1
|
Wong ELY, Valim HF, Schmitt I. Genome-wide differentiation corresponds to climatic niches in two species of lichen-forming fungi. Environ Microbiol 2024; 26:e16703. [PMID: 39388227 DOI: 10.1111/1462-2920.16703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/15/2024] [Indexed: 10/12/2024]
Abstract
Lichens can withstand fluctuating environmental conditions such as hydration-desiccation cycles. Many species distribute across climate zones, suggesting population-level adaptations to conditions such as freezing and drought. Here, we aim to understand how climate affects population genomic patterns in lichenized fungi. We analysed population structure along elevational gradients in closely related Umbilicaria phaea (North American; two gradients) and Umbilicaria pustulata (European; three gradients). All gradients showed clear genomic breaks splitting populations into low-elevation (Mediterranean zone) and high-elevation (cold temperate zone). A total of 3301 SNPs in U. phaea and 138 SNPs in U. pustulata were driven to fixation between the two ends of the gradients. The difference between the species is likely due to differences in recombination rate: the sexually reproducing U. phaea has a higher recombination rate than the primarily asexually reproducing U. pustulata. Cline analysis revealed allele frequency transitions along all gradients at approximately 0°C, coinciding with the transition between the Mediterranean and cold temperate zones, suggesting freezing is a strong driver of population differentiation. Genomic scans further confirmed temperature-related selection targets. Both species showed similar differentiation patterns overall, but different selected alleles indicate convergent adaptation to freezing. Our results enrich our knowledge of fungal genomic functions related to temperature and climate, fungal population genomics, and species responses to environmental heterogeneity.
Collapse
Affiliation(s)
- Edgar L Y Wong
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Henrique F Valim
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Imke Schmitt
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| |
Collapse
|
2
|
Dhakal U, Yue W, Leslie JF, Toomajian C. Population genomics of Fusarium graminearum isolates from the Americas. Fungal Genet Biol 2024; 174:103924. [PMID: 39094785 DOI: 10.1016/j.fgb.2024.103924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Fusarium head blight (FHB) is a major disease of wheat and barley worldwide and is caused by different species in the genus Fusarium, Fusarium graminearum being the most important. We conducted population genomics analyses using SNPs obtained through genotyping by sequencing of over 500 isolates of F. graminearum from the US Upper Midwest, New York, Louisiana, and Uruguay. PCA and STRUCTURE analyses group our isolates into four previously described populations: NA1, NA2, Southern Louisiana (SLA) and Gulf Coast (GC). Some isolates were not assigned to populations because of mixed ancestry. Population structure was associated with toxin genotype and geographic origin. The NA1, NA2, and SLA populations are differentiated (FST 0.385 - 0.551) but the presence of admixed isolates indicates that the populations are not reproductively isolated. Patterns of linkage disequilibrium (LD) decay suggest frequent recombination within populations. Fusarium graminearum populations from the US have great evolutionary potential given the high recombination rate and a large proportion of admixed isolates. The NA1, NA2, and Southern Louisiana (SLA) populations separated from their common ancestral population roughly at the same time in the past and are evolving with moderate levels of subsequent gene flow between them. Genome-wide selection scans in all three populations revealed outlier regions with the strongest signatures of recent positive natural selection. These outlier regions include many genes with unknown function and some genes with known roles in plant-microbe interaction, fungicide/drug resistance, cellular transport and genes that are related to cellular organelles. Only a very small proportion of outlier regions are shared as outliers among the three populations, suggesting unique host-pathogen interactions and environmental adaptation.
Collapse
Affiliation(s)
- Upasana Dhakal
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Wei Yue
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506, USA
| | - John F Leslie
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Christopher Toomajian
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506, USA.
| |
Collapse
|
3
|
Algavi YM, Borenstein E. Relative dispersion ratios following fecal microbiota transplant elucidate principles governing microbial migration dynamics. Nat Commun 2024; 15:4447. [PMID: 38789466 PMCID: PMC11126695 DOI: 10.1038/s41467-024-48717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Microorganisms frequently migrate from one ecosystem to another. Yet, despite the potential importance of this process in modulating the environment and the microbial ecosystem, our understanding of the fundamental forces that govern microbial dispersion is still lacking. Moreover, while theoretical models and in-vitro experiments have highlighted the contribution of species interactions to community assembly, identifying such interactions in vivo, specifically in communities as complex as the human gut, remains challenging. To address this gap, here we introduce a robust and rigorous computational framework, termed Relative Dispersion Ratio (RDR) analysis, and leverage data from well-characterized fecal microbiota transplant trials, to rigorously pinpoint dependencies between taxa during the colonization of human gastrointestinal tract. Our analysis identifies numerous pairwise dependencies between co-colonizing microbes during migration between gastrointestinal environments. We further demonstrate that identified dependencies agree with previously reported findings from in-vitro experiments and population-wide distribution patterns. Finally, we explore metabolic dependencies between these taxa and characterize the functional properties that facilitate effective dispersion. Collectively, our findings provide insights into the principles and determinants of community dynamics following ecological translocation, informing potential opportunities for precise community design.
Collapse
Affiliation(s)
- Yadid M Algavi
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Elhanan Borenstein
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel.
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
4
|
Valim HF, Grande FD, Wong ELY, Schmitt I. Circadian clock- and temperature-associated genes contribute to overall genomic differentiation along elevation in lichenized fungi. Mol Ecol 2024; 33:e17252. [PMID: 38146927 DOI: 10.1111/mec.17252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 12/27/2023]
Abstract
Circadian regulation is linked to local environmental adaptation, and many species with broad climatic niches display variation in circadian genes. Here, we hypothesize that lichenizing fungi occupying different climate zones tune their metabolism to local environmental conditions with the help of their circadian systems. We study two species of the genus Umbilicaria occupying similar climatic niches (Mediterranean and the cold temperate) in different continents. Using homology to Neurospora crassa genes, we identify gene sets associated with circadian rhythms (11 core, 39 peripheral genes) as well as temperature response (37 genes). Nucleotide diversity of these genes is significantly correlated with mean annual temperature, minimum temperature of the coldest month and mean temperature of the coldest quarter. Furthermore, we identify altitudinal clines in allele frequencies in several non-synonymous substitutions in core clock components, for example, white collar-like, frh-like and various ccg-like genes. A dN/dS approach revealed a few significant peripheral clock- and temperature-associated genes (e.g. ras-1-like, gna-1-like) that may play a role in fine-tuning the circadian clock and temperature-response machinery. An analysis of allele frequency changes demonstrated the strongest evidence for differentiation above the genomic background in the clock-associated genes in U. pustulata. These results highlight the likely relevance of the circadian clock in environmental adaptation, particularly frost tolerance, of lichens. Whether or not the fungal clock modulates the symbiotic interaction within the lichen consortium remains to be investigated. We corroborate the finding of genetic variation in clock components along altitude-not only latitude-as has been reported in other species.
Collapse
Affiliation(s)
- Henrique F Valim
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Department of Biology, University of Padova, Padua, Italy
| | - Edgar L Y Wong
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Treindl AD, Stapley J, Croll D, Leuchtmann A. Two-speed genomes of Epichloe fungal pathogens show contrasting signatures of selection between species and across populations. Mol Ecol 2024; 33:e17242. [PMID: 38084851 DOI: 10.1111/mec.17242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Antagonistic selection between pathogens and their hosts can drive rapid evolutionary change and leave distinct molecular footprints of past and ongoing selection in the genomes of the interacting species. Despite an increasing availability of tools able to identify signatures of selection, the genetic mechanisms underlying coevolutionary interactions and the specific genes involved are still poorly understood, especially in heterogeneous natural environments. We searched the genomes of two species of Epichloe plant pathogen for evidence of recent selection. The Epichloe genus includes highly host-specific species that can sterilize their grass hosts. We performed selection scans using genome-wide SNP data from seven natural populations of two co-occurring Epichloe sibling species specialized on different hosts. We found evidence of recent (and ongoing) selective sweeps across the genome in both species. However, selective sweeps were more abundant in the species with a larger effective population size. Sweep regions often overlapped with highly polymorphic AT-rich regions supporting the role of these genome compartments in adaptive evolution. Although most loci under selection were specific to individual populations, we could also identify several candidate genes targeted by selection in sweep regions shared among populations. The genes encoded small secreted proteins typical of fungal effectors and cell wall-degrading enzymes. By investigating the genomic signatures of selection across multiple populations and species, this study contributes to our understanding of complex adaptive processes in natural plant pathogen systems.
Collapse
Affiliation(s)
- Artemis D Treindl
- Plant Ecological Genetics Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Jessica Stapley
- Plant Pathology Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Adrian Leuchtmann
- Plant Ecological Genetics Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Hawkes CV, Allen X, Balint-Kurti P, Cowger C. Manipulating the plant mycobiome to enhance resilience: Ecological and evolutionary opportunities and challenges. PLoS Pathog 2023; 19:e1011816. [PMID: 38096141 PMCID: PMC10721032 DOI: 10.1371/journal.ppat.1011816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Affiliation(s)
- Christine V. Hawkes
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Xavious Allen
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Peter Balint-Kurti
- Plant Science Research Unit, USDA-ARS, Raleigh, North Carolina, United States of America
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Christina Cowger
- Plant Science Research Unit, USDA-ARS, Raleigh, North Carolina, United States of America
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
7
|
Aureli L, Coleine C, Delgado-Baquerizo M, Ahren D, Cemmi A, Di Sarcina I, Onofri S, Selbmann L. Geography and environmental pressure are predictive of class-specific radioresistance in black fungi. Environ Microbiol 2023; 25:2931-2942. [PMID: 37775957 DOI: 10.1111/1462-2920.16510] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
Black fungi are among the most resistant organisms to ionizing radiation on Earth. However, our current knowledge is based on studies on a few isolates, while the overall radioresistance limits across this microbial group and the relationship with local environmental conditions remain largely undetermined. To address this knowledge gap, we assessed the survival of 101 strains of black fungi isolated across a worldwide spatial distribution to gamma radiation doses up to 100 kGy. We found that intra and inter-specific taxonomy, UV radiation, and precipitation levels primarily influence the radioresistance in black fungi. Altogether, this study provides insights into the adaptive mechanisms of black fungi to extreme environments and highlights the role of local adaptation in shaping the survival capabilities of these extreme-tolerant organisms.
Collapse
Affiliation(s)
- Lorenzo Aureli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Department of Biology, Lund University, Lund, Sweden
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Manuel Delgado-Baquerizo
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Sevilla, Spain
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Dag Ahren
- Department of Biology, Lund University, Lund, Sweden
- Department of Biology, National Bioinformatics Infrastructure Sweden (NBIS), Lund University, Lund, Sweden
| | - Alessia Cemmi
- Fusion and Technology for Nuclear Safety and Security Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA FSN-FISS-SNI), Rome, Italy
| | - Ilaria Di Sarcina
- Fusion and Technology for Nuclear Safety and Security Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA FSN-FISS-SNI), Rome, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Mycological Section, Italian Antarctic National Museum (MNA), Genoa, Italy
| |
Collapse
|
8
|
Wang Z, Wang YW, Kasuga T, Hassler H, Lopez-Giraldez F, Dong C, Yarden O, Townsend JP. Origins of lineage-specific elements via gene duplication, relocation, and regional rearrangement in Neurospora crassa. Mol Ecol 2023. [PMID: 37843462 DOI: 10.1111/mec.17168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
The origin of new genes has long been a central interest of evolutionary biologists. However, their novelty means that they evade reconstruction by the classical tools of evolutionary modelling. This evasion of deep ancestral investigation necessitates intensive study of model species within well-sampled, recently diversified, clades. One such clade is the model genus Neurospora, members of which lack recent gene duplications. Several Neurospora species are comprehensively characterized organisms apt for studying the evolution of lineage-specific genes (LSGs). Using gene synteny, we documented that 78% of Neurospora LSG clusters are located adjacent to the telomeres featuring extensive tracts of non-coding DNA and duplicated genes. Here, we report several instances of LSGs that are likely from regional rearrangements and potentially from gene rebirth. To broadly investigate the functions of LSGs, we assembled transcriptomics data from 68 experimental data points and identified co-regulatory modules using Weighted Gene Correlation Network Analysis, revealing that LSGs are widely but peripherally involved in known regulatory machinery for diverse functions. The ancestral status of the LSG mas-1, a gene with roles in cell-wall integrity and cellular sensitivity to antifungal toxins, was investigated in detail alongside its genomic neighbours, indicating that it arose from an ancient lysophospholipase precursor that is ubiquitous in lineages of the Sordariomycetes. Our discoveries illuminate a "rummage region" in the N. crassa genome that enables the formation of new genes and functions to arise via gene duplication and relocation, followed by fast mutation and recombination facilitated by sequence repeats and unconstrained non-coding sequences.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Yen-Wen Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Takao Kasuga
- College of Biological Sciences, University of California, Davis, Davis, California, USA
| | - Hayley Hassler
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | | | - Caihong Dong
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
- Department of Ecology and Evolutionary Biology, Program in Microbiology, and Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Rand DM, Nunez JCB, Williams S, Rong S, Burley JT, Neil KB, Spierer AN, McKerrow W, Johnson DS, Raynes Y, Fayton TJ, Skvir N, Ferranti DA, Zeff MG, Lyons A, Okami N, Morgan DM, Kinney K, Brown BRP, Giblin AE, Cardon ZG. Parasite manipulation of host phenotypes inferred from transcriptional analyses in a trematode-amphipod system. Mol Ecol 2023; 32:5028-5041. [PMID: 37540037 PMCID: PMC10529729 DOI: 10.1111/mec.17093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Manipulation of host phenotypes by parasites is hypothesized to be an adaptive strategy enhancing parasite transmission across hosts and generations. Characterizing the molecular mechanisms of manipulation is important to advance our understanding of host-parasite coevolution. The trematode (Levinseniella byrdi) is known to alter the colour and behaviour of its amphipod host (Orchestia grillus) presumably increasing predation of amphipods which enhances trematode transmission through its life cycle. We sampled 24 infected and 24 uninfected amphipods from a salt marsh in Massachusetts to perform differential gene expression analysis. In addition, we constructed novel genomic tools for O. grillus including a de novo genome and transcriptome. We discovered that trematode infection results in upregulation of amphipod transcripts associated with pigmentation and detection of external stimuli, and downregulation of multiple amphipod transcripts implicated in invertebrate immune responses, such as vacuolar ATPase genes. We hypothesize that suppression of immune genes and the altered expression of genes associated with coloration and behaviour may allow the trematode to persist in the amphipod and engage in further biochemical manipulation that promotes transmission. The genomic tools and transcriptomic analyses reported provide new opportunities to discover how parasites alter diverse pathways underlying host phenotypic changes in natural populations.
Collapse
Affiliation(s)
- David M Rand
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
| | - Joaquin C B Nunez
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Shawn Williams
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Stephen Rong
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
| | - John T Burley
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
| | - Kimberly B Neil
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Adam N Spierer
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Wilson McKerrow
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, USA
| | - David S Johnson
- Department of Biological Sciences, Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia, USA
| | - Yevgeniy Raynes
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Thomas J Fayton
- University of Southern Mississippi, Hattiesburg, Mississippi, USA
- Cornell University, Ithaca, New York, USA
| | - Nicholas Skvir
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - David A Ferranti
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Maya Greenhill Zeff
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Amanda Lyons
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Naima Okami
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - David M Morgan
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | | | - Bianca R P Brown
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
| | - Anne E Giblin
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Zoe G Cardon
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
10
|
Sy VT, Boone EC, Xiao H, Vierling MM, Schmitz SF, Ung Q, Trawick SS, Hammond TM, Shiu PKT. A DEAD-box RNA helicase mediates meiotic silencing by unpaired DNA. G3 (BETHESDA, MD.) 2023; 13:jkad083. [PMID: 37052947 PMCID: PMC10411587 DOI: 10.1093/g3journal/jkad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/22/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
During the sexual phase of Neurospora crassa, unpaired genes are subject to a silencing mechanism known as meiotic silencing by unpaired DNA (MSUD). MSUD targets the transcripts of an unpaired gene and utilizes typical RNA interference factors for its process. Using a reverse genetic screen, we have identified a meiotic silencing gene called sad-9, which encodes a DEAD-box RNA helicase. While not essential for vegetative growth, SAD-9 plays a crucial role in both sexual development and MSUD. Our results suggest that SAD-9, with the help of the SAD-2 scaffold protein, recruits the SMS-2 Argonaute to the perinuclear region, the center of MSUD activity.
Collapse
Affiliation(s)
- Victor T Sy
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Erin C Boone
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Hua Xiao
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Michael M Vierling
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Shannon F Schmitz
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Quiny Ung
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Sterling S Trawick
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Thomas M Hammond
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Patrick K T Shiu
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
11
|
Ortiz V, Chang HX, Sang H, Jacobs J, Malvick DK, Baird R, Mathew FM, Estévez de Jensen C, Wise KA, Mosquera GM, Chilvers MI. Population genomic analysis reveals geographic structure and climatic diversification for Macrophomina phaseolina isolated from soybean and dry bean across the United States, Puerto Rico, and Colombia. Front Genet 2023; 14:1103969. [PMID: 37351341 PMCID: PMC10282554 DOI: 10.3389/fgene.2023.1103969] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/20/2023] [Indexed: 06/24/2023] Open
Abstract
Macrophomina phaseolina causes charcoal rot, which can significantly reduce yield and seed quality of soybean and dry bean resulting from primarily environmental stressors. Although charcoal rot has been recognized as a warm climate-driven disease of increasing concern under global climate change, knowledge regarding population genetics and climatic variables contributing to the genetic diversity of M. phaseolina is limited. This study conducted genome sequencing for 95 M. phaseolina isolates from soybean and dry bean across the continental United States, Puerto Rico, and Colombia. Inference on the population structure using 76,981 single nucleotide polymorphisms (SNPs) revealed that the isolates exhibited a discrete genetic clustering at the continental level and a continuous genetic differentiation regionally. A majority of isolates from the United States (96%) grouped in a clade with a predominantly clonal genetic structure, while 88% of Puerto Rican and Colombian isolates from dry bean were assigned to a separate clade with higher genetic diversity. A redundancy analysis (RDA) was used to estimate the contributions of climate and spatial structure to genomic variation (11,421 unlinked SNPs). Climate significantly contributed to genomic variation at a continental level with temperature seasonality explaining the most variation while precipitation of warmest quarter explaining the most when spatial structure was accounted for. The loci significantly associated with multivariate climate were found closely to the genes related to fungal stress responses, including transmembrane transport, glycoside hydrolase activity and a heat-shock protein, which may mediate climatic adaptation for M. phaseolina. On the contrary, limited genome-wide differentiation among populations by hosts was observed. These findings highlight the importance of population genetics and identify candidate genes of M. phaseolina that can be used to elucidate the molecular mechanisms that underly climatic adaptation to the changing climate.
Collapse
Affiliation(s)
- Viviana Ortiz
- Department of Plant, Soil and Microbial Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, United States
| | - Hao-Xun Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Janette Jacobs
- Department of Plant, Soil and Microbial Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States
| | - Dean K. Malvick
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Richard Baird
- BCH-EPP Department, Mississippi State University, Mississippi State, MS, United States
| | - Febina M. Mathew
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | | | - Kiersten A. Wise
- Department of Plant Pathology, College of Agriculture, Food and Environment, University of Kentucky, Princeton, KY, United States
| | - Gloria M. Mosquera
- Plant Pathology, Crops for Nutrition and Health, International Center for Tropical Agriculture (CIAT), The Americas Hub, Palmira, Colombia
| | - Martin I. Chilvers
- Department of Plant, Soil and Microbial Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
12
|
Peris D, Ubbelohde EJ, Kuang MC, Kominek J, Langdon QK, Adams M, Koshalek JA, Hulfachor AB, Opulente DA, Hall DJ, Hyma K, Fay JC, Leducq JB, Charron G, Landry CR, Libkind D, Gonçalves C, Gonçalves P, Sampaio JP, Wang QM, Bai FY, Wrobel RL, Hittinger CT. Macroevolutionary diversity of traits and genomes in the model yeast genus Saccharomyces. Nat Commun 2023; 14:690. [PMID: 36755033 PMCID: PMC9908912 DOI: 10.1038/s41467-023-36139-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Species is the fundamental unit to quantify biodiversity. In recent years, the model yeast Saccharomyces cerevisiae has seen an increased number of studies related to its geographical distribution, population structure, and phenotypic diversity. However, seven additional species from the same genus have been less thoroughly studied, which has limited our understanding of the macroevolutionary events leading to the diversification of this genus over the last 20 million years. Here, we show the geographies, hosts, substrates, and phylogenetic relationships for approximately 1,800 Saccharomyces strains, covering the complete genus with unprecedented breadth and depth. We generated and analyzed complete genome sequences of 163 strains and phenotyped 128 phylogenetically diverse strains. This dataset provides insights about genetic and phenotypic diversity within and between species and populations, quantifies reticulation and incomplete lineage sorting, and demonstrates how gene flow and selection have affected traits, such as galactose metabolism. These findings elevate the genus Saccharomyces as a model to understand biodiversity and evolution in microbial eukaryotes.
Collapse
Grants
- R01 GM080669 NIGMS NIH HHS
- T32 GM007133 NIGMS NIH HHS
- We thank the University of Wisconsin Biotechnology Center DNA Sequencing Facility for providing Illumina and Sanger sequencing facilities and services; Maria Sardi, Audrey Gasch, and Ursula Bond for providing strains; Sean McIlwain for providing guidance for genome ultra-scaffolding; Yury V. Bukhman for discussing applications of the Growth Curve Analysis Tool (GCAT); Mick McGee for HPLC analysis; Raúl Ortíz-Merino for assistance during YGAP annotations; Jessica Leigh for assistance with PopART; Cecile Ané for suggestions about BUCKy utilization and phylogenetic network analyses; Samina Naseeb and Daniela Delneri for sharing preliminary multi-locus Saccharomyces jurei data; and Branden Timm, Brian Kyle, and Dan Metzger for computational assistance. Some computations were performed on Tirant III of the Spanish Supercomputing Network (‘‘Servei d’Informàtica de la Universitat de València”) under the project BCV-2021-1-0001 granted to DP, while others were performed at the Wisconsin Energy Institute and the Center for High-Throughput Computing of the University of Wisconsin-Madison. During a portion of this project, DP was a researcher funded by the European Union’s Horizon 2020 research and innovation programme Marie Sklodowska-Curie, grant agreement No. 747775, the Research Council of Norway (RCN) grant Nos. RCN 324253 and 274337, and the Generalitat Valenciana plan GenT grant No. CIDEGENT/2021/039. DP is a recipient of an Illumina Grant for Illumina Sequencing Saccharomyces strains in this study. QKL was supported by the National Science Foundation under Grant No. DGE-1256259 (Graduate Research Fellowship) and the Predoctoral Training Program in Genetics, funded by the National Institutes of Health (5T32GM007133). This material is based upon work supported in part by the Great Lakes Bioenergy Research Center, Office of Science, Office of Biological and Environmental Research under Award Numbers DE-SC0018409 and DE-FC02-07ER64494; the National Science Foundation under Grant Nos. DEB-1253634, DEB-1442148, and DEB-2110403; and the USDA National Institute of Food and Agriculture Hatch Project Number 1020204. C.T.H. is an H. I. Romnes Faculty Fellow, supported by the Office of the Vice Chancellor for Research and Graduate Education with funding from Wisconsin Alumni Research Foundation. QMW was supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 31770018 and 31961133020. CRL holds the Canada Research Chair in Cellular Systems and Synthetic Biology, and his research on wild yeast is supported by a NSERC Discovery Grant.
Collapse
Affiliation(s)
- David Peris
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway.
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Spain.
| | - Emily J Ubbelohde
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Meihua Christina Kuang
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacek Kominek
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Quinn K Langdon
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Marie Adams
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Justin A Koshalek
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Amanda Beth Hulfachor
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Dana A Opulente
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Katie Hyma
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Justin C Fay
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Jean-Baptiste Leducq
- Departement des Sciences Biologiques, Université de Montréal, Montreal, QC, Canada
- Département de Biologie, PROTEO, Pavillon Charles‑Eugène‑Marchand, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Guillaume Charron
- Canada Natural Resources, Laurentian Forestry Centre, Quebec City, QC, Canada
| | - Christian R Landry
- Département de Biologie, PROTEO, Pavillon Charles‑Eugène‑Marchand, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET)-Universidad Nacional del Comahue, Bariloche, Argentina
| | - Carla Gonçalves
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Vanderbilt University, Department of Biological Sciences, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Paula Gonçalves
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - José Paulo Sampaio
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Qi-Ming Wang
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Russel L Wrobel
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
13
|
Liu Q, Yang LL, Xin YH. Diversity of the genus Cryobacterium and proposal of 19 novel species isolated from glaciers. Front Microbiol 2023; 14:1115168. [PMID: 37020720 PMCID: PMC10067761 DOI: 10.3389/fmicb.2023.1115168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/27/2023] [Indexed: 04/07/2023] Open
Abstract
The bacterial genus Cryobacterium includes at present 14 species that live in cryospheric environments. In this study, we analyzed 101 genomes of Cryobacterium with pure cultures obtained from GenBank. They could be classified into 44 species based on average nucleotide identity (ANI) analysis, showing the diversity of Cryobacterium. Among these, 19 strains in our laboratory were isolated from the glacier samples in China. The pairwise ANI values of these 19 strains and known species were <95%, indicating that they represented 19 novel species. The comparative genomic analysis showed significant differences in gene content between the two groups with a maximum growth temperature (T max) of ≤ 20°C and a T max of >20°C. A comprehensive and robust phylogenetic tree, including 14 known species and 19 novel species, was constructed and showed five phylogenetic branches based on 265 concatenated single-copy gene sequences. The T max parameter had a strong phylogenetic signal, indicating that the temperature adaptation of Cryobacterium was largely through vertical transfer rather than horizontal gene transfer and was affected by selection. Furthermore, using polyphasic taxonomy combined with phylogenomic analysis, we proposed 19 novel species of the genus Cryobacterium by the following 19 names: Cryobacterium serini sp. nov., Cryobacterium lactosi sp. nov., Cryobacterium gelidum sp. nov., Cryobacterium suzukii sp. nov., Cryobacterium fucosi sp. nov., Cryobacterium frigoriphilum sp. nov., Cryobacterium cryoconiti sp. nov., Cryobacterium lyxosi sp. nov., Cryobacterium sinapicolor sp. nov., Cryobacterium sandaracinum sp. nov., Cryobacterium cheniae sp. nov., Cryobacterium shii sp. nov., Cryobacterium glucosi sp. nov., Cryobacterium algoritolerans sp. nov., Cryobacterium mannosilyticum sp. nov., Cryobacterium adonitolivorans sp. nov., Cryobacterium algoricola sp. nov., Cryobacterium tagatosivorans sp. nov., and Cryobacterium glaciale sp. nov. Overall, the taxonomy and genomic analysis can improve our knowledge of phenotypic diversity, genetic diversity, and evolutionary characteristics of Cryobacterium.
Collapse
|
14
|
Chou JY, Hsu PC, Leu JY. Enforcement of Postzygotic Species Boundaries in the Fungal Kingdom. Microbiol Mol Biol Rev 2022; 86:e0009822. [PMID: 36098649 PMCID: PMC9769731 DOI: 10.1128/mmbr.00098-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Understanding the molecular basis of speciation is a primary goal in evolutionary biology. The formation of the postzygotic reproductive isolation that causes hybrid dysfunction, thereby reducing gene flow between diverging populations, is crucial for speciation. Using various advanced approaches, including chromosome replacement, hybrid introgression and transcriptomics, population genomics, and experimental evolution, scientists have revealed multiple mechanisms involved in postzygotic barriers in the fungal kingdom. These results illuminate both unique and general features of fungal speciation. Our review summarizes experiments on fungi exploring how Dobzhansky-Muller incompatibility, killer meiotic drive, chromosome rearrangements, and antirecombination contribute to postzygotic reproductive isolation. We also discuss possible evolutionary forces underlying different reproductive isolation mechanisms and the potential roles of the evolutionary arms race under the Red Queen hypothesis and epigenetic divergence in speciation.
Collapse
Affiliation(s)
- Jui-Yu Chou
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Po-Chen Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
15
|
Bazzicalupo A. Local adaptation in fungi. FEMS Microbiol Rev 2022; 46:6604384. [PMID: 35675293 DOI: 10.1093/femsre/fuac026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 01/09/2023] Open
Abstract
In this review, I explore the pervasive but underappreciated role of local adaptation in fungi. It has been difficult historically to study local adaptation in fungi because of the limited understanding of fungal species and their traits, but new hope has been offered with technological advances in sequencing. The filamentous nature of fungi invalidates some assumptions made in evolution because of their ability to exist as multinucleate entities with genetically different nuclei sharing the same cytoplasm. Many insights on local adaptation have come from studying fungi, and much of the empirical evidence gathered about local adaptation in the context of host-pathogen interactions comes from studying fungal virulence genes, drug resistance, and environmental adaptation. Together, these insights paint a picture of the variety of processes involved in fungal local adaptation and their connections to the unusual cell biology of Fungi (multinucleate, filamentous habit), but there is much that remains unknown, with major gaps in our knowledge of fungal species, their phenotypes, and the ways by which they adapt to local conditions.
Collapse
Affiliation(s)
- Anna Bazzicalupo
- Department of Zoology, University of British Columbia, 4200 - 6270 University Blvd., Vancouver V6T 1Z4, Canada
| |
Collapse
|
16
|
Maphosa MN, Steenkamp ET, Kanzi AM, van Wyk S, De Vos L, Santana QC, Duong TA, Wingfield BD. Intra-Species Genomic Variation in the Pine Pathogen Fusarium circinatum. J Fungi (Basel) 2022; 8:jof8070657. [PMID: 35887414 PMCID: PMC9316270 DOI: 10.3390/jof8070657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
Fusarium circinatum is an important global pathogen of pine trees. Genome plasticity has been observed in different isolates of the fungus, but no genome comparisons are available. To address this gap, we sequenced and assembled to chromosome level five isolates of F. circinatum. These genomes were analysed together with previously published genomes of F. circinatum isolates, FSP34 and KS17. Multi-sample variant calling identified a total of 461,683 micro variants (SNPs and small indels) and a total of 1828 macro structural variants of which 1717 were copy number variants and 111 were inversions. The variant density was higher on the sub-telomeric regions of chromosomes. Variant annotation revealed that genes involved in transcription, transport, metabolism and transmembrane proteins were overrepresented in gene sets that were affected by high impact variants. A core genome representing genomic elements that were conserved in all the isolates and a non-redundant pangenome representing all genomic elements is presented. Whole genome alignments showed that an average of 93% of the genomic elements were present in all isolates. The results of this study reveal that some genomic elements are not conserved within the isolates and some variants are high impact. The described genome-scale variations will help to inform novel disease management strategies against the pathogen.
Collapse
|
17
|
Phenotype to genotype in Neurospora crassa: Association of the scumbo phenotype with mutations in the gene encoding ceramide C9-methyltransferase. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100117. [PMID: 35909622 PMCID: PMC9325734 DOI: 10.1016/j.crmicr.2022.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
18
|
Sønstebø JH, Trucchi E, Nordén J, Skrede I, Miettinen O, Haridas S, Pangilinan J, Grigoriev IV, Martin F, Kauserud H, Maurice S. Population genomics of a forest fungus reveals high gene flow and climate adaptation signatures. Mol Ecol 2022; 31:1963-1979. [PMID: 35076968 DOI: 10.1111/mec.16369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/30/2022]
Abstract
Genome sequencing of spatially distributed individuals sheds light on how evolution structures genetic variation. Populations of Phellopilus nigrolimitatus, a red-listed wood-inhabiting fungus associated with old-growth coniferous forests, have decreased in size over the last century due to a loss of suitable habitats. We assessed the population genetic structure and investigated local adaptation in P. nigrolimitatus, by establishing a reference genome and genotyping 327 individuals sampled from 24 locations in Northern Europe by RAD sequencing. We revealed a shallow population genetic structure, indicating large historical population sizes and high levels of gene flow. Despite this weak sub-structuring, two genetic groups were recognized; a western group distributed mostly in Norway and an eastern group covering most of Finland, Poland and Russia. This sub-structuring may reflect co-immigration with the main host, Norway spruce (Picea abies), into Northern Europe after the last ice age. We found evidence of low levels of genetic diversity in southwestern Finland, which has a long history of intensive forestry and urbanization. Numerous loci were significantly associated with one or more environmental factors, indicating adaptation to specific environments. These loci clustered into two groups with different associations with temperature and precipitation. Overall, our findings indicate that the current population genetic structure of P. nigrolimitatus results from a combination of gene flow, genetic drift and selection. The acquisition of similar knowledge especially over broad geographic scales, linking signatures of adaptive genetic variation to evolutionary processes and environmental variation, for other fungal species will undoubtedly be useful for assessment of the combined effects of habitat fragmentation and climate change on fungi strongly bound to old-growth forests.
Collapse
Affiliation(s)
- Jørn Henrik Sønstebø
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| | - Emiliano Trucchi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131, Ancona, Italy
| | - Jenni Nordén
- Norwegian Institute for Nature Research, Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Inger Skrede
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| | - Otto Miettinen
- Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, FI-00014, Finland
| | - Sajeet Haridas
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Francis Martin
- Université de Lorraine, INRAE, UMR 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, INRAE GrandEst-Nancy, 54280, Champenoux, France
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| | - Sundy Maurice
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| |
Collapse
|
19
|
Wu Q, Wang Y, Liu LN, Shi K, Li CY. Comparative Genomics and Gene Pool Analysis Reveal the Decrease of Genome Diversity and Gene Number in Rice Blast Fungi by Stable Adaption with Rice. J Fungi (Basel) 2021; 8:jof8010005. [PMID: 35049945 PMCID: PMC8778285 DOI: 10.3390/jof8010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Magnaporthe oryzae caused huge losses in rice and wheat production worldwide. Comparing to long-term co-evolution history with rice, wheat-infecting isolates were new-emerging. To reveal the genetic differences between rice and wheat blast on global genomic scale, 109 whole-genome sequences of M. oryzae from rice, wheat, and other hosts were reanalyzed in this study. We found that the rice lineage had gone through stronger selective sweep and fewer conserved genes than those of Triticum and Lolium lineages, which indicated that rice blast fungi adapted to rice by gene loss and rapid evolution of specific loci. Furthermore, 228 genes associated with host adaptation of M. oryzae were found by presence/absence variation (PAV) analyses. The functional annotation of these genes found that the fine turning of genes gain/loss involved with transport and transcription factor, thiol metabolism, and nucleotide metabolism respectively are major mechanisms for rice adaption. This result implies that genetic base of specific host plant may lead to gene gain/loss variation of pathogens, so as to enhance their adaptability to host. Further characterization of these specific loci and their roles in adaption and evaluation of the fungi may eventually lead to understanding of interaction mechanism and develop new strategies of the disease management.
Collapse
Affiliation(s)
- Qi Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Q.W.); (Y.W.); (L.-N.L.)
- College of Science, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Organic Tea Industry Intelligent Engineering Research Center, Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Q.W.); (Y.W.); (L.-N.L.)
| | - Li-Na Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Q.W.); (Y.W.); (L.-N.L.)
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650201, China
| | - Kai Shi
- School of Foreign Language, Yunnan Agricultural University, Kunming 650201, China;
| | - Cheng-Yun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Q.W.); (Y.W.); (L.-N.L.)
- Correspondence:
| |
Collapse
|
20
|
Persoons A, Maupetit A, Louet C, Andrieux A, Lipzen A, Barry KW, Na H, Adam C, Grigoriev IV, Segura V, Duplessis S, Frey P, Halkett F, De Mita S. Genomic signatures of a major adaptive event in the pathogenic fungus Melampsora larici-populina. Genome Biol Evol 2021; 14:6468622. [PMID: 34919678 PMCID: PMC8755504 DOI: 10.1093/gbe/evab279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 11/14/2022] Open
Abstract
The recent availability of genome-wide sequencing techniques has allowed systematic screening for molecular signatures of adaptation, including in nonmodel organisms. Host–pathogen interactions constitute good models due to the strong selective pressures that they entail. We focused on an adaptive event which affected the poplar rust fungus Melampsora larici-populina when it overcame a resistance gene borne by its host, cultivated poplar. Based on 76 virulent and avirulent isolates framing narrowly the estimated date of the adaptive event, we examined the molecular signatures of selection. Using an array of genome scan methods based on different features of nucleotide diversity, we detected a single locus exhibiting a consistent pattern suggestive of a selective sweep in virulent individuals (excess of differentiation between virulent and avirulent samples, linkage disequilibrium, genotype–phenotype statistical association, and long-range haplotypes). Our study pinpoints a single gene and further a single amino acid replacement which may have allowed the adaptive event. Although our samples are nearly contemporary to the selective sweep, it does not seem to have affected genome diversity further than the immediate vicinity of the causal locus, which can be explained by a soft selective sweep (where selection acts on standing variation) and by the impact of recombination in mitigating the impact of selection. Therefore, it seems that properties of the life cycle of M. larici-populina, which entails both high genetic diversity and outbreeding, has facilitated its adaptation.
Collapse
Affiliation(s)
| | - Agathe Maupetit
- Université de Lorraine,INRAE, IAM, Nancy, France.,Physiology and Biotechnology of Algae Laboratory,IFREMER, Nantes, France
| | | | | | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Kerrie W Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Hyunsoo Na
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Catherine Adam
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Vincent Segura
- BioForA,INRAE, ONF, Orléans, France.,UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | | | - Pascal Frey
- Université de Lorraine,INRAE, IAM, Nancy, France
| | | | - Stéphane De Mita
- Université de Lorraine,INRAE, IAM, Nancy, France.,PHIM, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
21
|
Grace CA, Forrester S, Silva VC, Carvalho KSS, Kilford H, Chew YP, James S, Costa DL, Mottram JC, Costa CCHN, Jeffares DC. Candidates for Balancing Selection in Leishmania donovani Complex Parasites. Genome Biol Evol 2021; 13:6448231. [PMID: 34865011 PMCID: PMC8717319 DOI: 10.1093/gbe/evab265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/19/2022] Open
Abstract
The Leishmania donovani species complex is the causative agent of visceral leishmaniasis, which cause 20–40,000 fatalities a year. Here, we conduct a screen for balancing selection in this species complex. We used 384 publicly available L. donovani and L. infantum genomes, and sequence 93 isolates of L. infantum from Brazil to describe the global diversity of this species complex. We identify five genetically distinct populations that are sufficiently represented by genomic data to search for signatures of selection. We find that signals of balancing selection are generally not shared between populations, consistent with transient adaptive events, rather than long-term balancing selection. We then apply multiple diversity metrics to identify candidate genes with robust signatures of balancing selection, identifying a curated set of 24 genes with robust signatures. These include zeta toxin, nodulin-like, and flagellum attachment proteins. This study highlights the extent of genetic divergence between L. donovani complex parasites and provides genes for further study.
Collapse
Affiliation(s)
- Cooper Alastair Grace
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Sarah Forrester
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Vladimir Costa Silva
- Instituto de Doenças do Sertão, Instituto de Doenças Tropicais Natan Portella, Centro de Ciências da Saúde da Universidade Federal do Piauí, Teresina-PI, Brazil
| | - Kátia Silene Sousa Carvalho
- Instituto de Doenças do Sertão, Instituto de Doenças Tropicais Natan Portella, Centro de Ciências da Saúde da Universidade Federal do Piauí, Teresina-PI, Brazil
| | - Hannah Kilford
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Yen Peng Chew
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom.,Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sally James
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Dorcas L Costa
- Instituto de Doenças do Sertão, Instituto de Doenças Tropicais Natan Portella, Centro de Ciências da Saúde da Universidade Federal do Piauí, Teresina-PI, Brazil
| | - Jeremy C Mottram
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Carlos C H N Costa
- Instituto de Doenças do Sertão, Instituto de Doenças Tropicais Natan Portella, Centro de Ciências da Saúde da Universidade Federal do Piauí, Teresina-PI, Brazil
| | - Daniel C Jeffares
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
22
|
Yuan Z, Druzhinina IS, Gibbons JG, Zhong Z, Van de Peer Y, Rodriguez RJ, Liu Z, Wang X, Wei H, Wu Q, Wang J, Shi G, Cai F, Peng L, Martin FM. Divergence of a genomic island leads to the evolution of melanization in a halophyte root fungus. THE ISME JOURNAL 2021; 15:3468-3479. [PMID: 34108667 PMCID: PMC8629976 DOI: 10.1038/s41396-021-01023-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/09/2021] [Accepted: 05/24/2021] [Indexed: 02/05/2023]
Abstract
Understanding how organisms adapt to extreme living conditions is central to evolutionary biology. Dark septate endophytes (DSEs) constitute an important component of the root mycobiome and they are often able to alleviate host abiotic stresses. Here, we investigated the molecular mechanisms underlying the beneficial association between the DSE Laburnicola rhizohalophila and its host, the native halophyte Suaeda salsa, using population genomics. Based on genome-wide Fst (pairwise fixation index) and Vst analyses, which compared the variance in allele frequencies of single-nucleotide polymorphisms (SNPs) and copy number variants (CNVs), respectively, we found a high level of genetic differentiation between two populations. CNV patterns revealed population-specific expansions and contractions. Interestingly, we identified a ~20 kbp genomic island of high divergence with a strong sign of positive selection. This region contains a melanin-biosynthetic polyketide synthase gene cluster linked to six additional genes likely involved in biosynthesis, membrane trafficking, regulation, and localization of melanin. Differences in growth yield and melanin biosynthesis between the two populations grown under 2% NaCl stress suggested that this genomic island contributes to the observed differences in melanin accumulation. Our findings provide a better understanding of the genetic and evolutionary mechanisms underlying the adaptation to saline conditions of the L. rhizohalophila-S. salsa symbiosis.
Collapse
Affiliation(s)
- Zhilin Yuan
- grid.216566.00000 0001 2104 9346State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China ,grid.216566.00000 0001 2104 9346Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Irina S. Druzhinina
- grid.27871.3b0000 0000 9750 7019Fungal Genomics Laboratory (FungiG), College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - John G. Gibbons
- grid.266683.f0000 0001 2166 5835Department of Food Science, University of Massachusetts, Amherst, MA USA
| | - Zhenhui Zhong
- grid.256111.00000 0004 1760 2876State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China ,grid.19006.3e0000 0000 9632 6718Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA USA
| | - Yves Van de Peer
- grid.5342.00000 0001 2069 7798Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium ,grid.511033.5VIB Center for Plant Systems Biology, Ghent, Belgium ,grid.49697.350000 0001 2107 2298Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa
| | - Russell J. Rodriguez
- grid.34477.330000000122986657Adaptive Symbiotic Technologies, University of Washington, Seattle, WA USA
| | - Zhongjian Liu
- grid.256111.00000 0004 1760 2876Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinyu Wang
- grid.216566.00000 0001 2104 9346Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Huanshen Wei
- grid.216566.00000 0001 2104 9346State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China ,grid.216566.00000 0001 2104 9346Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Qi Wu
- grid.9227.e0000000119573309State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jieyu Wang
- grid.9227.e0000000119573309Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guohui Shi
- grid.9227.e0000000119573309State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feng Cai
- grid.27871.3b0000 0000 9750 7019Fungal Genomics Laboratory (FungiG), College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Long Peng
- grid.216566.00000 0001 2104 9346State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China ,grid.216566.00000 0001 2104 9346Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Francis M. Martin
- grid.66741.320000 0001 1456 856XBeijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China ,grid.29172.3f0000 0001 2194 6418Université de Lorraine, INRAE, UMR Interactions Arbres/Micro-Organismes, Centre INRAE Grand Est Nancy, Champenoux, France
| |
Collapse
|
23
|
Fischer MS, Stark FG, Berry TD, Zeba N, Whitman T, Traxler MF. Pyrolyzed Substrates Induce Aromatic Compound Metabolism in the Post-fire Fungus, Pyronema domesticum. Front Microbiol 2021; 12:729289. [PMID: 34777277 PMCID: PMC8579045 DOI: 10.3389/fmicb.2021.729289] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022] Open
Abstract
Wildfires represent a fundamental and profound disturbance in many ecosystems, and their frequency and severity are increasing in many regions of the world. Fire affects soil by removing carbon in the form of CO2 and transforming remaining surface carbon into pyrolyzed organic matter (PyOM). Fires also generate substantial necromass at depths where the heat kills soil organisms but does not catalyze the formation of PyOM. Pyronema species strongly dominate soil fungal communities within weeks to months after fire. However, the carbon pool (i.e., necromass or PyOM) that fuels their rise in abundance is unknown. We used a Pyronema domesticum isolate from the catastrophic 2013 Rim Fire (CA, United States) to ask whether P. domesticum is capable of metabolizing PyOM. Pyronema domesticum grew readily on agar media where the sole carbon source was PyOM (specifically, pine wood PyOM produced at 750°C). Using RNAseq, we investigated the response of P. domesticum to PyOM and observed a comprehensive induction of genes involved in the metabolism and mineralization of aromatic compounds, typical of those found in PyOM. Lastly, we used 13C-labeled 750°C PyOM to demonstrate that P. domesticum is capable of mineralizing PyOM to CO2. Collectively, our results indicate a robust potential for P. domesticum to liberate carbon from PyOM in post-fire ecosystems and return it to the bioavailable carbon pool.
Collapse
Affiliation(s)
- Monika S. Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Frances Grace Stark
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Timothy D. Berry
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Nayela Zeba
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Thea Whitman
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Matthew F. Traxler
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
24
|
Xiao H, Vierling MM, Kennedy RF, Boone EC, Decker LM, Sy VT, Haynes JB, Williams MA, Shiu PKT. Involvement of RNA granule proteins in meiotic silencing by unpaired DNA. G3 (BETHESDA, MD.) 2021; 11:jkab179. [PMID: 34568932 PMCID: PMC8482848 DOI: 10.1093/g3journal/jkab179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/13/2021] [Indexed: 11/14/2022]
Abstract
In Neurospora crassa, expression from an unpaired gene is suppressed by a mechanism known as meiotic silencing by unpaired DNA (MSUD). MSUD utilizes common RNA interference (RNAi) factors to silence target mRNAs. Here, we report that Neurospora CAR-1 and CGH-1, homologs of two Caenorhabditis elegans RNA granule components, are involved in MSUD. These fungal proteins are found in the perinuclear region and P-bodies, much like their worm counterparts. They interact with components of the meiotic silencing complex (MSC), including the SMS-2 Argonaute. This is the first time MSUD has been linked to RNA granule proteins.
Collapse
Affiliation(s)
- Hua Xiao
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Michael M Vierling
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Rana F Kennedy
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Erin C Boone
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Logan M Decker
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Victor T Sy
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jackson B Haynes
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Michelle A Williams
- Present address: Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Patrick K T Shiu
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
25
|
Zhang J, Shen N, Li C, Xiang X, Liu G, Gui Y, Patev S, Hibbett DS, Barry K, Andreopoulos W, Lipzen A, Riley R, He G, Yan M, Grigoriev IV, Shan Kwan H, Kit Cheung M, Bian Y, Xiao Y. Population genomics provides insights into the genetic basis of adaptive evolution in the mushroom-forming fungus Lentinula edodes. J Adv Res 2021; 38:91-106. [PMID: 35572413 PMCID: PMC9091725 DOI: 10.1016/j.jare.2021.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 02/08/2023] Open
Abstract
We detected three subgroups of L. edodes with robust phenotypic differentiation. The three subgroups were diverged 36,871 generations ago. L. edodes cultivars in China might originate from the vicinity of Northeast China. We dissected the genetic basis of adaptive evolution in L. edodes. Genes related to fruiting body development are involved in adaptive evolution.
Introduction Mushroom-forming fungi comprise diverse species that develop complex multicellular structures. In cultivated species, both ecological adaptation and artificial selection have driven genome evolution. However, little is known about the connections among genotype, phenotype and adaptation in mushroom-forming fungi. Objectives This study aimed to (1) uncover the population structure and demographic history of Lentinula edodes, (2) dissect the genetic basis of adaptive evolution in L. edodes, and (3) determine if genes related to fruiting body development are involved in adaptive evolution. Methods We analyzed genomes and fruiting body-related traits (FBRTs) in 133 L. edodes strains and conducted RNA-seq analysis of fruiting body development in the YS69 strain. Combined methods of genomic scan for divergence, genome-wide association studies (GWAS), and RNA-seq were used to dissect the genetic basis of adaptive evolution. Results We detected three distinct subgroups of L. edodes via single nucleotide polymorphisms, which showed robust phenotypic and temperature response differentiation and correlation with geographical distribution. Demographic history inference suggests that the subgroups diverged 36,871 generations ago. Moreover, L. edodes cultivars in China may have originated from the vicinity of Northeast China. A total of 942 genes were found to be related to genetic divergence by genomic scan, and 719 genes were identified to be candidates underlying FBRTs by GWAS. Integrating results of genomic scan and GWAS, 80 genes were detected to be related to phenotypic differentiation. A total of 364 genes related to fruiting body development were involved in genetic divergence and phenotypic differentiation. Conclusion Adaptation to the local environment, especially temperature, triggered genetic divergence and phenotypic differentiation of L. edodes. A general model for genetic divergence and phenotypic differentiation during adaptive evolution in L. edodes, which involves in signal perception and transduction, transcriptional regulation, and fruiting body morphogenesis, was also integrated here.
Collapse
|
26
|
Skrede I, Murat C, Hess J, Maurice S, Sønstebø JH, Kohler A, Barry-Etienne D, Eastwood D, Högberg N, Martin F, Kauserud H. Contrasting demographic histories revealed in two invasive populations of the dry rot fungus Serpula lacrymans. Mol Ecol 2021; 30:2772-2789. [PMID: 33955084 DOI: 10.1111/mec.15934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/21/2022]
Abstract
Globalization and international trade have impacted organisms around the world leading to a considerable number of species establishing in new geographic areas. Many organisms have taken advantage of human-made environments, including buildings. One such species is the dry rot fungus Serpula lacrymans, which is the most aggressive wood-decay fungus in indoor environments in temperate regions. Using population genomic analyses of 36 full genome sequenced isolates, we demonstrated that European and Japanese isolates are highly divergent and the populations split 3000-19,000 generations ago, probably predating human influence. Approximately 250 generations ago, the European population went through a tight bottleneck, probably corresponding to the fungus colonization of the built environment in Europe. The demographic history of these populations, probably lead to low adaptive potential. Only two loci under selection were identified using a Fst outlier approach, and selective sweep analyses identified three loci with extended haplotype homozygosity. The selective sweep analyses found signals in genes possibly related to decay of various substrates in Japan and in genes involved DNA replication and protein modification in Europe. Our results suggest that the dry rot fungus independently established in indoor environments in Europe and Japan and that invasive species can potentially establish large populations in new habitats based on a few colonizing individuals.
Collapse
Affiliation(s)
- Inger Skrede
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Claude Murat
- INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE-GrandEst Lorraine, Université de Lorraine, Champenoux, France
| | - Jaqueline Hess
- Department of Biosciences, University of Oslo, Oslo, Norway.,University of Vienna, Vienna, Austria
| | - Sundy Maurice
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Annegret Kohler
- INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE-GrandEst Lorraine, Université de Lorraine, Champenoux, France
| | | | - Dan Eastwood
- Department of Biosciences, University of Swansea, Swansea, UK
| | - Nils Högberg
- Department of Forest Mycology and Plant Pathology, Swedish Agricultural University, Uppsala, Sweden
| | - Francis Martin
- INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE-GrandEst Lorraine, Université de Lorraine, Champenoux, France.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Institute of Microbiology, Beijing Forestry University, Beijing, China
| | | |
Collapse
|
27
|
RNA sequencing describes both population structure and plasticity-selection dynamics in a non-model fish. BMC Genomics 2021; 22:273. [PMID: 33858341 PMCID: PMC8048188 DOI: 10.1186/s12864-021-07592-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/05/2021] [Indexed: 01/03/2023] Open
Abstract
Background Messenger RNA sequencing is becoming more common in studies of non-model species and is most often used for gene expression-based investigations. However, the method holds potential for numerous other applications as well—including analyses of alternative splicing, population structure, and signatures of selection. To maximize the utility of mRNA data sets, distinct analyses may be combined such as by exploring dynamics between gene expression with signatures of selection in the context of population structure. Here, we compare two published data sets describing two populations of a minnow species endemic to the San Francisco Estuary (Sacramento splittail, Pogonichthys macrolepidotus): a microsatellite data set showing population structure, and an mRNA whole transcriptome data set obtained after the two populations were exposed to a salinity challenge. We compared measures of population structure and genetic variation using single nucleotide polymorphisms (SNPs) called from mRNA from the whole transcriptome sequencing study with those patterns determined from microsatellites. For investigating plasticity and evolution, intra- and inter-population transcriptome plasticity was investigated with differential gene expression, differential exon usage, and gene expression variation. Outlier SNP analysis was also performed on the mRNA data set and signatures of selection and phenotypic plasticity were investigated on an individual-gene basis. Results We found that mRNA sequencing revealed patterns of population structure consistent with those found with microsatellites, but with lower magnitudes of genetic variation and population differentiation consistent with widespread purifying selection expected when using mRNA. In addition, within individual genes, phenotypic plasticity or signatures of selection were found in almost mutual exclusion (except heatr6, nfu1, slc22a6, sya, and mmp13). Conclusions These results show that an mRNA sequencing data set may have multiple uses, including describing population structure and for investigating the mechanistic interplay of evolution and plasticity in adaptation. MRNA sequencing thus complements traditional sequencing methods used for population genetics, in addition to its utility for describing phenotypic plasticity. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07592-4.
Collapse
|
28
|
LaBella AL, Opulente DA, Steenwyk JL, Hittinger CT, Rokas A. Signatures of optimal codon usage in metabolic genes inform budding yeast ecology. PLoS Biol 2021; 19:e3001185. [PMID: 33872297 PMCID: PMC8084343 DOI: 10.1371/journal.pbio.3001185] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 04/29/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Reverse ecology is the inference of ecological information from patterns of genomic variation. One rich, heretofore underutilized, source of ecologically relevant genomic information is codon optimality or adaptation. Bias toward codons that match the tRNA pool is robustly associated with high gene expression in diverse organisms, suggesting that codon optimization could be used in a reverse ecology framework to identify highly expressed, ecologically relevant genes. To test this hypothesis, we examined the relationship between optimal codon usage in the classic galactose metabolism (GAL) pathway and known ecological niches for 329 species of budding yeasts, a diverse subphylum of fungi. We find that optimal codon usage in the GAL pathway is positively correlated with quantitative growth on galactose, suggesting that GAL codon optimization reflects increased capacity to grow on galactose. Optimal codon usage in the GAL pathway is also positively correlated with human-associated ecological niches in yeasts of the CUG-Ser1 clade and with dairy-associated ecological niches in the family Saccharomycetaceae. For example, optimal codon usage of GAL genes is greater than 85% of all genes in the genome of the major human pathogen Candida albicans (CUG-Ser1 clade) and greater than 75% of genes in the genome of the dairy yeast Kluyveromyces lactis (family Saccharomycetaceae). We further find a correlation between optimization in the GALactose pathway genes and several genes associated with nutrient sensing and metabolism. This work suggests that codon optimization harbors information about the metabolic ecology of microbial eukaryotes. This information may be particularly useful for studying fungal dark matter-species that have yet to be cultured in the lab or have only been identified by genomic material.
Collapse
Affiliation(s)
- Abigail Leavitt LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Dana A. Opulente
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
29
|
Kemler M, Wingfield M, Cowan D, Slippers B. Foliar fungi of the enigmatic desert plant Welwitschia mirabilis show little adaptation to their unique host plant. S AFR J SCI 2021. [DOI: 10.17159/sajs.2021/7666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Foliar fungi, especially endophytic fungi, constitute an important part of the microbiome of plants. Yet little is known about the composition of these communities. In this study, we isolated fungi from leaf tissues of the desert plant Welwitschia mirabilis to determine the culturable diversity of the foliar fungal community. The isolated fungal taxa, which grouped into 17 distinct lineages, were identified by sequencing elongation factor 1 alpha, beta tubulin 1, beta tubulin 2 and the internal transcribed spacer region. The culturable community was mainly composed of cosmopolitan fungal genera despite the unique taxonomic position of the plant and its geographic isolation. To test for endemism in two of the common fungal genera, Alternaria and Aureobasidium, we built haplotype networks using a global data set. Even this broad data set showed little evidence for specialisation within this unique host or its geographical location. The data suggest that the culturable members of communities of leaf-associated fungi in habitats with little plant coverage, such as the Namib Desert, are mainly established by long-distance aerially distributed fungal inocula and few of these taxa co-evolve with the host within the habitat.
Collapse
Affiliation(s)
- Martin Kemler
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- AG Geobotanik, Ruhr University Bochum, Bochum, Germany
| | - Michael Wingfield
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Don Cowan
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
30
|
Moorhouse AJ, Moreno-Lopez R, Gow NAR, Hijazi K. Clonal evolution of Candida albicans, Candida glabrata and Candida dubliniensis at oral niche level in health and disease. J Oral Microbiol 2021; 13:1894047. [PMID: 33796227 PMCID: PMC7971237 DOI: 10.1080/20002297.2021.1894047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background:Candida species have long been recognised as aetiological agents of opportunistic infections of the oral mucosa, and more recently, as players of polymicrobial interactions driving caries, periodontitis and oral carcinogenesis. Methods: We studied the clonal structure of Candida spp. at oral niche resolution in patients (n = 20) with a range of oral health profiles over 22 months. Colonies from oral micro-environments were examined with multilocus sequencing typing. Results:Candida spp. identified were C. albicans, C. glabrata and C. dubliniensis. Increased propensity for micro-variations giving rise to multiple diploid strain types (DST), as a result of loss of heterozygosity, was observed among C. albicans clade 1 isolates compared to other clades. Micro-variations among isolates were also observed in C. dubliniensis contra to expectations of stable population structures for this species. Multiple sequence types were retrieved from patients without clinical evidence of oral candidosis, while single sequence types were isolated from oral candidosis patients. Conclusion: This is the first study to describe the clonal population structure, persistence and stability of Candida spp. at oral niche level. Future research investigating links between Candida spp. clonality and oral disease should recognise the propensity to micro-variations amongst oral niches in C. albicans and C. dubliniensis identified here.
Collapse
Affiliation(s)
- Alexander J Moorhouse
- Institute of Medical Sciences, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK.,School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Rosa Moreno-Lopez
- Institute of Dentistry, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Neil A R Gow
- Institute of Medical Sciences, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK.,Medical Research Council Centre for Medical Mycology at The University of Exeter, University of Exeter, UK
| | - Karolin Hijazi
- Institute of Medical Sciences, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK.,Institute of Dentistry, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK
| |
Collapse
|
31
|
Gladieux P, De Bellis F, Hann-Soden C, Svedberg J, Johannesson H, Taylor JW. Neurospora from Natural Populations: Population Genomics Insights into the Life History of a Model Microbial Eukaryote. Methods Mol Biol 2021; 2090:313-336. [PMID: 31975173 DOI: 10.1007/978-1-0716-0199-0_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The ascomycete filamentous fungus Neurospora crassa played a historic role in experimental biology and became a model system for genetic research. Stimulated by a systematic effort to collect wild strains initiated by Stanford geneticist David Perkins, the genus Neurospora has also become a basic model for the study of evolutionary processes, speciation, and population biology. In this chapter, we will first trace the history that brought Neurospora into the era of population genomics. We will then cover the major contributions of population genomic investigations using Neurospora to our understanding of microbial biogeography and speciation, and review recent work using population genomics and genome-wide association mapping that illustrates the unique potential of Neurospora as a model for identifying the genetic basis of (potentially adaptive) phenotypes in filamentous fungi. The advent of population genomics has contributed to firmly establish Neurospora as a complete model system and we hope our review will entice biologists to include Neurospora in their research.
Collapse
Affiliation(s)
- Pierre Gladieux
- UMR BGPI, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.
| | - Fabien De Bellis
- UMR AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Christopher Hann-Soden
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Jesper Svedberg
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Hanna Johannesson
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - John W Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
32
|
Fumero MV, Yue W, Chiotta ML, Chulze SN, Leslie JF, Toomajian C. Divergence and Gene Flow Between Fusarium subglutinans and F. temperatum Isolated from Maize in Argentina. PHYTOPATHOLOGY 2021; 111:170-183. [PMID: 33079019 DOI: 10.1094/phyto-09-20-0434-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fusarium subglutinans and F. temperatum are two important fungal pathogens of maize whose distinctness as separate species has been difficult to assess. We isolated strains of these species from commercial and native maize varieties in Argentina and sequenced >28,000 loci to estimate genetic variation in the sample. Our objectives were to measure genetic divergence between the species, infer demographic parameters related to their split, and describe the population structure of the sample. When analyzed together, over 30% of each species' polymorphic sites (>2,500 sites) segregate as polymorphisms in the other. Demographic modeling confirmed the species split predated maize domestication, but subsequent between-species gene flow has occurred, with gene flow from F. subglutinans into F. temperatum greater than gene flow in the reverse direction. In F. subglutinans, little evidence exists for substructure or recent selective sweeps, but there is evidence for limited sexual reproduction. In F. temperatum, there is clear evidence for population substructure and signals of abundant recent selective sweeps, with sexual reproduction probably less common than in F. subglutinans. Both genetic variation and the relative number of polymorphisms shared between species increase near the telomeres of all 12 chromosomes, where genes related to plant-pathogen interactions often are located. Our results suggest that species boundaries between closely related Fusarium species can be semipermeable and merit further study. Such semipermeability could facilitate unanticipated genetic exchange between species and enable quicker permanent responses to changes in the agro-ecosystem, e.g., pathogen-resistant host varieties, new chemical and biological control agents, and agronomic practices.
Collapse
Affiliation(s)
- M Veronica Fumero
- Research Institute on Mycology and Mycotoxicology (IMICO), National Scientific and Technical Research Council-National University of Río Cuarto (CONICET-UNRC), X5800, Río Cuarto, Córdoba, Argentina
| | - Wei Yue
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - María L Chiotta
- Research Institute on Mycology and Mycotoxicology (IMICO), National Scientific and Technical Research Council-National University of Río Cuarto (CONICET-UNRC), X5800, Río Cuarto, Córdoba, Argentina
| | - Sofía N Chulze
- Research Institute on Mycology and Mycotoxicology (IMICO), National Scientific and Technical Research Council-National University of Río Cuarto (CONICET-UNRC), X5800, Río Cuarto, Córdoba, Argentina
| | - John F Leslie
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | | |
Collapse
|
33
|
Kang Y, Yuan L, Shi X, Chu Y, He Z, Jia X, Lin Q, Ma Q, Wang J, Xiao J, Hu S, Gao Z, Chen F, Yu J. A fine-scale map of genome-wide recombination in divergent Escherichia coli population. Brief Bioinform 2020; 22:6034796. [PMID: 33319232 DOI: 10.1093/bib/bbaa335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 01/09/2023] Open
Abstract
Recombination is one of the most important molecular mechanisms of prokaryotic genome evolution, but its exact roles are still in debate. Here we try to infer genome-wide recombination within a species, utilizing a dataset of 149 complete genomes of Escherichia coli from diverse animal hosts and geographic origins, including 45 in-house sequenced with the single-molecular real-time platform. Two major clades identified based on physiological, clinical and ecological characteristics form distinct genetic lineages based on scarcity of interclade gene exchanges. By defining gene-based syntenies for genomic segments within and between the two clades, we build a fine-scale recombination map for this representative global E. coli population. The map suggests extensive within-clade recombination that often breaks physical linkages among individual genes but seldom interrupts the structure of genome organizational frameworks as well as primary metabolic portfolios supported by the framework integrity, possibly due to strong natural selection for both physiological compatibility and ecological fitness. In contrast, the between-clade recombination declines drastically when phylogenetic distance increases to the extent where a 10-fold reduction can be observed, establishing a firm genetic barrier between clades. Our empirical data suggest a critical role for such recombination events in the early stage of speciation where recombination rate is associated with phylogenetic distance in addition to sequence and gene variations. The extensive intraclade recombination binds sister strains into a quasisexual group and optimizes genes or alleles to streamline physiological activities, whereas the sharply declined interclade recombination split the population into clades adaptive to divergent ecological niches.
Collapse
Affiliation(s)
- Yu Kang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, PR China.,China National Center for Bioinformation, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Yuan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, PR China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Shi
- Department of Respiratory & Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, PR China
| | - Yanan Chu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, PR China.,China National Center for Bioinformation, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zilong He
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, 100191, PR China
| | - Xinmiao Jia
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Qiang Lin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qin Ma
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jian Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, PR China.,China National Center for Bioinformation, Beijing 100101, PR China
| | - Jingfa Xiao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, PR China.,China National Center for Bioinformation, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songnian Hu
- University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Zhancheng Gao
- Department of Respiratory & Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, PR China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, PR China.,China National Center for Bioinformation, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, PR China.,China National Center for Bioinformation, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Gene Copy Number Variation Does Not Reflect Structure or Environmental Selection in Two Recently Diverged California Populations of Suillus brevipes. G3 (BETHESDA, MD.) 2020; 10:4591-4597. [PMID: 33051263 PMCID: PMC7718732 DOI: 10.1534/g3.120.401735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gene copy number variation across individuals has been shown to track population structure and be a source of adaptive genetic variation with significant fitness impacts. In this study, we report opposite results for both predictions based on the analysis of gene copy number variants (CNVs) of Suillus brevipes, a mycorrhizal fungus adapted to coastal and montane habitats in California. In order to assess whether gene copy number variation mirrored population structure and selection in this species, we investigated two previously studied locally adapted populations showing a highly differentiated genomic region encompassing a gene predicted to confer salt tolerance. In addition, we examined whether copy number in the genes related to salt homeostasis was differentiated between the two populations. Although we found many instances of CNV regions across the genomes of S. brevipes individuals, we also found CNVs did not recover population structure and known salt-tolerance-related genes were not under selection across the coastal population. Our results contrast with predictions of CNVs matching single-nucleotide polymorphism divergence and showed CNVs of genes for salt homeostasis are not under selection in S. brevipes.
Collapse
|
35
|
Wild Isolates of Neurospora crassa Reveal Three Conidiophore Architectural Phenotypes. Microorganisms 2020; 8:microorganisms8111760. [PMID: 33182369 PMCID: PMC7695285 DOI: 10.3390/microorganisms8111760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/25/2022] Open
Abstract
The vegetative life cycle in the model filamentous fungus, Neurospora crassa, relies on the development of conidiophores to produce new spores. Environmental, temporal, and genetic components of conidiophore development have been well characterized; however, little is known about their morphological variation. We explored conidiophore architectural variation in a natural population using a wild population collection of 21 strains from Louisiana, United States of America (USA). Our work reveals three novel architectural phenotypes, Wild Type, Bulky, and Wrap, and shows their maintenance throughout the duration of conidiophore development. Furthermore, we present a novel image-classifier using a convolutional neural network specifically developed to assign conidiophore architectural phenotypes in a high-throughput manner. To estimate an inheritance model for this discrete complex trait, crosses between strains of each phenotype were conducted, and conidiophores of subsequent progeny were characterized using the trained classifier. Our model suggests that conidiophore architecture is controlled by at least two genes and has a heritability of 0.23. Additionally, we quantified the number of conidia produced by each conidiophore type and their dispersion distance, suggesting that conidiophore architectural phenotype may impact N. crassa colonization capacity.
Collapse
|
36
|
Honda S, Eusebio-Cope A, Miyashita S, Yokoyama A, Aulia A, Shahi S, Kondo H, Suzuki N. Establishment of Neurospora crassa as a model organism for fungal virology. Nat Commun 2020; 11:5627. [PMID: 33159072 PMCID: PMC7648066 DOI: 10.1038/s41467-020-19355-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/08/2020] [Indexed: 01/07/2023] Open
Abstract
The filamentous fungus Neurospora crassa is used as a model organism for genetics, developmental biology and molecular biology. Remarkably, it is not known to host or to be susceptible to infection with any viruses. Here, we identify diverse RNA viruses in N. crassa and other Neurospora species, and show that N. crassa supports the replication of these viruses as well as some viruses from other fungi. Several encapsidated double-stranded RNA viruses and capsid-less positive-sense single-stranded RNA viruses can be experimentally introduced into N. crassa protoplasts or spheroplasts. This allowed us to examine viral replication and RNAi-mediated antiviral responses in this organism. We show that viral infection upregulates the transcription of RNAi components, and that Dicer proteins (DCL-1, DCL-2) and an Argonaute (QDE-2) participate in suppression of viral replication. Our study thus establishes N. crassa as a model system for the study of host-virus interactions. The fungus Neurospora crassa is a model organism for the study of various biological processes, but it is not known to be infected by any viruses. Here, Honda et al. identify RNA viruses that infect N. crassa and examine viral replication and RNAi-mediated antiviral responses, thus establishing this fungus as a model for the study of host-virus interactions.
Collapse
Affiliation(s)
- Shinji Honda
- Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Ana Eusebio-Cope
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Shuhei Miyashita
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki-Aza- Aoba, Sendai, 980-0845, Japan
| | - Ayumi Yokoyama
- Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Annisa Aulia
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Sabitree Shahi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan.
| |
Collapse
|
37
|
Bazzicalupo AL, Ruytinx J, Ke Y, Coninx L, Colpaert JV, Nguyen NH, Vilgalys R, Branco S. Fungal heavy metal adaptation through single nucleotide polymorphisms and copy‐number variation. Mol Ecol 2020; 29:4157-4169. [DOI: 10.1111/mec.15618] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Anna L. Bazzicalupo
- Department of Microbiology and Immunology Montana State University Bozeman MT USA
| | - Joske Ruytinx
- Research Group of Microbiology Department of Bioengineering Sciences Vrije Universiteit Brussel Brussels Belgium
| | - Yi‐Hong Ke
- Biology Department Duke University Durham NC USA
| | - Laura Coninx
- Biology Department Centre for Environmental Sciences Hasselt University Diepenbeek Belgium
| | - Jan V. Colpaert
- Biology Department Centre for Environmental Sciences Hasselt University Diepenbeek Belgium
| | - Nhu H. Nguyen
- Department of Tropical Plant and Soil Sciences University of Hawai'i at Mānoa Honolulu HI USA
| | | | - Sara Branco
- Department of Integrative Biology University of Colorado Denver Denver CO USA
| |
Collapse
|
38
|
Thorstensen MJ, Jeffrey JD, Treberg JR, Watkinson DA, Enders EC, Jeffries KM. Genomic signals found using RNA sequencing show signatures of selection and subtle population differentiation in walleye ( Sander vitreus) in a large freshwater ecosystem. Ecol Evol 2020; 10:7173-7188. [PMID: 32760520 PMCID: PMC7391302 DOI: 10.1002/ece3.6418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/29/2022] Open
Abstract
RNA sequencing is an effective approach for studying aquatic species yielding both physiological and genomic data. However, its population genetic applications are not well-characterized. We investigate this possible role for RNA sequencing for population genomics in Lake Winnipeg, Manitoba, Canada, walleye (Sander vitreus). Lake Winnipeg walleye represent the largest component of the second-largest freshwater fishery in Canada. In the present study, large female walleye were sampled via nonlethal gill biopsy over two years at three spawning sites representing a latitudinal gradient in the lake. Genetic variation from sequenced mRNA was analyzed for neutral and adaptive markers to investigate population structure and possible adaptive variation. We find low population divergence (F ST = 0.0095), possible northward gene flow, and outlier loci that vary latitudinally in transcripts associated with cell membrane proteins and cytoskeletal function. These results indicate that Lake Winnipeg walleye may be effectively managed as a single demographically connected metapopulation with contributing subpopulations and suggest genomic differences possibly underlying observed phenotypic differences. Despite its high cost relative to other genotyping methods, RNA sequencing data can yield physiological in addition to genetic information discussed here. We therefore argue that it is useful for addressing diverse molecular questions in the conservation of freshwater species.
Collapse
Affiliation(s)
| | | | - Jason R. Treberg
- Department of Biological SciencesUniversity of ManitobaWinnipegMBCanada
| | | | - Eva C. Enders
- Freshwater Institute, Fisheries and Oceans CanadaWinnipegMBCanada
| | - Ken M. Jeffries
- Department of Biological SciencesUniversity of ManitobaWinnipegMBCanada
| |
Collapse
|
39
|
Verma A, Hughes DJ, Harwood DT, Suggett DJ, Ralph PJ, Murray SA. Functional significance of phylogeographic structure in a toxic benthic marine microbial eukaryote over a latitudinal gradient along the East Australian Current. Ecol Evol 2020; 10:6257-6273. [PMID: 32724512 PMCID: PMC7381561 DOI: 10.1002/ece3.6358] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/24/2020] [Accepted: 04/22/2020] [Indexed: 01/04/2023] Open
Abstract
Genetic diversity in marine microbial eukaryotic populations (protists) drives their ecological success by enabling diverse phenotypes to respond rapidly to changing environmental conditions. Despite enormous population sizes and lack of barriers to gene flow, genetic differentiation that is associated with geographic distance, currents, and environmental gradients has been reported from planktonic protists. However, for benthic protists, which have reduced dispersal opportunities, phylogeography and its phenotypic significance are little known. In recent years, the East Australian Current (EAC) has intensified its southward flow, associated with the tropicalization of temperate waters. Benthic harmful algal species have been increasingly found in south-eastern Australia. Yet little is known about the potential of these species to adapt or extend their range in relation to changing conditions. Here, we examine genetic diversity and functional niche divergence in a toxic benthic dinoflagellate, Ostreopsis cf. siamensis, along a 1,500 km north-south gradient in southeastern Australia. Sixty-eight strains were established from eight sampling sites. The study revealed long-standing genetic diversity among strains established from the northern-most sites, along with large phenotypic variation in observed physiological traits such as growth rates, cell volume, production of palytoxin-like compounds, and photophysiological parameters. Strains from the southern populations were more uniform in both genetic and functional traits, and have possibly colonized their habitats more recently. Our study reports significant genetic and functional trait variability in a benthic harmful algal species, indicative of high adaptability, and a possible climate-driven range extension. The observed high trait variation may facilitate development of harmful algal blooms under dynamic coastal environmental conditions.
Collapse
Affiliation(s)
- Arjun Verma
- Climate Change ClusterUniversity of Technology SydneyUltimoNSWAustralia
| | - David J. Hughes
- Climate Change ClusterUniversity of Technology SydneyUltimoNSWAustralia
| | | | - David J. Suggett
- Climate Change ClusterUniversity of Technology SydneyUltimoNSWAustralia
| | - Peter J. Ralph
- Climate Change ClusterUniversity of Technology SydneyUltimoNSWAustralia
| | - Shauna A. Murray
- Climate Change ClusterUniversity of Technology SydneyUltimoNSWAustralia
| |
Collapse
|
40
|
Sauer DB, Wang DN. Predicting the optimal growth temperatures of prokaryotes using only genome derived features. Bioinformatics 2020; 35:3224-3231. [PMID: 30689741 DOI: 10.1093/bioinformatics/btz059] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 12/20/2018] [Accepted: 01/22/2019] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Optimal growth temperature is a fundamental characteristic of all living organisms. Knowledge of this temperature is central to the study of a prokaryote, the thermal stability and temperature dependent activity of its genes, and the bioprospecting of its genome for thermally adapted proteins. While high throughput sequencing methods have dramatically increased the availability of genomic information, the growth temperatures of the source organisms are often unknown. This limits the study and technological application of these species and their genomes. Here, we present a novel method for the prediction of growth temperatures of prokaryotes using only genomic sequences. RESULTS By applying the reverse ecology principle that an organism's genome includes identifiable adaptations to its native environment, we can predict a species' optimal growth temperature with an accuracy of 5.17°C root-mean-square error and a coefficient of determination of 0.835. The accuracy can be further improved for specific taxonomic clades or by excluding psychrophiles. This method provides a valuable tool for the rapid calculation of organism growth temperature when only the genome sequence is known. AVAILABILITY AND IMPLEMENTATION Source code, genomes analyzed and features calculated are available at: https://github.com/DavidBSauer/OGT_prediction. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- David B Sauer
- Department of Cell Biology, and The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
| | - Da-Neng Wang
- Department of Cell Biology, and The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
41
|
Abstract
In the filamentous fungus Neurospora crassa, genes unpaired during meiosis are silenced by a process known as meiotic silencing by unpaired DNA (MSUD). MSUD utilizes common RNA interference (RNAi) proteins, such as Dicer and Argonaute, to target homologous mRNAs for silencing. Previously, we demonstrated that nuclear cap-binding proteins NCBP1 and NCBP2 are involved in MSUD. We report here that SAD-8, a protein similar to human NCBP3, also mediates silencing. Although SAD-8 is not essential for either vegetative or sexual development, it is required for MSUD. SAD-8 localizes predominantly in the nucleus and interacts with both NCBP1 and NCBP2. Similar to NCBP1 and NCBP2, SAD-8 interacts with a component (Argonaute) of the perinuclear meiotic silencing complex (MSC), further implicating the involvement of cap-binding proteins in silencing.
Collapse
|
42
|
Moghadam NN, Sidhu K, Summanen PAM, Ketola T, Kronholm I. Quantitative genetics of temperature performance curves of Neurospora crassa. Evolution 2020; 74:1772-1787. [PMID: 32432345 DOI: 10.1111/evo.14016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/06/2020] [Indexed: 01/17/2023]
Abstract
Earth's temperature is increasing due to anthropogenic CO 2 emissions; and organisms need either to adapt to higher temperatures, migrate into colder areas, or face extinction. Temperature affects nearly all aspects of an organism's physiology via its influence on metabolic rate and protein structure, therefore genetic adaptation to increased temperature may be much harder to achieve compared to other abiotic stresses. There is still much to be learned about the evolutionary potential for adaptation to higher temperatures, therefore we studied the quantitative genetics of growth rates in different temperatures that make up the thermal performance curve of the fungal model system Neurospora crassa. We studied the amount of genetic variation for thermal performance curves and examined possible genetic constraints by estimating the G-matrix. We observed a substantial amount of genetic variation for growth in different temperatures, and most genetic variation was for performance curve elevation. Contrary to common theoretical assumptions, we did not find strong evidence for genetic trade-offs for growth between hotter and colder temperatures. We also simulated short-term evolution of thermal performance curves of N. crassa, and suggest that they can have versatile responses to selection.
Collapse
Affiliation(s)
- Neda N Moghadam
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Karendeep Sidhu
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Pauliina A M Summanen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Tarmo Ketola
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Ilkka Kronholm
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| |
Collapse
|
43
|
Monteiro J, Videira A, Pereira F. Quantification of Neurospora crassa mitochondrial DNA using quantitative real-time PCR. Lett Appl Microbiol 2020; 71:171-178. [PMID: 32270506 DOI: 10.1111/lam.13294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/26/2020] [Accepted: 03/31/2020] [Indexed: 11/28/2022]
Abstract
The filamentous fungus Neurospora crassa is a popular model organism used in a wide range of biochemical and genetic studies and vastly used in mitochondrial research. Despite the relevance of mitochondria in N. crassa biology, no method for quantification of mitochondrial DNA (mtDNA) is currently available. Quantitative real-time PCR (qPCR) is a powerful tool, with a wide range of applications, and has been used for the quantification of nucleic acids in humans and a few other species. Here we present a new qPCR assay for relative quantification of N. crassa mtDNA. Three sets of qPCR primers targeting different regions of the mitochondrial genome were tested for mtDNA quantification. The qPCR was successfully validated in N. crassa strains from different geographical locations, representing the vast genetic diversity of this species, and knockout mutant strains. Moreover the assay proved to be efficient in templates with varied amounts of mitochondria, obtained through different DNA extraction methods. The qPCR performed well in all tested samples revealing a higher amount of mtDNA than nuclear DNA in all cases. This technique will facilitate the characterization of mtDNA of N. crassa in future studies and can be used as a tool to validate methods of mitochondria isolation. SIGNIFICANCE AND IMPACT OF THE STUDY: The standardization of quantitative real-time PCR (qPCR) techniques is essential to enable and facilitate future comparisons. Neurospora crassa is a model organism with a lot of potential in different fields of study. Here we use N. crassa to develop and establish an assay to quantify mitochondrial DNA using qPCR. We tested strains with different geographical background and our data demonstrated the usefulness of this assay to quantify mitochondrial DNA in N. crassa. This technique can be useful in a wide variety of applications and in different types of studies.
Collapse
Affiliation(s)
- J Monteiro
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Porto, Portugal.,ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - A Videira
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - F Pereira
- IDENTIFICA, Science and Technology Park of the University of Porto - UPTEC, Porto, Portugal
| |
Collapse
|
44
|
Simonsen AK, Barrett LG, Thrall PH, Prober SM. Novel model-based clustering reveals ecologically differentiated bacterial genomes across a large climate gradient. Ecol Lett 2019; 22:2077-2086. [PMID: 31612601 DOI: 10.1111/ele.13389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/28/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022]
Abstract
A pervasive challenge in microbial ecology is understanding the genetic level where ecological units can be differentiated. Ecological differentiation often occurs at fine genomic levels, yet it is unclear how to utilise ecological information to define ecotypes given the breadth of environmental variation among microbial taxa. Here, we present an analytical framework that infers clusters along genome-based microbial phylogenies according to shared environmental responses. The advantage of our approach is the ability to identify genomic clusters that best fit complex environmental information whilst characterising cluster niches through model predictions. We apply our method to determine climate-associated ecotypes in populations of nitrogen-fixing symbionts using whole genomes, explicitly sampled to detect climate differentiation across a heterogeneous landscape. Although soil and plant host characteristics strongly influence distribution patterns of inferred ecotypes, our flexible statistical method enabled us to identify climate-associated genomic clusters using environmental data, providing solid support for ecological specialisation in soil symbionts.
Collapse
Affiliation(s)
- Anna K Simonsen
- Research School of Biology, Australian National University, Acton, ACT, Australia.,Land and Water, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Luke G Barrett
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Peter H Thrall
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Suzanne M Prober
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| |
Collapse
|
45
|
Richards JK, Stukenbrock EH, Carpenter J, Liu Z, Cowger C, Faris JD, Friesen TL. Local adaptation drives the diversification of effectors in the fungal wheat pathogen Parastagonospora nodorum in the United States. PLoS Genet 2019; 15:e1008223. [PMID: 31626626 PMCID: PMC6821140 DOI: 10.1371/journal.pgen.1008223] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/30/2019] [Accepted: 08/25/2019] [Indexed: 12/22/2022] Open
Abstract
Filamentous fungi rapidly evolve in response to environmental selection pressures in part due to their genomic plasticity. Parastagonospora nodorum, a fungal pathogen of wheat and causal agent of septoria nodorum blotch, responds to selection pressure exerted by its host, influencing the gain, loss, or functional diversification of virulence determinants, known as effector genes. Whole genome resequencing of 197 P. nodorum isolates collected from spring, durum, and winter wheat production regions of the United States enabled the examination of effector diversity and genomic regions under selection specific to geographically discrete populations. 1,026,859 SNPs/InDels were used to identify novel loci, as well as SnToxA and SnTox3 as factors in disease. Genes displaying presence/absence variation, predicted effector genes, and genes localized on an accessory chromosome had significantly higher pN/pS ratios, indicating a higher rate of sequence evolution. Population structure analyses indicated two P. nodorum populations corresponding to the Upper Midwest (Population 1) and Southern/Eastern United States (Population 2). Prevalence of SnToxA varied greatly between the two populations which correlated with presence of the host sensitivity gene Tsn1 in the most prevalent cultivars in the corresponding regions. Additionally, 12 and 5 candidate effector genes were observed to be under diversifying selection among isolates from Population 1 and 2, respectively, but under purifying selection or neutrally evolving in the opposite population. Selective sweep analysis revealed 10 and 19 regions that had recently undergone positive selection in Population 1 and 2, respectively, involving 92 genes in total. When comparing genes with and without presence/absence variation, those genes exhibiting this variation were significantly closer to transposable elements. Taken together, these results indicate that P. nodorum is rapidly adapting to distinct selection pressures unique to spring and winter wheat production regions by rapid adaptive evolution and various routes of genomic diversification, potentially facilitated through transposable element activity.
Collapse
Affiliation(s)
- Jonathan K. Richards
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Eva H. Stukenbrock
- Department of Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jessica Carpenter
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - Christina Cowger
- Plant Science Research Unit, USDA-ARS, Raleigh, North Carolina, United States of America
| | - Justin D. Faris
- Cereal Crops Research Unit, Edward T. Schaefer Agricultural Research Center, USDA-ARS, Fargo, North Dakota, United States of America
| | - Timothy L. Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
- Cereal Crops Research Unit, Edward T. Schaefer Agricultural Research Center, USDA-ARS, Fargo, North Dakota, United States of America
| |
Collapse
|
46
|
Gostinčar C, Turk M, Zajc J, Gunde‐Cimerman N. Fifty Aureobasidium pullulans genomes reveal a recombining polyextremotolerant generalist. Environ Microbiol 2019; 21:3638-3652. [PMID: 31112354 PMCID: PMC6852026 DOI: 10.1111/1462-2920.14693] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/17/2019] [Accepted: 05/20/2019] [Indexed: 01/31/2023]
Abstract
The black yeast Aureobasidium pullulans is a textbook example of a generalistic and ubiquitous fungus thriving in a wide variety of environments. To investigate whether A. pullulans is a true generalist, or alternatively, whether part of its versatility can be attributed to intraspecific specialization masked by cryptic diversification undetectable by traditional phylogenetic analyses, we sequenced and analysed the genomes of 50 strains of A. pullulans from different habitats and geographic locations. No population structure was observed in the sequenced strains. Decay of linkage disequilibrium over shorter physical distances (<100 bp) than in many sexually reproducing fungi indicates a high level of recombination in the species. A homothallic mating locus was found in all of the sequenced genomes. Aureobasidium pullulans appears to have a homogeneous population genetics structure, which is best explained by good dispersal and high levels of recombination. This means that A. pullulans is a true generalist that can inhabit different habitats without substantial specialization to any of these habitats at the genomic level. Furthermore, in the future, the high level of A. pullulans recombination can be exploited for the identification of genomic loci that are involved in the many biotechnologically useful traits of this black yeast.
Collapse
Affiliation(s)
- Cene Gostinčar
- Department of Biology, Biotechnical FacultyUniversity of Ljubljana, Jamnikarjeva 101, SI‐1000LjubljanaSlovenia
- Lars Bolund Institute of Regenerative Medicine, BGI‐QingdaoQingdao 266555China
| | - Martina Turk
- Department of Biology, Biotechnical FacultyUniversity of Ljubljana, Jamnikarjeva 101, SI‐1000LjubljanaSlovenia
| | - Janja Zajc
- Department of Biology, Biotechnical FacultyUniversity of Ljubljana, Jamnikarjeva 101, SI‐1000LjubljanaSlovenia
- National Institute of BiologyVečna pot 111, SI‐1000LjubljanaSlovenia
| | - Nina Gunde‐Cimerman
- Department of Biology, Biotechnical FacultyUniversity of Ljubljana, Jamnikarjeva 101, SI‐1000LjubljanaSlovenia
| |
Collapse
|
47
|
Gostinčar C, Sun X, Zajc J, Fang C, Hou Y, Luo Y, Gunde-Cimerman N, Song Z. Population Genomics of an Obligately Halophilic Basidiomycete Wallemia ichthyophaga. Front Microbiol 2019; 10:2019. [PMID: 31551960 PMCID: PMC6738226 DOI: 10.3389/fmicb.2019.02019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/19/2019] [Indexed: 11/15/2022] Open
Abstract
Background Wallemia ichthyophaga is a highly specialized basidiomycetous fungus. It is one of the most halophilic fungi ever described, only able to grow at low water activity. This specialization is thought to explain why it is only rarely isolated from nature. Results Genomes of 21 W. ichthyophaga strains were sequenced with PE150 reads on BGISEQ500 platform. The genomes shared high similarity with the reference genome of the species, they were all smaller than 10 Mbp and had a low number of predicted genes. Groups of strains isolated in the same location encompassed clones as well as very divergent strains. There was little concordance between phylogenies of predicted genes. Linkage disequilibrium of pairs of polymorphic loci decayed relatively quickly as a function of distance between the loci (LD decay distance 1270 bp). For the first time a putative mating-type locus was identified in the genomes of W. ichthyophaga. Conclusion Based on the comparison of W. ichthyophaga genomes it appears that some phylogenetic lineages of the species can persist in the same location over at least several years. Apart from this, the differences between the strains do not reflect the isolation habitat or geographic location. Together with results supporting the existence of (sexual) recombination in W. ichthyophaga, the presented results indicate that strains of W. ichthyophaga can form a single recombining population even between different habitats and over large geographical distances.
Collapse
Affiliation(s)
- Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.,Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao, China
| | - Xiaohuan Sun
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Janja Zajc
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.,National Institute of Biology, Ljubljana, Slovenia
| | - Chao Fang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yong Hou
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao, China.,BGI-Shenzhen, Shenzhen, China.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Zewei Song
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
48
|
Craig RJ, Böndel KB, Arakawa K, Nakada T, Ito T, Bell G, Colegrave N, Keightley PD, Ness RW. Patterns of population structure and complex haplotype sharing among field isolates of the green algaChlamydomonas reinhardtii. Mol Ecol 2019; 28:3977-3993. [DOI: 10.1111/mec.15193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Rory J. Craig
- Institute of Evolutionary Biology School of Biological Sciences University of Edinburgh Edinburgh UK
- Department of Biology University of Toronto Mississauga Mississauga ON Canada
| | - Katharina B. Böndel
- Institute of Evolutionary Biology School of Biological Sciences University of Edinburgh Edinburgh UK
- Institute of Plant Breeding, Seed Science and Population Genetics University of Hohenheim Stuttgart Germany
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences Keio University Tsuruoka Japan
- Systems Biology Program Graduate School of Media and Governance Keio University Fujisawa Japan
| | - Takashi Nakada
- Institute for Advanced Biosciences Keio University Tsuruoka Japan
- Systems Biology Program Graduate School of Media and Governance Keio University Fujisawa Japan
- Faculty of Environment and Information Sciences Yokohama National University Yokohama Japan
| | - Takuro Ito
- Institute for Advanced Biosciences Keio University Tsuruoka Japan
- Systems Biology Program Graduate School of Media and Governance Keio University Fujisawa Japan
| | - Graham Bell
- Department of Biology McGill University Montreal QC Canada
| | - Nick Colegrave
- Institute of Evolutionary Biology School of Biological Sciences University of Edinburgh Edinburgh UK
| | - Peter D. Keightley
- Institute of Evolutionary Biology School of Biological Sciences University of Edinburgh Edinburgh UK
| | - Rob W. Ness
- Department of Biology University of Toronto Mississauga Mississauga ON Canada
| |
Collapse
|
49
|
Correlating Genotype and Phenotype in the Asexual Yeast Candida orthopsilosis Implicates ZCF29 in Sensitivity to Caffeine. G3-GENES GENOMES GENETICS 2019; 9:3035-3043. [PMID: 31352406 PMCID: PMC6723125 DOI: 10.1534/g3.119.400348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Candida orthopsilosis is diploid asexual yeast that causes human disease. Most C. orthopsilosis isolates arose from at least four separate hybridizations between related, but not identical, parents. Here, we used population genomics data to correlate genotypic and phenotypic variation in 28 C. orthopsilosis isolates. We used cosine similarity scores to identify 65 variants with potential high-impact (deleterious effects) that correlated with specific phenotypes. Of these, 19 were Single Nucleotide Polymorphisms (SNPs) that changed stop or start codons, or splice sites. One variant resulted in a premature stop codon in both alleles of the gene ZCF29 in C. orthopsilosis isolate 185, which correlated with sensitivity to nystatin and caffeine. We used CRISPR-Cas9 editing to introduce this polymorphism into two resistant C. orthopsilosis isolates. Introducing the stop codon resulted in sensitivity to caffeine and to ketoconazole, but not to nystatin. Our analysis shows that it is possible to associate genomic variants with phenotype in asexual Candida species, but that only a small amount of genomic variation can be easily explored.
Collapse
|
50
|
Allorecognition upon Fungal Cell-Cell Contact Determines Social Cooperation and Impacts the Acquisition of Multicellularity. Curr Biol 2019; 29:3006-3017.e3. [PMID: 31474536 DOI: 10.1016/j.cub.2019.07.060] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Somatic cell fusion and conspecific cooperation are crucial social traits for microbial unicellular-to-multicellular transitions, colony expansion, and substrate foraging but are also associated with risks of parasitism. We identified a cell wall remodeling (cwr) checkpoint that acts upon cell contact to assess genetic compatibility and regulate cell wall dissolution during somatic cell fusion in a wild population of the filamentous fungus Neurospora crassa. Non-allelic interactions between two linked loci, cwr-1 and cwr-2, were necessary and sufficient to block cell fusion: cwr-1 encodes a polysaccharide monooxygenase (PMO), a class of enzymes associated with extracellular degradative capacities, and cwr-2 encodes a predicted transmembrane protein. Mutations of sites in CWR-1 essential for PMO catalytic activity abolished the block in cell fusion between formerly incompatible strains. In Neurospora, alleles cwr-1 and cwr-2 were highly polymorphic, fell into distinct haplogroups, and showed trans-species polymorphisms. Distinct haplogroups and trans-species polymorphisms at cwr-1 and cwr-2 were also identified in the distantly related genus Fusarium, suggesting convergent evolution. Proteins involved in chemotropic processes showed extended localization at contact sites, suggesting that cwr regulates the transition between chemotropic growth and cell wall dissolution. Our work revealed an allorecognition surveillance system based on kind discrimination that inhibits cooperative behavior in fungi by blocking cell fusion upon contact, contributing to fungal immunity by preventing formation of chimeras between genetically non-identical colonies.
Collapse
|