significant decreases in height and Young's modulus of the four E. coli strains. Our data imply that membrane lipid composition, the integrated outer membrane, the cell wall, and the cytoplasmic content are all responsible for bacterial rigidity but to different extents.
Collapse
Affiliation(s)
- Ming Li
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, People's Republic of China
- College of Life Sciences, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Chaoye Gan
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, People's Republic of China
- College of Life Sciences, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Wenxiang Shao
- School of Basic Medical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Chuan Yu
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, People's Republic of China
- College of Life Sciences, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xingguo Wang
- Faculty of Life Sciences, Hubei University, Wuchang, Hubei, People's Republic of China
| | - Yong Chen
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, People's Republic of China
- College of Life Sciences, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
42
|
trans-2-Aminocyclohexanol-based amphiphiles as highly efficient helper lipids for gene delivery by lipoplexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3113-25. [DOI: 10.1016/j.bbamem.2015.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/26/2015] [Accepted: 08/28/2015] [Indexed: 11/17/2022]
|
43
|
Lin Y, Bogdanov M, Tong S, Guan Z, Zheng L. Substrate Selectivity of Lysophospholipid Transporter LplT Involved in Membrane Phospholipid Remodeling in Escherichia coli. J Biol Chem 2015; 291:2136-49. [PMID: 26613781 DOI: 10.1074/jbc.m115.700419] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Indexed: 11/06/2022] Open
Abstract
Lysophospholipid transporter (LplT) was previously found to be primarily involved in 2-acyl lysophosphatidylethanolamine (lyso-PE) recycling in Gram-negative bacteria. This work identifies the potent role of LplT in maintaining membrane stability and integrity in the Escherichia coli envelope. Here we demonstrate the involvement of LplT in the recycling of three major bacterial phospholipids using a combination of an in vitro lysophospholipid binding assay using purified protein and transport assays with E. coli spheroplasts. Our results show that lyso-PE and lysophosphatidylglycerol, but not lysophosphatidylcholine, are taken up by LplT for reacylation by acyltransferase/acyl-acyl carrier protein synthetase on the inner leaflet of the membrane. We also found a novel cardiolipin hydrolysis reaction by phospholipase A2 to form diacylated cardiolipin progressing to the completely deacylated headgroup. These two distinct cardiolipin derivatives were both translocated with comparable efficiency to generate triacylated cardiolipin by acyltransferase/acyl-acyl carrier protein synthetase, demonstrating the first evidence of cardiolipin remodeling in bacteria. These findings support that a fatty acid chain is not required for LplT transport. We found that LplT cannot transport lysophosphatidic acid, and its substrate binding was not inhibited by either orthophosphate or glycerol 3-phosphate, indicating that either a glycerol or ethanolamine headgroup is the chemical determinant for substrate recognition. Diacyl forms of PE, phosphatidylglycerol, or the tetra-acylated form of cardiolipin could not serve as a competitive inhibitor in vitro. Based on an evolutionary structural model, we propose a "sideways sliding" mechanism to explain how a conserved membrane-embedded α-helical interface excludes diacylphospholipids from the LplT binding site to facilitate efficient flipping of lysophospholipid across the cell membrane.
Collapse
Affiliation(s)
- Yibin Lin
- From the Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Houston Medical School, Houston, Texas 77030 and
| | - Mikhail Bogdanov
- From the Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Houston Medical School, Houston, Texas 77030 and
| | - Shuilong Tong
- From the Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Houston Medical School, Houston, Texas 77030 and
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical School, Durham, North Carolina 27703
| | - Lei Zheng
- From the Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Houston Medical School, Houston, Texas 77030 and
| |
Collapse
|
44
|
Dynamic membrane protein topological switching upon changes in phospholipid environment. Proc Natl Acad Sci U S A 2015; 112:13874-9. [PMID: 26512118 DOI: 10.1073/pnas.1512994112] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A fundamental objective in membrane biology is to understand and predict how a protein sequence folds and orients in a lipid bilayer. Establishing the principles governing membrane protein folding is central to understanding the molecular basis for membrane proteins that display multiple topologies, the intrinsic dynamic organization of membrane proteins, and membrane protein conformational disorders resulting in disease. We previously established that lactose permease of Escherichia coli displays a mixture of topological conformations and undergoes postassembly bidirectional changes in orientation within the lipid bilayer triggered by a change in membrane phosphatidylethanolamine content, both in vivo and in vitro. However, the physiological implications and mechanism of dynamic structural reorganization of membrane proteins due to changes in lipid environment are limited by the lack of approaches addressing the kinetic parameters of transmembrane protein flipping. In this study, real-time fluorescence spectroscopy was used to determine the rates of protein flipping in the lipid bilayer in both directions and transbilayer flipping of lipids triggered by a change in proteoliposome lipid composition. Our results provide, for the first time to our knowledge, a dynamic picture of these events and demonstrate that membrane protein topological rearrangements in response to lipid modulations occur rapidly following a threshold change in proteoliposome lipid composition. Protein flipping was not accompanied by extensive lipid-dependent unfolding of transmembrane domains. Establishment of lipid bilayer asymmetry was not required but may accelerate the rate of protein flipping. Membrane protein flipping was found to accelerate the rate of transbilayer flipping of lipids.
Collapse
|
45
|
Khakbaz P, Klauda JB. Probing the importance of lipid diversity in cell membranes via molecular simulation. Chem Phys Lipids 2015; 192:12-22. [PMID: 26260616 DOI: 10.1016/j.chemphyslip.2015.08.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/31/2022]
Abstract
Lipid membranes in prokaryotes and eukaryotes have a wide array of lipids that are necessary for proper membrane structure and function. In this paper, an introduction to lipid diversity in biology and a mini-review on how molecular simulations have been used to model biological membranes (primarily limited to one to three lipid types in most simulation-based models) is provided, which motivates the use of all-atom molecular dynamics (MD) simulations to study the effect of lipid diversity on properties of realistic membrane models of prokaryotes and eukaryotes. As an example, cytoplasmic membrane models of Escherichia coli were developed at different stages of the colony growth cycle (early-log, mid-log, stationary and overnight). The main difference between lipid compositions at each stage was the concentration of a cyclopropane-containing moiety on the sn-2 lipid acyl chain (cyC17:0). Triplicate MD simulations for each stage were run for 300 ns to study the influence of lipid diversity on the surface area per lipid, area compressibility modulus, deuterium order parameters, and electron density profiles. The overnight stage (also known as the death stage) had the highest average surface area per lipid, highest rigidity, and lowest bilayer thickness compare to other stages of E. coli cytoplasmic membrane. Although bilayer thickness did depend on the growth stage, the changes between these were small suggesting that the hydrophobic core of transmembrane proteins fit well with the membrane in all growth stages. Although it is still common practise in MD simulations of membrane proteins to use simple one- or two-component membranes, it can be important to use diverse lipid model membranes when membrane protein structure and function are influenced by changes in lipid membrane composition.
Collapse
Affiliation(s)
- Pouyan Khakbaz
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA; Biophysics Program, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
46
|
Borrell JH, Montero MT, Morros A, Domènech Ò. Unspecific membrane protein-lipid recognition: combination of AFM imaging, force spectroscopy, DSC and FRET measurements. J Mol Recognit 2015; 28:679-86. [DOI: 10.1002/jmr.2483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/31/2015] [Accepted: 04/19/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Jordi H. Borrell
- Departament de Fisicoquímica; Facultat de Farmàcia and Institut de Nanociència i Nanotecnologia IN UB; Barcelona Catalonia 08028 Spain
| | - M. Teresa Montero
- Departament de Fisicoquímica; Facultat de Farmàcia and Institut de Nanociència i Nanotecnologia IN UB; Barcelona Catalonia 08028 Spain
| | - Antoni Morros
- Unitat de Biofísica; Departament de Bioquímica i Biología Molecular, Facultat de Medicina UAB; Bellaterra (Barcelona) 08193 Spain
| | - Òscar Domènech
- Departament de Fisicoquímica; Facultat de Farmàcia and Institut de Nanociència i Nanotecnologia IN UB; Barcelona Catalonia 08028 Spain
| |
Collapse
|
47
|
Bratanov D, Balandin T, Round E, Shevchenko V, Gushchin I, Polovinkin V, Borshchevskiy V, Gordeliy V. An Approach to Heterologous Expression of Membrane Proteins. The Case of Bacteriorhodopsin. PLoS One 2015; 10:e0128390. [PMID: 26046789 PMCID: PMC4457421 DOI: 10.1371/journal.pone.0128390] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/24/2015] [Indexed: 12/02/2022] Open
Abstract
Heterologous overexpression of functional membrane proteins is a major bottleneck of structural biology. Bacteriorhodopsin from Halobium salinarum (bR) is a striking example of the difficulties in membrane protein overexpression. We suggest a general approach with a finite number of steps which allows one to localize the underlying problem of poor expression of a membrane protein using bR as an example. Our approach is based on constructing chimeric proteins comprising parts of a protein of interest and complementary parts of a homologous protein demonstrating advantageous expression. This complementary protein approach allowed us to increase bR expression by two orders of magnitude through the introduction of two silent mutations into bR coding DNA. For the first time the high quality crystals of bR expressed in E. Coli were obtained using the produced protein. The crystals obtained with in meso nanovolume crystallization diffracted to 1.67 Å.
Collapse
Affiliation(s)
- Dmitry Bratanov
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Institute of Crystallography, University of Aachen (RWTH), Jägerstrasse 17–19, Aachen, Germany
| | - Taras Balandin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
| | - Ekaterina Round
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Univ. Grenoble Alpes, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
| | - Vitaly Shevchenko
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Research-Educational Centre “Bionanophysics”, Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Ivan Gushchin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Univ. Grenoble Alpes, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
- Research-Educational Centre “Bionanophysics”, Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Vitaly Polovinkin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Univ. Grenoble Alpes, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
- Research-Educational Centre “Bionanophysics”, Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Valentin Borshchevskiy
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Research-Educational Centre “Bionanophysics”, Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Valentin Gordeliy
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany
- Univ. Grenoble Alpes, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
- Research-Educational Centre “Bionanophysics”, Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
- * E-mail:
| |
Collapse
|
48
|
Keller R, Ariöz C, Hansmeier N, Stenberg-Bruzell F, Burstedt M, Vikström D, Kelly A, Wieslander Å, Daley DO, Hunke S. The Escherichia coli Envelope Stress Sensor CpxA Responds to Changes in Lipid Bilayer Properties. Biochemistry 2015; 54:3670-6. [PMID: 25993101 DOI: 10.1021/acs.biochem.5b00242] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Cpx stress response system is induced by various environmental and cellular stimuli. It is also activated in Escherichia coli strains lacking the major phospholipid, phosphatidylethanolamine (PE). However, it is not known whether CpxA directly senses changes in the lipid bilayer or the presence of misfolded proteins due to the lack of PE in their membranes. To address this question, we used an in vitro reconstitution system and vesicles with different lipid compositions to track modulations in the activity of CpxA in different lipid bilayers. Moreover, the Cpx response was validated in vivo by monitoring expression of a PcpxP-gfp reporter in lipid-engineered strains of E. coli. Our combined data indicate that CpxA responds specifically to different lipid compositions.
Collapse
Affiliation(s)
- Rebecca Keller
- †Department of Pharmacy and Biochemistry, Johannes Gutenberg-University, D-55128 Mainz, Germany
| | - Candan Ariöz
- ‡Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Nicole Hansmeier
- §Department of Microbiology, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Filippa Stenberg-Bruzell
- ‡Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Malin Burstedt
- ‡Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - David Vikström
- ‡Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Amelie Kelly
- ‡Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Åke Wieslander
- ‡Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Daniel O Daley
- ‡Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Sabine Hunke
- ∥Molecular Microbiology, University of Osnabrück, D-49076 Osnabrück, Germany
| |
Collapse
|
49
|
Hong H. Role of Lipids in Folding, Misfolding and Function of Integral Membrane Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:1-31. [DOI: 10.1007/978-3-319-17344-3_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Maric S, Thygesen MB, Schiller J, Marek M, Moulin M, Haertlein M, Forsyth VT, Bogdanov M, Dowhan W, Arleth L, Pomorski TG. Biosynthetic preparation of selectively deuterated phosphatidylcholine in genetically modified Escherichia coli. Appl Microbiol Biotechnol 2015; 99:241-54. [PMID: 25301578 PMCID: PMC4289089 DOI: 10.1007/s00253-014-6082-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/28/2014] [Accepted: 09/09/2014] [Indexed: 01/07/2023]
Abstract
Phosphatidylcholine (PC) is a major component of eukaryotic cell membranes and one of the most commonly used phospholipids for reconstitution of membrane proteins into carrier systems such as lipid vesicles, micelles and nanodiscs. Selectively deuterated versions of this lipid have many applications, especially in structural studies using techniques such as NMR, neutron reflectivity and small-angle neutron scattering. Here we present a comprehensive study of selective deuteration of phosphatidylcholine through biosynthesis in a genetically modified strain of Escherichia coli. By carefully tuning the deuteration level in E. coli growth media and varying the deuteration of supplemented carbon sources, we show that it is possible to achieve a controlled deuteration for three distinct parts of the PC lipid molecule, namely the (a) lipid head group, (b) glycerol backbone and (c) fatty acyl tail. This biosynthetic approach paves the way for the synthesis of specifically deuterated, physiologically relevant phospholipid species which remain difficult to obtain through standard chemical synthesis.
Collapse
Affiliation(s)
- Selma Maric
- Structural Biophysics, Niels Bohr Institute, Faculty of Science, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
- Center for Membrane Pumps in Cells and Disease, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Mikkel B. Thygesen
- CARB Centre, Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Jürgen Schiller
- Institut für Medizinische Physik und Biophysik, Medizinische Fakultät, Universität Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Magdalena Marek
- Center for Membrane Pumps in Cells and Disease, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Martine Moulin
- Life Sciences Group, Institut Laue Langevin, 6 rue Jules Horowitz, CEDEX 9, BP156, 38042 Grenoble, France
- Faculty of Natural Sciences & Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
| | - Michael Haertlein
- Life Sciences Group, Institut Laue Langevin, 6 rue Jules Horowitz, CEDEX 9, BP156, 38042 Grenoble, France
| | - V. Trevor Forsyth
- Life Sciences Group, Institut Laue Langevin, 6 rue Jules Horowitz, CEDEX 9, BP156, 38042 Grenoble, France
- Faculty of Natural Sciences & Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - William Dowhan
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Lise Arleth
- Structural Biophysics, Niels Bohr Institute, Faculty of Science, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Thomas Günther Pomorski
- Center for Membrane Pumps in Cells and Disease, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|