1
|
Braslavsky SE. Outstanding women scientists who have broadened the knowledge on biological photoreceptors-II. Photochem Photobiol Sci 2024; 23:757-761. [PMID: 38446404 DOI: 10.1007/s43630-024-00551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
This part II is a continuation of the article published in Photochemical and Photobiological Sciences (2023) 22, 2799-2815, https://doi.org/10.1007/s43630-023-00487-1 , which should be considered a work in progress. Now, two female scientists who have worked on different aspects of chronobiology, plus a younger colleague who recently and too prematurely died, are incorporated to the list of outstanding women who have expanded the knowledge in the field of biological photoreceptors.
Collapse
Affiliation(s)
- Silvia E Braslavsky
- Max Planck Institute for Chemical Energy Conversion, 45410, Mülheim an der Ruhr, Germany.
| |
Collapse
|
2
|
Arinkin V, Granzin J, Jaeger KE, Willbold D, Krauss U, Batra-Safferling R. Conserved Signal Transduction Mechanisms and Dark Recovery Kinetic Tuning in the Pseudomonadaceae Short Light, Oxygen, Voltage (LOV) Protein Family. J Mol Biol 2024; 436:168458. [PMID: 38280482 DOI: 10.1016/j.jmb.2024.168458] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Light-Oxygen-Voltage (LOV) flavoproteins transduce a light signal into variable signaling outputs via a structural rearrangement in the sensory core domain, which is then relayed to fused effector domains via α-helical linker elements. Short LOV proteins from Pseudomonadaceae consist of a LOV sensory core and N- and C-terminal α-helices of variable length, providing a simple model system to study the molecular mechanism of allosteric activation. Here we report the crystal structures of two LOV proteins from Pseudomonas fluorescens - SBW25-LOV in the fully light-adapted state and Pf5-LOV in the dark-state. In a comparative analysis of the Pseudomonadaceae short LOVs, the structures demonstrate light-induced rotation of the core domains and splaying of the proximal A'α and Jα helices in the N and C-termini, highlighting evidence for a conserved signal transduction mechanism. Another distinguishing feature of the Pseudomonadaceae short LOV protein family is their highly variable dark recovery, ranging from seconds to days. Understanding this variability is crucial for tuning the signaling behavior of LOV-based optogenetic tools. At 37 °C, SBW25-LOV and Pf5-LOV exhibit adduct state lifetimes of 1470 min and 3.6 min, respectively. To investigate this remarkable difference in dark recovery rates, we targeted three residues lining the solvent channel entrance to the chromophore pocket where we introduced mutations by exchanging the non-conserved amino acids from SBW25-LOV into Pf5-LOV and vice versa. Dark recovery kinetics of the resulting mutants, as well as MD simulations and solvent cavity calculations on the crystal structures suggest a correlation between solvent accessibility and adduct lifetime.
Collapse
Affiliation(s)
- Vladimir Arinkin
- Institut für Biologische Informationsprozesse (IBI): Strukturbiochemie (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Joachim Granzin
- Institut für Biologische Informationsprozesse (IBI): Strukturbiochemie (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Karl-Erich Jaeger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; Institut für Bio- und Geowissenschaften (IBG): Biotechnologie (IBG-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Dieter Willbold
- Institut für Biologische Informationsprozesse (IBI): Strukturbiochemie (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Ulrich Krauss
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; Institut für Bio- und Geowissenschaften (IBG): Biotechnologie (IBG-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Renu Batra-Safferling
- Institut für Biologische Informationsprozesse (IBI): Strukturbiochemie (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
3
|
Flores-Ibarra A, Maia RNA, Olasz B, Church JR, Gotthard G, Schapiro I, Heberle J, Nogly P. Light-Oxygen-Voltage (LOV)-sensing Domains: Activation Mechanism and Optogenetic Stimulation. J Mol Biol 2024; 436:168356. [PMID: 37944792 DOI: 10.1016/j.jmb.2023.168356] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/11/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
The light-oxygen-voltage (LOV) domains of phototropins emerged as essential constituents of light-sensitive proteins, helping initiate blue light-triggered responses. Moreover, these domains have been identified across all kingdoms of life. LOV domains utilize flavin nucleotides as co-factors and undergo structural rearrangements upon exposure to blue light, which activates an effector domain that executes the final output of the photoreaction. LOV domains are versatile photoreceptors that play critical roles in cellular signaling and environmental adaptation; additionally, they can noninvasively sense and control intracellular processes with high spatiotemporal precision, making them ideal candidates for use in optogenetics, where a light signal is linked to a cellular process through a photoreceptor. The ongoing development of LOV-based optogenetic tools, driven by advances in structural biology, spectroscopy, computational methods, and synthetic biology, has the potential to revolutionize the study of biological systems and enable the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Flores-Ibarra
- Dioscuri Center for Structural Dynamics of Receptors, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Raiza N A Maia
- Department of Chemistry, The University of Texas at Austin, 78712-1224 Austin, TX, USA
| | - Bence Olasz
- Dioscuri Center for Structural Dynamics of Receptors, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Jonathan R Church
- Institute of Chemistry, The Hebrew University of Jerusalem, 91905 Jerusalem, Israel
| | | | - Igor Schapiro
- Institute of Chemistry, The Hebrew University of Jerusalem, 91905 Jerusalem, Israel
| | - Joachim Heberle
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Przemyslaw Nogly
- Dioscuri Center for Structural Dynamics of Receptors, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| |
Collapse
|
4
|
Astacio JD, Espeso EA, Melgarejo P, De Cal A. Monilinia fructicola Response to White Light. J Fungi (Basel) 2023; 9:988. [PMID: 37888244 PMCID: PMC10607740 DOI: 10.3390/jof9100988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
Light represents a powerful signal for the regulation of virulence in many microbial pathogens. Monilinia fructicola is the most virulent species causing brown rot in stone fruit crops. To understand the influence of light on M. fructicola, we measured the effect of white light and photoperiods on the colonial growth and sporulation of the model M. fructicola strain 38C on solid cultures. Searches in the M. fructicola 38C genome predicted a complete set of genes coding for photoreceptors possibly involved in the perception of all ranges of wavelengths. Since white light had an obvious negative effect on vegetative growth and the asexual development of M. fructicola 38C on potato dextrose agar, we studied how light influences photoresponse genes in M. fructicola during early peach infection and in liquid culture. The transcriptomes were analyzed in "Red Jim" nectarines infected by M. fructicola 38C and subjected to light pulses for 5 min and 14 h after 24 h of incubation in darkness. Specific light-induced genes were identified. Among these, we confirmed in samples from infected fruit or synthetic media that blue light photoreceptor vvd1 was among the highest expressed genes. An unknown gene, far1, coding for a small protein conserved in many families of Ascomycota phylum, was also highly induced by light. In contrast, a range of well-known photoreceptors displayed a low transcriptional response to light in M. fructicola from nectarines but not on the pathogen mycelium growing in liquid culture media for 6 days.
Collapse
Affiliation(s)
- Juan Diego Astacio
- Grupo de Hongos Fitopatógenos, Departamento de Protección Vegetal, Centro Nacional INIA-CSIC, 28040 Madrid, Spain; (J.D.A.); (P.M.)
- Programa Biotecnología y Recursos Genéticos de Plantas y Microorganismos Asociados, ETSIA, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Eduardo Antonio Espeso
- Laboratorio de Biología Celular de Aspergillus, Departamento de Biología Celular y Molecular, Centro Investigaciones Biológicas Margarita Salas, CSIC (CIB-CSIC), 28040 Madrid, Spain;
| | - Paloma Melgarejo
- Grupo de Hongos Fitopatógenos, Departamento de Protección Vegetal, Centro Nacional INIA-CSIC, 28040 Madrid, Spain; (J.D.A.); (P.M.)
| | - Antonieta De Cal
- Grupo de Hongos Fitopatógenos, Departamento de Protección Vegetal, Centro Nacional INIA-CSIC, 28040 Madrid, Spain; (J.D.A.); (P.M.)
| |
Collapse
|
5
|
Bauer I, Sarikaya Bayram Ö, Bayram Ö. The use of immunoaffinity purification approaches coupled with LC-MS/MS offers a powerful strategy to identify protein complexes in filamentous fungi. Essays Biochem 2023; 67:877-892. [PMID: 37681641 DOI: 10.1042/ebc20220253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
Fungi are a diverse group of organisms that can be both beneficial and harmful to mankind. They have advantages such as producing food processing enzymes and antibiotics, but they can also be pathogens and produce mycotoxins that contaminate food. Over the past two decades, there have been significant advancements in methods for studying fungal molecular biology. These advancements have led to important discoveries in fungal development, physiology, pathogenicity, biotechnology, and natural product research. Protein complexes and protein-protein interactions (PPIs) play crucial roles in fungal biology. Various methods, including yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC), are used to investigate PPIs. However, affinity-based PPI methods like co-immunoprecipitation (Co-IP) are highly preferred because they represent the natural conditions of PPIs. In recent years, the integration of liquid chromatography coupled with mass spectrometry (LC-MS/MS) has been used to analyse Co-IPs, leading to the discovery of important protein complexes in filamentous fungi. In this review, we discuss the tandem affinity purification (TAP) method and single affinity purification methods such as GFP, HA, FLAG, and MYC tag purifications. These techniques are used to identify PPIs and protein complexes in filamentous fungi. Additionally, we compare the efficiency, time requirements, and material usage of Sepharose™ and magnetic-based purification systems. Overall, the advancements in fungal molecular biology techniques have provided valuable insights into the complex interactions and functions of proteins in fungi. The methods discussed in this review offer powerful tools for studying fungal biology and will contribute to further discoveries in this field.
Collapse
Affiliation(s)
- Ingo Bauer
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Özgür Bayram
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
6
|
MacCready JS, Roggenkamp EM, Gdanetz K, Chilvers MI. Elucidating the Obligate Nature and Biological Capacity of an Invasive Fungal Corn Pathogen. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:411-424. [PMID: 36853195 DOI: 10.1094/mpmi-10-22-0213-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tar spot is a devasting corn disease caused by the obligate fungal pathogen Phyllachora maydis. Since its initial identification in the United States in 2015, P. maydis has become an increasing threat to corn production. Despite this, P. maydis has remained largely understudied at the molecular level, due to difficulties surrounding its obligate lifestyle. Here, we generated a significantly improved P. maydis nuclear and mitochondrial genome, using a combination of long- and short-read technologies, and also provide the first transcriptomic analysis of primary tar spot lesions. Our results show that P. maydis is deficient in inorganic nitrogen utilization, is likely heterothallic, and encodes for significantly more protein-coding genes, including secreted enzymes and effectors, than previous determined. Furthermore, our expression analysis suggests that, following primary tar spot lesion formation, P. maydis might reroute carbon flux away from DNA replication and cell division pathways and towards pathways previously implicated in having significant roles in pathogenicity, such as autophagy and secretion. Together, our results identified several highly expressed unique secreted factors that likely contribute to host recognition and subsequent infection, greatly increasing our knowledge of the biological capacity of P. maydis, which have much broader implications for mitigating tar spot of corn. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Joshua S MacCready
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Emily M Roggenkamp
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Kristi Gdanetz
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
7
|
Oehler M, Geisser L, Diernfellner ACR, Brunner M. Transcription activator WCC recruits deacetylase HDA3 to control transcription dynamics and bursting in Neurospora. SCIENCE ADVANCES 2023; 9:eadh0721. [PMID: 37390199 PMCID: PMC10313174 DOI: 10.1126/sciadv.adh0721] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/25/2023] [Indexed: 07/02/2023]
Abstract
RNA polymerase II initiates transcription either randomly or in bursts. We examined the light-dependent transcriptional activator White Collar Complex (WCC) of Neurospora to characterize the transcriptional dynamics of the strong vivid (vvd) promoter and the weaker frequency (frq) promoter. We show that WCC is not only an activator but also represses transcription by recruiting histone deacetylase 3 (HDA3). Our data suggest that bursts of frq transcription are governed by a long-lived refractory state established and maintained by WCC and HDA3 at the core promoter, whereas transcription of vvd is determined by WCC binding dynamics at an upstream activating sequence. Thus, in addition to stochastic binding of transcription factors, transcription factor-mediated repression may also influence transcriptional bursting.
Collapse
Affiliation(s)
- Michael Oehler
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, D-60120 Heidelberg, Germany
| | - Leonie Geisser
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, D-60120 Heidelberg, Germany
| | - Axel C. R. Diernfellner
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, D-60120 Heidelberg, Germany
| | | |
Collapse
|
8
|
Tang Y, Tang Y, Ren D, Wang C, Qu Y, Huang L, Xue Y, Jiang Y, Wang Y, Xu L, Zhu P. White Collar 1 Modulates Oxidative Sensitivity and Virulence by Regulating the HOG1 Pathway in Fusarium asiaticum. Microbiol Spectr 2023; 11:e0520622. [PMID: 37195224 PMCID: PMC10269464 DOI: 10.1128/spectrum.05206-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/21/2023] [Indexed: 05/18/2023] Open
Abstract
Fusarium asiaticum is an epidemiologically important pathogen of cereal crops in east Asia, accounting for both yield losses and mycotoxin contamination problems in food and feed products. FaWC1, a component of the blue-light receptor White Collar complex (WCC), relies on its transcriptional regulatory zinc finger domain rather than the light-oxygen-voltage domain to regulate pathogenicity of F. asiaticum, although the downstream mechanisms remain obscure. In this study, the pathogenicity factors regulated by FaWC1 were analyzed. It was found that loss of FaWC1 resulted in higher sensitivity to reactive oxygen species (ROS) than in the wild type, while exogenous application of the ROS quencher ascorbic acid restored the pathogenicity of the ΔFawc1 strain to the level of the wild type, indicating that the reduced pathogenicity of the ΔFawc1 strain is due to a defect in ROS tolerance. Moreover, the expression levels of the high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway genes and their downstream genes encoding ROS scavenging enzymes were downregulated in the ΔFawc1 mutant. Upon ROS stimulation, the FaHOG1-green fluorescent protein (GFP)-expressing signal driven by the native promoter was inducible in the wild type but negligible in the ΔFawc1 strain. Overexpressing Fahog1 in the ΔFawc1 strain could recover the ROS tolerance and pathogenicity of the ΔFawc1 mutant, but it remained defective in light responsiveness. In summary, this study dissected the roles of the blue-light receptor component FaWC1 in regulating expression levels of the intracellular HOG-MAPK signaling pathway to affect ROS sensitivity and pathogenicity in F. asiaticum. IMPORTANCE The well-conserved fungal blue-light receptor White Collar complex (WCC) is known to regulate virulence of several pathogenic species for either plant or human hosts, but how WCC determines fungal pathogenicity remains largely unknown. The WCC component FaWC1 in the cereal pathogen Fusarium asiaticum was previously found to be required for full virulence. The present study dissected the roles of FaWC1 in regulating the intracellular HOG MAPK signaling pathway to affect ROS sensitivity and pathogenicity in F. asiaticum. This work thus extends knowledge of the association between fungal light receptors and the intracellular stress signaling pathway to regulate oxidative stress tolerance and pathogenicity in an epidemiologically important fungal pathogen of cereal crops.
Collapse
Affiliation(s)
- Ying Tang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yan Tang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Dandan Ren
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Congcong Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yao Qu
- School of Life Sciences, East China Normal University, Shanghai, China
- No. 2 High School of East China Normal University, Shanghai, China
| | - Li Huang
- School of Life Sciences, East China Normal University, Shanghai, China
- Suzhou Industrial Park Xingyang School, Suzhou, China
| | - Yongjun Xue
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yina Jiang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yiwen Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Ling Xu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Pinkuan Zhu
- School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
9
|
Wang B, Zhou X, Kettenbach AN, Mitchell HD, Markillie LM, Loros JJ, Dunlap JC. A crucial role for dynamic expression of components encoding the negative arm of the circadian clock. Nat Commun 2023; 14:3371. [PMID: 37291101 PMCID: PMC10250352 DOI: 10.1038/s41467-023-38817-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 05/17/2023] [Indexed: 06/10/2023] Open
Abstract
In the Neurospora circadian system, the White Collar Complex (WCC) drives expression of the principal circadian negative arm component frequency (frq). FRQ interacts with FRH (FRQ-interacting RNA helicase) and CKI, forming a stable complex that represses its own expression by inhibiting WCC. In this study, a genetic screen identified a gene, designated as brd-8, that encodes a conserved auxiliary subunit of the NuA4 histone acetylation complex. Loss of brd-8 reduces H4 acetylation and RNA polymerase (Pol) II occupancy at frq and other known circadian genes, and leads to a long circadian period, delayed phase, and defective overt circadian output at some temperatures. In addition to strongly associating with the NuA4 histone acetyltransferase complex, BRD-8 is also found complexed with the transcription elongation regulator BYE-1. Expression of brd-8, bye-1, histone h2a.z, and several NuA4 subunits is controlled by the circadian clock, indicating that the molecular clock both regulates the basic chromatin status and is regulated by changes in chromatin. Taken together, our data identify auxiliary elements of the fungal NuA4 complex having homology to mammalian components, which along with conventional NuA4 subunits, are required for timely and dynamic frq expression and thereby a normal and persistent circadian rhythm.
Collapse
Affiliation(s)
- Bin Wang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.
| | - Xiaoying Zhou
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Hugh D Mitchell
- Biological Sciences Divisions, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Lye Meng Markillie
- Biological Sciences Divisions, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jennifer J Loros
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.
| |
Collapse
|
10
|
Wang B, Zhou X, Kettenbach AN, Mitchell HD, Markillie LM, Loros JJ, Dunlap JC. A crucial role for dynamic expression of components encoding the negative arm of the circadian clock. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538162. [PMID: 37162945 PMCID: PMC10168201 DOI: 10.1101/2023.04.24.538162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In the Neurospora circadian system, the White Collar Complex (WCC) drives expression of the principal circadian negative arm component frequency ( frq ). FRQ interacts with FRH (FRQ-interacting helicase) and CK-1 forming a stable complex that represses its own expression by inhibiting WCC. In this study, a genetic screen identified a gene, designated as brd-8 , that encodes a conserved auxiliary subunit of the NuA4 histone acetylation complex. Loss of brd-8 reduces H4 acetylation and RNA polymerase (Pol) II occupancy at frq and other known circadian genes, and leads to a long circadian period, delayed phase, and defective overt circadian output at some temperatures. In addition to strongly associating with the NuA4 histone acetyltransferase complex, BRD-8 is also found complexed with the transcription elongation regulator BYE-1. Expression of brd-8, bye-1, histone hH2Az , and several NuA4 subunits is controlled by the circadian clock, indicating that the molecular clock both regulates the basic chromatin status and is regulated by changes in chromatin. Taken together, our data identify new auxiliary elements of the fungal NuA4 complex having homology to mammalian components, which along with conventional NuA4 subunits, are required for timely and dynamic frq expression and thereby a normal and persistent circadian rhythm.
Collapse
|
11
|
Hemmer S, Schulte M, Knieps-Grünhagen E, Granzin J, Willbold D, Jaeger KE, Batra-Safferling R, Panwalkar V, Krauss U. Residue alterations within a conserved hydrophobic pocket influence light, oxygen, voltage photoreceptor dark recovery. Photochem Photobiol Sci 2022; 22:713-727. [PMID: 36480084 DOI: 10.1007/s43630-022-00346-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022]
Abstract
AbstractLight, oxygen, voltage (LOV) photoreceptors are widely distributed throughout all kingdoms of life, and have in recent years, due to their modular nature, been broadly used as sensor domains for the construction of optogenetic tools. For understanding photoreceptor function as well as for optogenetic tool design and fine-tuning, a detailed knowledge of the photophysics, photochemistry, and structural changes underlying the LOV signaling paradigm is instrumental. Mutations that alter the lifetime of the photo-adduct signaling state represent a convenient handle to tune LOV sensor on/off kinetics and, thus, steady-state on/off equilibria of the photoreceptor (or optogenetic switch). Such mutations, however, should ideally only influence sensor kinetics, while being benign with regard to the nature of the structural changes that are induced by illumination, i.e., they should not result in a disruption of signal transduction. In the present study, we identify a conserved hydrophobic pocket for which mutations have a strong impact on the adduct-state lifetime across different LOV photoreceptor families. Using the slow cycling bacterial short LOV photoreceptor PpSB1-LOV, we show that the I48T mutation within this pocket, which accelerates adduct rupture, is otherwise structurally and mechanistically benign, i.e., light-induced structural changes, as probed by NMR spectroscopy and X-ray crystallography, are not altered in the variant. Additional mutations within the pocket of PpSB1-LOV and the introduction of homologous mutations in the LOV photoreceptor YtvA of Bacillus subtilis and the Avena sativa LOV2 domain result in similarly altered kinetics. Given the conserved nature of the corresponding structural region, the here identified mutations should find application in dark-recovery tuning of optogenetic tools and LOV photoreceptors, alike.
Graphical abstract
Collapse
Affiliation(s)
- Stefanie Hemmer
- Institut Für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- IBG-1: Biotechnology IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Marianne Schulte
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Institut Für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Esther Knieps-Grünhagen
- Institut Für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Joachim Granzin
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Dieter Willbold
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Institut Für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Karl-Erich Jaeger
- Institut Für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- IBG-1: Biotechnology IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Renu Batra-Safferling
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Vineet Panwalkar
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Institut Für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
- Biozentrum University of Basel, CH-4056, Basel, Switzerland
| | - Ulrich Krauss
- Institut Für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
- IBG-1: Biotechnology IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
12
|
Rojas V, Salinas F, Romero A, Larrondo LF, Canessa P. Interactions between Core Elements of the Botrytis cinerea Circadian Clock Are Modulated by Light and Different Protein Domains. J Fungi (Basel) 2022; 8:486. [PMID: 35628742 PMCID: PMC9144814 DOI: 10.3390/jof8050486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Botrytis cinerea possesses a complex light-sensing system composed of eleven photoreceptors. In B. cinerea, bcwcl1 encodes for the BcWCL1 protein, the orthologue of the blue-light photoreceptor WC-1 from Neurospora crassa. The functional partner of BcWCL1 is the BcWCL2 protein, both interacting in the nucleus and forming the B. cinerea white collar complex (BcWCC). This complex is required for photomorphogenesis and circadian regulation. However, no molecular evidence shows a light-dependent interaction between the BcWCC components or light-sensing capabilities in BcWCL1. In this work, by employing a yeast two-hybrid system that allows for the in vivo analysis of protein-protein interactions, we confirm that BcWCL1 and BcWCL2 interact in the absence of light as well as upon blue-light stimulation, primarily through their PAS (Per-Arnt-Sim) domains. Deletion of the PAS domains present in BcWCL1 (BcWCL1PAS∆) or BcWCL2 (BcWCL2PAS∆) severely impairs the interaction between these proteins. Interestingly, the BcWCL1PAS∆ protein shows a blue-light response and interacts with BcWCL2 or BcWCL2PAS∆ upon light stimulation. Finally, we demonstrate that BcWCL1 and BcWCL1PAS∆ respond to blue light by introducing a point mutation in the photoactive cysteine, confirming that both proteins are capable of light sensing. Altogether, the results revealed the complexity of protein-protein interactions occurring between the core elements of the B. cinerea circadian clock.
Collapse
Affiliation(s)
- Vicente Rojas
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (V.R.); (L.F.L.)
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 8331150, Chile; (F.S.); (A.R.)
| | - Francisco Salinas
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 8331150, Chile; (F.S.); (A.R.)
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Andrés Romero
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 8331150, Chile; (F.S.); (A.R.)
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Luis F. Larrondo
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (V.R.); (L.F.L.)
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 8331150, Chile; (F.S.); (A.R.)
| | - Paulo Canessa
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 8331150, Chile; (F.S.); (A.R.)
- Centro de Biotecnologia Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
| |
Collapse
|
13
|
The Resonance and Adaptation of Neurospora crassa Circadian and Conidiation Rhyth ms to Short Light-Dark Cycles. J Fungi (Basel) 2021; 8:jof8010027. [PMID: 35049967 PMCID: PMC8780863 DOI: 10.3390/jof8010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 11/17/2022] Open
Abstract
Circadian clocks control the physiological and behavioral rhythms to adapt to the environment with a period of ~24 h. However, the influences and mechanisms of the extreme light/dark cycles on the circadian clock remain unclear. We showed that, in Neurospora crassa, both the growth and the microconidia production contribute to adaptation in LD12:12 (12 h light/12 h dark, periodically). Mathematical modeling and experiments demonstrate that in short LD cycles, the expression of the core clock protein FREQUENCY was entrained to the LD cycles when LD > 3:3 while it free ran when T ≤ LD3:3. The conidial rhythmicity can resonate with a series of different LD conditions. Moreover, we demonstrate that the existence of unknown blue light photoreceptor(s) and the circadian clock might promote the conidiation rhythms that resonate with the environment. The ubiquitin E3 ligase FWD-1 and the previously described CRY-dependent oscillator system were implicated in regulating conidiation under short LD conditions. These findings shed new light on the resonance of Neurospora circadian clock and conidiation rhythms to short LD cycles, which may benefit the understandings of both the basic regulatory aspects of circadian clock and the adaptation of physiological rhythms to the extreme conditions.
Collapse
|
14
|
Vazquez-Rivera E, Rojas B, Parrott JC, Shen AL, Xing Y, Carney PR, Bradfield CA. The aryl hydrocarbon receptor as a model PAS sensor. Toxicol Rep 2021; 9:1-11. [PMID: 34950569 PMCID: PMC8671103 DOI: 10.1016/j.toxrep.2021.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 01/02/2023] Open
Abstract
Proteins containing PER-ARNT-SIM (PAS) domains are commonly associated with environmental adaptation in a variety of organisms. The PAS domain is found in proteins throughout Archaea, Bacteria, and Eukarya and often binds small-molecules, supports protein-protein interactions, and transduces input signals to mediate an adaptive physiological response. Signaling events mediated by PAS sensors can occur through induced phosphorelays or genomic events that are often dependent upon PAS domain interactions. In this perspective, we briefly discuss the diversity of PAS domain containing proteins, with particular emphasis on the prototype member, the aryl hydrocarbon receptor (AHR). This ligand-activated transcription factor acts as a sensor of the chemical environment in humans and many chordates. We conclude with the idea that since mammalian PAS proteins often act through PAS-PAS dimers, undocumented interactions of this type may link biological processes that we currently think of as independent. To support this idea, we present a framework to guide future experiments aimed at fully elucidating the spectrum of PAS-PAS interactions with an eye towards understanding how they might influence environmental sensing in human and wildlife populations.
Collapse
Affiliation(s)
- Emmanuel Vazquez-Rivera
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Brenda Rojas
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Jessica C. Parrott
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Anna L. Shen
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Yongna Xing
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Patrick R. Carney
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Christopher A. Bradfield
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| |
Collapse
|
15
|
Kimura T, Haga K, Nomura Y, Higaki T, Nakagami H, Sakai T. Phosphorylation of NONPHOTOTROPIC HYPOCOTYL3 affects photosensory adaptation during the phototropic response. PLANT PHYSIOLOGY 2021; 187:981-995. [PMID: 34608954 PMCID: PMC8491083 DOI: 10.1093/plphys/kiab281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/14/2021] [Indexed: 05/25/2023]
Abstract
Photosensory adaptation, which can be classified as sensor or effector adaptation, optimizes the light sensing of living organisms by tuning their sensitivity to changing light conditions. During the phototropic response in Arabidopsis (Arabidopsis thaliana), the light-dependent expression controls of blue-light (BL) photoreceptor phototropin 1 (phot1) and its modulator ROOT PHOTOTROPISM2 (RPT2) are known as the molecular mechanisms underlying sensor adaptation. However, little is known about effector adaption in plant phototropism. Here, we show that control of the phosphorylation status of NONPHOTOTROPIC HYPOCOTYL3 (NPH3) leads to effector adaptation in hypocotyl phototropism. We generated unphosphorable and phosphomimetic NPH3 proteins on seven phosphorylation sites in the etiolated seedlings of Arabidopsis. Unphosphorable NPH3 showed a shortening of its retention time in the cytosol and caused an inability to adapt to very low fluence rates of BL (∼10-5 µmol m-2 s-1) during the phototropic response. In contrast, the phosphomimetic NPH3 proteins had a lengthened retention time in the cytosol and could not enable the adaptation to BL at fluence rates of 10-3 µmol m-2 s-1 or more. Our results indicate that the activation level of phot1 and the corresponding phosphorylation level of NPH3 determine the dissociation rate and the reassociation rate of NPH3 on the plasma membrane, respectively. These mechanisms may moderately maintain the active state of phot1 signaling across a broad range of BL intensities and contribute to the photosensory adaptation of phot1 signaling during the phototropic response in hypocotyls.
Collapse
Affiliation(s)
- Taro Kimura
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Ken Haga
- Department of Applied Chemistry, Faculty of Fundamental Engineering, Nippon Institute of Technology, 4-1 Gakuendai, Miyashiro-cho, Minamisaitama-gun, Saitama 345-8501, Japan
| | - Yuko Nomura
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Tatsuya Sakai
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
16
|
Pola-Sánchez E, Villalobos-Escobedo JM, Carreras-Villaseñor N, Martínez-Hernández P, Beltrán-Hernández EB, Esquivel-Naranjo EU, Herrera-Estrella A. A Global Analysis of Photoreceptor-Mediated Transcriptional Changes Reveals the Intricate Relationship Between Central Metabolism and DNA Repair in the Filamentous Fungus Trichoderma atroviride. Front Microbiol 2021; 12:724676. [PMID: 34566928 PMCID: PMC8456097 DOI: 10.3389/fmicb.2021.724676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Light provides critical information for the behavior and development of basically all organisms. Filamentous fungi sense blue light, mainly, through a unique transcription factor complex that activates its targets in a light-dependent manner. In Trichoderma atroviride, the BLR-1 and BLR-2 proteins constitute this complex, which triggers the light-dependent formation of asexual reproduction structures (conidia). We generated an ENVOY photoreceptor mutant and performed RNA-seq analyses in the mutants of this gene and in those of the BLR-1, CRY-1 and CRY-DASH photoreceptors in response to a pulse of low intensity blue light. Like in other filamentous fungi BLR-1 appears to play a central role in the regulation of blue-light responses. Phenotypic characterization of the Δenv-1 mutant showed that ENVOY functions as a growth and conidiation checkpoint, preventing exacerbated light responses. Similarly, we observed that CRY-1 and CRY-DASH contribute to the typical light-induced conidiation response. In the Δenv-1 mutant, we observed, at the transcriptomic level, a general induction of DNA metabolic processes and strong repression of central metabolism. An analysis of the expression level of DNA repair genes showed that they increase their expression in the absence of env-1. Consistently, photoreactivation experiments showed that Δenv-1 had increased DNA repair capacity. Our results indicate that light perception in T. atroviride is far more complex than originally thought.
Collapse
Affiliation(s)
- Enrique Pola-Sánchez
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - José Manuel Villalobos-Escobedo
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | | | - Pedro Martínez-Hernández
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Emma Beatriz Beltrán-Hernández
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Edgardo Ulises Esquivel-Naranjo
- Laboratorio de Microbiología Molecular, Unidad de Microbiología Básica y Aplicada, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| |
Collapse
|
17
|
Luo W, Wang Y, Yang P, Qu Y, Yu X. Multilevel Regulation of Carotenoid Synthesis by Light and Active Oxygen in Blakeslea trispora. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10974-10988. [PMID: 34510898 DOI: 10.1021/acs.jafc.1c03389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although Blakeslea trispora has been used for industrial production of β-carotene, the effects of light and oxidative stress on its synthesis have not been fully clarified. The present study focuses on the effects of light and reactive oxygen species (ROS) on carotenoid synthesis and their multilevel regulation in B. trispora. Blue light significantly influenced the intracellular ROS levels, carotenoid contents, and transcription of carotenoid structural genes, while ROS levels were positively correlated with intracellular carotenoid contents and transcriptional levels of carotenoid structural genes. Blue light and ROS were both significant factors affecting carotenoid synthesis with a significant interaction between them. Irradiation by pulsed blue light and (or) addition of generating agents for active oxygen could partially compensate for the inhibition derived from the transcription inhibitor (dactinomycin) and translation inhibitor (cycloheximide) on the multilevel phenotype. Therefore, blue light and ROS act on the transcription and translation of carotenoid structural genes to promote the accumulation of carotenoid in B. trispora.
Collapse
Affiliation(s)
- Wei Luo
- Key Laboratory of Industrial Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Ying Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Peilong Yang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Xiaobin Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
18
|
Li Y, Sun T, Guo D, Gao J, Zhang J, Cai F, Fischer R, Shen Q, Yu Z. Comprehensive analysis of the regulatory network of blue-light-regulated conidiation and hydrophobin production in Trichoderma guizhouense. Environ Microbiol 2021; 23:6241-6256. [PMID: 34472181 DOI: 10.1111/1462-2920.15748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 11/27/2022]
Abstract
Conidia of Trichoderma guizhouense (Hypocreales, Ascomycota) are frequently applied to the production of biofertilizers and biocontrol agents. Conidiation of some Trichoderma species depends on blue light and the action of different blue light receptors. However, the interplay between different blue-light receptors in light signalling remained elusive. Here, we studied the functions of the blue light receptors BLR1 and ENV1, and the MAP kinase HOG1 in blue light signalling in T. guizhouense. We found that the BLR1 dominates light responses and ENV1 is responsible for photoadaptation. Genome-wide gene expression analyses revealed that 1615 genes, accounting for ~13.4% of the genes annotated in the genome, are blue-light regulated in T. guizhouense, and remarkably, these differentially expressed genes (DEGs) including 61 transcription factors. BLR1 and HOG1 are the core components of the light signalling network, which control 79.9% and 73.9% of the DEGs respectively. In addition, the strict regulation of hydrophobin production by the blue light signalling network is impressive. Our study unravels the regulatory network based on the blue light receptors and the MAPK HOG pathway for conidiation, hydrophobin production and other processes in T. guizhouense.
Collapse
Affiliation(s)
- Yifan Li
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingting Sun
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Degang Guo
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia Gao
- Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, D-76131, Germany
| | - Jian Zhang
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Cai
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Reinhard Fischer
- Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, D-76131, Germany
| | - Qirong Shen
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenzhong Yu
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
19
|
Muñoz-Guzmán F, Caballero V, Larrondo LF. A global search for novel transcription factors impacting the Neurospora crassa circadian clock. G3 (BETHESDA, MD.) 2021; 11:jkab100. [PMID: 33792687 PMCID: PMC8495738 DOI: 10.1093/g3journal/jkab100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/16/2021] [Indexed: 01/15/2023]
Abstract
Eukaryotic circadian oscillators share a common circuit architecture, a negative feedback loop in which a positive element activates the transcription of a negative one that then represses the action of the former, inhibiting its own expression. While studies in mammals and insects have revealed additional transcriptional inputs modulating the expression of core clock components, this has been less characterized in the model Neurospora crassa, where the participation of other transcriptional components impacting circadian clock dynamics remains rather unexplored. Thus, we sought to identify additional transcriptional regulators modulating the N. crassa clock, following a reverse genetic screen based on luminescent circadian reporters and a collection of transcription factors (TFs) knockouts, successfully covering close to 60% of them. Besides the canonical core clock components WC-1 and -2, none of the tested transcriptional regulators proved to be essential for rhythmicity. Nevertheless, we identified a set of 23 TFs that when absent lead to discrete, but significant, changes in circadian period. While the current level of analysis does not provide mechanistic information about how these new players modulate circadian parameters, the results of this screen reveal that an important number of light and clock-regulated TFs, involved in a plethora of processes, are capable of modulating the clockworks. This partial reverse genetic clock screen also exemplifies how the N. crassa knockout collection continues to serve as an expedite platform to address broad biological questions.
Collapse
Affiliation(s)
- Felipe Muñoz-Guzmán
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Valeria Caballero
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Luis F Larrondo
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
20
|
Yee EF, Oldemeyer S, Böhm E, Ganguly A, York DM, Kottke T, Crane BR. Peripheral Methionine Residues Impact Flavin Photoreduction and Protonation in an Engineered LOV Domain Light Sensor. Biochemistry 2021; 60:1148-1164. [PMID: 33787242 PMCID: PMC8107827 DOI: 10.1021/acs.biochem.1c00064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Proton-coupled electron transfer reactions play critical roles in many aspects of sensory phototransduction. In the case of flavoprotein light sensors, reductive quenching of flavin excited states initiates chemical and conformational changes that ultimately transmit light signals to downstream targets. These reactions generally require neighboring aromatic residues and proton-donating side chains for rapid and coordinated electron and proton transfer to flavin. Although photoreduction of flavoproteins can produce either the anionic (ASQ) or neutral semiquinone (NSQ), the factors that favor one over the other are not well understood. Here we employ a biologically active variant of the light-oxygen-voltage (LOV) domain protein VVD devoid of the adduct-forming Cys residue (VVD-III) to probe the mechanism of flavin photoreduction and protonation. A series of isosteric and conservative residue replacements studied by rate measurements, fluorescence quantum yields, FTIR difference spectroscopy, and molecular dynamics simulations indicate that tyrosine residues facilitate charge recombination reactions that limit sustained flavin reduction, whereas methionine residues facilitate radical propagation and quenching and also gate solvent access for flavin protonation. Replacement of a single surface Met residue with Leu favors formation of the ASQ over the NSQ and desensitizes photoreduction to oxidants. In contrast, increasing site hydrophilicity by Gln substitution promotes rapid NSQ formation and weakens the influence of the redox environment. Overall, the photoreactivity of VVD-III can be understood in terms of redundant electron donors, internal hole quenching, and coupled proton transfer reactions that all depend upon protein conformation, dynamics, and solvent penetration.
Collapse
Affiliation(s)
- Estella F. Yee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Sabine Oldemeyer
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Elena Böhm
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Abir Ganguly
- Laboratory for Biomolecular Simulation Research, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Darrin M. York
- Laboratory for Biomolecular Simulation Research, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Tilman Kottke
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
21
|
Losi A, Gärtner W. A light life together: photosensing in the plant microbiota. Photochem Photobiol Sci 2021; 20:451-473. [PMID: 33721277 DOI: 10.1007/s43630-021-00029-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
Bacteria and fungi of the plant microbiota can be phytopathogens, parasites or symbionts that establish mutually advantageous relationships with plants. They are often rich in photoreceptors for UVA-Visible light, and in many cases, they exhibit light regulation of growth patterns, infectivity or virulence, reproductive traits, and production of pigments and of metabolites. In addition to the light-driven effects, often demonstrated via the generation of photoreceptor gene knock-outs, microbial photoreceptors can exert effects also in the dark. Interestingly, some fungi switch their attitude towards plants in dependence of illumination or dark conditions in as much as they may be symbiotic or pathogenic. This review summarizes the current knowledge about the roles of light and photoreceptors in plant-associated bacteria and fungi aiming at the identification of common traits and general working ideas. Still, reports on light-driven infection of plants are often restricted to the description of macroscopically observable phenomena, whereas detailed information on the molecular level, e.g., protein-protein interaction during signal transduction or induction mechanisms of infectivity/virulence initiation remains sparse. As it becomes apparent from still only few molecular studies, photoreceptors, often from the red- and the blue light sensitive groups interact and mutually modulate their individual effects. The topic is of great relevance, even in economic terms, referring to plant-pathogen or plant-symbionts interactions, considering the increasing usage of artificial illumination in greenhouses, the possible light-regulation of the synthesis of plant-growth stimulating substances or herbicides by certain symbionts, and the biocontrol of pests by selected fungi and bacteria in a sustainable agriculture.
Collapse
Affiliation(s)
- Aba Losi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124, Parma, Italy.
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103, Leipzig, Germany
| |
Collapse
|
22
|
Benedetti L. Optogenetic Tools for Manipulating Protein Subcellular Localization and Intracellular Signaling at Organelle Contact Sites. Curr Protoc 2021; 1:e71. [PMID: 33657274 PMCID: PMC7954661 DOI: 10.1002/cpz1.71] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Intracellular signaling processes are frequently based on direct interactions between proteins and organelles. A fundamental strategy to elucidate the physiological significance of such interactions is to utilize optical dimerization tools. These tools are based on the use of small proteins or domains that interact with each other upon light illumination. Optical dimerizers are particularly suitable for reproducing and interrogating a given protein-protein interaction and for investigating a protein's intracellular role in a spatially and temporally precise manner. Described in this article are genetic engineering strategies for the generation of modular light-activatable protein dimerization units and instructions for the preparation of optogenetic applications in mammalian cells. Detailed protocols are provided for the use of light-tunable switches to regulate protein recruitment to intracellular compartments, induce intracellular organellar membrane tethering, and reconstitute protein function using enhanced Magnets (eMags), a recently engineered optical dimerization system. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Genetic engineering strategy for the generation of modular light-activated protein dimerization units Support Protocol 1: Molecular cloning Basic Protocol 2: Cell culture and transfection Support Protocol 2: Production of dark containers for optogenetic samples Basic Protocol 3: Confocal microscopy and light-dependent activation of the dimerization system Alternate Protocol 1: Protein recruitment to intracellular compartments Alternate Protocol 2: Induction of organelles' membrane tethering Alternate Protocol 3: Optogenetic reconstitution of protein function Basic Protocol 4: Image analysis Support Protocol 3: Analysis of apparent on- and off-kinetics Support Protocol 4: Analysis of changes in organelle overlap over time.
Collapse
Affiliation(s)
- Lorena Benedetti
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia
| |
Collapse
|
23
|
Gutiérrez-Medina B, Hernández-Candia CN. Aggregation kinetics of the protein photoreceptor Vivid. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140620. [PMID: 33561578 DOI: 10.1016/j.bbapap.2021.140620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/07/2021] [Accepted: 02/04/2021] [Indexed: 11/24/2022]
Abstract
The aggregation of proteins is of importance in fields ranging from protein homeostasis to disease. The light-sensing protein Vivid (VVD) regulates responses to blue-light illumination in the filamentous fungus Neurospora crassa. Consisting of a single light‑oxygen-voltage domain, VVD is characterized by cycling between dark and lit states that correspond to formation and disruption of a photoadduct between the flavin cofactor and the apoprotein. Recently, in vitro assays have shown that VVD undergoes self-oxidative damage and aggregation resulting from excessive blue-light illumination. To explore the aggregation process of VVD, here we study the kinetics of aggregation and how it is influenced by environmental factors such as initial protein concentration, temperature, and light. We found that the aggregation kinetics of VVD is consistent with a second-order reaction model involving kinetic control, where thermal decay from lit-VVD to dark-VVD is necessary for aggregation to proceed. The height of the energy barrier separating the lit and dark VVD states is measured as (80 ± 2) kJ mol-1. Application of the kinetic model to the observed dependence of aggregation vs. temperature allowed us to further estimate the energy involved in the nucleation of dark-VVD, (257 ± 24) kJ mol-1. Finally, we show that VVD aggregation levels increase as the time of blue light exposure is augmented, suggesting possible mechanisms for protein damage. These results demonstrate how aggregation of a photoreceptor depends not only on environmental factors but on the intrinsic response of the protein to illumination.
Collapse
Affiliation(s)
- Braulio Gutiérrez-Medina
- Division of Advanced Materials, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, 78216 San Luis Potosí, Mexico.
| | - Carmen Noemí Hernández-Candia
- Division of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, 78216 San Luis Potosí, Mexico
| |
Collapse
|
24
|
Pardo-Medina J, Gutiérrez G, Limón MC, Avalos J. Impact of the White Collar Photoreceptor WcoA on the Fusarium fujikuroi Transcriptome. Front Microbiol 2021; 11:619474. [PMID: 33574802 PMCID: PMC7871910 DOI: 10.3389/fmicb.2020.619474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/18/2020] [Indexed: 01/25/2023] Open
Abstract
The proteins of the White Collar 1 family (WC) constitute a major class of flavin photoreceptors, widely distributed in fungi, that work in cooperation with a WC 2 protein forming a regulatory complex. The WC complex was investigated in great detail in Neurospora crassa, a model fungus in photobiology studies, where it controls all its major photoresponses. The fungus Fusarium fujikuroi, a model system in the production of secondary metabolites, contains a single WC-1 gene called wcoA. The best-known light response in this fungus is the photoinduction of the synthesis of carotenoids, terpenoid pigments with antioxidant properties. Loss of WcoA in F. fujikuroi results in a drastic reduction in the mRNA levels of the carotenoid genes, and a diversity of morphological and metabolic changes, including alterations in the synthesis of several secondary metabolites, suggesting a complex regulatory role. To investigate the function of WcoA, the transcriptome of F. fujikuroi was analyzed in the dark and after 15-, 60- or 240-min illumination in a wild strain and in a formerly investigated wcoA insertional mutant. Using a threshold of four-fold change in transcript levels, 298 genes were activated and 160 were repressed in the wild strain under at least one of the light exposures. Different response patterns were observed among them, with genes exhibiting either fast, intermediate, and slow photoinduction, or intermediate or slow repression. All the fast and intermediate photoresponses, and most of the slow ones, were lost in the wcoA mutant. However, the wcoA mutation altered the expression of a much larger number of genes irrespective of illumination, reaching at least 16% of the annotated genes in this fungus. Such genes include many related to secondary metabolism, as well as others related to photobiology and other cellular functions, including the production of hydrophobins. As judged by the massive transcriptomic changes exhibited by the wcoA mutant in the dark, the results point to WcoA as a master regulatory protein in F. fujikuroi, in addition to a central function as the photoreceptor responsible for most of the transcriptional responses to light in this fungus.
Collapse
Affiliation(s)
- Javier Pardo-Medina
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
| | - Gabriel Gutiérrez
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
| | - M Carmen Limón
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
| | - Javier Avalos
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
| |
Collapse
|
25
|
Cascant-Lopez E, Crosthwaite SK, Johnson LJ, Harrison RJ. No Evidence That Homologs of Key Circadian Clock Genes Direct Circadian Programs of Development or mRNA Abundance in Verticillium dahliae. Front Microbiol 2020; 11:1977. [PMID: 33013740 PMCID: PMC7493669 DOI: 10.3389/fmicb.2020.01977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/27/2020] [Indexed: 01/24/2023] Open
Abstract
Many organisms harbor circadian clocks that promote their adaptation to the rhythmic environment. While a broad knowledge of the molecular mechanism of circadian clocks has been gained through the fungal model Neurospora crassa, little is known about circadian clocks in other fungi. N. crassa belongs to the same class as many important plant pathogens including the vascular wilt fungus Verticillium dahliae. We identified homologs of N. crassa clock proteins in V. dahliae, which showed high conservation in key protein domains. However, no evidence for an endogenous, free-running and entrainable rhythm was observed in the daily formation of conidia and microsclerotia. In N. crassa the frequency (frq) gene encodes a central clock protein expressed rhythmically and in response to light. In contrast, expression of Vdfrq is not light-regulated. Temporal gene expression profiling over 48 h in constant darkness and temperature revealed no circadian expression of key clock genes. Furthermore, RNA-seq over a 24 h time-course revealed no robust oscillations of clock-associated transcripts in constant darkness. Comparison of gene expression between wild-type V. dahliae and a ΔVdfrq mutant showed that genes involved in metabolism, transport and redox processes are mis-regulated in the absence of Vdfrq. In addition, VdΔfrq mutants display growth defects and reduced pathogenicity in a strain dependent manner. Our data indicate that if a circadian clock exists in Verticillium, it is based on alternative mechanisms such as post-transcriptional interactions of VdFRQ and the WC proteins or the components of a FRQ-less oscillator. Alternatively, it could be that whilst the original functions of the clock proteins have been maintained, in this species the interactions that generate robust rhythmicity have been lost or are only triggered when specific environmental conditions are met. The presence of conserved clock genes in genomes should not be taken as definitive evidence of circadian function.
Collapse
Affiliation(s)
| | | | - Louise J Johnson
- The School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Richard J Harrison
- Genetics, Genomics and Breeding, NIAB EMR, East Malling, United Kingdom.,National Institute of Agricultural Botany (NIAB), Cambridge, United Kingdom
| |
Collapse
|
26
|
Light Response of Pseudomonas putida KT2440 Mediated by Class II LitR, a Photosensor Homolog. J Bacteriol 2020; 202:JB.00146-20. [PMID: 32967908 DOI: 10.1128/jb.00146-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/19/2020] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida KT2440 retains three homologs (PplR1 to PplR3) of the LitR/CarH family, an adenosyl B12-dependent light-sensitive MerR family transcriptional regulator. Transcriptome analysis revealed the existence of a number of photoinducible genes, including pplR1, phrB (encoding DNA photolyase), ufaM (furan-containing fatty acid synthase), folE (GTP cyclohydrolase I), cryB (cryptochrome-like protein), and multiple genes without annotated/known function. Transcriptional analysis by quantitative reverse transcription-PCR with knockout mutants of pplR1 to pplR3 showed that a triple knockout completely abolished the light-inducible transcription in P. putida, which indicates the occurrence of ternary regulation of PplR proteins. A DNase I footprint assay showed that PplR1 protein specifically binds to the promoter regions of light-inducible genes, suggesting a consensus PplR1-binding direct repeat, 5'-T(G/A)TACAN12TGTA(C/T)A-3'. The disruption of B12 biosynthesis cluster did not affect the light-inducible transcription; however, disruption of ppSB1-LOV (where LOV indicates "light, oxygen, or voltage") and ppSB2-LOV, encoding blue light photoreceptors adjacently located to pplR3 and pplR2, respectively, led to the complete loss of light-inducible transcription. Overall, the results suggest that the three PplRs and two PpSB-LOVs cooperatively regulate the light-inducible gene expression. The wide distribution of the pplR/ppSB-LOV cognate pair homologs in Pseudomonas spp. and related bacteria suggests that the response and adaptation to light are similarly regulated in the group of nonphototrophic bacteria.IMPORTANCE The LitR/CarH family is a new group of photosensor homologous to MerR-type transcriptional regulators. Proteins of this family are distributed to various nonphototrophic bacteria and grouped into at least five classes (I to V). Pseudomonas putida retaining three class II LitR proteins exhibited a genome-wide response to light. All three paralogs were functional and mediated photodependent activation of promoters directing the transcription of light-induced genes or operons. Two LOV (light, oxygen, or voltage) domain proteins, adjacently encoded by two litR genes, were also essential for the photodependent transcriptional control. Despite the difference in light-sensing mechanisms, the DNA binding consensus of class II LitR [T(G/A)TA(C/T)A] was the same as that of class I. This is the first study showing the actual involvement of class II LitR in light-induced transcription.
Collapse
|
27
|
Chen H, Li K, Cai Y, Wang P, Gong W, Wu LF, Song T. Light regulation of resistance to oxidative damage and magnetic crystal biogenesis in Magnetospirillum magneticum mediated by a Cys-less LOV-like protein. Appl Microbiol Biotechnol 2020; 104:7927-7941. [PMID: 32780289 DOI: 10.1007/s00253-020-10807-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/01/2020] [Accepted: 08/02/2020] [Indexed: 12/20/2022]
Abstract
Light-oxygen-voltage (LOV) proteins are ubiquitous photoreceptors that can interact with other regulatory proteins and then mediate their activities, which results in cellular adaptation and subsequent physiological changes. Upon blue-light irradiation, a conserved cysteine (Cys) residue in LOV covalently binds to flavin to form a flavin-Cys adduct, which triggers a subsequent cascade of signal transduction and reactions. We found a group of natural Cys-less LOV-like proteins in magnetotactic bacteria (MTB) and investigated its physiological functions by conducting research on one of these unusual LOV-like proteins, Amb2291, in Magnetospirillum magneticum. In-frame deletion of amb2291 or site-directive substitution of alanine-399 for Cys mutants impaired the protective responses against hydrogen peroxide, thereby causing stress and growth impairment. Consequently, gene expression and magnetosome formation were affected, which led to high sensitivity to oxidative damage and defective phototactic behaviour. The purified wild-type and A399C-mutated LOV-like proteins had similar LOV blue-light response spectra, but Amb2291A399C exhibited a faster reaction to blue light. We especially showed that LOV-like protein Amb2291 plays a role in magnetosome synthesis and resistance to oxidative stress of AMB-1 when this bacterium was exposed to red light and hydrogen peroxide. This finding expands our knowledge of the physiological function of this widely distributed group of photoreceptors and deepens our understanding of the photoresponse of MTB. KEY POINTS: • We found a group of Cys-less light-oxygen-voltage (LOV) photoreceptors in magnetotactic bacteria, which prompted us to study the light-response and biological roles of these proteins in these non-photosynthetic bacteria. • The Cys-less LOV-like protein participates in the light-regulated signalling pathway and improves resistance to oxidative damage and magnetic crystal biogenesis in Magnetospirillum magneticum. • This result will contribute to our understanding of the structural and functional diversity of the LOV-like photoreceptor and help us understand the complexity of light-regulated model organisms.
Collapse
Affiliation(s)
- Haitao Chen
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-CAS, Beijing, 100190, China
| | - Kefeng Li
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,Shandong Sport University, Jinan, 250102, China
| | - Yao Cai
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Pingping Wang
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-CAS, Beijing, 100190, China
| | - Weimin Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Long-Fei Wu
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-CAS, Beijing, 100190, China. .,Aix Marseille University, CNRS, LCB, 13402, Marseille, France.
| | - Tao Song
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-CAS, Beijing, 100190, China.
| |
Collapse
|
28
|
Berlew EE, Kuznetsov IA, Yamada K, Bugaj LJ, Chow BY. Optogenetic Rac1 engineered from membrane lipid-binding RGS-LOV for inducible lamellipodia formation. Photochem Photobiol Sci 2020; 19:353-361. [PMID: 32048687 PMCID: PMC7141788 DOI: 10.1039/c9pp00434c] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/03/2020] [Indexed: 01/01/2023]
Abstract
We report the construction of a single-component optogenetic Rac1 (opto-Rac1) to control actin polymerization by dynamic membrane recruitment. Opto-Rac1 is a fusion of wildtype human Rac1 small GTPase to the C-terminal region of BcLOV4, a LOV (light-oxygen-voltage) photoreceptor that rapidly binds the plasma membrane upon blue-light activation via a direct electrostatic interaction with anionic membrane phospholipids. Translocation of the fused wildtype Rac1 effector permits its activation by GEFs (guanine nucleotide exchange factors) and consequent actin polymerization and lamellipodia formation, unlike in existing single-chain systems that operate by allosteric photo-switching of constitutively active Rac1 or the heterodimerization-based (i.e. two-component) membrane recruitment of a Rac1-activating GEF. Opto-Rac1 induction of lamellipodia formation was spatially restricted to the patterned illumination field and was efficient, requiring sparse stimulation duty ratios of ∼1-2% (at the sensitivity threshold for flavin photocycling) to cause significant changes in cell morphology. This work exemplifies how the discovery of LOV proteins of distinct signal transmission modes can beget new classes of optogenetic tools for controlling cellular function.
Collapse
Affiliation(s)
- Erin E Berlew
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 19104, Philadelphia, PA, USA
| | - Ivan A Kuznetsov
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 19104, Philadelphia, PA, USA
| | - Keisuke Yamada
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 19104, Philadelphia, PA, USA
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 19104, Philadelphia, PA, USA
| | - Brian Y Chow
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 19104, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Corrochano LM. Light in the Fungal World: From Photoreception to Gene Transcription and Beyond. Annu Rev Genet 2019; 53:149-170. [DOI: 10.1146/annurev-genet-120417-031415] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fungi see light of different colors by using photoreceptors such as the White Collar proteins and cryptochromes for blue light, opsins for green light, and phytochromes for red light. Light regulates fungal development, promotes the accumulation of protective pigments and proteins, and regulates tropic growth. The White Collar complex (WCC) is a photoreceptor and a transcription factor that is responsible for regulating transcription after exposure to blue light. In Neurospora crassa, light promotes the interaction of WCCs and their binding to the promoters to activate transcription. In Aspergillus nidulans, the WCC and the phytochrome interact to coordinate gene transcription and other responses, but the contribution of these photoreceptors to fungal photobiology varies across fungal species. Ultimately, the effect of light on fungal biology is the result of the coordinated transcriptional regulation and activation of signal transduction pathways.
Collapse
Affiliation(s)
- Luis M. Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
30
|
Zhang J, Wang F, Yang Y, Wang Y, Dong C. CmVVD is involved in fruiting body development and carotenoid production and the transcriptional linkage among three blue-light receptors in edible fungus Cordyceps militaris. Environ Microbiol 2019; 22:466-482. [PMID: 31742850 DOI: 10.1111/1462-2920.14867] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022]
Abstract
Fruiting body development and carotenoid production are light-induced in Cordyceps militaris. Our previous studies have shown that two blue-light receptors, CmWC-1 and CmCRY-DASH, regulate fruiting body development and secondary metabolism. However, the photosensory system of C. militaris remains unclear. Here, gene deletion of Cmvvd, coding for another blue-light receptor, resulted in reduced conidiation level and significant promotion of carotenoid content. Cmvvd transcription levels at fruiting body stages were higher than at other stages, and fruiting bodies could not develop normally in ΔCmvvd strains, indicating that Cmvvd might play an important role in fruiting body development. Rhythm loops were not affected in ΔCmvvd strains but were regulated by Cmwc-1, and the expression of the rhythm regulator gene Cmfrq was dependent on CmWC-1. Chromatin immunoprecipitation assay confirmed that Cmvvd is the direct target of CmWC-1 in this fungus. Our results also revealed interdependent transcriptional relationships between Cmwc-1 and Cmvvd, and between Cmwc-1 and Cmcry-DASH. Cmcry-DASH expression was affected by Cmvvd, and the function-loss of Cmcry-DASH might be compensated by the high transcription of Cmvvd. This is the first report of the transcriptional linkage among the three blue-light receptors in edible fungi and will be helpful for studies of multicellular development in this fungus.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Fen Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
31
|
Kalvaitis ME, Johnson LA, Mart RJ, Rizkallah P, Allemann RK. A Noncanonical Chromophore Reveals Structural Rearrangements of the Light-Oxygen-Voltage Domain upon Photoactivation. Biochemistry 2019; 58:2608-2616. [PMID: 31082213 PMCID: PMC7007005 DOI: 10.1021/acs.biochem.9b00255] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Light-oxygen-voltage
(LOV) domains are increasingly used to engineer
photoresponsive biological systems. While the photochemical cycle
is well documented, the allosteric mechanism by which formation of
a cysteinyl-flavin adduct leads to activation is unclear. Via replacement
of flavin mononucleotide (FMN) with 5-deazaflavin mononucleotide (5dFMN)
in the Aureochrome1a (Au1a) transcription factor from Ochromonas
danica, a thermally stable cysteinyl-5dFMN adduct was generated.
High-resolution crystal structures (<2 Å) under different
illumination conditions with either FMN or 5dFMN chromophores reveal
three conformations of the highly conserved glutamine 293. An allosteric
hydrogen bond network linking the chromophore via Gln293 to the auxiliary
A′α helix is observed. With FMN, a “flip”
of the Gln293 side chain occurs between dark and lit states. 5dFMN
cannot hydrogen bond through the C5 position and proved to be unable
to support Au1a domain dimerization. Under blue light, the Gln293
side chain instead “swings” away in a conformation distal
to the chromophore and not previously observed in existing LOV domain
structures. Together, the multiple side chain conformations of Gln293
and functional analysis of 5dFMN provide new insight into the structural
requirements for LOV domain activation.
Collapse
Affiliation(s)
- Mindaugas E Kalvaitis
- School of Chemistry , Cardiff University , Park Place , Cardiff CF10 3AT , United Kingdom
| | - Luke A Johnson
- School of Chemistry , Cardiff University , Park Place , Cardiff CF10 3AT , United Kingdom
| | - Robert J Mart
- School of Chemistry , Cardiff University , Park Place , Cardiff CF10 3AT , United Kingdom
| | - Pierre Rizkallah
- School of Medicine , University Hospital Wales , Main Building, Heath Park , Cardiff CF14 4XN , United Kingdom
| | - Rudolf K Allemann
- School of Chemistry , Cardiff University , Park Place , Cardiff CF10 3AT , United Kingdom
| |
Collapse
|
32
|
Red- and Blue-Light Sensing in the Plant Pathogen Alternaria alternata Depends on Phytochrome and the White-Collar Protein LreA. mBio 2019; 10:mBio.00371-19. [PMID: 30967462 PMCID: PMC6456751 DOI: 10.1128/mbio.00371-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Light controls many processes in filamentous fungi. The study of light regulation in a number of model organisms revealed an unexpected complexity. Although the molecular components for light sensing appear to be widely conserved in fungal genomes, the regulatory circuits and the sensitivity of certain species toward specific wavelengths seem different. In N. crassa, most light responses are triggered by blue light, whereas in A. nidulans, red light plays a dominant role. In Alternaria alternata, both blue and red light appear to be important. In A. alternata, photoreceptors control morphogenetic pathways, the homeostasis of reactive oxygen species, and the production of secondary metabolites. On the other hand, high-osmolarity sensing required FphA and LreA, indicating a sophisticated cross talk between light and stress signaling. The filamentous fungus Alternaria alternata is a common postharvest contaminant of food and feed, and some strains are plant pathogens. Many processes in A. alternata are triggered by light. Interestingly, blue light inhibits sporulation, and red light reverses the effect, suggesting interactions between light-sensing systems. The genome encodes a phytochrome (FphA), a white collar 1 (WC-1) orthologue (LreA), an opsin (NopA), and a cryptochrome (CryA) as putative photoreceptors. Here, we investigated the role of FphA and LreA and the interplay with the high-osmolarity glycerol (HOG) mitogen-activated protein (MAP) kinase pathway. We created loss-of function mutations for fphA, lreA, and hogA using CRISPR-Cas9 technology. Sporulation was reduced in all three mutant strains already in the dark, suggesting functions of the photoreceptors FphA and LreA independent of light perception. Germination of conidia was delayed in red, blue, green, and far-red light. We found that light induction of ccgA (clock-controlled gene in Neurospora crassa and light-induced gene in Aspergillus nidulans) and the catalase gene catA depended on FphA, LreA, and HogA. Light induction of ferA (a putative ferrochelatase gene) and bliC (bli-3, light regulated, unknown function) required LreA and HogA but not FphA. Blue- and green-light stimulation of alternariol formation depended on LreA. A lack of FphA or LreA led to enhanced resistance toward oxidative stress due to the upregulation of catalases and superoxide dismutases. Light activation of FphA resulted in increased phosphorylation and nuclear accumulation of HogA. Our results show that germination, sporulation, and secondary metabolism are light regulated in A. alternata with distinct and overlapping roles of blue- and red-light photosensors.
Collapse
|
33
|
Abstract
Molecular mechanisms of dark-to-light state transitions in flavoprotein photoreceptors have been the subject of intense investigation. Blue-light sensing flavoproteins fall into three general classes that share aspects of their activation processes: LOV domains, BLUF proteins, and cryptochromes. In all cases, light-induced changes in flavin redox, protonation, and bonding states result in hydrogen-bond and conformational rearrangements important for regulation of downstream targets. Physical characterization of these flavoprotein states can provide valuable insights into biological function, but clear conclusions are often challenging to draw owing to complexities of data collection and interpretation. In this chapter, we briefly review the three classes of flavoprotein photoreceptors and provide methods for their recombinant production, reconstitution with flavin cofactor, and characterization. We then relate best practices and special considerations for the application of several types of spectroscopies, redox potential measurements, and X-ray scattering experiments to photosensitive flavoproteins. The methods presented are generally accessible to most laboratories.
Collapse
Affiliation(s)
- Estella F Yee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | | | - Changfan Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
34
|
Abstract
Circadian oscillators are networks of biochemical feedback loops that generate 24-hour rhythms in organisms from bacteria to animals. These periodic rhythms result from a complex interplay among clock components that are specific to the organism, but share molecular mechanisms across kingdoms. A full understanding of these processes requires detailed knowledge, not only of the biochemical properties of clock proteins and their interactions, but also of the three-dimensional structure of clockwork components. Posttranslational modifications and protein–protein interactions have become a recent focus, in particular the complex interactions mediated by the phosphorylation of clock proteins and the formation of multimeric protein complexes that regulate clock genes at transcriptional and translational levels. This review covers the structural aspects of circadian oscillators, and serves as a primer for this exciting realm of structural biology.
Collapse
Affiliation(s)
- Reena Saini
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Max-Planck-Institut für Pflanzenzüchtungsforschung, Cologne, Germany
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Seth J Davis
- Max-Planck-Institut für Pflanzenzüchtungsforschung, Cologne, Germany. .,Department of Biology, University of York, York, UK.
| |
Collapse
|
35
|
|
36
|
Fungal Light-Oxygen-Voltage Domains for Optogenetic Control of Gene Expression and Flocculation in Yeast. mBio 2018; 9:mBio.00626-18. [PMID: 30065085 PMCID: PMC6069114 DOI: 10.1128/mbio.00626-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Optogenetic switches permit accurate control of gene expression upon light stimulation. These synthetic switches have become a powerful tool for gene regulation, allowing modulation of customized phenotypes, overcoming the obstacles of chemical inducers, and replacing their use by an inexpensive resource: light. In this work, we implemented FUN-LOV, an optogenetic switch based on the photon-regulated interaction of WC-1 and VVD, two LOV (light-oxygen-voltage) blue-light photoreceptors from the fungus Neurospora crassa. When tested in yeast, FUN-LOV yields light-controlled gene expression with exquisite temporal resolution and a broad dynamic range of over 1,300-fold, as measured by a luciferase reporter. We also tested the FUN-LOV switch for heterologous protein expression in Saccharomyces cerevisiae, where Western blot analysis confirmed strong induction upon light stimulation, surpassing by 2.5 times the levels achieved with a classic GAL4/galactose chemical-inducible system. Additionally, we utilized FUN-LOV to control the ability of yeast cells to flocculate. Light-controlled expression of the flocculin-encoding gene FLO1, by the FUN-LOV switch, yielded flocculation in light (FIL), whereas the light-controlled expression of the corepressor TUP1 provided flocculation in darkness (FID). Altogether, the results reveal the potential of the FUN-LOV optogenetic switch to control two biotechnologically relevant phenotypes such as heterologous protein expression and flocculation, paving the road for the engineering of new yeast strains for industrial applications. Importantly, FUN-LOV’s ability to accurately manipulate gene expression, with a high temporal dynamic range, can be exploited in the analysis of diverse biological processes in various organisms. Optogenetic switches are molecular devices which allow the control of different cellular processes by light, such as gene expression, providing a versatile alternative to chemical inducers. Here, we report a novel optogenetic switch (FUN-LOV) based on the LOV domain interaction of two blue-light photoreceptors (WC-1 and VVD) from the fungus N. crassa. In yeast cells, FUN-LOV allowed tight regulation of gene expression, with low background in darkness and a highly dynamic and potent control by light. We used FUN-LOV to optogenetically manipulate, in yeast, two biotechnologically relevant phenotypes, heterologous protein expression and flocculation, resulting in strains with potential industrial applications. Importantly, FUN-LOV can be implemented in diverse biological platforms to orthogonally control a multitude of cellular processes.
Collapse
|
37
|
Hernández-Candia CN, Casas-Flores S, Gutiérrez-Medina B. Light induces oxidative damage and protein stability in the fungal photoreceptor Vivid. PLoS One 2018; 13:e0201028. [PMID: 30028876 PMCID: PMC6054393 DOI: 10.1371/journal.pone.0201028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/06/2018] [Indexed: 11/18/2022] Open
Abstract
Flavin-binding photoreceptor proteins sense blue-light (BL) in diverse organisms and have become core elements in recent optogenetic applications. The light-oxygen-voltage (LOV) protein Vivid (VVD) from the filamentous fungus Neurospora crassa is a classic BL photoreceptor, characterized by effecting a photocycle based on light-driven formation and subsequent spontaneous decay of a flavin-cysteinyl adduct. Here we report that VVD presents alternative outcomes to light exposure that result in protein self-oxidation and, unexpectedly, rise of stability through kinetic control. Using optical absorbance and mass spectrometry we show that purified VVD develops amorphous aggregates with the presence of oxidized residues located at the cofactor binding pocket. Light exposure increases oxidative levels in VVD and specific probe analysis identifies singlet oxygen production by the flavin. These results indicate that VVD acts alternatively as a photosensitizer, inducing self-oxidative damage and subsequent aggregation. Surprisingly, BL illumination has an additional, opposite effect in VVD. We show that light-induced adduct formation establishes a stable state, delaying protein aggregation until photoadduct decay occurs. In accordance, repeated BL illumination suppresses VVD aggregation altogether. Furthermore, photoadduct formation confers VVD stability against chemical denaturation. Analysis of the aggregation kinetics and testing of stabilizers against aggregation reveal that aggregation in VVD proceeds through light-dependent kinetic control and dimer formation. These results uncover the aggregation pathway of a photosensor, where light induces a remarkable interplay between protein damage and stability.
Collapse
Affiliation(s)
- Carmen Noemí Hernández-Candia
- Division of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| | - Sergio Casas-Flores
- Division of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| | - Braulio Gutiérrez-Medina
- Division of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
- Division of Advanced Materials, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
- * E-mail:
| |
Collapse
|
38
|
Olmedo M, Roenneberg T, Merrow M, Corrochano LM. Glucose sensing and light regulation: A mutation in the glucose sensor RCO-3 modifies photoadaptation in Neurospora crassa. Fungal Biol 2018; 122:497-504. [DOI: 10.1016/j.funbio.2017.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 01/24/2023]
|
39
|
Foley BJ, Stutts H, Schmitt SL, Lokhandwala J, Nagar A, Zoltowski BD. Characterization of a Vivid Homolog in Botrytis cinerea. Photochem Photobiol 2018; 94:985-993. [PMID: 29682744 DOI: 10.1111/php.12927] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 04/04/2018] [Indexed: 01/15/2023]
Abstract
Blue light-signaling pathways regulated by members of the light-oxygen-voltage (LOV) domain family integrate stress responses, circadian rhythms and pathogenesis in fungi. The canonical signaling mechanism involves two LOV-containing proteins that maintain homology to Neurospora crassa Vivid (NcVVD) and White Collar 1 (NcWC1). These proteins engage in homo- and heterodimerization events that modulate gene transcription in response to light. Here, we clone and characterize the VVD homolog in Botrytis cinerea (BcVVD). BcVVD retains divergent photocycle kinetics and is incapable of LOV mediated homodimerization, indicating modification of the classical hetero/homodimerization mechanism of photoadaptation in fungi.
Collapse
Affiliation(s)
- Brandon J Foley
- Department of Chemistry, Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, TX
| | - Haley Stutts
- Department of Chemistry, Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, TX
| | - Sydney L Schmitt
- Department of Chemistry, Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, TX
| | - Jameela Lokhandwala
- Department of Chemistry, Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, TX
| | - Aditi Nagar
- Department of Chemistry, Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, TX
| | - Brian D Zoltowski
- Department of Chemistry, Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, TX
| |
Collapse
|
40
|
Fuller KK, Dunlap JC, Loros JJ. Light-regulated promoters for tunable, temporal, and affordable control of fungal gene expression. Appl Microbiol Biotechnol 2018; 102:3849-3863. [PMID: 29569180 DOI: 10.1007/s00253-018-8887-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 01/08/2023]
Abstract
Regulatable promoters are important genetic tools, particularly for assigning function to essential and redundant genes. They can also be used to control the expression of enzymes that influence metabolic flux or protein secretion, thereby optimizing product yield in bioindustry. This review will focus on regulatable systems for use in filamentous fungi, an important group of organisms whose members include key research models, devastating pathogens of plants and animals, and exploitable cell factories. Though we will begin by cataloging those promoters that are controlled by nutritional or chemical means, our primary focus will rest on those who can be controlled by a literal flip-of-the-switch: promoters of light-regulated genes. The vvd promoter of Neurospora will first serve as a paradigm for how light-driven systems can provide tight, robust, tunable, and temporal control of either autologous or heterologous fungal proteins. We will then discuss a theoretical approach to, and practical considerations for, the development of such promoters in other species. To this end, we have compiled genes from six previously published light-regulated transcriptomic studies to guide the search for suitable photoregulatable promoters in your fungus of interest.
Collapse
Affiliation(s)
- Kevin K Fuller
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH, USA.
| | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH, USA
| | - Jennifer J Loros
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH, USA. .,Department of Biochemistry and Cell Biology, Geisel School of Medicine, Hanover, NH, USA.
| |
Collapse
|
41
|
Liversage J, Coetzee MP, Bluhm BH, Berger DK, Crampton BG. LOVe across kingdoms: Blue light perception vital for growth and development in plant–fungal interactions. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2017.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Castrillo M, Luque EM, Pardo-Medina J, Limón MC, Corrochano LM, Avalos J. Transcriptional basis of enhanced photoinduction of carotenoid biosynthesis at low temperature in the fungus Neurospora crassa. Res Microbiol 2018; 169:78-89. [DOI: 10.1016/j.resmic.2017.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 01/21/2023]
|
43
|
Zhou X, Wang B, Emerson JM, Ringelberg CS, Gerber SA, Loros JJ, Dunlap JC. A HAD family phosphatase CSP-6 regulates the circadian output pathway in Neurospora crassa. PLoS Genet 2018; 14:e1007192. [PMID: 29351294 PMCID: PMC5800702 DOI: 10.1371/journal.pgen.1007192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 02/06/2018] [Accepted: 01/08/2018] [Indexed: 01/24/2023] Open
Abstract
Circadian clocks are ubiquitous in eukaryotic organisms where they are used to anticipate regularly occurring diurnal and seasonal environmental changes. Nevertheless, little is known regarding pathways connecting the core clock to its output pathways. Here, we report that the HAD family phosphatase CSP-6 is required for overt circadian clock output but not for the core oscillation. The loss of function Δcsp-6 deletion mutant is overtly arrhythmic on race tubes under free running conditions; however, reporter assays confirm that the FREQUENCY-WHITE COLLAR COMPLEX core circadian oscillator is functional, indicating a discrete block between oscillator and output. CSP-6 physically interacts with WHI-2, Δwhi-2 mutant phenotypes resemble Δcsp-6, and the CSP-6/WHI-2 complex physically interacts with WC-1, all suggesting that WC-1 is a direct target for CSP-6/WHI-2-mediated dephosphorylation and consistent with observed WC-1 hyperphosphorylation in Δcsp-6. To identify the source of the block to output, known clock-controlled transcription factors were screened for rhythmicity in Δcsp-6, identifying loss of circadian control of ADV-1, a direct target of WC-1, as responsible for the loss of overt rhythmicity. The CSP-6/WHI-2 complex thus participates in the clock output pathway by regulating WC-1 phosphorylation to promote proper transcriptional/translational activation of adv-1/ADV-1; these data establish an unexpected essential role for post-translational modification parallel to circadian transcriptional regulation in the early steps of circadian output. Though molecules and components in the core circadian oscillator are well studied in Neurospora, the mechanisms through which output pathways are coupled with core components are less well understood. In this study we investigated a HAD phosphatase, CSP-6; loss-of-function Δcsp-6 strains are overtly arrhythmic but have a functional core circadian oscillation. CSP-6 in association with WHI-2 dephosphorylates the core clock component WC-1 to regulate light-responses and development. To dissect the functions of CSP-6 in core clock and output, we screened known WC-1 targets and found that loss of CSP-6 causes misregulation of transcriptional/translational activation of ADV-1, a key regulator of output. Thus, loss of CSP-6-mediated dephosphorylation of WC-1 leads to loss of ADV-1 activation and is responsible for the complete loss of overt developmental rhythmicity in Δcsp-6.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Bin Wang
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Jillian M. Emerson
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Carol S. Ringelberg
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Scott A. Gerber
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Jennifer J. Loros
- Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Jay C. Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
44
|
Tong SM, Zhang AX, Guo CT, Ying SH, Feng MG. Daylight length-dependent translocation of VIVID photoreceptor in cells and its essential role in conidiation and virulence of Beauveria bassiana. Environ Microbiol 2017; 20:169-185. [PMID: 28967173 DOI: 10.1111/1462-2920.13951] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022]
Abstract
The fungal insect pathogen Beauveria bassiana has the blue-light photoreceptor VIVID (VVD) but lacks a pigmentation pattern to trace its light responses. Here, we show that the fungal vvd is transcriptionally expressed, and linked to other blue/red photoreceptor genes, in a daylight length-dependent manner. GFP-tagged VVD fusion protein was localized to periphery, cytoplasm and vacuoles of hyphal cells in light/dark (L:D) cycles of 24:0 and 16:8 and aggregated in cytoplasm with shortening daylight until transfer into nuclei in full darkness. Deletion of vvd caused more reduced (91%) conidiation capacity in L:D 12:12 cycle of blue light (450/480 nm) than of yellow-to-red (540-760 nm) and white lights (∼70%). The conidiation defect worsened with shortened daylight in different L:D cycles of white light, coinciding well with drastic repression of key activator genes in central development pathway. Intriguingly, the deletion mutant displayed blocked secretion of cuticle-degrading Pr1 proteases, retarded dimorphic transition in insect haemocoel, and hence a lethal action twice longer than those for control strains against Galleria mellonella regardless of the infection passing or bypassing insect cuticle. Conclusively, VVD sustains normal conidiation in a daylight length-dependent manner and acts as a vital virulence factor in B. bassiana.
Collapse
Affiliation(s)
- Sen-Miao Tong
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - An-Xue Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Chong-Tao Guo
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
45
|
Wang X, Wang Q, Han YJ, Liu Q, Gu L, Yang Z, Su J, Liu B, Zuo Z, He W, Wang J, Liu B, Matsui M, Kim JII, Oka Y, Lin C. A CRY-BIC negative-feedback circuitry regulating blue light sensitivity of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:426-436. [PMID: 28833729 PMCID: PMC6717659 DOI: 10.1111/tpj.13664] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 05/15/2023]
Abstract
Cryptochromes are blue light receptors that regulate various light responses in plants. Arabidopsis cryptochrome 1 (CRY1) and cryptochrome 2 (CRY2) mediate blue light inhibition of hypocotyl elongation and long-day (LD) promotion of floral initiation. It has been reported recently that two negative regulators of Arabidopsis cryptochromes, Blue light Inhibitors of Cryptochromes 1 and 2 (BIC1 and BIC2), inhibit cryptochrome function by blocking blue light-dependent cryptochrome dimerization. However, it remained unclear how cryptochromes regulate the BIC gene activity. Here we show that cryptochromes mediate light activation of transcription of the BIC genes, by suppressing the activity of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), resulting in activation of the transcription activator ELONGATED HYPOCOTYL 5 (HY5) that is associated with chromatins of the BIC promoters. These results demonstrate a CRY-BIC negative-feedback circuitry that regulates the activity of each other. Surprisingly, phytochromes also mediate light activation of BIC transcription, suggesting a novel photoreceptor co-action mechanism to sustain blue light sensitivity of plants under the broad spectra of solar radiation in nature.
Collapse
Affiliation(s)
- Xu Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Qin Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Yun-Jeong Han
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Qing Liu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhaohe Yang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun Su
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bobin Liu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zecheng Zuo
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjin He
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
- College of Life Sciences, Fujian Normal University, Fuzhou 350108, China
| | - Jian Wang
- Institute of Crop Sciences, Ningxia Academy of Agriculture and Forestry Sciences, Ningxia 750105, China
| | - Bin Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Minami Matsui
- Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan
| | - Jeong-II Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Republic of Korea
- For correspondence (, or )
| | - Yoshito Oka
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- For correspondence (, or )
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
- For correspondence (, or )
| |
Collapse
|
46
|
Bazafkan H, Beier S, Stappler E, Böhmdorfer S, Oberlerchner JT, Sulyok M, Schmoll M. SUB1 has photoreceptor dependent and independent functions in sexual development and secondary metabolism in Trichoderma reesei. Mol Microbiol 2017; 106:742-759. [PMID: 28925526 DOI: 10.1111/mmi.13842] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2017] [Indexed: 12/17/2022]
Abstract
Light dependent processes are involved in the regulation of growth, development and enzyme production in Trichoderma reesei. The photoreceptors BLR1, BLR2 and ENV1 exert crucial functions in these processes. We analyzed the involvement of the transcription factor SUB1 in sexual development as well as secondary metabolism and its position in the light signaling cascade. SUB1 influences growth and in contrast to its homologue in N. crassa, SUB1 is not essential for fruiting body formation and male fertility in T. reesei, but required for female fertility. Accordingly, SUB1 is involved in the regulation of the pheromone system of T. reesei. Female sterility of mutants lacking env1 is rescued in triple mutants of blr1, blr2 and env1, but not in double mutants of these genes. Confrontation of strains lacking sub1 results in growth arrest prior to contact of the potential mating partners. This effect is at least in part due to altered secondary metabolite production. Additionally, together with BLR1 and BLR2, SUB1 is essential for spore pigmentation and transcription of pks4, and secondary metabolism is regulated by SUB1 in a light- and nutrient dependent manner. Our results hence indicate rewiring of several pathways targeted by SUB1 in T. reesei.
Collapse
Affiliation(s)
- Hoda Bazafkan
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz Strasse 24, 3430 Tulln, Austria
| | - Sabrina Beier
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz Strasse 24, 3430 Tulln, Austria
| | - Eva Stappler
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz Strasse 24, 3430 Tulln, Austria
| | - Stefan Böhmdorfer
- Department of Chemistry, Division of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Josua T Oberlerchner
- Department of Chemistry, Division of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Michael Sulyok
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Monika Schmoll
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz Strasse 24, 3430 Tulln, Austria
| |
Collapse
|
47
|
Koritala BSC, Lee K. Natural Variation of the Circadian Clock in Neurospora. ADVANCES IN GENETICS 2017; 99:1-37. [PMID: 29050553 DOI: 10.1016/bs.adgen.2017.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Most living organisms on earth experience daily and expected changes from the rotation of the earth. For an organism, the ability to predict and prepare for incoming stresses or resources is a very important skill for survival. This cellular process of measuring daily time of the day is collectively called the circadian clock. Because of its fundamental role in survival in nature, there is a great interest in studying the natural variation of the circadian clock. However, characterizing the genetic and molecular mechanisms underlying natural variation of circadian clocks remains a challenging task. In this chapter, we will summarize the progress in studying natural variation of the circadian clock in the successful eukaryotic model Neurospora, which led to discovering many design principles of the molecular mechanisms of the eukaryotic circadian clock. Despite the success of the system in revealing the molecular mechanisms of the circadian clock, Neurospora has not been utilized to extensively study natural variation. We will review the challenges that hindered the natural variation studies in Neurospora, and how they were overcome. We will also review the advantages of Neurospora for natural variation studies. Since Neurospora is the model fungal species for circadian study, it represents over 5 million species of fungi on earth. These fungi play important roles in ecosystems on earth, and as such Neurospora could serve as an important model for understanding the ecological role of natural variation in fungal circadian clocks.
Collapse
Affiliation(s)
- Bala S C Koritala
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ, United States; Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ, United States
| | - Kwangwon Lee
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ, United States; Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ, United States.
| |
Collapse
|
48
|
Gyöngyösi N, Szőke A, Ella K, Káldi K. The small G protein RAS2 is involved in the metabolic compensation of the circadian clock in the circadian model Neurospora crassa. J Biol Chem 2017; 292:14929-14939. [PMID: 28729421 DOI: 10.1074/jbc.m117.804922] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence from both experimental and clinical investigations indicates a tight interaction between metabolism and circadian timekeeping; however, knowledge of the underlying mechanism is still incomplete. Metabolic compensation allows circadian oscillators to run with a constant speed at different substrate levels and, therefore, is a substantial criterion of a robust rhythm in a changing environment. Because previous data have suggested a central role of RAS2-mediated signaling in the adaptation of yeast to different nutritional environments, we examined the involvement of RAS2 in the metabolic regulation of the clock in the circadian model organism Neurospora crassa We show that, in a ras2-deficient strain, the period is longer than in the control. Moreover, unlike in the WT, in Δras2, operation of the circadian clock was affected by glucose; compared with starvation conditions, the period was longer and the oscillation of expression of the frequency (frq) gene was dampened. In constant darkness, the delayed phosphorylation of the FRQ protein and the long-lasting accumulation of FRQ in the nucleus were in accordance with the longer period and the less robust rhythm in the mutant. Although glucose did not affect the subcellular distribution of FRQ in the WT, highly elevated FRQ levels were detected in the nucleus in Δras2 RAS2 interacted with the RAS-binding domain of the adenylate cyclase in vitro, and the cAMP analogue 8-bromo-cyclic AMP partially rescued the circadian phenotype in vivo We therefore propose that RAS2 acts via a cAMP-dependent pathway and exerts significant metabolic control on the Neurospora circadian clock.
Collapse
Affiliation(s)
- Norbert Gyöngyösi
- From the Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Anita Szőke
- From the Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Krisztina Ella
- From the Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Krisztina Káldi
- From the Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| |
Collapse
|
49
|
|
50
|
Dunlap JC, Loros JJ. Making Time: Conservation of Biological Clocks from Fungi to Animals. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0039-2016. [PMID: 28527179 PMCID: PMC5446046 DOI: 10.1128/microbiolspec.funk-0039-2016] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Indexed: 01/03/2023] Open
Abstract
The capacity for biological timekeeping arose at least three times through evolution, in prokaryotic cyanobacteria, in cells that evolved into higher plants, and within the group of organisms that eventually became the fungi and the animals. Neurospora is a tractable model system for understanding the molecular bases of circadian rhythms in the last of these groups, and is perhaps the most intensively studied circadian cell type. Rhythmic processes described in fungi include growth rate, stress responses, developmental capacity, and sporulation, as well as much of metabolism; fungi use clocks to anticipate daily environmental changes. A negative feedback loop comprises the core of the circadian system in fungi and animals. In Neurospora, the best studied fungal model, it is driven by two transcription factors, WC-1 and WC-2, that form the White Collar Complex (WCC). WCC elicits expression of the frq gene. FRQ complexes with other proteins, physically interacts with the WCC, and reduces its activity; the kinetics of these processes is strongly influenced by progressive phosphorylation of FRQ. When FRQ becomes sufficiently phosphorylated that it loses the ability to influence WCC activity, the circadian cycle starts again. Environmental cycles of light and temperature influence frq and FRQ expression and thereby reset the internal circadian clocks. The molecular basis of circadian output is also becoming understood. Taken together, molecular explanations are emerging for all the canonical circadian properties, providing a molecular and regulatory framework that may be extended to many members of the fungal and animal kingdoms, including humans.
Collapse
Affiliation(s)
- Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Jennifer J Loros
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|