1
|
Sutar S, Ganpule SG. In Silico Investigation of Biomechanical Response of a Human Brain Subjected to Primary Blast. J Biomech Eng 2024; 146:081007. [PMID: 38421339 DOI: 10.1115/1.4064968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
The brain response to the explosion-induced primary blast waves is actively sought. Over the past decade, reasonable progress has been made in the fundamental understanding of blast traumatic brain injury (bTBI) using head surrogates and animal models. Yet, the current understanding of how blast waves interact with human is in nascent stages, primarily due to the lack of data in human. The biomechanical response in human is critically required to faithfully establish the connection to the aforementioned bTBI models. In this work, the biomechanical cascade of the brain under a primary blast has been elucidated using a detailed, full-body human model. The full-body model allowed us to holistically probe short- (<5 ms) and long-term (200 ms) brain responses. The full-body model has been extensively validated against impact loading in the past. We have further validated the head model against blast loading. We have also incorporated the structural anisotropy of the brain white matter. The blast wave transmission, and linear and rotational motion of the head were dominant pathways for the loading of the brain, and these loading paradigms generated distinct biomechanical fields within the brain. Blast transmission and linear motion of the head governed the volumetric response, whereas the rotational motion of the head governed the deviatoric response. Blast induced head rotation alone produced diffuse injury pattern in white matter fiber tracts. The biomechanical response under blast was comparable to the impact event. These insights will augment laboratory and clinical investigations of bTBI and help devise better blast mitigation strategies.
Collapse
Affiliation(s)
- Sunil Sutar
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - S G Ganpule
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
2
|
Meher AK, Srinivas AJ, Kumar V, Panda SK. Computational modeling and uncertainty prediction of hyperelastic constitutive responses of damaged brain tissue under different temperature and strain rates. J Biomed Mater Res B Appl Biomater 2024; 112:e35460. [PMID: 39090359 DOI: 10.1002/jbm.b.35460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
The effect of strain rate and temperature on the hyperelastic material stress-strain characteristics of the damaged porcine brain tissue is evaluated in this present work. The desired constitutive responses are obtained using the commercially available finite element (FE) tool ABAQUS, utilizing 8-noded brick elements. The model's accuracy has been verified by comparing the results from the previously published literature. Further, the stress-strain behavior of the brain tissue is evaluated by varying the damages at various strain rates and temperatures (13, 20, 27, and 37°C) under compression test. Additionally, the sensitivity analysis of the model is computed to check the effect of input parameters, that is, the temperature, strain rate, and damages on the material properties (shear modulus). The modeling and discussion sections enumerate the inclusive features and model capabilities.
Collapse
Affiliation(s)
- Ashish Kumar Meher
- Department of Mechanical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - A Jyotiraditya Srinivas
- Department of Mechanical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Vikash Kumar
- Department of Mechanical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Subrata Kumar Panda
- Department of Mechanical Engineering, National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
3
|
Sachdeva T, Ganpule SG. Twenty Years of Blast-Induced Neurotrauma: Current State of Knowledge. Neurotrauma Rep 2024; 5:243-253. [PMID: 38515548 PMCID: PMC10956535 DOI: 10.1089/neur.2024.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Blast-induced neurotrauma (BINT) is an important injury paradigm of neurotrauma research. This short communication summarizes the current knowledge of BINT. We divide the BINT research into several broad categories-blast wave generation in laboratory, biomechanics, pathology, behavioral outcomes, repetitive blast in animal models, and clinical and neuroimaging investigations in humans. Publications from 2000 to 2023 in each subdomain were considered. The analysis of the literature has brought out salient aspects. Primary blast waves can be simulated reasonably in a laboratory using carefully designed shock tubes. Various biomechanics-based theories of BINT have been proposed; each of these theories may contribute to BINT by generating a unique biomechanical signature. The injury thresholds for BINT are in the nascent stages. Thresholds for rodents are reasonably established, but such thresholds (guided by primary blast data) are unavailable in humans. Single blast exposure animal studies suggest dose-dependent neuronal pathologies predominantly initiated by blood-brain barrier permeability and oxidative stress. The pathologies were typically reversible, with dose-dependent recovery times. Behavioral changes in animals include anxiety, auditory and recognition memory deficits, and fear conditioning. The repetitive blast exposure manifests similar pathologies in animals, however, at lower blast overpressures. White matter irregularities and cortical volume and thickness alterations have been observed in neuroimaging investigations of military personnel exposed to blast. Behavioral changes in human cohorts include sleep disorders, poor motor skills, cognitive dysfunction, depression, and anxiety. Overall, this article provides a concise synopsis of current understanding, consensus, controversies, and potential future directions.
Collapse
Affiliation(s)
- Tarun Sachdeva
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shailesh G. Ganpule
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India
- Department of Design, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
4
|
Wang P, Du Z, Shi H, Liu J, Liu Z, Zhuang Z. Origins of brain tissue elasticity under multiple loading modes by analyzing the microstructure-based models. Biomech Model Mechanobiol 2023; 22:1239-1252. [PMID: 37184689 DOI: 10.1007/s10237-023-01714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/15/2023] [Indexed: 05/16/2023]
Abstract
Constitutive behaviors and material properties of brain tissue play an essential role in accurately modeling its mechanical responses. However, the measured mechanical behaviors of brain tissue exhibit a large variability, and the reported elastic modulus can differ by orders of magnitude. Here we develop the micromechanical models based on the actual microstructure of the longitudinally anisotropic plane of brain tissue to investigate the microstructural origins of the large variability. Specifically, axonal fiber bundles with the specified configurations are distributed in an equivalent matrix. All micromechanical models are subjected to multiple loading modes, such as tensile, compressive, and shear loading, under periodic boundary conditions. The predicted results agree well with the experimental results. Furthermore, we investigate how brain tissue elasticity varies with its microstructural features. It is revealed that the large variability in brain tissue elasticity stems from the volume fraction of axonal fiber, the aspect ratio of axonal fiber, and the distribution of axonal fiber orientation. The volume fraction has the greatest impact on the mechanical behaviors of brain tissue, followed by the distribution of axonal fiber orientation, then the aspect ratio. This study provides critical insights for understanding the microstructural origins of the large variability in brain tissue elasticity.
Collapse
Affiliation(s)
- Peng Wang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092, China
- Applied Mechanics Laboratory, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhibo Du
- Applied Mechanics Laboratory, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Huibin Shi
- Applied Mechanics Laboratory, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Junjie Liu
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhanli Liu
- Applied Mechanics Laboratory, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China.
| | - Zhuo Zhuang
- Applied Mechanics Laboratory, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Goutnik M, Goeckeritz J, Sabetta Z, Curry T, Willman M, Willman J, Thomas TC, Lucke-Wold B. Neurotrauma Prevention Review: Improving Helmet Design and Implementation. BIOMECHANICS (BASEL, SWITZERLAND) 2022; 2:500-512. [PMID: 36185779 PMCID: PMC9521172 DOI: 10.3390/biomechanics2040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Neurotrauma continues to contribute to significant mortality and disability. The need for better protective equipment is apparent. This review focuses on improved helmet design and the necessity for continued research. We start by highlighting current innovations in helmet design for sport and subsequent utilization in the lay community for construction. The current standards by sport and organization are summarized. We then address current standards within the military environment. The pathophysiology is discussed with emphasis on how helmets provide protection. As innovative designs emerge, protection against secondary injury becomes apparent. Much research is needed, but this focused paper is intended to serve as a catalyst for improvement in helmet design and implementation to provide more efficient and reliable neuroprotection across broad arenas.
Collapse
Affiliation(s)
- Michael Goutnik
- Department of Neurosurgery, University of Florida, Gainesville, FL 32601, USA
| | - Joel Goeckeritz
- Department of Neurosurgery, University of Florida, Gainesville, FL 32601, USA
| | - Zackary Sabetta
- College of Medicine-Phoenix, University of Arizona, Child Health, Phoenix, AZ 85721, USA
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Tala Curry
- College of Medicine-Phoenix, University of Arizona, Child Health, Phoenix, AZ 85721, USA
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Matthew Willman
- Department of Neurosurgery, University of Florida, Gainesville, FL 32601, USA
| | - Jonathan Willman
- Department of Neurosurgery, University of Florida, Gainesville, FL 32601, USA
| | - Theresa Currier Thomas
- College of Medicine-Phoenix, University of Arizona, Child Health, Phoenix, AZ 85721, USA
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Phoenix VA Healthcare System, Phoenix, AZ 85012, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32601, USA
| |
Collapse
|
6
|
Hasan F, Mahmud KAHA, Khan MI, Adnan A. Viscoelastic damage evaluation of the axon. Front Bioeng Biotechnol 2022; 10:904818. [PMID: 36277388 PMCID: PMC9583024 DOI: 10.3389/fbioe.2022.904818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
In this manuscript, we have studied the microstructure of the axonal cytoskeleton and adopted a bottom-up approach to evaluate the mechanical responses of axons. The cytoskeleton of the axon includes the microtubules (MT), Tau proteins (Tau), neurofilaments (NF), and microfilaments (MF). Although most of the rigidity of the axons is due to the MT, the viscoelastic response of axons comes from the Tau. Early studies have shown that NF and MF do not provide significant elasticity to the overall response of axons. Therefore, the most critical aspect of the mechanical response of axons is the microstructural topology of how MT and Tau are connected and construct the cross-linked network. Using a scanning electron microscope (SEM), the cross-sectional view of the axons revealed that the MTs are organized in a hexagonal array and cross-linked by Tau. Therefore, we have developed a hexagonal Representative Volume Element (RVE) of the axonal microstructure with MT and Tau as fibers. The matrix of the RVE is modeled by considering a combined effect of NF and MF. A parametric study is done by varying fiber geometric and mechanical properties. The Young’s modulus and spacing of MT are varied between 1.5 and 1.9 GPa and 20–38 nm, respectively. Tau is modeled as a 3-parameter General Maxwell viscoelastic material. The failure strains for MT and Tau are taken to be 50 and 40%, respectively. A total of 4 RVEs are prepared for finite element analysis, and six loading cases are inspected to quantify the three-dimensional (3D) viscoelastic relaxation response. The volume-averaged stress and strain are then used to fit the relaxation Prony series. Next, we imposed varying strain rates (between 10/sec to 50/sec) on the RVE and analyzed the axonal failure process. We have observed that the 40% failure strain of Tau is achieved in all strain rates before the MT reaches its failure strain of 50%. The corresponding axonal failure strain and stress vary between 6 and 11% and 5–19.8 MPa, respectively. This study can be used to model macroscale axonal aggregate typical of the white matter region of the brain tissue.
Collapse
Affiliation(s)
- Fuad Hasan
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX, United States
| | - KAH Al Mahmud
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX, United States
| | - Md. Ishak Khan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ashfaq Adnan
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX, United States
- *Correspondence: Ashfaq Adnan,
| |
Collapse
|
7
|
Yu X, Ghajari M. Protective Performance of Helmets and Goggles in Mitigating Brain Biomechanical Response to Primary Blast Exposure. Ann Biomed Eng 2022; 50:1579-1595. [PMID: 35296943 PMCID: PMC9652178 DOI: 10.1007/s10439-022-02936-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/15/2022] [Indexed: 12/02/2022]
Abstract
The current combat helmets are primarily designed to mitigate blunt impacts and ballistic loadings. Their protection against primary blast wave is not well studied. In this paper, we comprehensively assessed the protective capabilities of the advanced combat helmet and goggles against blast waves with different intensity and directions. Using a high-fidelity human head model, we compared the intracranial pressure (ICP), cerebrospinal fluid (CSF) cavitation, and brain strain and strain rate predicted from bare head, helmet-head and helmet-goggles-head simulations. The helmet was found to be effective in mitigating the positive ICP (24–57%) and strain rate (5–34%) in all blast scenarios. Goggles were found to be effective in mitigating the positive ICP in frontal (6–16%) and lateral (5–7%) blast exposures. However, the helmet and goggles had minimal effects on mitigating CSF cavitation and even increased brain strain. Further investigation showed that wearing a helmet leads to higher risk of cavitation. In addition, their presence increased the head kinetic energy, leading to larger strains in the brain. Our findings can improve our understanding of the protective effects of helmets and goggles and guide the design of helmet pads to mitigate brain responses to blast.
Collapse
Affiliation(s)
- Xiancheng Yu
- Dyson School of Design Engineering, Imperial College London, South Kensington, London, SW72AZ, UK. .,Centre for Blast Injury Studies, Imperial College London, South Kensington, London, SW72AZ, UK.
| | - Mazdak Ghajari
- Dyson School of Design Engineering, Imperial College London, South Kensington, London, SW72AZ, UK.,Centre for Blast Injury Studies, Imperial College London, South Kensington, London, SW72AZ, UK
| |
Collapse
|
8
|
Liu Y, Lu Y, Shao Y, Wu Y, He J, Wu C. Mechanism of the traumatic brain injury induced by blast wave using the energy assessment method. Med Eng Phys 2022; 101:103767. [DOI: 10.1016/j.medengphy.2022.103767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/20/2022] [Accepted: 02/06/2022] [Indexed: 11/26/2022]
|
9
|
Zhao Z, Liu F, Yang X, Zhang D, Luan S, Xu D, Shi T. Structure and impact properties of a thermoplastic elastomer/silly putty blend. POLYM INT 2021. [DOI: 10.1002/pi.6333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhigang Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China
- School of Physics and Electrical Engineering Kashi University Kashi China
| | - Fang Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China
- University of Science and Technology of China Hefei China
| | - Xue Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology Yili Normal University Yining China
| | - Dan Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology Yili Normal University Yining China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China
| | - Donghua Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China
| | - Tongfei Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun China
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology Yili Normal University Yining China
- School of Chemical Engineering & Light Industry Guangdong University of Technology Guangzhou China
| |
Collapse
|
10
|
Subramaniam DR, Unnikrishnan G, Sundaramurthy A, Rubio JE, Kote VB, Reifman J. Cerebral Vasculature Influences Blast-Induced Biomechanical Responses of Human Brain Tissue. Front Bioeng Biotechnol 2021; 9:744808. [PMID: 34805106 PMCID: PMC8599150 DOI: 10.3389/fbioe.2021.744808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple finite-element (FE) models to predict the biomechanical responses in the human brain resulting from the interaction with blast waves have established the importance of including the brain-surface convolutions, the major cerebral veins, and using non-linear brain-tissue properties to improve model accuracy. We hypothesize that inclusion of a more detailed network of cerebral veins and arteries can further enhance the model-predicted biomechanical responses and help identify correlates of blast-induced brain injury. To more comprehensively capture the biomechanical responses of human brain tissues to blast-wave exposure, we coupled a three-dimensional (3-D) detailed-vasculature human-head FE model, previously validated for blunt impact, with a 3-D shock-tube FE model. Using the coupled model, we computed the biomechanical responses of a human head facing an incoming blast wave for blast overpressures (BOPs) equivalent to 68, 83, and 104 kPa. We validated our FE model, which includes the detailed network of cerebral veins and arteries, the gyri and the sulci, and hyper-viscoelastic brain-tissue properties, by comparing the model-predicted intracranial pressure (ICP) values with previously collected data from shock-tube experiments performed on cadaver heads. In addition, to quantify the influence of including a more comprehensive network of brain vessels, we compared the biomechanical responses of our detailed-vasculature model with those of a reduced-vasculature model and a no-vasculature model for the same blast-loading conditions. For the three BOPs, the predicted ICP values matched well with the experimental results in the frontal lobe, with peak-pressure differences of 4-11% and phase-shift differences of 9-13%. As expected, incorporating the detailed cerebral vasculature did not influence the ICP, however, it redistributed the peak brain-tissue strains by as much as 30% and yielded peak strain differences of up to 7%. When compared to existing reduced-vasculature FE models that only include the major cerebral veins, our high-fidelity model redistributed the brain-tissue strains in most of the brain, highlighting the importance of including a detailed cerebral vessel network in human-head FE models to more comprehensively account for the biomechanical responses induced by blast exposure.
Collapse
Affiliation(s)
- Dhananjay Radhakrishnan Subramaniam
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Ginu Unnikrishnan
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Aravind Sundaramurthy
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Jose E. Rubio
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Vivek Bhaskar Kote
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States
| |
Collapse
|
11
|
Sundar S, Ponnalagu A. Biomechanical Analysis of Head Subjected to Blast Waves and the Role of Combat Protective Headgear Under Blast Loading: A Review. J Biomech Eng 2021; 143:100801. [PMID: 33954580 DOI: 10.1115/1.4051047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 01/10/2023]
Abstract
Blast-induced traumatic brain injury (bTBI) is a rising health concern of soldiers deployed in modern-day military conflicts. For bTBI, blast wave loading is a cause, and damage incurred to brain tissue is the effect. There are several proposed mechanisms for the bTBI, such as direct cranial entry, skull flexure, thoracic compression, blast-induced acceleration, and cavitation that are not mutually exclusive. So the cause-effect relationship is not straightforward. The efficiency of protective headgears against blast waves is relatively unknown as compared with other threats. Proper knowledge about standard problem space, underlying mechanisms, blast reconstruction techniques, and biomechanical models are essential for protective headgear design and evaluation. Various researchers from cross disciplines analyze bTBI from different perspectives. From the biomedical perspective, the physiological response, neuropathology, injury scales, and even the molecular level and cellular level changes incurred during injury are essential. From a combat protective gear designer perspective, the spatial and temporal variation of mechanical correlates of brain injury such as surface overpressure, acceleration, tissue-level stresses, and strains are essential. This paper outlines the key inferences from bTBI studies that are essential in the protective headgear design context.
Collapse
Affiliation(s)
- Shyam Sundar
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Alagappan Ponnalagu
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
12
|
Spratt JS, Rodriguez M, Schmidmayer K, Bryngelson SH, Yang J, Franck C, Colonius T. Characterizing viscoelastic materials via ensemble-based data assimilation of bubble collapse observations. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 2021; 152:104455. [PMID: 34092810 PMCID: PMC8177475 DOI: 10.1016/j.jmps.2021.104455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Viscoelastic material properties at high strain rates are needed to model many biological and medical systems. Bubble cavitation can induce such strain rates, and the resulting bubble dynamics are sensitive to the material properties. Thus, in principle, these properties can be inferred via measurements of the bubble dynamics. Estrada et al. (2018) demonstrated such bubble-dynamic high-strain-rate rheometry by using least-squares shooting to minimize the difference between simulated and experimental bubble radius histories. We generalize their technique to account for additional uncertainties in the model, initial conditions, and material properties needed to uniquely simulate the bubble dynamics. Ensemble-based data assimilation minimizes the computational expense associated with the bubble cavitation model, providing a more efficient and scalable numerical framework for bubble-collapse rheometry. We test an ensemble Kalman filter (EnKF), an iterative ensemble Kalman smoother (IEnKS), and a hybrid ensemble-based 4D-Var method (En4D-Var) on synthetic data, assessing their estimations of the viscosity and shear modulus of a Kelvin-Voigt material. Results show that En4D-Var and IEnKS provide better moduli estimates than EnKF. Applying these methods to the experimental data of Estrada et al. (2018) yields similar material property estimates to those they obtained, but provides additional information about uncertainties. In particular, the En4D-Var yields lower viscosity estimates for some experiments, and the dynamic estimators reveal a potential mechanism that is unaccounted for in the model, whereby the apparent viscosity is reduced in some cases due to inelastic behavior, possibly in the form of material damage occurring at bubble collapse.
Collapse
Affiliation(s)
- Jean-Sebastien Spratt
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mauro Rodriguez
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kevin Schmidmayer
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Spencer H. Bryngelson
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jin Yang
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Christian Franck
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tim Colonius
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
13
|
Testing the blast response of foam inserts for helmets. Heliyon 2021; 7:e06990. [PMID: 34036190 PMCID: PMC8134979 DOI: 10.1016/j.heliyon.2021.e06990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/25/2021] [Accepted: 04/29/2021] [Indexed: 11/20/2022] Open
Abstract
Modern era combat helmets have different iterations and configurations to offer greater protection from blunt impact or ballistic penetration to suit the theatre of operation, although there are currently no standards for blast protection. Moreover, incorporation of blast protection into the same constrained mass-volume envelope is extremely challenging as there is very little space for a material to absorb or dissipate the shockwave. Foam padding is fitted in contemporary combat helmet designs for comfort and standoff purposes. Examples were subjected to blastwaves generated from an air-driven shocktube, along with open cell polyurethane foam specimens of varying pores per inch and thicknesses to. Whilst the range of samples tested did not afford any superior blast mitigation behaviour over the foam already present in helmets, they exhibited comparable performance with a lower mass. There also appears to be positive correlation between increased mass and increased impulse transmitted through the foam. The literature suggests that multiple mechanisms of damage for blast induced mild Traumatic Brain Injury (bTBI) can be caused by the helmet itself, therefore additional protection from a blunt or ballistic impact may increase the risk of damage from a blast insult.
Collapse
|
14
|
Mancia L, Yang J, Spratt JS, Sukovich JR, Xu Z, Colonius T, Franck C, Johnsen E. Acoustic cavitation rheometry. SOFT MATTER 2021; 17:2931-2941. [PMID: 33587083 DOI: 10.1039/d0sm02086a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Characterization of soft materials is challenging due to their high compliance and the strain-rate dependence of their mechanical properties. The inertial microcavitation-based high strain-rate rheometry (IMR) method [Estrada et al., J. Mech. Phys. Solids, 2018, 112, 291-317] combines laser-induced cavitation measurements with a model for the bubble dynamics to measure local properties of polyacrylamide hydrogel under high strain-rates from 103 to 108 s-1. While promising, laser-induced cavitation involves plasma formation and optical breakdown during nucleation, a process that could alter local material properties before measurements are obtained. In the present study, we extend the IMR method to another means to generate cavitation, namely high-amplitude focused ultrasound, and apply the resulting acoustic-cavitation-based IMR to characterize the mechanical properties of agarose hydrogels. Material properties including viscosity, elastic constants, and a stress-free bubble radius are inferred from bubble radius histories in 0.3% and 1% agarose gels. An ensemble-based data assimilation is used to further help interpret the obtained estimates. The resulting parameter distributions are consistent with available measurements of agarose gel properties and with expected trends related to gel concentration and high strain-rate loading. Our findings demonstrate the utility of applying IMR and data assimilation methods with single-bubble acoustic cavitation data for measurement of viscoelastic properties.
Collapse
Affiliation(s)
- Lauren Mancia
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Jin Yang
- Department of Mechanical Engineering, University of Wisconsin-Madison, WI, USA
| | - Jean-Sebastien Spratt
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Tim Colonius
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Christian Franck
- Department of Mechanical Engineering, University of Wisconsin-Madison, WI, USA
| | - Eric Johnsen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Sutar S, Ganpule SG. Assessment of Compression Driven Shock Tube Designs in Replicating Free-Field Blast Conditions for Traumatic Brain Injury Studies. J Neurotrauma 2021; 38:1717-1729. [PMID: 33108952 DOI: 10.1089/neu.2020.7394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Compression driven shock tubes are indispensable in studies of blast-induced traumatic brain injury (bTBI). The ability of shock tubes in faithfully recreating free-field blast conditions is of enormous interest and has a direct impact on injury outcomes. Toward this end, the evolution of blast wave inside and outside of the compression driven shock tube has been studied using validated, finite element based shock tube models. Several shock tube configurations (uniform cross-section, transition, conical, suddenly expanded, and end plate) have been considered. The finite element modeling approach has been used to simulate the transient, dynamic response of blast wave propagation. The response is studied for longer durations (40-100 msec) compared with the existing literature. We demonstrate that locations inside and outside of the shock tube can generate free-field blast profile in some form, but with numerous caveats. Our results indicate that the locations inside the shock tube are affected by higher underpressure and corresponding kinetic energy yield compared with free-field blast. These effects can be minimized using optimized end plate configuration at the exit of the shock tube, yet this is accompanied by secondary loading that is not representative of the free-field blast. Blast wave profile can be tailored using transition, conical, and suddenly expanded sections. We observe oscillations in the blast wave profile for suddenly expanded configuration. Locations outside the shock tube are affected by jet-wind effects because of the sudden expansion, barring a narrow region at the exit. For the desired overpressure yield inferred in bTBI, obtaining positive phase durations of <1 msec inside the shock tube, which are sought for studies in rodents, is challenging. Overall, these results underscore that replicating free-field blast conditions using a shock tube involves tradeoffs that need to be weighed carefully and their effect on injury outcomes should be evaluated during laboratory bTBI investigations.
Collapse
Affiliation(s)
- Sunil Sutar
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - S G Ganpule
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
16
|
Estrada JB, Cramer HC, Scimone MT, Buyukozturk S, Franck C. Neural cell injury pathology due to high-rate mechanical loading. BRAIN MULTIPHYSICS 2021. [DOI: 10.1016/j.brain.2021.100034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
17
|
Numerical Analysis of EOD Helmet under Blast Load Events Using Human Head Model. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Brain injury resulting from improved explosives devices (IEDs) is identified as a challenge for force securities to improve protection equipment. This paper focuses on the mechanical response of explosive ordnance disposal (EOD) helmet under different blast loadings. Limited published studies on this type of helmet are available in the scientific literature. The results obtained show the blast performance of the EOD helmet because a decrease in the maximum values in the measured damage parameters is found. Therefore, an EOD helmet minimizes the risks of the severity of injuries on the user showing a low probability of injury.
Collapse
|
18
|
Wermer A, Kerwin J, Welsh K, Mejia-Alvarez R, Tartis M, Willis A. Materials Characterization of Cranial Simulants for Blast-Induced Traumatic Brain Injury. Mil Med 2020; 185:205-213. [PMID: 32074306 DOI: 10.1093/milmed/usz228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/01/2019] [Accepted: 01/01/2019] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION The mechanical response of brain tissue to high-speed forces in the blast and blunt traumatic brain injury is poorly understood. Object-to-object variation and interspecies differences are current limitations in animal and cadaver studies conducted to study damage mechanisms. Biofidelic and transparent tissue simulants allow the use of high-speed optical diagnostics during a blast event, making it possible to observe deformations and damage patterns for comparison to observed injuries seen post-mortem in traumatic brain injury victims. METHODS Material properties of several tissue simulants were quantified using standard mechanical characterization techniques, that is, shear rheometric, tensile, and compressive testing. RESULTS Polyacrylamide simulants exhibited the best optical and mechanical property matching with the fewest trade-offs in the design of a cranial test object. Polyacrylamide gels yielded densities of ~1.04 g/cc and shear moduli ranging 1.3-14.55 kPa, allowing gray and white matter simulant tuning to a 30-35% difference in shear for biofidelity. CONCLUSIONS These materials are intended for use as layered cranial phantoms in a shock tube and open field blasts, with focus on observing phenomena occurring at the interfaces of adjacent tissue simulant types or material-fluid boundaries. Mechanistic findings from these studies may be used to inform the design of protective gear to mitigate blast injuries.
Collapse
Affiliation(s)
- Anna Wermer
- Department of Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801
| | - Joseph Kerwin
- Department of Mechanical Engineering, Michigan State University, 1449 Engineering Research Ct. A117, East Lansing, MI 48824
| | - Kelsea Welsh
- Department of Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801
| | - Ricardo Mejia-Alvarez
- Department of Mechanical Engineering, Michigan State University, 1449 Engineering Research Ct. A117, East Lansing, MI 48824
| | - Michaelann Tartis
- Department of Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801
| | - Adam Willis
- Department of Neurology, San Antonio Military Medical Center, 3551 Roger Brooke Dr, San Antonio, TX 78219
| |
Collapse
|
19
|
Tiwari S, Kazemi-Moridani A, Zheng Y, Barney CW, McLeod KR, Dougan CE, Crosby AJ, Tew GN, Peyton SR, Cai S, Lee JH. Seeded laser-induced cavitation for studying high-strain-rate irreversible deformation of soft materials. SOFT MATTER 2020; 16:9006-9013. [PMID: 33021618 DOI: 10.1039/d0sm00710b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Characterizing the high-strain-rate and high-strain mechanics of soft materials is critical to understanding the complex behavior of polymers and various dynamic injury mechanisms, including traumatic brain injury. However, their dynamic mechanical deformation under extreme conditions is technically difficult to quantify and often includes irreversible damage. To address such challenges, we investigate an experimental method, which allows quantification of the extreme mechanical properties of soft materials using ultrafast stroboscopic imaging of highly reproducible laser-induced cavitation events. As a reference material, we characterize variably cross-linked polydimethylsiloxane specimens using this method. The consistency of the laser-induced cavitation is achieved through the introduction of laser absorbing seed microspheres. Based on a simplified viscoelastic model, representative high-strain-rate shear moduli and viscosities of the soft specimens are quantified across different degrees of crosslinking. The quantified rheological parameters align well with the time-temperature superposition prediction of dynamic mechanical analysis. The presented method offers significant advantages with regard to quantifying high-strain rate, irreversible mechanical properties of soft materials and tissues, compared to other methods that rely upon the cyclic dynamics of cavitation. These advances are anticipated to aid in the understanding of how damage and injury develop in soft materials and tissues.
Collapse
Affiliation(s)
- Sacchita Tiwari
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | - Amir Kazemi-Moridani
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | - Yue Zheng
- Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA 9209, USA
| | - Christopher W Barney
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA 01003, USA
| | - Kelly R McLeod
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA 01003, USA
| | - Carey E Dougan
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Alfred J Crosby
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA 01003, USA
| | - Gregory N Tew
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA 01003, USA
| | - Shelly R Peyton
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Shengqiang Cai
- Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA 9209, USA
| | - Jae-Hwang Lee
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
20
|
Azar A, Bhagavathula KB, Hogan J, Ouellet S, Satapathy S, Dennison CR. Protective Headgear Attenuates Forces on the Inner Table and Pressure in the Brain Parenchyma During Blast and Impact: An Experimental Study Using a Simulant-Based Surrogate Model of the Human Head. J Biomech Eng 2020; 142:041009. [PMID: 31539422 DOI: 10.1115/1.4044926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Indexed: 07/25/2024]
Abstract
Military personnel sustain head and brain injuries as a result of ballistic, blast, and blunt impact threats. Combat helmets are meant to protect the heads of these personnel during injury events. Studies show peak kinematics and kinetics are attenuated using protective headgear during impacts; however, there is limited experimental biomechanical literature that examines whether or not helmets mitigate peak mechanics delivered to the head and brain during blast. While the mechanical links between blast and brain injury are not universally agreed upon, one hypothesis is that blast energy can be transmitted through the head and into the brain. These transmissions can lead to rapid skull flexure and elevated pressures in the cranial vault, and, therefore, may be relevant in determining injury likelihood. Therefore, it could be argued that assessing a helmet for the ability to mitigate mechanics may be an appropriate paradigm for assessing the potential protective benefits of helmets against blast. In this work, we use a surrogate model of the head and brain to assess whether or not helmets and eye protection can alter mechanical measures during both head-level face-on blast and high forehead blunt impact events. Measurements near the forehead suggest head protection can attenuate brain parenchyma pressures by as much as 49% during blast and 52% during impact, and forces on the inner table of the skull by as much as 80% during blast and 84% during impact, relative to an unprotected head.
Collapse
Affiliation(s)
- Austin Azar
- Biomedical Instrumentation Lab, Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | | | - James Hogan
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Simon Ouellet
- Weapons Effects and Protection Section, Defence R&D Valcartier Research Center, Quebec, QC G3J 1X5, Canada
| | - Sikhanda Satapathy
- Chief(A) with Impact Physics Branch, U.S. Army Research Labs, Aberdeen Proving Ground, Aberdeen, MD 21005-5066
| | - Christopher R Dennison
- Biomedical Instrumentation Lab, Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
21
|
Kargar F, Savardashtaki A, Mortazavi M, Mahani MT, Amani AM, Ghasemi Y, Nezafat N. In SilicoStudy of 1, 4 Alpha Glucan Branching Enzyme and Substrate Docking Studies. CURR PROTEOMICS 2020. [DOI: 10.2174/1570164616666190401204009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:The 1,4-alpha-glucan branching protein (GlgB) plays an important role in the glycogen biosynthesis and the deficiency in this enzyme has resulted in Glycogen storage disease and accumulation of an amylopectin-like polysaccharide. Consequently, this enzyme was considered a special topic in clinical and biotechnological research. One of the newly introduced GlgB belongs to the Neisseria sp. HMSC071A01 (Ref.Seq. WP_049335546). For in silico analysis, the 3D molecular modeling of this enzyme was conducted in the I-TASSER web server.Methods:For a better evaluation, the important characteristics of this enzyme such as functional properties, metabolic pathway and activity were investigated in the TargetP software. Additionally, the phylogenetic tree and secondary structure of this enzyme were studied by Mafft and Prabi software, respectively. Finally, the binding site properties (the maltoheptaose as substrate) were studied using the AutoDock Vina.Results:By drawing the phylogenetic tree, the closest species were the taxonomic group of Betaproteobacteria. The results showed that the structure of this enzyme had 34.45% of the alpha helix and 45.45% of the random coil. Our analysis predicted that this enzyme has a potential signal peptide in the protein sequence.Conclusion:By these analyses, a new understanding was developed related to the sequence and structure of this enzyme. Our findings can further be used in some fields of clinical and industrial biotechnology.
Collapse
Affiliation(s)
- Farzane Kargar
- Department of Biotechnology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies Shiraz University of Medical Sciences Shiraz, Iran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
| | - Masoud Torkzadeh Mahani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 71348- 14336, Iran
| | - Younes Ghasemi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies Shiraz University of Medical Sciences Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
22
|
Sutar S, Ganpule S. Investigation of wave propagation through head layers with focus on understanding blast wave transmission. Biomech Model Mechanobiol 2019; 19:875-892. [PMID: 31745681 DOI: 10.1007/s10237-019-01256-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/06/2019] [Indexed: 11/25/2022]
Abstract
Blast-induced traumatic brain injury (bTBI) is a critical health concern. This issue is being addressed in terms of identifying a cause-effect relationship between the mechanical insult in the form of a blast and resulting injury to the brain. Understanding wave propagation through the head is an important aspect in this regard. The objective of this work was to study the blast wave propagation through the layered architecture of the head with an emphasis on understanding the wave transmission mechanism. Toward this end, one-dimensional (1D) finite element head model is built for a simplified surrogate, human, and rat. Motivated from experimental investigations, four different head layer configurations have been considered. These configurations are: (A) Skull-Brain, (B) Skin-Skull-Brain, (C) Skin-Skull-Dura-Arachnoid-CSF-Pia-Brain, (D) Skin-Skull-Dura-Arachnoid-AT-Pia-Brain. The validated head model is subjected to flattop and Friedlander loading implied in the blast, and the resulting response is evaluated in terms of brain pressures. Our results suggest that wave propagation through head parenchyma plays an important role in blast wave transmission. The thickness, material properties of head layers, and rise time of an input pulse govern the temporal evolution of pressure in the brain. The key findings of this work are: (a) Skin and meninges amplify the applied input pressure, whereas air sinus has an attenuation effect. (b) Model is able to describe experimentally recorded peak pressures and rise times in the brain, including variations within the aforementioned experimental head models of TBI. This reinforces that the wave transmission is an important loading pathway to the brain. (c) Equivalent layer theory for modeling meningeal layers as a single layer has been proposed, and it gives reasonable agreement with each meningeal layer modeled explicitly. This modeling approach has a great utility in 3D head models. The potential applications of 1D head model in evaluation of new helmet materials, brain sensor calibration, and brain pressure estimation for a given explosive strength have also been demonstrated. Overall, these results provide important insights into the understanding of mechanics of blast wave transmission in the head.
Collapse
Affiliation(s)
- Sunil Sutar
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - S Ganpule
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
23
|
LaValle CR, Carr WS, Egnoto MJ, Misistia AC, Salib JE, Ramos AN, Kamimori GH. Neurocognitive Performance Deficits Related to Immediate and Acute Blast Overpressure Exposure. Front Neurol 2019; 10:949. [PMID: 31572285 PMCID: PMC6754066 DOI: 10.3389/fneur.2019.00949] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/16/2019] [Indexed: 11/29/2022] Open
Abstract
Addressing the concerns surrounding blast injury for the military community is a pressing matter. Specifically, sub-concussive blast effects, or those blast effects which do not yield a medical diagnosis but can result in symptom reporting and negative self-reported outcomes, are becoming increasingly important. This work evaluates explosive blast overpressure and impulse effects at the sub-concussive level on neurocognitive performance assessed with the Defense Automated Neurobehavioral Assessment (DANA) across seven breacher training courses conducted by the US Military. The results reported here come from 202 healthy, male military volunteer participants. Findings indicate that the neurocognitive task appearing most sensitive to identifying performance change is the DANA Procedural Reaction Time (PRT) subtask which may involve a sufficient level of challenge to reliably detect a small, transient cognitive impairment among a healthy undiagnosed population. The blast characteristic that was consistently associated with performance change was peak overpressure. Overall, this study provides evidence that increasing blast overpressure, defined as peak overpressure experienced in a training day, can lead to transient degradations in neurocognitive performance as seen on the DANA PRT subtask, which may generalize to other capabilities.
Collapse
Affiliation(s)
- Christina R. LaValle
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience Research, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | | | | | | | | | | | | |
Collapse
|
24
|
Cortical thinning in military blast compared to non-blast persistent mild traumatic brain injuries. NEUROIMAGE-CLINICAL 2019; 22:101793. [PMID: 30939340 PMCID: PMC6446073 DOI: 10.1016/j.nicl.2019.101793] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 01/28/2019] [Accepted: 03/24/2019] [Indexed: 01/07/2023]
Abstract
In the military, explosive blasts are a significant cause of mild traumatic brain injuries (mTBIs). The symptoms associated with blast mTBIs causes significant economic burdens and a diminished quality of life for many service members. At present, the distinction of the injury mechanism (blast versus non-blast) may not influence TBI diagnosis. However, using noninvasive imaging, this study reveals significant distinctions between the blast and non-blast TBI mechanisms. A cortical whole-brain thickness analysis was performed using structural high-resolution T1-weighted MRI to identify the effects of blasts in persistent mTBI (pmTBI) subjects. A total of 41 blast pmTBI subjects were individually age- and gender-matched to 41 non-blast pmTBI subjects. Using FreeSurfer, cortical thickness was quantified for the blast group, relative to the non-blast group. Cortical thinning was identified within the blast mTBI group, in two clusters bilaterally. In the left hemisphere, the cluster overlapped with the lateral orbitofrontal, rostral middle frontal, medial orbitofrontal, superior frontal, rostral anterior cingulate and frontal pole cortices (p < 0.02, two-tailed, size = 1680 mm2). In the right hemisphere, the cluster overlapped with the lateral orbitofrontal, rostral middle frontal, medial orbitofrontal, pars orbitalis, pars triangularis and insula cortices (p < 0.002, two-tailed, cluster size = 2453 mm2). Self-report assessments suggest significant differences in the Post-Traumatic Stress Disorder Checklist-Civilian Version (p < 0.05, Bonferroni-corrected) and the Neurobehavioral Symptom Inventory (p < 0.01, uncorrected) between the blast and non-blast mTBI groups. These results suggest that blast may cause a unique injury pattern related to a reduction in cortical thickness within specific brain regions which could affect symptoms. No other study has found cortical thickness difference between blast and non-blast mTBI groups and further replication is needed to confirm these initial observations.
Collapse
|
25
|
|
26
|
Townsend MT, Alay E, Skotak M, Chandra N. Effect of Tissue Material Properties in Blast Loading: Coupled Experimentation and Finite Element Simulation. Ann Biomed Eng 2018; 47:2019-2032. [PMID: 30523466 DOI: 10.1007/s10439-018-02178-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/28/2018] [Indexed: 01/26/2023]
Abstract
Computational models of blast-induced traumatic brain injury (bTBI) require a robust definition of the material models of the brain. The mechanical constitutive models of these tissues are difficult to characterize, leading to a wide range of values reported in literature. Therefore, the sensitivity of the intracranial pressure (ICP) and maximum principal strain to variations in the material model of the brain was investigated through a combined computational and experimental approach. A finite element model of a rat was created to simulate a shock wave exposure, guided by the experimental measurements of rats subjected to shock loading conditions corresponding to that of mild traumatic brain injury in a field-validated shock tube. In the numerical model, the properties of the brain were parametrically varied. A comparison of the ICP measured at two locations revealed that experimental and simulated ICP were higher in the cerebellum (p < 0.0001), highlighting the significance of pressure sensor locations within the cranium. The ICP and strain were correlated with the long-term bulk (p < 0.0001) and shear moduli (p < 0.0001), with an 80 MPa effective bulk modulus value matching best with experimental measurements. In bTBI, the solution is sensitive to the brain material model, necessitating robust validation methods.
Collapse
Affiliation(s)
- Molly T Townsend
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ, USA
| | - Eren Alay
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ, USA
| | - Maciej Skotak
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ, USA
| | - Namas Chandra
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ, USA.
| |
Collapse
|
27
|
Teferra K, Tan XG, Iliopoulos A, Michopoulos J, Qidwai S. Effect of human head morphological variability on the mechanical response of blast overpressure loading. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e3109. [PMID: 29804323 DOI: 10.1002/cnm.3109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
A methodology is introduced to investigate the effect of intersubject head morphological variability on the mechanical response of the brain when subjected to blast overpressure loading. Nonrigid image registration techniques are leveraged to warp a manually segmented template model to an arbitrary number of subjects following a procedure to coarsely segment the subjects in batch. Finite element meshes are autogenerated, and blast analysis is conducted. The template model is initially constructed to enable the full automated implementation and application of the proposed methodology. The application of the proposed approach for an anterior-oriented blast has been demonstrated, and the results reveal that the pressure response in the brain does exhibit some dependence on head morphological variability. While the magnitude of the peak pressure response can vary by more than 30%, its location within the brain is unaffected by head morphological variability. A linear least squares analysis was conducted to demonstrate that the peak magnitude of pressure is uncorrelated with head volume while it is correlated with aspect ratio relating to the amount of exposed surface area to the blast. These features of the pressure response are likely due to the peak pressure occurring during the early stages of stress wave transmission and reflection. As a result, the pressure response due to blast overpressure loading is predominantly loading dependent while morphological variability has a secondary effect.
Collapse
Affiliation(s)
| | - X Gary Tan
- US Naval Research Laboratory, Washington, DC, USA
| | | | | | - Siddiq Qidwai
- Division of Civil, Mechanical and Manufacturing Innovation, NSF, Alexandria, VA, USA
| |
Collapse
|
28
|
Human Skin-Like Composite Materials for Blast Induced Injury Mitigation. JOURNAL OF COMPOSITES SCIENCE 2018. [DOI: 10.3390/jcs2030044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Armors and military grade personal protection equipment (PPE) materials to date are bulky and are not designed to effectively mitigate blast impacts. In the current work, a human skin-like castable simulant material was developed and its blast mitigation characteristics (in terms of induced stress reduction at the bone and muscles) were characterized in the presence of composite reinforcements. The reinforcement employed was Kevlar 129 (commonly used in advanced combat helmets), which was embedded within the novel skin simulant material as the matrix and used to cover a representative extremity based human skin, muscle and bone section finite element (FE) model. The composite variations tested were continuous and short-fiber types, lay-ups (0/0, 90/0, and 45/45 orientations) and different fiber volume fractions. From the analyses, the 0/0 continuous fiber lay-up with a fiber volume fraction close to 0.1 (or 10%) was found to reduce the blast-induced dynamic stresses at the bone and muscle sections by 78% and 70% respectively. These findings indicate that this novel skin simulant material with Kevlar 129 reinforcement, with further experimental testing, may present future opportunities in blast resistant armor padding designing.
Collapse
|
29
|
Skotak M, Alay E, Zheng JQ, Halls V, Chandra N. Effective testing of personal protective equipment in blast loading conditions in shock tube: Comparison of three different testing locations. PLoS One 2018; 13:e0198968. [PMID: 29894521 PMCID: PMC5997325 DOI: 10.1371/journal.pone.0198968] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/28/2018] [Indexed: 11/18/2022] Open
Abstract
We exposed a headform instrumented with 10 pressure sensors mounted flush with the surface to a shock wave with three nominal intensities: 70, 140 and 210 kPa. The headform was mounted on a Hybrid III neck, in a rigid configuration to eliminate motion and associated pressure variations. We evaluated the effect of the test location by placing the headform inside, at the end and outside of the shock tube. The shock wave intensity gradually decreases the further it travels in the shock tube and the end effect degrades shock wave characteristics, which makes comparison of the results obtained at three locations a difficult task. To resolve these issues, we developed a simple strategy of data reduction: the respective pressure parameters recorded by headform sensors were divided by their equivalents associated with the incident shock wave. As a result, we obtained a comprehensive set of non-dimensional parameters. These non-dimensional parameters (or amplification factors) allow for direct comparison of pressure waveform characteristic parameters generated by a range of incident shock waves differing in intensity and for the headform located in different locations. Using this approach, we found a correlation function which allows prediction of the peak pressure on the headform that depends only on the peak pressure of the incident shock wave (for specific sensor location on the headform), and itis independent on the headform location. We also found a similar relationship for the rise time. However, for the duration and impulse, comparable correlation functions do not exist. These findings using a headform with simplified geometry are baseline values and address a need for the development of standardized parameters for the evaluation of personal protective equipment (PPE) under shock wave loading.
Collapse
Affiliation(s)
- Maciej Skotak
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States of America
- * E-mail: (MS); (NC)
| | - Eren Alay
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States of America
| | - James Q. Zheng
- Program Executive Office—Soldier, United States Army, Fort Belvoir, VA, United States of America
| | - Virginia Halls
- Program Executive Office—Soldier, United States Army, Fort Belvoir, VA, United States of America
| | - Namas Chandra
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States of America
- * E-mail: (MS); (NC)
| |
Collapse
|
30
|
Hayman E, Keledjian K, Stokum JA, Pampori A, Gerzanich V, Simard JM. Selective Vulnerability of the Foramen Magnum in a Rat Blast Traumatic Brain Injury Model. J Neurotrauma 2018; 35:2136-2142. [PMID: 29566593 DOI: 10.1089/neu.2017.5435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Primary blast traumatic brain injury (bTBI) accounts for a significant proportion of wartime trauma. Previous studies have demonstrated direct brain injury by blast waves, but the effect of the location of the blast epicenter on the skull with regard to brain injury remains poorly characterized. In order to investigate the role of the blast epicenter location, we modified a previously established rodent model of cranium-only bTBI to evaluate two specific blast foci: a rostrally focused blast centered on bregma (B-bTBI), which excluded the foramen magnum region, and a caudally focused blast centered on the occipital crest, which included the foramen magnum region (FM-bTBI). At all blast overpressures studied (668-1880 kPa), rats subjected to FM-bTBI demonstrated strikingly higher mortality, increased durations of both apnea and hypoxia, and increased severity of convexity subdural hematomas, than rats subjected to B-bTBI. Together, these data suggest a unique role for the foramen magnum region in mortality and brain injury following blast exposure, and emphasize the importance of the choice of blast focus location in experimental models of bTBI.
Collapse
Affiliation(s)
- Erik Hayman
- 1 Department of Neurosurgery, University of Maryland School of Medicine , Baltimore, Maryland
| | - Kaspar Keledjian
- 1 Department of Neurosurgery, University of Maryland School of Medicine , Baltimore, Maryland
| | - Jesse A Stokum
- 1 Department of Neurosurgery, University of Maryland School of Medicine , Baltimore, Maryland
| | - Adam Pampori
- 1 Department of Neurosurgery, University of Maryland School of Medicine , Baltimore, Maryland
| | - Volodymyr Gerzanich
- 1 Department of Neurosurgery, University of Maryland School of Medicine , Baltimore, Maryland
| | - J Marc Simard
- 1 Department of Neurosurgery, University of Maryland School of Medicine , Baltimore, Maryland.,2 Department of Pathology, University of Maryland School of Medicine , Baltimore, Maryland.,3 Department of Physiology, University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|
31
|
Weickenmeier J, Kurt M, Ozkaya E, de Rooij R, Ovaert TC, Ehman RL, Butts Pauly K, Kuhl E. Brain stiffens post mortem. J Mech Behav Biomed Mater 2018; 84:88-98. [PMID: 29754046 PMCID: PMC6751406 DOI: 10.1016/j.jmbbm.2018.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022]
Abstract
Alterations in brain rheology are increasingly recognized as a diagnostic marker for various neurological conditions. Magnetic resonance elastography now allows us to assess brain rheology repeatably, reproducibly, and non-invasively in vivo. Recent elastography studies suggest that brain stiffness decreases one percent per year during normal aging, and is significantly reduced in Alzheimer’s disease and multiple sclerosis. While existing studies successfully compare brain stiffnesses across different populations, they fail to provide insight into changes within the same brain. Here we characterize rheological alterations in one and the same brain under extreme metabolic changes: alive and dead. Strikingly, the storage and loss moduli of the cerebrum increased by 26% and 60% within only three minutes post mortem and continued to increase by 40% and 103% within 45 minutes. Immediate post mortem stiffening displayed pronounced regional variations; it was largest in the corpus callosum and smallest in the brainstem. We postulate that post mortem stiffening is a manifestation of alterations in polarization, oxidation, perfusion, and metabolism immediately after death. Our results suggest that the stiffness of our brain–unlike any other organ–is a dynamic property that is highly sensitive to the metabolic environment Our findings emphasize the importance of characterizing brain tissue in vivo and question the relevance of ex vivo brain tissue testing as a whole. Knowing the true stiffness of the living brain has important consequences in diagnosing neurological conditions, planning neurosurgical procedures, and modeling the brain’s response to high impact loading.
Collapse
Affiliation(s)
- J Weickenmeier
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - M Kurt
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - E Ozkaya
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - R de Rooij
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - T C Ovaert
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - R L Ehman
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - K Butts Pauly
- Department of Radiology Stanford University Stanford, CA 94305, USA
| | - E Kuhl
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
32
|
Do blast induced skull flexures result in axonal deformation? PLoS One 2018; 13:e0190881. [PMID: 29547663 PMCID: PMC5856259 DOI: 10.1371/journal.pone.0190881] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/21/2017] [Indexed: 12/28/2022] Open
Abstract
Subject-specific computer models (male and female) of the human head were used to investigate the possible axonal deformation resulting from the primary phase blast-induced skull flexures. The corresponding axonal tractography was explicitly incorporated into these finite element models using a recently developed technique based on the embedded finite element method. These models were subjected to extensive verification against experimental studies which examined their pressure and displacement response under a wide range of loading conditions. Once verified, a parametric study was developed to investigate the axonal deformation for a wide range of loading overpressures and directions as well as varying cerebrospinal fluid (CSF) material models. This study focuses on early times during a blast event, just as the shock transverses the skull (< 5 milliseconds). Corresponding boundary conditions were applied to eliminate the rotation effects and the resulting axonal deformation. A total of 138 simulations were developed– 128 simulations for studying the different loading scenarios and 10 simulations for studying the effects of CSF material model variance–leading to a total of 10,702 simulation core hours. Extreme strains and strain rates along each of the fiber tracts in each of these scenarios were documented and presented here. The results suggest that the blast-induced skull flexures result in strain rates as high as 150–378 s-1. These high-strain rates of the axonal fiber tracts, caused by flexural displacement of the skull, could lead to a rate dependent micro-structural axonal damage, as pointed by other researchers.
Collapse
|
33
|
Song H, Cui J, Simonyi A, Johnson CE, Hubler GK, DePalma RG, Gu Z. Linking blast physics to biological outcomes in mild traumatic brain injury: Narrative review and preliminary report of an open-field blast model. Behav Brain Res 2018; 340:147-158. [DOI: 10.1016/j.bbr.2016.08.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/13/2016] [Accepted: 08/19/2016] [Indexed: 12/14/2022]
|
34
|
Fievisohn E, Bailey Z, Guettler A, VandeVord P. Primary Blast Brain Injury Mechanisms: Current Knowledge, Limitations, and Future Directions. J Biomech Eng 2018; 140:2666247. [DOI: 10.1115/1.4038710] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Indexed: 12/18/2022]
Abstract
Mild blast traumatic brain injury (bTBI) accounts for the majority of brain injury in United States service members and other military personnel worldwide. The mechanisms of primary blast brain injury continue to be disputed with little evidence to support one or a combination of theories. The main hypotheses addressed in this review are blast wave transmission through the skull orifices, direct cranial transmission, skull flexure dynamics, thoracic surge, acceleration, and cavitation. Each possible mechanism is discussed using available literature with the goal of focusing research efforts to address the limitations and challenges that exist in blast injury research. Multiple mechanisms may contribute to the pathology of bTBI and could be dependent on magnitudes and orientation to blast exposure. Further focused biomechanical investigation with cadaver, in vivo, and finite element models would advance our knowledge of bTBI mechanisms. In addition, this understanding could guide future research and contribute to the greater goal of developing relevant injury criteria and mandates to protect our soldiers on the battlefield.
Collapse
Affiliation(s)
- Elizabeth Fievisohn
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 440 Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061 e-mail:
| | - Zachary Bailey
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 440 Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061 e-mail:
| | - Allison Guettler
- Department of Mechanical Engineering, Virginia Tech, 440 Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061 e-mail:
| | - Pamela VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 317 Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061; Salem Veterans Affairs Medical Center, Salam, VA 24153 e-mail:
| |
Collapse
|
35
|
Ganpule S, Daphalapurkar NP, Cetingul MP, Ramesh K. Effect of bulk modulus on deformation of the brain under rotational accelerations. SHOCK WAVES 2018; 28:127-139. [PMID: 29662272 PMCID: PMC5898454 DOI: 10.1007/s00193-017-0791-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 11/09/2017] [Accepted: 11/17/2017] [Indexed: 06/08/2023]
Abstract
Traumatic brain injury such as that developed as a consequence of blast is a complex injury with a broad range of symptoms and disabilities. Computational models of brain biomechanics hold promise for illuminating the mechanics of traumatic brain injury (TBI) and for developing preventive devices. However, reliable material parameters are needed for models to be predictive. Unfortunately, the properties of human brain tissue are difficult to measure, and the bulk modulus of brain tissue in particular is not well-characterized. Thus, a wide range of bulk modulus values are used in computational models of brain biomechanics, spanning up to three orders of magnitude in the differences between values. However, the sensitivity of these variations on computational predictions is not known. In this work, we study the sensitivity of a 3D computational human head model to various bulk modulus values. A subject-specific human head model was constructed from T1-weighted MRI images at 2 mm3 voxel resolution. Diffusion tensor imaging provided data on spatial distribution and orientation of axonal fiber-bundles for modeling white-matter anisotropy. Non-injurious, full-field brain deformations in a human volunteer were used to assess the simulated predictions. The comparison suggests that a bulk modulus value on the order of GPa gives the best agreement with experimentally measured in vivo deformation in the human brain. Further, simulations of injurious loading suggest that bulk modulus values on the order of GPa provide the closest match with the clinical findings in terms of predicated injured regions and extent of injury.
Collapse
Affiliation(s)
- S. Ganpule
- Indian Institute of Technology Roorkee, Roorkee, India, 247667
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, 21218
| | - N. P. Daphalapurkar
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, 21218
| | | | - K.T. Ramesh
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, 21218
| |
Collapse
|
36
|
Finite Element Analysis of Impact for Helmeted and Non-helmeted Head. J Med Biol Eng 2017; 38:587-595. [PMID: 30100828 PMCID: PMC6061106 DOI: 10.1007/s40846-017-0324-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/22/2017] [Indexed: 12/11/2022]
Abstract
This study investigated the influence of human head impact on the severity of traumatic brain injury. Simulation of the dynamic impact of a human head was performed using FEM (finite element method) and employing HIC (Head Injury Criterion). The study of traumatic brain injury included impacts with the occiput, temporal, forehead, and parietal part of the head, and the impact velocity at the surface ranged from 1 to 7 m/s. The following characteristics were considered and analyzed in the simulation: duration of the impact, intracranial pressure, HIC, and change in accelerations at the center of gravity of the brain. The computed distribution of pressure values in the brain during an impact confirmed the theory of inertial intracranial brain displacement. The effect of a protective helmet aimed at reducing the severity of traumatic brain injury was investigated, and a method to determine rational helmet parameters was developed. In the case of the protected head, impact acceleration occurred over a longer period of time, which yielded a reduction in the brain load compared to the unprotected head. The developed method allows us to predict the severity of traumatic brain injury (TBI) in the protected/unprotected human head and to provide recommendations for the determination of rational parameters for manufacturing personal protective equipment for the head.
Collapse
|
37
|
Protection against Blast-Induced Traumatic Brain Injury by Increase in Brain Volume. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2075463. [PMID: 28553646 PMCID: PMC5434276 DOI: 10.1155/2017/2075463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/13/2017] [Accepted: 03/23/2017] [Indexed: 11/18/2022]
Abstract
Blast-induced traumatic brain injury (bTBI) is a leading cause of injuries in recent military conflicts and it is responsible for an increased number of civilian casualties by terrorist attacks. bTBI includes a variety of neuropathological changes depending on the intensity of blast overpressure (BOP) such as brain edema, neuronal degeneration, diffuse axonal damage, and vascular dysfunction with neurological manifestations of psychological and cognitive abnormalities. Internal jugular vein (IJV) compression is known to reduce intracranial compliance by causing an increase in brain volume and was shown to reduce brain damage during closed impact-induced TBI. We investigated whether IJV compression can attenuate signs of TBI in rats after exposure to BOP. Animals were exposed to three 110 ± 5 kPa BOPs separated by 30 min intervals. Exposure to BOP resulted in a significant decrease of neuronal nuclei (NeuN) together with upregulation of aquaporin-4 (AQP-4), 3-nitrotyrosine (3-NT), and endothelin 1 receptor A (ETRA) expression in frontal cortex and hippocampus one day following exposures. IJV compression attenuated this BOP-induced increase in 3-NT in cortex and ameliorated the upregulation of AQP-4 in hippocampus. These results suggest that elevated intracranial pressure and intracerebral volume have neuroprotective potential in blast-induced TBI.
Collapse
|
38
|
Sone JY, Kondziolka D, Huang JH, Samadani U. Helmet efficacy against concussion and traumatic brain injury: a review. J Neurosurg 2017; 126:768-781. [DOI: 10.3171/2016.2.jns151972] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Helmets are one of the earliest and most enduring methods of personal protection in human civilization. Although primarily developed for combat purposes in ancient times, modern helmets have become highly diversified to sports, recreation, and transportation. History and the scientific literature exhibit that helmets continue to be the primary and most effective prevention method against traumatic brain injury (TBI), which presents high mortality and morbidity rates in the US. The neurosurgical and neurotrauma literature on helmets and TBI indicate that helmets provide effectual protection against moderate to severe head trauma resulting in severe disability or death. However, there is a dearth of scientific data on helmet efficacy against concussion in both civilian and military aspects. The objective of this literature review was to explore the historical evolution of helmets, consider the effectiveness of helmets in protecting against severe intracranial injuries, and examine recent evidence on helmet efficacy against concussion. It was also the goal of this report to emphasize the need for more research on helmet efficacy with improved experimental design and quantitative standardization of assessments for concussion and TBI, and to promote expanded involvement of neurosurgery in studying the quantitative diagnostics of concussion and TBI. Recent evidence summarized by this literature review suggests that helmeted patients do not have better relative clinical outcome and protection against concussion than unhelmeted patients.
Collapse
Affiliation(s)
- Je Yeong Sone
- 1Department of Neurosurgery, New York University School of Medicine, New York, New York
| | - Douglas Kondziolka
- 1Department of Neurosurgery, New York University School of Medicine, New York, New York
| | - Jason H. Huang
- 2Department of Neurosurgery, Baylor Scott & White Central Division, Temple, Texas; and
| | - Uzma Samadani
- 3Department of Neurosurgery, Hennepin County Medical Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
39
|
Salzar RS, Treichler D, Wardlaw A, Weiss G, Goeller J. Experimental Investigation of Cavitation as a Possible Damage Mechanism in Blast-Induced Traumatic Brain Injury in Post-Mortem Human Subject Heads. J Neurotrauma 2017; 34:1589-1602. [PMID: 27855566 DOI: 10.1089/neu.2016.4600] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The potential of blast-induced traumatic brain injury from the mechanism of localized cavitation of the cerebrospinal fluid (CSF) is investigated. While the mechanism and criteria for non-impact blast-induced traumatic brain injury is still unknown, this study demonstrates that local cavitation in the CSF layer of the cranial volume could contribute to these injuries. The cranial contents of three post-mortem human subject (PMHS) heads were replaced with both a normal saline solution and a ballistic gel mixture with a simulated CSF layer. Each were instrumented with multiple pressure transducers and placed inside identical shock tubes at two different research facilities. Sensor data indicates that cavitation may have occurred in the PMHS models at pressure levels below those for a 50% risk of blast lung injury. This study points to skull flexion, the result of the shock wave on the front of the skull leading to a negative pressure in the contrecoup, as a possible mechanism that contributes to the onset of cavitation. Based on observation of intracranial pressure transducer data from the PMHS model, cavitation onset is thought to occur from approximately a 140 kPa head-on incident blast.
Collapse
Affiliation(s)
- Robert S Salzar
- 1 Center for Applied Biomechanics, the University of Virginia , Charlottesville, Virginia
| | | | | | - Greg Weiss
- 3 Applied Research Associates, Inc. , Littleton, Colorado
| | | |
Collapse
|
40
|
Sarvghad-Moghaddam H, Rezaei A, Ziejewski M, Karami G. Evaluation of brain tissue responses because of the underwash overpressure of helmet and faceshield under blast loading. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33. [PMID: 26968860 DOI: 10.1002/cnm.2782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/06/2016] [Accepted: 03/06/2016] [Indexed: 05/16/2023]
Abstract
Head protective tools such as helmets and faceshields can induce a localized high pressure region on the skull because of the underwash of the blast waves. Whether this underwash overpressure can affect the brain tissue response is still unknown. Accordingly, a computational approach was taken to confirm the incidence of underwash with regards to blast direction, as well as examine the influence of this effect on the mechanical responses of the brain. The variation of intracranial pressure (ICP) as one of the major injury predictors, as well as the maximum shear stress were mainly addressed in this study. Using a nonlinear finite element (FE) approach, generation and interaction of blast waves with the unprotected, helmeted, and fully protected (helmet and faceshield protected) FE head models were modeled using a multi-material arbitrary Lagrangian-Eulerian (ALE) method and a fluid-structure interaction (FSI) coupling algorithm. The underwash incidence overpressure was found to greatly change with the blast direction. Moreover, while underwash induced ICP (U-ICP) did not exceed the peak ICP of the unprotected head, it was comparable and even more than the peak ICP imposed on the protected heads by the primary shockwaves (Coup-ICP). It was concluded that while both helmet and faceshield protected the head against blast waves, the underwash overpressure affected the brain tissue response and altered the dynamic load experienced by the brain as it led to increased ICP levels at the countercoup site, imparted elevated skull flexure, and induced high negative pressure regions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hesam Sarvghad-Moghaddam
- Department of Mechanical Engineering, North Dakota State University Fargo, ND, 58108-6050, U.S.A
| | - Asghar Rezaei
- Department of Mechanical Engineering, North Dakota State University Fargo, ND, 58108-6050, U.S.A
| | - Mariusz Ziejewski
- Department of Mechanical Engineering, North Dakota State University Fargo, ND, 58108-6050, U.S.A
| | - Ghodrat Karami
- Department of Mechanical Engineering, North Dakota State University Fargo, ND, 58108-6050, U.S.A
| |
Collapse
|
41
|
Feng K, Zhang L, Jin X, Chen C, Kallakuri S, Saif T, Cavanaugh J, King A. Biomechanical Responses of the Brain in Swine Subject to Free-Field Blasts. Front Neurol 2016; 7:179. [PMID: 27822197 PMCID: PMC5075707 DOI: 10.3389/fneur.2016.00179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/04/2016] [Indexed: 01/05/2023] Open
Abstract
Blast-induced traumatic brain injury (bTBI) is a signature wound of modern warfare. The current incomplete understanding of its injury mechanism impedes the development of strategies for effective protection of bTBI. Despite a considerable amount of experimental animal studies focused on the evaluation of brain neurotrauma caused by blast exposure, there is very limited knowledge on the biomechanical responses of the gyrenecephalic brain subjected to primary free-field blast waves imposed in vivo. This study aims to evaluate the external and internal mechanical responses of the brain against different levels of blast loading with Yucatan swine in free field. The incident overpressure (IOP) was generated using 3.6 kg of C4 charge placed at three standoff distances from the swine. Five swine were exposed to a total of 19 blasts. The three average peak IOP pressure levels in this study were 148.8, 278.9, and 409.2 kPa as measured by a pencil probe. The duration of the first positive wave was in the range of 2.1–3 ms. Pressure changes in the brain and head kinematics were recorded with intracranial pressure (ICP) sensors, linear accelerometers, and angular rate sensors. The corresponding average peak ICPs were in the range of 79–143, 210–281, and 311–414 kPa designated as low, medium, and high blast level, respectively. Peak head linear accelerations were in the range of 120–412 g. A positive correlation between IOP and its corresponding biomechanical responses of the brain was also observed. These experimental data can be used to validate computer models of bTBI.
Collapse
Affiliation(s)
- Ke Feng
- Department of Biomedical Engineering, Wayne State University , Detroit, MI , USA
| | - Liying Zhang
- Department of Biomedical Engineering, Wayne State University , Detroit, MI , USA
| | - Xin Jin
- Department of Biomedical Engineering, Wayne State University , Detroit, MI , USA
| | - Chaoyang Chen
- Department of Biomedical Engineering, Wayne State University , Detroit, MI , USA
| | - Srinivasu Kallakuri
- Department of Biomedical Engineering, Wayne State University , Detroit, MI , USA
| | - Tal Saif
- Department of Biomedical Engineering, Wayne State University , Detroit, MI , USA
| | - John Cavanaugh
- Department of Biomedical Engineering, Wayne State University , Detroit, MI , USA
| | - Albert King
- Department of Biomedical Engineering, Wayne State University , Detroit, MI , USA
| |
Collapse
|
42
|
Strain and rate-dependent neuronal injury in a 3D in vitro compression model of traumatic brain injury. Sci Rep 2016; 6:30550. [PMID: 27480807 PMCID: PMC4969749 DOI: 10.1038/srep30550] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/06/2016] [Indexed: 12/11/2022] Open
Abstract
In the United States over 1.7 million cases of traumatic brain injury are reported yearly, but predictive correlation of cellular injury to impact tissue strain is still lacking, particularly for neuronal injury resulting from compression. Given the prevalence of compressive deformations in most blunt head trauma, this information is critically important for the development of future mitigation and diagnosis strategies. Using a 3D in vitro neuronal compression model, we investigated the role of impact strain and strain rate on neuronal lifetime, viability, and pathomorphology. We find that strain magnitude and rate have profound, yet distinctively different effects on the injury pathology. While strain magnitude affects the time of neuronal death, strain rate influences the pathomorphology and extent of population injury. Cellular injury is not initiated through localized deformation of the cytoskeleton but rather driven by excess strain on the entire cell. Furthermore we find that, mechanoporation, one of the key pathological trigger mechanisms in stretch and shear neuronal injuries, was not observed under compression.
Collapse
|
43
|
Tse KM, Tan LB, Yang B, Tan VBC, Lee HP. Effect of helmet liner systems and impact directions on severity of head injuries sustained in ballistic impacts: a finite element (FE) study. Med Biol Eng Comput 2016; 55:641-662. [PMID: 27411935 DOI: 10.1007/s11517-016-1536-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
Abstract
The current study aims to investigate the effectiveness of two different designs of helmet interior cushion, (Helmet 1: strap-netting; Helmet 2: Oregon Aero foam-padding), and the effect of the impact directions on the helmeted head during ballistic impact. Series of ballistic impact simulations (frontal, lateral, rear, and top) of a full-metal-jacketed bullet were performed on a validated finite element head model equipped with the two helmets, to assess the severity of head injuries sustained in ballistic impacts using both head kinematics and biomechanical metrics. Benchmarking with experimental ventricular and intracranial pressures showed that there is good agreement between the simulations and experiments. In terms of extracranial injuries, top impact had the highest skull stress, still without fracturing the skull. In regard to intracranial injuries, both the lateral and rear impacts generally gave the highest principal strains as well as highest shear strains, which exceed the injury thresholds. Off-cushion impacts were found to be at higher risk of intracranial injuries. The study also showed that the Oregon Aero foam pads helped to reduce impact forces. It also suggested that more padding inserts of smaller size may offer better protection. This provides some insights on future's helmet design against ballistic threats.
Collapse
Affiliation(s)
- Kwong Ming Tse
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore. .,Department of Mechanical Engineering, University of Melbourne, Parkville Campus, Melbourne, VIC, 3010, Australia.
| | - Long Bin Tan
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Bin Yang
- College of Automobile and Traffic Engineering, Nanjing Forestry University, 159 LongPan Rd, Nanjing, 210037, People's Republic of China
| | - Vincent Beng Chye Tan
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Heow Pueh Lee
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore. .,National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, 215123, Jiang Su, People's Republic of China.
| |
Collapse
|
44
|
Boruah S, Paskoff GR, Shender BS, Subit DL, Salzar RS, Crandall JR. Variation of bone layer thicknesses and trabecular volume fraction in the adult male human calvarium. Bone 2015; 77:120-34. [PMID: 25920690 DOI: 10.1016/j.bone.2015.04.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 03/24/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
Abstract
The human calvarium is a sandwich structure with two dense layers of cortical bone separated by porous cancellous bone. The variation of the three dimensional geometry, including the layer thicknesses and the volume fraction of the cancellous layer across the population, is unavailable in the current literature. This information is of particular importance to mathematical models of the human head used to simulate mechanical response. Although the target geometry for these models is the median geometry of the population, the best attempt so far has been the scaling of a unique geometry based on a few median anthropometric measurements of the head. However, this method does not represent the median geometry. This paper reports the average three dimensional geometry of the calvarium from X-ray computed tomography (CT) imaging and layer thickness and trabecular volume fraction from micro CT (μCT) imaging of ten adult male post-mortem human surrogates (PMHS). Skull bone samples have been obtained and μCT imaging was done at a resolution of 30 μm. Monte Carlo simulation was done to estimate the variance in these measurements due to the uncertainty in image segmentation. The layer thickness data has been averaged over areas of 5mm(2). The outer cortical layer was found to be significantly (p < 0.01; Student's t test) thicker than the inner layer (median of thickness ratio 1.68). Although there was significant location to location difference in all the layer thicknesses and volume fraction measurements, there was no trend. Average distribution and the variance of these metrics on the calvarium have been shown. The findings have been reported as colormaps on a 2D projection of the cranial vault.
Collapse
Affiliation(s)
- Sourabh Boruah
- Center for Applied Biomechanics, University of Virginia, Charlottesville, VA, USA.
| | - Glenn R Paskoff
- Human Systems Department, Naval Air Warfare Center Aircraft Division, Patuxent River, MD, USA
| | - Barry S Shender
- Human Systems Department, Naval Air Warfare Center Aircraft Division, Patuxent River, MD, USA
| | - Damien L Subit
- Center for Applied Biomechanics, University of Virginia, Charlottesville, VA, USA
| | - Robert S Salzar
- Center for Applied Biomechanics, University of Virginia, Charlottesville, VA, USA
| | - Jeff R Crandall
- Center for Applied Biomechanics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
45
|
Young L, Rule GT, Bocchieri RT, Walilko TJ, Burns JM, Ling G. When physics meets biology: low and high-velocity penetration, blunt impact, and blast injuries to the brain. Front Neurol 2015; 6:89. [PMID: 25999910 PMCID: PMC4423508 DOI: 10.3389/fneur.2015.00089] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/09/2015] [Indexed: 12/22/2022] Open
Abstract
The incidence of traumatic brain injuries (TBI) in the US has reached epidemic proportions with well over 2 million new cases reported each year. TBI can occur in both civilians and warfighters, with head injuries occurring in both combat and non-combat situations from a variety of threats, including ballistic penetration, acceleration, blunt impact, and blast. Most generally, TBI is a condition in which physical loads exceed the capacity of brain tissues to absorb without injury. More specifically, TBI results when sufficient external force is applied to the head and is subsequently converted into stresses that must be absorbed or redirected by protective equipment. If the stresses are not sufficiently absorbed or redirected, they will lead to damage of extracranial soft tissue and the skull. Complex interactions and kinematics of the head, neck and jaw cause strains within the brain tissue, resulting in structural, anatomical damage that is characteristic of the inciting insult. This mechanical trauma then initiates a neuro-chemical cascade that leads to the functional consequences of TBI, such as cognitive impairment. To fully understand the mechanisms by which TBI occurs, it is critically important to understand the effects of the loading environments created by these threats. In the following, a review is made of the pertinent complex loading conditions and how these loads cause injury. Also discussed are injury thresholds and gaps in knowledge, both of which are needed to design improved protective systems.
Collapse
Affiliation(s)
- Leanne Young
- Security Engineering and Applied Sciences Sector, Applied Research Associates, Inc., Dallas, TX, USA
- Center for Brain Health, University of Texas at Dallas, Dallas, TX, USA
| | - Gregory T. Rule
- Security Engineering and Applied Sciences Sector, Applied Research Associates, Inc., San Antonio, TX, USA
| | - Robert T. Bocchieri
- Silicon Valley Office, Applied Research Associates, Inc., Los Altos, CA, USA
| | - Timothy J. Walilko
- Rocky Mountain Division, Applied Research Associates, Inc., Littleton, CO, USA
| | - Jennie M. Burns
- Security Engineering and Applied Sciences Sector, Applied Research Associates, Inc., San Antonio, TX, USA
| | - Geoffrey Ling
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
46
|
Goriely A, Geers MGD, Holzapfel GA, Jayamohan J, Jérusalem A, Sivaloganathan S, Squier W, van Dommelen JAW, Waters S, Kuhl E. Mechanics of the brain: perspectives, challenges, and opportunities. Biomech Model Mechanobiol 2015; 14:931-65. [PMID: 25716305 PMCID: PMC4562999 DOI: 10.1007/s10237-015-0662-4] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 02/14/2015] [Indexed: 12/24/2022]
Abstract
The human brain is the continuous subject of extensive investigation aimed at understanding its behavior and function. Despite a clear evidence that mechanical factors play an important role in regulating brain activity, current research efforts focus mainly on the biochemical or electrophysiological activity of the brain. Here, we show that classical mechanical concepts including deformations, stretch, strain, strain rate, pressure, and stress play a crucial role in modulating both brain form and brain function. This opinion piece synthesizes expertise in applied mathematics, solid and fluid mechanics, biomechanics, experimentation, material sciences, neuropathology, and neurosurgery to address today’s open questions at the forefront of neuromechanics. We critically review the current literature and discuss challenges related to neurodevelopment, cerebral edema, lissencephaly, polymicrogyria, hydrocephaly, craniectomy, spinal cord injury, tumor growth, traumatic brain injury, and shaken baby syndrome. The multi-disciplinary analysis of these various phenomena and pathologies presents new opportunities and suggests that mechanical modeling is a central tool to bridge the scales by synthesizing information from the molecular via the cellular and tissue all the way to the organ level.
Collapse
Affiliation(s)
- Alain Goriely
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Jin H, Hou LJ, Fu XB. Medical rescue of naval combat: challenges and future. Mil Med Res 2015; 2:21. [PMID: 26309738 PMCID: PMC4549092 DOI: 10.1186/s40779-015-0048-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 08/03/2015] [Indexed: 11/17/2022] Open
Abstract
There has been no large-scale naval combat in the last 30 years. With the rapid development of battleships, weapons manufacturing and electronic technology, naval combat will present some new characteristics. Additionally, naval combat is facing unprecedented challenges. In this paper, we discuss the topic of medical rescue at sea: what challenges we face and what we could do. The contents discussed in this paper contain battlefield self-aid buddy care, clinical skills, organized health services, medical training and future medical research programs. We also discuss the characteristics of modern naval combat, medical rescue challenges, medical treatment highlights and future developments of medical rescue at sea.
Collapse
Affiliation(s)
- Hai Jin
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200433 China
| | - Li-Jun Hou
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200433 China
| | - Xiao-Bing Fu
- Department of Key Laboratory of Wound Repair and Regeneration of PLA, College of Life Sciences, General Hospital of PLA, Beijing, 100853 China
| |
Collapse
|
48
|
Abstract
With a growing interest in how the brain responds and remodels itself following a traumatic injury, this chapter outlines the major organizing principles of how to study these injuries in the laboratory and extend these findings back into the clinic. A new repertoire of models is available to examine the response of isolated circuits of the brain in vitro, and to study precisely how mechanical forces applied to even small regions of these circuits can disrupt the entire circuit dysfunction. We review the existing knowledge garnered from these models and our current understanding of mechanically sensitive receptors and channels activated immediately following trauma. In turn, we point to the emergence of in silico models of network function that will lead to an improved understanding of the principles for the remodeling of circuit structure after traumatic, possibly pointing out new biological rules for circuit reassembly that would help guide new therapies for reconstructing brain circuits after trauma.
Collapse
Affiliation(s)
- David F Meaney
- Departments of Bioengineering and Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.
| | - Douglas H Smith
- Departments of Bioengineering and Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
49
|
Tan LB, Chew FS, Tse KM, Chye Tan VB, Lee HP. Impact of complex blast waves on the human head: a computational study. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2014; 30:1476-1505. [PMID: 25132676 DOI: 10.1002/cnm.2668] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 07/31/2014] [Indexed: 06/03/2023]
Abstract
Head injuries due to complex blasts are not well examined because of limited published articles on the subject. Previous studies have analyzed head injuries due to impact from a single planar blast wave. Complex or concomitant blasts refer to impacts usually caused by more than a single blast source, whereby the blast waves may impact the head simultaneously or consecutively, depending on the locations and distances of the blast sources from the subject, their blast intensities, the sequence of detonations, as well as the effect of blast wave reflections from rigid walls. It is expected that such scenarios will result in more serious head injuries as compared to impact from a single blast wave due to the larger effective duration of the blast. In this paper, the utilization of a head-helmet model for blast impact analyses in Abaqus(TM) (Dassault Systemes, Singapore) is demonstrated. The model is validated against studies published in the literature. Results show that the skull is capable of transmitting the blast impact to cause high intracranial pressures (ICPs). In addition, the pressure wave from a frontal blast may enter through the sides of the helmet and wrap around the head to result in a second impact at the rear. This study recommended better protection at the sides and rear of the helmet through the use of foam pads so as to reduce wave entry into the helmet. The consecutive frontal blasts scenario resulted in higher ICPs compared with impact from a single frontal blast. This implied that blast impingement from an immediate subsequent pressure wave would increase severity of brain injury. For the unhelmeted head case, a peak ICP of 330 kPa is registered at the parietal lobe which exceeds the 235 kPa threshold for serious head injuries. The concurrent front and side blasts scenario yielded lower ICPs and skull stresses than the consecutive frontal blasts case. It is also revealed that the additional side blast would only significantly affect ICPs at the temporal and parietal lobes when compared with results from the single frontal blast case. By analyzing the pressure wave flow surrounding the head and correlating them with the consequential evolution of ICP and skull stress, the paper provides insights into the interaction mechanics between the concomitant blast waves and the biological head model.
Collapse
Affiliation(s)
- Long Bin Tan
- Department of Mechanical Engineering, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
50
|
Sarvghad-Moghaddam H, Jazi MS, Rezaei A, Karami G, Ziejewski M. Examination of the protective roles of helmet/faceshield and directionality for human head under blast waves. Comput Methods Biomech Biomed Engin 2014; 18:1846-55. [DOI: 10.1080/10255842.2014.977878] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|