1
|
dos Santos TMA, Thomson BD, Marquez MD, Pan L, Monfared TH, Kahne DE. Native β-barrel substrates pass through two shared intermediates during folding on the BAM complex. Proc Natl Acad Sci U S A 2024; 121:e2409672121. [PMID: 39378083 PMCID: PMC11494362 DOI: 10.1073/pnas.2409672121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024] Open
Abstract
The assembly of β-barrel proteins into membranes is mediated by the evolutionarily conserved β-barrel assembly machine (BAM) complex. In Escherichia coli, BAM folds numerous substrates which vary considerably in size and shape. How BAM is able to efficiently fold such a diverse array of β-barrel substrates is not clear. Here, we develop a disulfide crosslinking method to trap native substrates in vivo as they fold on BAM. By placing a cysteine within the luminal wall of the BamA barrel as well as in the substrate β-strands, we can compare the residence time of each substrate strand within the BamA lumen. We validated this method using two defective, slow-folding substrates. We used this method to characterize stable intermediates which occur during folding of two structurally different native substrates. Strikingly, these intermediates occur during identical stages of folding for both substrates: soon after folding has begun and just before folding is completed. We suggest that these intermediates arise due to barriers to folding that are common between β-barrel substrates, and that the BAM catalyst is able to fold so many different substrates because it addresses these common challenges.
Collapse
Affiliation(s)
| | - Benjamin D. Thomson
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Melissa D. Marquez
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Lydia Pan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Tabasom H. Monfared
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Daniel E. Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| |
Collapse
|
2
|
Bisht R, Charlesworth PD, Sperandeo P, Polissi A. Breaking Barriers: Exploiting Envelope Biogenesis and Stress Responses to Develop Novel Antimicrobial Strategies in Gram-Negative Bacteria. Pathogens 2024; 13:889. [PMID: 39452760 PMCID: PMC11510100 DOI: 10.3390/pathogens13100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Antimicrobial resistance (AMR) has emerged as a global health threat, necessitating immediate actions to develop novel antimicrobial strategies and enforce strong stewardship of existing antibiotics to manage the emergence of drug-resistant strains. This issue is particularly concerning when it comes to Gram-negative bacteria, which possess an almost impenetrable outer membrane (OM) that acts as a formidable barrier to existing antimicrobial compounds. This OM is an asymmetric structure, composed of various components that confer stability, fluidity, and integrity to the bacterial cell. The maintenance and restoration of membrane integrity are regulated by envelope stress response systems (ESRs), which monitor its assembly and detect damages caused by external insults. Bacterial communities encounter a wide range of environmental niches to which they must respond and adapt for survival, sustenance, and virulence. ESRs play crucial roles in coordinating the expression of virulence factors, adaptive physiological behaviors, and antibiotic resistance determinants. Given their role in regulating bacterial cell physiology and maintaining membrane homeostasis, ESRs present promising targets for drug development. Considering numerous studies highlighting the involvement of ESRs in virulence, antibiotic resistance, and alternative resistance mechanisms in pathogens, this review aims to present these systems as potential drug targets, thereby encouraging further research in this direction.
Collapse
Affiliation(s)
| | | | - Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (R.B.); (P.D.C.); (A.P.)
| | | |
Collapse
|
3
|
Nava M, Rowe SJ, Taylor RJ, Kahne D, Nocera DG. Determination of Initial Rates of Lipopolysaccharide Transport. Biochemistry 2024; 63:2440-2448. [PMID: 39264328 PMCID: PMC11447908 DOI: 10.1021/acs.biochem.4c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
Nonvesicular lipid trafficking pathways are an important process in every domain of life. The mechanisms of these processes are poorly understood in part due to the difficulty in kinetic characterization. One important class of glycolipids, lipopolysaccharides (LPS), are the primary lipidic component of the outer membrane of Gram-negative bacteria. LPS are synthesized in the inner membrane and then trafficked to the cell surface by the lipopolysaccharide transport proteins, LptB2FGCADE. By characterizing the interaction of a fluorescent probe and LPS, we establish a quantitative assay to monitor the flux of LPS between proteoliposomes on the time scale of seconds. We then incorporate photocaged ATP into this system, which allows for light-based control of the initiation of LPS transport. This control allows us to measure the initial rate of LPS transport (3.0 min-1 per LptDE). We also find that the rate of LPS transport by the Lpt complex is independent of the structure of LPS. In contrast, we find the rate of LPS transport is dependent on the proper function of the LptDE complex. Mutants of the outer membrane Lpt components, LptDE, that cause defective LPS assembly in live cells display attenuated transport rates and slower ATP hydrolysis compared to wild type proteins. Analysis of these mutants reveals that the rates of ATP hydrolysis and LPS transport are correlated such that 1.2 ± 0.2 ATP are hydrolyzed for each LPS transported. This correlation suggests a model where the outer membrane components ensure the coupling of ATP hydrolysis and LPS transport by stabilizing a transport-active state of the Lpt bridge.
Collapse
Affiliation(s)
| | | | - Rebecca J. Taylor
- Department of Chemistry and Chemical
Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel Kahne
- Department of Chemistry and Chemical
Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel G. Nocera
- Department of Chemistry and Chemical
Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
4
|
Yoon Y, Song S. Structural Insights into the Lipopolysaccharide Transport (Lpt) System as a Novel Antibiotic Target. J Microbiol 2024; 62:261-275. [PMID: 38816673 DOI: 10.1007/s12275-024-00137-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 06/01/2024]
Abstract
Lipopolysaccharide (LPS) is a critical component of the extracellular leaflet within the bacterial outer membrane, forming an effective physical barrier against environmental threats in Gram-negative bacteria. After LPS is synthesized and matured in the bacterial cytoplasm and the inner membrane (IM), LPS is inserted into the outer membrane (OM) through the ATP-driven LPS transport (Lpt) pathway, which is an energy-intensive process. A trans-envelope complex that contains seven Lpt proteins (LptA-LptG) is crucial for extracting LPS from the IM and transporting it across the periplasm to the OM. The last step in LPS transport involves the mediation of the LptDE complex, facilitating the insertion of LPS into the outer leaflet of the OM. As the Lpt system plays an essential role in maintaining the impermeability of the OM via LPS decoration, the interactions between these interconnected subunits, which are meticulously regulated, may be potential targets for the development of new antibiotics to combat multidrug-resistant Gram-negative bacteria. In this review, we aimed to provide an overview of current research concerning the structural interactions within the Lpt system and their implications to clarify the function and regulation of LPS transport in the overall process of OM biogenesis. Additionally, we explored studies on the development of therapeutic inhibitors of LPS transport, the factors that limit success, and future prospects.
Collapse
Affiliation(s)
- Yurim Yoon
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Saemee Song
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
5
|
Törk L, Moffatt CB, Bernhardt TG, Garner EC, Kahne D. Single-molecule dynamics show a transient lipopolysaccharide transport bridge. Nature 2023; 623:814-819. [PMID: 37938784 PMCID: PMC10842706 DOI: 10.1038/s41586-023-06709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/04/2023] [Indexed: 11/09/2023]
Abstract
Gram-negative bacteria are surrounded by two membranes. A special feature of the outer membrane is its asymmetry. It contains lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner leaflet1-3. The proper assembly of LPS in the outer membrane is required for cell viability and provides Gram-negative bacteria intrinsic resistance to many classes of antibiotics. LPS biosynthesis is completed in the inner membrane, so the LPS must be extracted, moved across the aqueous periplasm that separates the two membranes and translocated through the outer membrane where it assembles on the cell surface4. LPS transport and assembly requires seven conserved and essential LPS transport components5 (LptA-G). This system has been proposed to form a continuous protein bridge that provides a path for LPS to reach the cell surface6,7, but this model has not been validated in living cells. Here, using single-molecule tracking, we show that Lpt protein dynamics are consistent with the bridge model. Half of the inner membrane Lpt proteins exist in a bridge state, and bridges persist for 5-10 s, showing that their organization is highly dynamic. LPS facilitates Lpt bridge formation, suggesting a mechanism by which the production of LPS can be directly coupled to its transport. Finally, the bridge decay kinetics suggest that there may be two different types of bridges, whose stability differs according to the presence (long-lived) or absence (short-lived) of LPS. Together, our data support a model in which LPS is both a substrate and a structural component of dynamic Lpt bridges that promote outer membrane assembly.
Collapse
Affiliation(s)
- Lisa Törk
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Caitlin B Moffatt
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Thomas G Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
6
|
Yang Y, Chen H, Corey RA, Morales V, Quentin Y, Froment C, Caumont-Sarcos A, Albenne C, Burlet-Schiltz O, Ranava D, Stansfeld PJ, Marcoux J, Ieva R. LptM promotes oxidative maturation of the lipopolysaccharide translocon by substrate binding mimicry. Nat Commun 2023; 14:6368. [PMID: 37821449 PMCID: PMC10567701 DOI: 10.1038/s41467-023-42007-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Insertion of lipopolysaccharide (LPS) into the bacterial outer membrane (OM) is mediated by a druggable OM translocon consisting of a β-barrel membrane protein, LptD, and a lipoprotein, LptE. The β-barrel assembly machinery (BAM) assembles LptD together with LptE at the OM. In the enterobacterium Escherichia coli, formation of two native disulfide bonds in LptD controls translocon activation. Here we report the discovery of LptM (formerly YifL), a lipoprotein conserved in Enterobacteriaceae, that assembles together with LptD and LptE at the BAM complex. LptM stabilizes a conformation of LptD that can efficiently acquire native disulfide bonds, whereas its inactivation makes disulfide bond isomerization by DsbC become essential for viability. Our structural prediction and biochemical analyses indicate that LptM binds to sites in both LptD and LptE that are proposed to coordinate LPS insertion into the OM. These results suggest that, by mimicking LPS binding, LptM facilitates oxidative maturation of LptD, thereby activating the LPS translocon.
Collapse
Affiliation(s)
- Yiying Yang
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France
| | - Haoxiang Chen
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, Bristol, BS8 1TD, UK
| | - Violette Morales
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France
| | - Yves Quentin
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France
| | - Carine Froment
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31077, France
- Infrastructure Nationale de Protéomique, ProFI, FR 2048, Toulouse, France
| | - Anne Caumont-Sarcos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France
| | - Cécile Albenne
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31077, France
- Infrastructure Nationale de Protéomique, ProFI, FR 2048, Toulouse, France
| | - David Ranava
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France
| | - Phillip J Stansfeld
- School of Life Sciences and Department of Chemistry, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL, UK
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31077, France
- Infrastructure Nationale de Protéomique, ProFI, FR 2048, Toulouse, France
| | - Raffaele Ieva
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France.
| |
Collapse
|
7
|
Sabnis A, Edwards AM. Lipopolysaccharide as an antibiotic target. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119507. [PMID: 37268022 DOI: 10.1016/j.bbamcr.2023.119507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/18/2023] [Accepted: 05/14/2023] [Indexed: 06/04/2023]
Abstract
Gram-negative bacteria, including Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii are amongst the highest priority drug-resistant pathogens, for which new antibiotics are urgently needed. Whilst antibiotic drug development is inherently challenging, this is particularly true for Gram-negative bacteria due to the presence of the outer membrane, a highly selective permeability barrier that prevents the ingress of several classes of antibiotic. This selectivity is largely due to an outer leaflet composed of the glycolipid lipopolysaccharide (LPS), which is essential for the viability of almost all Gram-negative bacteria. This essentiality, coupled with the conservation of the synthetic pathway across species and recent breakthroughs in our understanding of transport and membrane homeostasis has made LPS an attractive target for novel antibiotic drug development. Several different targets have been explored and small molecules developed that show promising activity in vitro. However, these endeavours have met limited success in clinical testing and the polymyxins, discovered more than 70 years ago, remain the only LPS-targeting drugs to enter the clinic thus far. In this review, we will discuss efforts to develop therapeutic inhibitors of LPS synthesis and transport and the reasons for limited success, and explore new developments in understanding polymyxin mode of action and the identification of new analogues with reduced toxicity and enhanced activity.
Collapse
Affiliation(s)
- Akshay Sabnis
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London SW7 2AZ, UK
| | - Andrew M Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London SW7 2AZ, UK.
| |
Collapse
|
8
|
Frisinger FS, Jana B, Ortiz-Marquez JC, van Opijnen T, Donadio S, Guardabassi L. LptD depletion disrupts morphological homeostasis and upregulates carbohydrate metabolism in Escherichia coli. FEMS MICROBES 2023; 4:xtad013. [PMID: 37701421 PMCID: PMC10495129 DOI: 10.1093/femsmc/xtad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023] Open
Abstract
In a previous in silico study, we identified an essential outer membrane protein (LptD) as an attractive target for development of novel antibiotics. Here, we characterized the effects of LptD depletion on Escherichia coli physiology and morphology. An E. coli CRISPR interference (CRISPRi) strain was constructed to allow control of lptD expression. Induction of the CRISPRi system led to ∼440-fold reduction of gene expression. Dose-dependent growth inhibition was observed, where strong knockdown effectively inhibited initial growth but partial knockdown exhibited maximum overall killing after 24 h. LptD depletion led to morphological changes where cells exhibited long, filamentous cell shapes and cytoplasmic accumulation of lipopolysaccharide (LPS). Transcriptional profiling by RNA-Seq showed that LptD knockdown led to upregulation of carbohydrate metabolism, especially in the colanic acid biosynthesis pathway. This pathway was further overexpressed in the presence of sublethal concentrations of colistin, an antibiotic targeting LPS, indicating a specific transcriptional response to this synergistic envelope damage. Additionally, exposure to colistin during LptD depletion resulted in downregulation of pathways related to motility and chemotaxis, two important virulence traits. Altogether, these results show that LptD depletion (i) affects E. coli survival, (ii) upregulates carbohydrate metabolism, and (iii) synergizes with the antimicrobial activity of colistin.
Collapse
Affiliation(s)
- Frida Svanberg Frisinger
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Bimal Jana
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
- Biology Department, Boston College, Chestnut Hill, MA 02467, United States
| | | | - Tim van Opijnen
- Biology Department, Boston College, Chestnut Hill, MA 02467, United States
| | | | - Luca Guardabassi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| |
Collapse
|
9
|
Schultz KM, Schneider JR, Fischer MA, Cina NP, Riegert MO, Frank DW, Klug CS. Binding and transport of LPS occurs through the coordinated combination of an array of sites across the entire Escherichia coli LPS transport protein LptA. Protein Sci 2023; 32:e4724. [PMID: 37417889 PMCID: PMC10360375 DOI: 10.1002/pro.4724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
The outer leaflet of the outer membrane (OM) of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and other important pathogens is largely composed of lipopolysaccharide (LPS), which is essential to nearly all Gram-negative bacteria. LPS is transported to the outer leaflet of the OM through a yet unknown mechanism by seven proteins that comprise the LPS transport system. LptA, the only entirely periplasmic Lpt protein, bridges the periplasmic space between the IM LptB2 FGC and the OM LptDE complexes. LptA is postulated to protect the hydrophobic acyl chains of LPS as it crosses the hydrophilic periplasm, is essential to cell viability, and contains many conserved residues distributed across the protein. To identify which side chains are required for function of E. coli LptA in vivo, we performed a systematic, unbiased, high-throughput screen of the effect of 172 single alanine substitutions on cell viability utilizing an engineered BL21 derivative with a chromosomal knockout of the lptA gene. Remarkably, LptA is highly tolerant to amino acid substitution with alanine. Only four alanine mutants could not complement the chromosomal knockout; CD spectroscopy showed that these substitutions resulted in proteins with significantly altered secondary structure. In addition, 29 partial loss-of-function mutants were identified that led to OM permeability defects; interestingly, these sites were solely located within β-strands of the central core of the protein and each resulted in misfolding of the protein. Therefore, no single residue within LptA is responsible for LPS binding, supporting previous EPR spectroscopy data indicating that sites across the entire protein work in concert to bind and transport LPS.
Collapse
Affiliation(s)
- Kathryn M. Schultz
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - John R. Schneider
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Matthew A. Fischer
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Nicholas P. Cina
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Molly O. Riegert
- Department of Microbiology & ImmunologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Dara W. Frank
- Department of Microbiology & ImmunologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Candice S. Klug
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
10
|
He H, Pramanik AS, Swanson SK, Johnson DK, Florens L, Zückert WR. A Borrelia burgdorferi LptD homolog is required for flipping of surface lipoproteins through the spirochetal outer membrane. Mol Microbiol 2023; 119:752-767. [PMID: 37170643 PMCID: PMC10330739 DOI: 10.1111/mmi.15072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
Borrelia spirochetes are unique among diderm bacteria in their lack of lipopolysaccharide (LPS) in the outer membrane (OM) and their abundance of surface-exposed lipoproteins with major roles in transmission, virulence, and pathogenesis. Despite their importance, little is known about how surface lipoproteins are translocated through the periplasm and the OM. Here, we characterized Borrelia burgdorferi BB0838, a distant homolog of the OM LPS assembly protein LptD. Using a CRISPR interference approach, we showed that BB0838 is required for cell growth and envelope stability. Upon BB0838 knockdown, surface lipoprotein OspA was retained in the inner leaflet of the OM, as determined by its inaccessibility to in situ proteolysis but its presence in OM vesicles. The topology of the OM porin/adhesin P66 remained unaffected. Quantitative mass spectrometry of the B. burgdorferi membrane-associated proteome confirmed the selective periplasmic retention of surface lipoproteins under BB0838 knockdown conditions. Additional analysis identified a single in situ protease-accessible BB0838 peptide that mapped to a predicted β-barrel surface loop. Alphafold Multimer modeled a B. burgdorferi LptB2 FGCAD complex spanning the periplasm. Together, this suggests that BB0838/LptDBb facilitates the essential terminal step in spirochetal surface lipoprotein secretion, using an orthologous OM component of a pathway that secretes LPS in proteobacteria.
Collapse
Affiliation(s)
- Huan He
- University of Kansas School of Medicine, Department of Microbiology, Molecular Genetics and Immunology, Kansas City, Kansas, USA
| | - Ankita S. Pramanik
- University of Kansas School of Medicine, Department of Microbiology, Molecular Genetics and Immunology, Kansas City, Kansas, USA
| | | | - David K. Johnson
- University of Kansas, Computational Chemical Biology Core, Lawrence, Kansas, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Wolfram R. Zückert
- University of Kansas School of Medicine, Department of Microbiology, Molecular Genetics and Immunology, Kansas City, Kansas, USA
| |
Collapse
|
11
|
Kurosu M, Mitachi K, Pershing EV, Horowitz BD, Wachter EA, Lacey JW, Ji Y, Rodrigues DJ. Antibacterial effect of rose bengal against colistin-resistant gram-negative bacteria. J Antibiot (Tokyo) 2023:10.1038/s41429-023-00622-1. [PMID: 37076631 DOI: 10.1038/s41429-023-00622-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 04/21/2023]
Abstract
Increasing drug resistance in Gram-negative bacteria presents significant health problems worldwide. Despite notable advances in the development of a new generation of β-lactams, aminoglycosides, and fluoroquinolones, it remains challenging to treat multi-drug resistant Gram-negative bacterial infections. Colistin (polymyxin E) is one of the most efficacious antibiotics for the treatment of multiple drug-resistant Gram-negative bacteria and has been used clinically as a last-resort option. However, the rapid spread of the transferable gene, mcr-1 which confers colistin resistance by encoding a phosphoethanolamine transferase that modifies lipid A of the bacterial membrane, threatens the efficacy of colistin for the treatment of drug-resistant bacterial infections. Colistin-resistant strains of Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae often reduce their susceptibility to other anti-Gram-negative bacterial agents. Thus, drugs effective against colistin-resistant strains or methods to prevent the acquisition of colistin-resistance during treatment are urgently needed. To perform cell-based screenings of the collected small molecules, we have generated colistin-resistant strains of E. coli, A. baumannii, K. pneumoniae, P. aeruginosa, and S. enterica Typhimurium. In-house MIC assay screenings, we have identified that rose bengal (4,5,6,7-tetrachloro-2',4',5',7'-tetraiodofluorescein) is the only molecule that displays unique bactericidal activity against these strains at low concentrations under illumination conditions. This article reports the antibacterial activity of a pharmaceutical-grade rose bengal against colistin-resistant Gram-negative bacteria.
Collapse
Affiliation(s)
- Michio Kurosu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA.
| | - Katsuhiko Mitachi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Edward V Pershing
- Provectus Biopharmaceuticals, Inc., 800 S. Gay Street, Suite 1610, Knoxville, TN, 37929, USA
| | - Bruce D Horowitz
- Provectus Biopharmaceuticals, Inc., 800 S. Gay Street, Suite 1610, Knoxville, TN, 37929, USA
| | - Eric A Wachter
- Provectus Biopharmaceuticals, Inc., 800 S. Gay Street, Suite 1610, Knoxville, TN, 37929, USA
| | - John W Lacey
- Provectus Biopharmaceuticals, Inc., 800 S. Gay Street, Suite 1610, Knoxville, TN, 37929, USA
| | - Yinduo Ji
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 205 VSB, 1971 Commonwealth Avenue, St. Paul, MN, 55108, USA
| | - Dominic J Rodrigues
- Provectus Biopharmaceuticals, Inc., 800 S. Gay Street, Suite 1610, Knoxville, TN, 37929, USA
| |
Collapse
|
12
|
Bilsing FL, Anlauf MT, Hachani E, Khosa S, Schmitt L. ABC Transporters in Bacterial Nanomachineries. Int J Mol Sci 2023; 24:ijms24076227. [PMID: 37047196 PMCID: PMC10094684 DOI: 10.3390/ijms24076227] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Members of the superfamily of ABC transporters are found in all domains of life. Most of these primary active transporters act as isolated entities and export or import their substrates in an ATP-dependent manner across biological membranes. However, some ABC transporters are also part of larger protein complexes, so-called nanomachineries that catalyze the vectorial transport of their substrates. Here, we will focus on four bacterial examples of such nanomachineries: the Mac system providing drug resistance, the Lpt system catalyzing vectorial LPS transport, the Mla system responsible for phospholipid transport, and the Lol system, which is required for lipoprotein transport to the outer membrane of Gram-negative bacteria. For all four systems, we tried to summarize the existing data and provide a structure-function analysis highlighting the mechanistical aspect of the coupling of ATP hydrolysis to substrate translocation.
Collapse
|
13
|
Suppressor Mutations in LptF Bypass Essentiality of LptC by Forming a Six-Protein Transenvelope Bridge That Efficiently Transports Lipopolysaccharide. mBio 2023; 14:e0220222. [PMID: 36541759 PMCID: PMC9972910 DOI: 10.1128/mbio.02202-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lipopolysaccharide (LPS) is an essential component of the outer membrane (OM) of many Gram-negative bacteria, providing a barrier against the entry of toxic molecules. In Escherichia coli, LPS is exported to the cell surface by seven essential proteins (LptA-G) that form a transenvelope complex. At the inner membrane, the ATP-binding cassette (ABC) transporter LptB2FG associates with LptC to power LPS extraction from the membrane and transfer to the periplasmic LptA protein, which is in complex with the OM translocon LptDE. LptC interacts both with LptB2FG and LptADE to mediate the formation of the transenvelope bridge and regulates the ATPase activity of LptB2FG. A genetic screen has previously identified suppressor mutants at a residue (R212) of LptF that are viable in the absence of LptC. Here, we present in vivo evidence that the LptF R212G mutant assembles a six-protein transenvelope complex in which LptA mediates interactions with LptF and LptD in the absence of LptC. Furthermore, we present in vitro evidence that the mutant LptB2FG complexes restore the regulation of ATP hydrolysis as it occurs in the LptB2FGC complex to achieve wild-type efficient coupling of ATP hydrolysis and LPS movement. We also show the suppressor mutations restore the wild-type levels of LPS transport both in vivo and in vitro, but remarkably, without restoring the affinity of the inner membrane complex for LptA. Based on the sensitivity of lptF suppressor mutants to selected stress conditions relative to wild-type cells, we show that there are additional regulatory functions of LptF and LptC that had not been identified. IMPORTANCE The presence of an external LPS layer in the outer membrane makes Gram-negative bacteria intrinsically resistant to many antibiotics. Millions of LPS molecules are transported to the cell surface per generation by the Lpt molecular machine made, in E. coli, by seven essential proteins. LptC is the unconventional regulatory subunit of the LptB2FGC ABC transporter, involved in coordinating energy production and LPS transport. Surprisingly, despite being essential for bacterial growth, LptC can be deleted, provided that a specific residue in the periplasmic domain of LptF is mutated and LptA is overexpressed. Here, we apply biochemical techniques to investigate the suppression mechanism. The data produced in this work disclose an unknown regulatory function of LptF in the transporter that not only expands the knowledge about the Lpt complex but can also be targeted by novel LPS biogenesis inhibitors.
Collapse
|
14
|
Sperandeo P, Martorana AM, Zaccaria M, Polissi A. Targeting the LPS export pathway for the development of novel therapeutics. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119406. [PMID: 36473551 DOI: 10.1016/j.bbamcr.2022.119406] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
The rapid rise of multi-resistant bacteria is a global health threat. This is especially serious for Gram-negative bacteria in which the impermeable outer membrane (OM) acts as a shield against antibiotics. The development of new drugs with novel modes of actions to combat multi-drug resistant pathogens requires the selection of suitable processes to be targeted. The LPS export pathway is an excellent under exploited target for drug development. Indeed, LPS is the major determinant of the OM permeability barrier, and its biogenetic pathway is conserved in most Gram-negatives. Here we describe efforts to identify inhibitors of the multiprotein Lpt system that transports LPS to the cell surface. Despite none of these molecules has been approved for clinical use, they may represent valuable compounds for optimization. Finally, the recent discovery of a link between inhibition of LPS biogenesis and changes in peptidoglycan structure uncovers additional targets to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, 20133 Milano, Italy
| | - Alessandra M Martorana
- Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, 20133 Milano, Italy
| | - Marta Zaccaria
- Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, 20133 Milano, Italy
| | - Alessandra Polissi
- Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, 20133 Milano, Italy.
| |
Collapse
|
15
|
Bowen HG, Kenedy MR, Johnson DK, MacKerell AD, Akins DR. Identification of a novel transport system in Borrelia burgdorferi that links the inner and outer membranes. Pathog Dis 2023; 81:ftad014. [PMID: 37385817 PMCID: PMC10353723 DOI: 10.1093/femspd/ftad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023] Open
Abstract
Borrelia burgdorferi, the spirochete that causes Lyme disease, is a diderm organism that is similar to Gram-negative organisms in that it contains both an inner and outer membrane. Unlike typical Gram-negative organisms, however, B. burgdorferi lacks lipopolysaccharide (LPS). Using computational genome analyses and structural modeling, we identified a transport system containing six proteins in B. burgdorferi that are all orthologs to proteins found in the lipopolysaccharide transport (LPT) system that links the inner and outer membranes of Gram-negative organisms and is responsible for placing LPS on the surface of these organisms. While B. burgdorferi does not contain LPS, it does encode over 100 different surface-exposed lipoproteins and several major glycolipids, which like LPS are also highly amphiphilic molecules, though no system to transport these molecules to the borrelial surface is known. Accordingly, experiments supplemented by molecular modeling were undertaken to determine whether the orthologous LPT system identified in B. burgdorferi could transport lipoproteins and/or glycolipids to the borrelial outer membrane. Our combined observations strongly suggest that the LPT transport system does not transport lipoproteins to the surface. Molecular dynamic modeling, however, suggests that the borrelial LPT system could transport borrelial glycolipids to the outer membrane.
Collapse
Affiliation(s)
- Hannah G Bowen
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 1053 Oklahoma City, OK 73104, United States
| | - Melisha R Kenedy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 1053 Oklahoma City, OK 73104, United States
| | - David K Johnson
- Shenkel Structural Biology Center, Molecular Graphics and Modeling Laboratory and the Computational Biology Core, University of Kansas, 2034 Becker Drive Lawrence, Kansas 66047, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore 20 North Pine Street Baltimore, Maryland 21201, United States
| | - Darrin R Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 1053 Oklahoma City, OK 73104, United States
| |
Collapse
|
16
|
Shin G, Lim SI. Unveiling the biological interface of protein complexes by mass spectrometry-coupled methods. Proteins 2022; 91:593-607. [PMID: 36573681 DOI: 10.1002/prot.26459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/28/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Most biomolecules become functional and bioactive by forming protein complexes through interaction with ligands that are diverse in size, shape, and physicochemical properties. In the complex biological milieu, the interaction is ligand-specific, driven by molecular sensing, and involves the recognition of a binding interface localized within a protein structure. Mapping interfaces of protein complexes is a highly sought area of research as it delivers fundamental insights into proteomes and pathology and hence strategies for therapeutics. While X-ray crystallography and electron microscopy remain the gold standard for structural elucidation of protein complexes, their artificial and static analytic nature often produces a non-native interface that otherwise might be negligible or non-existent in a biological environment. Recently, the mass spectrometry-coupled approaches, chemical crosslinking (CLMS) and hydrogen-deuterium exchange (HDMS) have become valuable analytic complements to the traditional techniques. These methods explicitly identify hot residues and motifs embedded in binding interfaces, especially when the interaction is predominantly dynamic, transient, and/or caused by an intrinsically disordered domain. Here, we review the principal role of CLMS and HDMS in protein structural biology with a particular emphasis on the contribution of recent examples to exploring biological interfaces. Additionally, we describe recent studies that utilized these methods to expand our understanding of protein complex formation and the related biological processes, to increase the probability of structure-based drug design.
Collapse
Affiliation(s)
- Goeun Shin
- Department of Chemical Engineering, Pukyong National University, Busan, South Korea
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan, South Korea
| |
Collapse
|
17
|
Li S, Ren R, Lyu L, Song J, Wang Y, Lin TW, Brun AL, Hsu HY, Shen HH. Solid and Liquid Surface-Supported Bacterial Membrane Mimetics as a Platform for the Functional and Structural Studies of Antimicrobials. MEMBRANES 2022; 12:membranes12100906. [PMID: 36295664 PMCID: PMC9609327 DOI: 10.3390/membranes12100906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 06/02/2023]
Abstract
Increasing antibiotic resistance has provoked the urgent need to investigate the interactions of antimicrobials with bacterial membranes. The reasons for emerging antibiotic resistance and innovations in novel therapeutic approaches are highly relevant to the mechanistic interactions between antibiotics and membranes. Due to the dynamic nature, complex compositions, and small sizes of native bacterial membranes, bacterial membrane mimetics have been developed to allow for the in vitro examination of structures, properties, dynamics, and interactions. In this review, three types of model membranes are discussed: monolayers, supported lipid bilayers, and supported asymmetric bilayers; this review highlights their advantages and constraints. From monolayers to asymmetric bilayers, biomimetic bacterial membranes replicate various properties of real bacterial membranes. The typical synthetic methods for fabricating each model membrane are introduced. Depending on the properties of lipids and their biological relevance, various lipid compositions have been used to mimic bacterial membranes. For example, mixtures of phosphatidylethanolamines (PE), phosphatidylglycerols (PG), and cardiolipins (CL) at various molar ratios have been used, approaching actual lipid compositions of Gram-positive bacterial membranes and inner membranes of Gram-negative bacteria. Asymmetric lipid bilayers can be fabricated on solid supports to emulate Gram-negative bacterial outer membranes. To probe the properties of the model bacterial membranes and interactions with antimicrobials, three common characterization techniques, including quartz crystal microbalance with dissipation (QCM-D), surface plasmon resonance (SPR), and neutron reflectometry (NR) are detailed in this review article. Finally, we provide examples showing that the combination of bacterial membrane models and characterization techniques is capable of providing crucial information in the design of new antimicrobials that combat bacterial resistance.
Collapse
Affiliation(s)
- Shiqi Li
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Ruohua Ren
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Letian Lyu
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Yajun Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
| | - Anton Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Hsien-Yi Hsu
- Department of Materials Science and Engineering, School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
18
|
Botte M, Ni D, Schenck S, Zimmermann I, Chami M, Bocquet N, Egloff P, Bucher D, Trabuco M, Cheng RKY, Brunner JD, Seeger MA, Stahlberg H, Hennig M. Cryo-EM structures of a LptDE transporter in complex with Pro-macrobodies offer insight into lipopolysaccharide translocation. Nat Commun 2022; 13:1826. [PMID: 35383177 PMCID: PMC8983717 DOI: 10.1038/s41467-022-29459-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Lipopolysaccharides are major constituents of the extracellular leaflet in the bacterial outer membrane and form an effective physical barrier for environmental threats and for antibiotics in Gram-negative bacteria. The last step of LPS insertion via the Lpt pathway is mediated by the LptD/E protein complex. Detailed insights into the architecture of LptDE transporter complexes have been derived from X-ray crystallography. However, no structure of a laterally open LptD transporter, a transient state that occurs during LPS release, is available to date. Here, we report a cryo-EM structure of a partially opened LptDE transporter in complex with rigid chaperones derived from nanobodies, at 3.4 Å resolution. In addition, a subset of particles allows to model a structure of a laterally fully opened LptDE complex. Our work offers insights into the mechanism of LPS insertion, provides a structural framework for the development of antibiotics targeting LptD and describes a highly rigid chaperone scaffold to enable structural biology of challenging protein targets.
Collapse
Affiliation(s)
- Mathieu Botte
- leadXpro AG, Park Innovaare, 5234, Villigen, Switzerland
| | - Dongchun Ni
- C-CINA, Biozentrum, University of Basel, Mattenstr. 24, 4058, Basel, Switzerland
| | - Stephan Schenck
- leadXpro AG, Park Innovaare, 5234, Villigen, Switzerland
- VIB-VUB Center for Structural Biology, VIB, 1050, Brussels, Belgium
| | - Iwan Zimmermann
- Institute of Medical Microbiology, University of Zürich, Gloriastasse 28/30, 8006, Zürich, Switzerland
- Linkster Therapeutics AG, 8006, Zürich, Switzerland
| | - Mohamed Chami
- C-CINA, Biozentrum, University of Basel, Mattenstr. 24, 4058, Basel, Switzerland
| | | | - Pascal Egloff
- Institute of Medical Microbiology, University of Zürich, Gloriastasse 28/30, 8006, Zürich, Switzerland
- Linkster Therapeutics AG, 8006, Zürich, Switzerland
| | - Denis Bucher
- leadXpro AG, Park Innovaare, 5234, Villigen, Switzerland
| | | | | | - Janine D Brunner
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
- VIB-VUB Center for Structural Biology, VIB, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zürich, Gloriastasse 28/30, 8006, Zürich, Switzerland
| | - Henning Stahlberg
- C-CINA, Biozentrum, University of Basel, Mattenstr. 24, 4058, Basel, Switzerland
| | - Michael Hennig
- leadXpro AG, Park Innovaare, 5234, Villigen, Switzerland.
| |
Collapse
|
19
|
Martorana AM, Moura ECCM, Sperandeo P, Di Vincenzo F, Liang X, Toone E, Zhou P, Polissi A. Degradation of Components of the Lpt Transenvelope Machinery Reveals LPS-Dependent Lpt Complex Stability in Escherichia coli. Front Mol Biosci 2022; 8:758228. [PMID: 35004843 PMCID: PMC8727689 DOI: 10.3389/fmolb.2021.758228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Lipopolysaccharide (LPS) is a peculiar component of the outer membrane (OM) of many Gram-negative bacteria that renders these bacteria highly impermeable to many toxic molecules, including antibiotics. LPS is assembled at the OM by a dedicated intermembrane transport system, the Lpt (LPS transport) machinery, composed of seven essential proteins located in the inner membrane (IM) (LptB2CFG), periplasm (LptA), and OM (LptDE). Defects in LPS transport compromise LPS insertion and assembly at the OM and result in an overall modification of the cell envelope and its permeability barrier properties. LptA is a key component of the Lpt machine. It connects the IM and OM sub-complexes by interacting with the IM protein LptC and the OM protein LptD, thus enabling the LPS transport across the periplasm. Defects in Lpt system assembly result in LptA degradation whose stability can be considered a marker of an improperly assembled Lpt system. Indeed, LptA recruitment by its IM and OM docking sites requires correct maturation of the LptB2CFG and LptDE sub-complexes, respectively. These quality control checkpoints are crucial to avoid LPS mistargeting. To further dissect the requirements for the complete Lpt transenvelope bridge assembly, we explored the importance of LPS presence by blocking its synthesis using an inhibitor compound. Here, we found that the interruption of LPS synthesis results in the degradation of both LptA and LptD, suggesting that, in the absence of the LPS substrate, the stability of the Lpt complex is compromised. Under these conditions, DegP, a major chaperone–protease in Escherichia coli, is responsible for LptD but not LptA degradation. Importantly, LptD and LptA stability is not affected by stressors disturbing the integrity of LPS or peptidoglycan layers, further supporting the notion that the LPS substrate is fundamental to keeping the Lpt transenvelope complex assembled and that LptA and LptD play a major role in the stability of the Lpt system.
Collapse
Affiliation(s)
- Alessandra M Martorana
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Milan, Italy
| | - Elisabete C C M Moura
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Milan, Italy
| | - Paola Sperandeo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Milan, Italy
| | - Flavia Di Vincenzo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Milan, Italy
| | - Xiaofei Liang
- Department of Chemistry, Duke University, Durham, NC, United States
| | - Eric Toone
- Department of Chemistry, Duke University, Durham, NC, United States
| | - Pei Zhou
- Department of Chemistry, Duke University, Durham, NC, United States.,Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Alessandra Polissi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
20
|
Zhang Z, Huang Z, Tong J, Wu Q, Pan Y, Malakar PK, Zhao Y. An outlook for food sterilization technology: targeting the outer membrane of foodborne gram-negative pathogenic bacteria. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Abstract
The outer membrane of Gram-negative bacteria is essential for their survival in harsh environments and provides intrinsic resistance to many antibiotics. This membrane is remarkable; it is a highly asymmetric lipid bilayer. The inner leaflet of the outer membrane contains phospholipids, whereas the fatty acyl chains attached to lipopolysaccharide (LPS) comprise the hydrophobic portion of the outer leaflet. This lipid asymmetry, and in particular the exclusion of phospholipids from the outer leaflet, is key to creating an almost impenetrable barrier to hydrophobic molecules that can otherwise pass through phospholipid bilayers. It has long been known that these lipids are not made in the outer membrane. It is now believed that conserved multisubunit protein machines extract these lipids after their synthesis is completed at the inner membrane and transport them to the outer membrane. A longstanding question is how the cell builds and maintains this asymmetric lipid bilayer in coordination with the assembly of the other components of the cell envelope. This Review describes the trans-envelope lipid transport systems that have been identified to participate in outer-membrane biogenesis: LPS transport via the Lpt machine, and phospholipid transport via the Mla pathway and several recently proposed transporters.
Collapse
Affiliation(s)
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
22
|
Tomasek D, Kahne D. The assembly of β-barrel outer membrane proteins. Curr Opin Microbiol 2021; 60:16-23. [PMID: 33561734 DOI: 10.1016/j.mib.2021.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 01/21/2023]
Abstract
The outer membranes of Gram-negative bacteria, mitochondria, and chloroplasts contain β-barrel integral membrane proteins. In bacteria, the five-protein β-barrel assembly machine (Bam) accelerates the folding and membrane integration of these proteins. The central component of the machine, BamA, contains a β-barrel domain that can adopt a lateral-open state with its N-terminal and C-terminal β-strands unpaired. Recently, strategies have been developed to capture β-barrel folding intermediates on the Bam complex. Biochemical and structural studies provide support for a model in which substrates assemble at the lateral opening of BamA. In this model, the N-terminal β-strand of BamA captures the C-terminal β-strand of substrates by hydrogen bonding to allow their directional folding and subsequent release into the membrane.
Collapse
Affiliation(s)
- David Tomasek
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Daniel Kahne
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Dynamics of an LPS translocon induced by substrate and an antimicrobial peptide. Nat Chem Biol 2020; 17:187-195. [PMID: 33199913 DOI: 10.1038/s41589-020-00694-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/12/2020] [Indexed: 01/11/2023]
Abstract
Lipopolysaccharide (LPS) transport to the outer membrane (OM) is a crucial step in the biogenesis of microbial surface defenses. Although many features of the translocation mechanism have been elucidated, molecular details of LPS insertion via the LPS transport (Lpt) OM protein LptDE remain elusive. Here, we integrate native MS with hydrogen-deuterium exchange MS and molecular dynamics simulations to investigate the influence of substrate and peptide binding on the conformational dynamics of LptDE. Our data reveal that LPS induces opening of the LptD β-taco domain, coupled with conformational changes on β-strands adjacent to the putative lateral exit gate. Conversely, an antimicrobial peptide, thanatin, stabilizes the β-taco, thereby preventing LPS transport. Our results illustrate that LPS insertion into the OM relies on concerted opening movements of both the β-barrel and β-taco domains of LptD, and suggest a means for developing antimicrobial therapeutics targeting this essential process in Gram-negative ESKAPE pathogens.
Collapse
|
24
|
Reversible autoinhibitory regulation of Escherichia coli metallopeptidase BepA for selective β-barrel protein degradation. Proc Natl Acad Sci U S A 2020; 117:27989-27996. [PMID: 33093205 DOI: 10.1073/pnas.2010301117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Escherichia coli periplasmic zinc-metallopeptidase BepA normally functions by promoting maturation of LptD, a β-barrel outer-membrane protein involved in biogenesis of lipopolysaccharides, but degrades it when its membrane assembly is hampered. These processes should be properly regulated to ensure normal biogenesis of LptD. The underlying mechanism of regulation, however, remains to be elucidated. A recently solved BepA structure has revealed unique features: In particular, the active site is buried in the protease domain and conceivably inaccessible for substrate degradation. Additionally, the His-246 residue in the loop region containing helix α9 (α9/H246 loop), which has potential flexibility and covers the active site, coordinates the zinc ion as the fourth ligand to exclude a catalytic water molecule, thereby suggesting that the crystal structure of BepA represents a latent form. To examine the roles of the α9/H246 loop in the regulation of BepA activity, we constructed BepA mutants with a His-246 mutation or a deletion of the α9/H246 loop and analyzed their activities in vivo and in vitro. These mutants exhibited an elevated protease activity and, unlike the wild-type BepA, degraded LptD that is in the normal assembly pathway. In contrast, tethering of the α9/H246 loop repressed the LptD degradation, which suggests that the flexibility of this loop is important to the exhibition of protease activity. Based on these results, we propose that the α9/H246 loop undergoes a reversible structural change that enables His-246-mediated switching (histidine switch) of its protease activity, which is important for regulated degradation of stalled/misassembled LptD.
Collapse
|
25
|
Collet JF, Cho SH, Iorga BI, Goemans CV. How the assembly and protection of the bacterial cell envelope depend on cysteine residues. J Biol Chem 2020; 295:11984-11994. [PMID: 32487747 PMCID: PMC7443483 DOI: 10.1074/jbc.rev120.011201] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
The cell envelope of Gram-negative bacteria is a multilayered structure essential for bacterial viability; the peptidoglycan cell wall provides shape and osmotic protection to the cell, and the outer membrane serves as a permeability barrier against noxious compounds in the external environment. Assembling the envelope properly and maintaining its integrity are matters of life and death for bacteria. Our understanding of the mechanisms of envelope assembly and maintenance has increased tremendously over the past two decades. Here, we review the major achievements made during this time, giving central stage to the amino acid cysteine, one of the least abundant amino acid residues in proteins, whose unique chemical and physical properties often critically support biological processes. First, we review how cysteines contribute to envelope homeostasis by forming stabilizing disulfides in crucial bacterial assembly factors (LptD, BamA, and FtsN) and stress sensors (RcsF and NlpE). Second, we highlight the emerging role of enzymes that use cysteine residues to catalyze reactions that are necessary for proper envelope assembly, and we also explain how these enzymes are protected from oxidative inactivation. Finally, we suggest future areas of investigation, including a discussion of how cysteine residues could contribute to envelope homeostasis by functioning as redox switches. By highlighting the redox pathways that are active in the envelope of Escherichia coli, we provide a timely overview of the assembly of a cellular compartment that is the hallmark of Gram-negative bacteria.
Collapse
Affiliation(s)
| | - Seung-Hyun Cho
- de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium
| | - Bogdan I Iorga
- de Duve Institute, UCLouvain, Brussels, Belgium; Université Paris-Saclay, CNRS UPR 2301, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | | |
Collapse
|
26
|
Tomasek D, Rawson S, Lee J, Wzorek JS, Harrison SC, Li Z, Kahne D. Structure of a nascent membrane protein as it folds on the BAM complex. Nature 2020; 583:473-478. [PMID: 32528179 PMCID: PMC7367713 DOI: 10.1038/s41586-020-2370-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/25/2020] [Indexed: 11/09/2022]
Abstract
Mitochondria, chloroplasts, and Gram-negative bacteria are encased in a double layer of membranes. The outer membrane contains proteins with a β-barrel structure1,2. β-barrels are sheets of β-strands wrapped into a cylinder with the first strand hydrogen-bonded to the last strand. Conserved multi-subunit molecular machines fold and insert these proteins into the outer membrane3–5. One subunit of the machines is itself a β-barrel protein that plays a central role in folding other β-barrels. In Gram-negative bacteria, the β-barrel assembly machine (Bam) consists of the β-barrel protein BamA and four lipoproteins5–8. To understand how the Bam complex accelerates folding without using exogenous energy (e.g., ATP)9, we trapped folding intermediates on the machine. We report here the structure of the Bam complex folding BamA itself. The BamA catalyst (BamAM, for BamAmachine) forms an asymmetric hybrid β-barrel with the BamA substrate (BamAS). The N-terminal edge of BamAM has an antiparallel hydrogen-bonded interface with the C-terminal edge of BamAS, consistent with previous crosslinking studies10–12; the other edges of BamAM and BamAS are close to each other but curl inward and do not pair. Six hydrogen bonds in a membrane environment make the interface between the two proteins very stable. This stability allows folding but creates a high kinetic barrier to substrate release once folding has finished. Features at each end of the substrate overcome the barrier and promote release by stepwise exchange of hydrogen bonds. This mechanism of substrate-assisted product release explains how the Bam complex can stably associate with the substrate during folding and then turn over rapidly when folding is complete.
Collapse
Affiliation(s)
- David Tomasek
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Shaun Rawson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - James Lee
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Laboratory of Membrane Biophysics and Biology, The Rockefeller University, New York, NY, USA
| | - Joseph S Wzorek
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA. .,Howard Hughes Medical Institute, Boston, MA, USA.
| | - Zongli Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA. .,Howard Hughes Medical Institute, Boston, MA, USA.
| | - Daniel Kahne
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA. .,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA. .,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Moura ECCM, Baeta T, Romanelli A, Laguri C, Martorana AM, Erba E, Simorre JP, Sperandeo P, Polissi A. Thanatin Impairs Lipopolysaccharide Transport Complex Assembly by Targeting LptC-LptA Interaction and Decreasing LptA Stability. Front Microbiol 2020; 11:909. [PMID: 32477309 PMCID: PMC7237710 DOI: 10.3389/fmicb.2020.00909] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/17/2020] [Indexed: 11/13/2022] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is a highly selective permeability barrier due to its asymmetric structure with lipopolysaccharide (LPS) in the outer leaflet. In Escherichia coli, LPS is transported to the cell surface by the LPS transport (Lpt) system composed of seven essential proteins forming a transenvelope bridge. Transport is powered by the ABC transporter LptB2FGC, which extracts LPS from the inner membrane (IM) and transfers it, through LptC protein, to the periplasmic protein LptA. Then, LptA delivers LPS to the OM LptDE translocon for final assembly at the cell surface. The Lpt protein machinery operates as a single device, since depletion of any component leads to the accumulation of a modified LPS decorated with repeating units of colanic acid at the IM outer leaflet. Moreover, correct machine assembly is essential for LPS transit and disruption of the Lpt complex results in LptA degradation. Due to its vital role in cell physiology, the Lpt system represents a good target for antimicrobial drugs. Thanatin is a naturally occurring antimicrobial peptide reported to cause defects in membrane assembly and demonstrated in vitro to bind to the N-terminal β-strand of LptA. Since this region is involved in both LptA dimerization and interaction with LptC, we wanted to elucidate the mechanism of inhibition of thanatin and discriminate whether its antibacterial effect is exerted by the disruption of the interaction of LptA with itself or with LptC. For this purpose, we here implemented the Bacterial Adenylate Cyclase Two-Hybrid (BACTH) system to probe in vivo the Lpt interactome in the periplasm. With this system, we found that thanatin targets both LptC–LptA and LptA–LptA interactions, with a greater inhibitory effect on the former. We confirmed in vitro the disruption of LptC–LptA interaction using two different biophysical techniques. Finally, we observed that in cells treated with thanatin, LptA undergoes degradation and LPS decorated with colanic acid accumulates. These data further support inhibition or disruption of Lpt complex assembly as the main killing mechanism of thanatin against Gram-negative bacteria.
Collapse
Affiliation(s)
- Elisabete C C M Moura
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Tiago Baeta
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Alessandra Romanelli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Cedric Laguri
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Alessandra M Martorana
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Emanuela Erba
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | | | - Paola Sperandeo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Alessandra Polissi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
28
|
Kaito C, Yoshikai H, Wakamatsu A, Miyashita A, Matsumoto Y, Fujiyuki T, Kato M, Ogura Y, Hayashi T, Isogai T, Sekimizu K. Non-pathogenic Escherichia coli acquires virulence by mutating a growth-essential LPS transporter. PLoS Pathog 2020; 16:e1008469. [PMID: 32324807 PMCID: PMC7179839 DOI: 10.1371/journal.ppat.1008469] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/09/2020] [Indexed: 01/06/2023] Open
Abstract
The molecular mechanisms that allow pathogenic bacteria to infect animals have been intensively studied. On the other hand, the molecular mechanisms by which bacteria acquire virulence functions are not fully understood. In the present study, we experimentally evaluated the evolution of a non-pathogenic strain of Escherichia coli in a silkworm infection model and obtained pathogenic mutant strains. As one cause of the high virulence properties of E. coli mutants, we identified amino acid substitutions in LptD (G580S) and LptE (T95I) constituting the lipopolysaccharide (LPS) transporter, which translocates LPS from the inner to the outer membrane and is essential for E. coli growth. The growth of the LptD and LptE mutants obtained in this study was indistinguishable from that of the parent strain. The LptD and LptE mutants exhibited increased secretion of outer membrane vesicles containing LPS and resistance against various antibiotics, antimicrobial peptides, and host complement. In vivo cross-linking studies revealed that the conformation of the LptD-LptE complex was altered in the LptD and LptE mutants. Furthermore, several clinical isolates of E. coli carried amino acid substitutions of LptD and LptE that conferred resistance against antimicrobial substances. This study demonstrated an experimental evolution of bacterial virulence properties in an animal infection model and identified functional alterations of the growth-essential LPS transporter that led to high bacterial virulence by conferring resistance against antimicrobial substances. These findings suggest that non-pathogenic bacteria can gain virulence traits by changing the functions of essential genes, and provide new insight to bacterial evolution in a host environment. Pathogenic bacteria developed their virulence properties by changing the functions of various genes after the emergence of the host animals on earth. The types of gene function alterations that confer bacterial virulence properties, however, have remained unclear. We utilized a silkworm infection model to perform an experimental evolution of bacterial virulence activity. From a non-pathogenic strain of Escherichia coli, we obtained a mutant strain that exhibited 500-fold higher virulence than the original strain and identified mutations of the lipopolysaccharide (LPS) transporter, which translocates LPS onto the bacterial surface, as one cause of the high virulence. The mutations changed the structure of the LPS transporter, increased the secretion of outer membrane vesicles, and enabled bacterial survival in the presence of host antimicrobial substances. This mechanism to gain high virulence occurs naturally, as several E. coli clinical isolates carried mutations of the LPS transporter that confer resistance against antimicrobial substances. Our study unveiled a novel mechanism by which bacteria increase their virulence through modifying their gene function.
Collapse
Affiliation(s)
- Chikara Kaito
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| | - Hirono Yoshikai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ai Wakamatsu
- Japan Biological Informatics Consortium (JBIC), Koto-ku, Tokyo, Japan
| | - Atsushi Miyashita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Tomoko Fujiyuki
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Masaru Kato
- Devision of Bioanalytical Chemistry, School of Pharmacy, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takao Isogai
- Translational Research Center, Fukushima Medical University, Fukushima, Japan
| | - Kazuhisa Sekimizu
- Institute of Medical Mycology, Teikyo University, Hachioji, Tokyo, Japan
| |
Collapse
|
29
|
Lundstedt EA, Simpson BW, Ruiz N. LptB-LptF coupling mediates the closure of the substrate-binding cavity in the LptB 2 FGC transporter through a rigid-body mechanism to extract LPS. Mol Microbiol 2020; 114:200-213. [PMID: 32236984 DOI: 10.1111/mmi.14506] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/20/2020] [Indexed: 02/06/2023]
Abstract
Lipopolysaccharides (LPS) are essential envelope components in many Gram-negative bacteria and provide intrinsic resistance to antibiotics. LPS molecules are synthesized in the inner membrane and then transported to the cell surface by the LPS transport (Lpt) machinery. In this system, the ATP-binding cassette (ABC) transporter LptB2 FGC extracts LPS from the inner membrane and places it onto a periplasmic protein bridge through a poorly understood mechanism. Here, we show that residue E86 of LptB is essential for coupling the function of this ATPase to that of its partners LptFG, specifically at the step where ATP binding drives the closure of the LptB dimer and the collapse of the LPS-binding cavity in LptFG that moves LPS to the Lpt periplasmic bridge. We also show that defects caused by changing residue E86 are suppressed by mutations altering either LPS structure or transmembrane helices in LptG. Furthermore, these suppressors also fix defects in the coupling helix of LptF, but not of LptG. Together, these results support a transport mechanism in which the ATP-driven movements of LptB and those of the substrate-binding cavity in LptFG are bi-directionally coordinated through the rigid-body coupling, with LptF's coupling helix being important in coordinating cavity collapse with LptB dimerization.
Collapse
Affiliation(s)
- Emily A Lundstedt
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Brent W Simpson
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Natividad Ruiz
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
30
|
Bi Y, Zimmer J. Structure and Ligand-Binding Properties of the O Antigen ABC Transporter Carbohydrate-Binding Domain. Structure 2019; 28:252-258.e2. [PMID: 31879128 DOI: 10.1016/j.str.2019.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 10/25/2022]
Abstract
A hallmark of Gram-negative bacteria is an asymmetric outer membrane containing lipopolysaccharides (LPSs) in the extracellular leaflet. LPS molecules consist of lipid A, which is connected to the inner and outer core oligosaccharides. This LPS core structure is extended in the periplasm by the O antigen, a variable and serotype-defining polysaccharide. In the ABC transporter-dependent LPS biosynthesis pathway, the WzmWzt transporter secretes the complete O antigen across the inner membrane for ligation to the LPS core. In some O antigen transporters, the nucleotide-binding domain of Wzt is fused C-terminally to a carbohydrate-binding domain (CBD) that interacts with the O antigen chain. Here, we present the crystal structure of the Aquifex aeolicus CBD that reveals a conserved flat and a variable twisted jelly-roll surface. The CBD dimer is stabilized by mutual β strand exchange. Microbial glycan array binding studies with the isolated CBD provide insights into its interaction with complex carbohydrates.
Collapse
Affiliation(s)
- Yunchen Bi
- School of Medicine, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| | - Jochen Zimmer
- School of Medicine, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
31
|
Lee J, Tomasek D, Santos TM, May MD, Meuskens I, Kahne D. Formation of a β-barrel membrane protein is catalyzed by the interior surface of the assembly machine protein BamA. eLife 2019; 8:49787. [PMID: 31724945 PMCID: PMC6887485 DOI: 10.7554/elife.49787] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 11/13/2019] [Indexed: 01/02/2023] Open
Abstract
The β-barrel assembly machine (Bam) complex in Gram-negative bacteria and its counterparts in mitochondria and chloroplasts fold and insert outer membrane β-barrel proteins. BamA, an essential component of the complex, is itself a β-barrel and is proposed to play a central role in assembling other barrel substrates. Here, we map the path of substrate insertion by the Bam complex using site-specific crosslinking to understand the molecular mechanisms that control β-barrel folding and release. We find that the C-terminal strand of the substrate is stably held by BamA and that the N-terminal strands of the substrate are assembled inside the BamA β-barrel. Importantly, we identify contacts between the assembling β-sheet and the BamA interior surface that determine the rate of substrate folding. Our results support a model in which the interior wall of BamA acts as a chaperone to catalyze β-barrel assembly.
Collapse
Affiliation(s)
- James Lee
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - David Tomasek
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Thiago Ma Santos
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Mary D May
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Ina Meuskens
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Daniel Kahne
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| |
Collapse
|
32
|
Patro LPP, Rathinavelan T. Targeting the Sugary Armor of Klebsiella Species. Front Cell Infect Microbiol 2019; 9:367. [PMID: 31781512 PMCID: PMC6856556 DOI: 10.3389/fcimb.2019.00367] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 10/09/2019] [Indexed: 12/25/2022] Open
Abstract
The emergence of multidrug-resistant strains of Gram-negative Klebsiella species is an urgent global threat. The World Health Organization has listed Klebsiella pneumoniae as one of the global priority pathogens in critical need of next-generation antibiotics. Compared to other Gram-negative pathogens, K. pneumoniae accumulates a greater diversity of antimicrobial-resistant genes at a higher frequency. The evolution of a hypervirulent phenotype of K. pneumoniae is yet another concern. It has a broad ecological distribution affecting humans, agricultural animals, plants, and aquatic animals. Extracellular polysaccharides of Klebsiella, such as lipopolysaccharides, capsular polysaccharides, and exopolysaccharides, play crucial roles in conferring resistance against the host immune response, as well as in colonization, surface adhesion, and for protection against antibiotics and bacteriophages. These extracellular polysaccharides are major virulent determinants and are highly divergent with respect to their antigenic properties. Wzx/Wzy-, ABC-, and synthase-dependent proteinaceous nano-machineries are involved in the biosynthesis, transport, and cell surface expression of these sugar molecules. Although the proteins involved in the biosynthesis and surface expression of these sugar molecules represent potential drug targets, variation in the amino acid sequences of some of these proteins, in combination with diversity in their sugar composition, poses a major challenge to the design of a universal drug for Klebsiella infections. This review discusses the challenges in universal Klebsiella vaccine and drug development from the perspective of antigen sugar compositions and the proteins involved in extracellular antigen transport.
Collapse
|
33
|
Wu H, Kohler J. Photocrosslinking probes for capture of carbohydrate interactions. Curr Opin Chem Biol 2019; 53:173-182. [PMID: 31706134 DOI: 10.1016/j.cbpa.2019.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 01/03/2023]
Abstract
Glycan-mediated interactions are essential in many biological processes and regulate a wide variety of cellular functions. However, characterizing these interactions is difficult because glycan biosynthesis is not template driven and because carbohydrate recognition events are usually of low affinity and transient. Photocrosslinking carbohydrate probes can form a covalent bond with molecules in close proximity on UV irradiation and are capable of capturing interactions between glycans and glycan-binding proteins in situ. Because of these advantages, multiple photocrosslinking carbohydrate probes have been designed and applied to study the biological functions of glycans. This review will discuss recent advances in the development of novel photocrosslinking functional groups and the design of photocrosslinking probes to detect interactions mediated by glycolipids, peptidoglycan, and multivalent carbohydrate ligands. These probes have demonstrated the potential to address some of the major challenges in the study of glycan-mediated interactions in both model systems and in more complex biological settings.
Collapse
Affiliation(s)
- Han Wu
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jennifer Kohler
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA. http://
| |
Collapse
|
34
|
Lehman KM, Grabowicz M. Countering Gram-Negative Antibiotic Resistance: Recent Progress in Disrupting the Outer Membrane with Novel Therapeutics. Antibiotics (Basel) 2019; 8:antibiotics8040163. [PMID: 31554212 PMCID: PMC6963605 DOI: 10.3390/antibiotics8040163] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 10/27/2022] Open
Abstract
Gram-negative bacteria shield themselves from antibiotics by producing an outer membrane (OM) that forms a formidable permeability barrier. Multidrug resistance among these organisms is a particularly acute problem that is exacerbated by the OM. The poor penetrance of many available antibiotics prevents their clinical use, and efforts to discover novel classes of antibiotics against Gram-negative bacteria have been unsuccessful for almost 50 years. Recent insights into how the OM is built offer new hope. Several essential multiprotein molecular machines (Bam, Lpt, and Lol) work in concert to assemble the barrier and offer a swathe of new targets for novel therapeutic development. Murepavadin has been at the vanguard of these efforts, but its recently reported phase III clinical trial toxicity has tempered the anticipation of imminent new clinical options. Nonetheless, the many concerted efforts aimed at breaking down the OM barrier provide a source of ongoing optimism for what may soon come through the development pipeline. We will review the current state of drug development against the OM assembly targets, highlighting insightful new discovery approaches and strategies.
Collapse
Affiliation(s)
- Kelly M Lehman
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA.
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Marcin Grabowicz
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA.
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
35
|
Abstract
The outer membrane (OM) of Gram-negative bacteria exhibits unique lipid asymmetry, with lipopolysaccharides (LPS) residing in the outer leaflet and phospholipids (PLs) in the inner leaflet. This asymmetric bilayer protects the bacterium against intrusion of many toxic substances, including antibiotics and detergents, yet allows acquisition of nutrients necessary for growth. To build the OM and ensure its proper function, the cell produces OM constituents in the cytoplasm or inner membrane and transports these components across the aqueous periplasmic space separating the two membranes. Of note, the processes by which the most basic membrane building blocks, i.e. PLs, are shuttled across the cell envelope remain elusive. This review highlights our current understanding (or lack thereof) of bacterial PL trafficking, with a focus on recent developments in the field. We adopt a mechanistic approach and draw parallels and comparisons with well-characterized systems, particularly OM lipoprotein and LPS transport, to illustrate key challenges in intermembrane lipid trafficking. Pathways that transport PLs across the bacterial cell envelope are fundamental to OM biogenesis and homeostasis and are potential molecular targets that could be exploited for antibiotic development.
Collapse
Affiliation(s)
- Rahul Shrivastava
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
36
|
The Lpt ABC transporter for lipopolysaccharide export to the cell surface. Res Microbiol 2019; 170:366-373. [PMID: 31376484 DOI: 10.1016/j.resmic.2019.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 10/26/2022]
Abstract
The surface of the outer membrane of Gram-negative bacteria is covered by a tightly packed layer of lipopolysaccharide molecules which provide a barrier against many toxic compounds and antibiotics. Lipopolysaccharide, synthesized in the cytoplasm, is assembled in the periplasmic leaflet of the inner membrane where the intermembrane Lpt system mediates its transport to the cell surface. The first step of lipopolysaccharide transport is its extraction from the outer leaflet of inner membrane powered by the atypical LptB2FGC ABC transporter. Here we review latest advances leading to understanding at molecular level how lipopolysaccharide is transported irreversibly to the outer membrane.
Collapse
|
37
|
Storek KM, Chan J, Vij R, Chiang N, Lin Z, Bevers J, Koth CM, Vernes JM, Meng YG, Yin J, Wallweber H, Dalmas O, Shriver S, Tam C, Schneider K, Seshasayee D, Nakamura G, Smith PA, Payandeh J, Koerber JT, Comps-Agrar L, Rutherford ST. Massive antibody discovery used to probe structure-function relationships of the essential outer membrane protein LptD. eLife 2019; 8:46258. [PMID: 31237236 PMCID: PMC6592684 DOI: 10.7554/elife.46258] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/17/2019] [Indexed: 12/17/2022] Open
Abstract
Outer membrane proteins (OMPs) in Gram-negative bacteria dictate permeability of metabolites, antibiotics, and toxins. Elucidating the structure-function relationships governing OMPs within native membrane environments remains challenging. We constructed a diverse library of >3000 monoclonal antibodies to assess the roles of extracellular loops (ECLs) in LptD, an essential OMP that inserts lipopolysaccharide into the outer membrane of Escherichia coli. Epitope binning and mapping experiments with LptD-loop-deletion mutants demonstrated that 7 of the 13 ECLs are targeted by antibodies. Only ECLs inaccessible to antibodies were required for the structure or function of LptD. Our results suggest that antibody-accessible loops evolved to protect key extracellular regions of LptD, but are themselves dispensable. Supporting this hypothesis, no α-LptD antibody interfered with essential functions of LptD. Our experimental workflow enables structure-function studies of OMPs in native cellular environments, provides unexpected insight into LptD, and presents a method to assess the therapeutic potential of antibody targeting. The overuse and misuse of antibiotics has led to the rise of multi-drug resistant bacteria which threaten global public health. Antibiotics interfere with essential processes in bacteria so they are unable to divide or survive, but over time, the microbes have found ways to become immune to the drugs. New antibiotics are now desperately needed. Gram-negative bacteria are wrapped in an outer membrane made of large molecules called lipopolysaccharides. This structure is an extra barrier to molecules (such as drugs) that try to enter the cell, but it could also hold new targets for antibiotics to exploit. A protein called LptD is embedded in the outer membrane, where it inserts new lipopolysaccharides. It is critical for bacteria to grow and survive, and is a relatively new potential target for antibiotic development. The protein has a number of ‘extracellular loops’ that extend into the environment, but their roles in the structure and the activity of LptD are still largely unknown. This is partly due to a lack of tools to investigate these elements. In response, Storek et al. built a library of over 3,000 custom antibodies, which are small Y-shaped proteins that can each recognise a specific portion in one of the extracellular loops and potentially incapacitate LptD. The antibodies were used to target LptD in its native environment, when it is embedded in the bacteria. In parallel, mutant bacteria were created in which the loops were genetically removed one by one to assess their importance for LptD activity. The experiments revealed that although the antibodies could target most extracellular loops, they could not target the few loops that were essential for LptD to work properly. This suggests that antibody-accessible loops are expendable and that these structures could serve to shield other regions of LptD which are critical for survival. The findings will help to prioritise research that develops other approaches to inhibit LptD. Finally, the antibody workflow designed by Storek et al. can serve as a road map to study other membrane proteins in their native cellular environment.
Collapse
Affiliation(s)
- Kelly M Storek
- Department of Infectious Diseases, Genentech, Inc, South San Francisco, United States
| | - Joyce Chan
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc, South San Francisco, United States
| | - Rajesh Vij
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, United States
| | - Nancy Chiang
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, United States
| | - Zhonghua Lin
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, United States
| | - Jack Bevers
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, United States
| | - Christopher M Koth
- Department of Structural Biology, Genentech, Inc, South San Francisco, United States
| | - Jean-Michel Vernes
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc, South San Francisco, United States
| | - Y Gloria Meng
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc, South San Francisco, United States
| | - JianPing Yin
- Department of Structural Biology, Genentech, Inc, South San Francisco, United States
| | - Heidi Wallweber
- Department of Structural Biology, Genentech, Inc, South San Francisco, United States
| | - Olivier Dalmas
- Department of Structural Biology, Genentech, Inc, South San Francisco, United States
| | - Stephanie Shriver
- Department of Biomolecular Resources, Genentech, Inc, South San Francisco, United States
| | - Christine Tam
- Department of Biomolecular Resources, Genentech, Inc, South San Francisco, United States
| | - Kellen Schneider
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, United States
| | - Dhaya Seshasayee
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, United States
| | - Gerald Nakamura
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, United States
| | - Peter A Smith
- Department of Infectious Diseases, Genentech, Inc, South San Francisco, United States
| | - Jian Payandeh
- Department of Structural Biology, Genentech, Inc, South San Francisco, United States
| | - James T Koerber
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, United States
| | - Laetitia Comps-Agrar
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc, South San Francisco, United States
| | - Steven T Rutherford
- Department of Infectious Diseases, Genentech, Inc, South San Francisco, United States
| |
Collapse
|
38
|
Defects in Efflux ( oprM), β-Lactamase ( ampC), and Lipopolysaccharide Transport ( lptE) Genes Mediate Antibiotic Hypersusceptibility of Pseudomonas aeruginosa Strain Z61. Antimicrob Agents Chemother 2019; 63:AAC.00784-19. [PMID: 31036686 DOI: 10.1128/aac.00784-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 02/08/2023] Open
Abstract
Antibiotic hypersensitive bacterial mutants (e.g., Escherichia coli imp) are used to investigate intrinsic resistance and are exploited in antibacterial discovery to track weak antibacterial activity of novel inhibitor compounds. Pseudomonas aeruginosa Z61 is one such drug-hypersusceptible strain generated by chemical mutagenesis, although the genetic basis for hypersusceptibility is not fully understood. Genome sequencing of Z61 revealed nonsynonymous single-nucleotide polymorphisms in 153 genes relative to its parent strain, and three candidate mutations (in oprM, ampC, and lptE) predicted to mediate hypersusceptibility were characterized. The contribution of these mutations was confirmed by genomic restoration of the wild-type sequences, individually or in combination, in the Z61 background. Introduction of the lptE mutation or genetic inactivation of oprM and ampC genes alone or together in the parent strain recapitulated drug sensitivities. This showed that disruption of oprM (which encodes a major outer membrane efflux pump channel) increased susceptibility to pump substrate antibiotics, that inactivation of the inducible β-lactamase gene ampC contributed to β-lactam susceptibility, and that mutation of the lipopolysaccharide transporter gene lptE strongly altered the outer membrane permeability barrier, causing susceptibility to large antibiotics such as rifampin and also to β-lactams.
Collapse
|
39
|
Lo Sciuto A, Martorana AM, Fernández-Piñar R, Mancone C, Polissi A, Imperi F. Pseudomonas aeruginosa LptE is crucial for LptD assembly, cell envelope integrity, antibiotic resistance and virulence. Virulence 2019; 9:1718-1733. [PMID: 30354941 PMCID: PMC7204523 DOI: 10.1080/21505594.2018.1537730] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lipopolysaccharide (LPS) is an essential structural component of the outer membrane (OM) of most Gram-negative bacteria. In the model organism Escherichia coli, LPS transport to the OM requires seven essential proteins (LptABCDEFG) that form a continuous bridge across the cell envelope. In Pseudomonas aeruginosa the recently-demonstrated essentiality of LptD and LptH, the P. aeruginosa LptA homologue, confirmed the crucial role of the Lpt system and, thus, of LPS in OM biogenesis in this species. Surprisingly, independent high-throughput transposon mutagenesis studies identified viable P. aeruginosa insertion mutants in the lptE gene, suggesting that it might be dispensable for bacterial growth. To test this hypothesis, we generated an lptE conditional mutant in P. aeruginosa PAO1. LptE depletion only slightly impairs P. aeruginosa growth in vitro. Conversely, LptE is important for cell envelope stability, antibiotic resistance and virulence in an insect model. Interestingly, the maturation and OM localization of LPS is only marginally affected in LptE-depleted cells, while the levels of the OM component LptD are strongly reduced. This suggests that P. aeruginosa LptE might not be directly involved in LPS transport, although it is clearly essential for the maturation and/or stability of LptD. While poor functionality of LptD caused by LptE depletion is somehow tolerated by P. aeruginosa, this has a high cost in terms of cell integrity, drug resistance and virulence, highlighting LptE function(s) as an interesting target to weaken P. aeruginosa defenses and reduce its infectivity.
Collapse
Affiliation(s)
- Alessandra Lo Sciuto
- a Department of Biology and Biotechnology Charles Darwin , Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti , Rome , Italy
| | - Alessandra M Martorana
- b Department of Pharmacological and Biomolecular Sciences , University of Milan , Milan , Italy
| | - Regina Fernández-Piñar
- a Department of Biology and Biotechnology Charles Darwin , Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti , Rome , Italy
| | - Carmine Mancone
- c Department of Cellular Biotechnologies and Haematology , Sapienza University of Rome , Rome , Italy
| | - Alessandra Polissi
- b Department of Pharmacological and Biomolecular Sciences , University of Milan , Milan , Italy
| | - Francesco Imperi
- a Department of Biology and Biotechnology Charles Darwin , Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti , Rome , Italy
| |
Collapse
|
40
|
Abstract
The cell envelope is the first line of defense between a bacterium and the world-at-large. Often, the initial steps that determine the outcome of chemical warfare, bacteriophage infections, and battles with other bacteria or the immune system greatly depend on the structure and composition of the bacterial cell surface. One of the most studied bacterial surface molecules is the glycolipid known as lipopolysaccharide (LPS), which is produced by most Gram-negative bacteria. Much of the initial attention LPS received in the early 1900s was owed to its ability to stimulate the immune system, for which the glycolipid was commonly known as endotoxin. It was later discovered that LPS also creates a permeability barrier at the cell surface and is a main contributor to the innate resistance that Gram-negative bacteria display against many antimicrobials. Not surprisingly, these important properties of LPS have driven a vast and still prolific body of literature for more than a hundred years. LPS research has also led to pioneering studies in bacterial envelope biogenesis and physiology, mostly using Escherichia coli and Salmonella as model systems. In this review, we will focus on the fundamental knowledge we have gained from studies of the complex structure of the LPS molecule and the biochemical pathways for its synthesis, as well as the transport of LPS across the bacterial envelope and its assembly at the cell surface.
Collapse
|
41
|
Owens TW, Taylor RJ, Pahil KS, Bertani BR, Ruiz N, Kruse AC, Kahne D. Structural basis of unidirectional export of lipopolysaccharide to the cell surface. Nature 2019; 567:550-553. [PMID: 30894747 PMCID: PMC6629255 DOI: 10.1038/s41586-019-1039-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/26/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Tristan W Owens
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Rebecca J Taylor
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Karanbir S Pahil
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Blake R Bertani
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Natividad Ruiz
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA. .,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Miyazaki R, Akiyama Y, Mori H. A photo-cross-linking approach to monitor protein dynamics in living cells. Biochim Biophys Acta Gen Subj 2019; 1864:129317. [PMID: 30851405 DOI: 10.1016/j.bbagen.2019.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/26/2019] [Accepted: 03/04/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Proteins, which comprise one of the major classes of biomolecules that constitute a cell, interact with other cellular factors during both their biogenesis and functional states. Studying not only static but also transient interactions of proteins is important to understand their physiological roles and regulation mechanisms. However, only a limited number of methods are available to analyze the dynamic behaviors of proteins at the molecular level in a living cell. The site-directed in vivo photo-cross-linking approach is an elegant technique to capture protein interactions with high spatial resolution in a living cell. SCOPE OF REVIEW Here, we review the in vivo photo-cross-linking approach including its recent applications and the potential problems to be considered. We also introduce a new in vivo photo-cross-linking-based technique (PiXie) to study protein dynamics with high spatiotemporal resolution. MAJOR CONCLUSIONS In vivo photo-cross-linking enables us to capture weak/transient protein interactions with high spatial resolution, and allows for identification of interacting factors. Moreover, the PiXie approach can be used to monitor rapid folding/assembly processes of proteins in living cells. GENERAL SIGNIFICANCE In vivo photo-cross-linking is a simple method that has been used to analyze the dynamic interactions of many cellular proteins. Originally developed in Escherichia coli, this system has been extended to studies in various organisms, making it a fundamental technique for investigating dynamic protein interactions in many cellular processes. This article is part of a Special issue entitled "Novel major techniques for visualizing 'live' protein molecules" edited by Dr. Daisuke Kohda.
Collapse
Affiliation(s)
- Ryoji Miyazaki
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshinori Akiyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroyuki Mori
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
43
|
Tan YJ, Tan YS, Yeo CI, Chew J, Tiekink ERT. In vitro anti-bacterial and time kill evaluation of binuclear tricyclohexylphosphanesilver(I) dithiocarbamates, {Cy 3PAg(S 2CNRR')} 2. J Inorg Biochem 2019; 192:107-118. [PMID: 30640150 DOI: 10.1016/j.jinorgbio.2018.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/27/2018] [Accepted: 12/30/2018] [Indexed: 12/31/2022]
Abstract
Four binuclear phosphanesilver(I) dithiocarbamates, {cyclohexyl3PAg(S2CNRR')}2 for R = R' = Et (1), CH2CH2 (2), CH2CH2OH (3) and R = Me, R' = CH2CH2OH (4) have been synthesised and characterised by spectroscopy and crystallography, and feature tri-connective, μ2-bridging dithiocarbamate ligands and distorted tetrahedral geometries based on PS3 donor sets. The compounds were evaluated for anti-bacterial activity against a total of 12 clinically important pathogens. Based on minimum inhibitory concentration (MIC) and cell viability tests (human embryonic kidney cells, HEK 293), 1-4 are specifically active against Gram-positive bacteria while demonstrating low toxicity; 3 and 4 are active against methicillin resistant S. aureus (MRSA). Across the series, 4 was most effective and was more active than the standard anti-biotic chloramphenicol. Time kill assays reveal 1-4 to exhibit both time- and concentration-dependent pharmacokinetics against susceptible bacteria. Compound 4 demonstrates rapid (within 2 h) bactericidal activity at 1 and 2 × MIC to reach a maximum decrease of 5.2 log10 CFU/mL against S. aureus (MRSA).
Collapse
Affiliation(s)
- Yi Jiun Tan
- Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, No. 5 Jalan Universiti, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Department of Biological Sciences, School of Science and Technology, Sunway University, No. 5 Jalan Universiti, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Yee Seng Tan
- Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, No. 5 Jalan Universiti, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Chien Ing Yeo
- Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, No. 5 Jalan Universiti, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Jactty Chew
- Department of Biological Sciences, School of Science and Technology, Sunway University, No. 5 Jalan Universiti, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Edward R T Tiekink
- Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, No. 5 Jalan Universiti, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
44
|
Abstract
Gram-negative bacteria have an outer membrane that is positioned at the frontline of the cell's interaction with the environment and that serves as a barrier against noxious molecules including many antibiotics. This protective function mainly relies on lipopolysaccharide, a complex glycolipid located in the outer leaflet of the outer membrane. In this chapter we will first summarize lipopolysaccharide structure, functions and biosynthetic pathway and then we will discuss how it is transported and assembled to the cell surface. This is a remarkably complex process, as amphipathic lipopolysaccharide molecules must traverse three different cellular compartments to reach their final destination.
Collapse
|
45
|
Zhang X, Li Y, Wang W, Zhang J, Lin Y, Hong B, You X, Song D, Wang Y, Jiang J, Si S. Identification of an anti-Gram-negative bacteria agent disrupting the interaction between lipopolysaccharide transporters LptA and LptC. Int J Antimicrob Agents 2018; 53:442-448. [PMID: 30476569 DOI: 10.1016/j.ijantimicag.2018.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/17/2018] [Accepted: 11/15/2018] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The emergence of drug-resistant Gram-negative bacteria is a serious clinical problem that causes increased morbidity and mortality. However, the slow discovery of new antibiotics is unable to meet the need for treating bacterial infections caused by drug-resistant strains. Lipopolysaccharide (LPS) is synthesized in the cytoplasm and transported to the cell envelope by the LPS transport (Lpt) system. LptA and LptC form a complex that transports LPS from the inner membrane to the outer membrane. METHODS This study performed a screen for agents that disrupt the transport of LPS in Gram-negative bacteria Escherichia coli. It established a yeast two-hybrid system to detect LptA-LptC interaction and used this system to identify a compound, IMB-881, that blocks this interaction and shows antibacterial activity. RESULTS This study demonstrated that the IMB-881 compound specifically binds to LptA to disrupt LptA-LptC interaction using surface plasmon resonance assay. Overproduction of LptA protein but not that of LptC lowered the antibacterial activity of IMB-881. Strikingly, Escherichia coli cells accumulated 'extra' membrane material in the periplasm and exhibited filament morphology after treatment with IMB-881. CONCLUSION This study successfully identified, by using a yeast two-hybrid system, an antibacterial agent that likely blocks LPS transport in Gram-negative bacteria.
Collapse
Affiliation(s)
- Xuelian Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weiwei Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Lin
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Hong
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Danqing Song
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanchang Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| | - Jiandong Jiang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Shuyi Si
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
46
|
Jiang K, Guo S, Yang C, Yang J, Chen Y, Shaukat A, Zhao G, Wu H, Deng G. Barbaloin protects against lipopolysaccharide (LPS)-induced acute lung injury by inhibiting the ROS-mediated PI3K/AKT/NF-κB pathway. Int Immunopharmacol 2018; 64:140-150. [DOI: 10.1016/j.intimp.2018.08.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/07/2018] [Accepted: 08/18/2018] [Indexed: 12/16/2022]
|
47
|
Xie R, Taylor RJ, Kahne D. Outer Membrane Translocon Communicates with Inner Membrane ATPase To Stop Lipopolysaccharide Transport. J Am Chem Soc 2018; 140:12691-12694. [PMID: 30253645 PMCID: PMC6200140 DOI: 10.1021/jacs.8b07656] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The survival of Gram-negative bacteria depends on assembly of the asymmetric outer membrane, which creates a barrier that prevents entry of toxic molecules including antibiotics. The outer leaflet of the outer membrane is composed of lipopolysaccharide, which is made at the inner membrane and pushed across a protein bridge that spans the inner and outer membranes. We have developed a fluorescent assay to follow lipopolysaccharide (LPS) transport across a bridge linking proteoliposomes that mimic the inner and outer membranes. We show that LPS is delivered to the leaflet of the outer membrane proteoliposome that corresponds to the outer leaflet of the membrane in a cell. Transport stops long before substrates at the inner membrane are exhausted. Using mutants of the transport machinery, we find that the final amount of LPS delivered into the membrane depends on the affinity of the outer membrane translocon for LPS. Furthermore, ATP hydrolysis depends on delivery of LPS into the outer membrane. Therefore, the transport process is regulated by the outer membrane translocon causing ATP hydrolysis in the inner membrane proteoliposome to stop. Negative feedback from the outer membrane to the inner membrane provides a mechanism for long distance control over LPS transport.
Collapse
Affiliation(s)
- Ran Xie
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Rebecca J. Taylor
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel Kahne
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
48
|
Bertani BR, Taylor RJ, Nagy E, Kahne D, Ruiz N. A cluster of residues in the lipopolysaccharide exporter that selects substrate variants for transport to the outer membrane. Mol Microbiol 2018; 109:541-554. [PMID: 29995974 DOI: 10.1111/mmi.14059] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2018] [Indexed: 01/03/2023]
Abstract
Most Gram-negative bacteria assemble lipopolysaccharides (LPS) on their surface to form a permeability barrier against many antimicrobials. LPS is synthesized at the inner membrane and then transported to the outer leaflet of the outer membrane. Although the overall LPS structure is conserved, LPS molecules can differ in composition at the species and strain level. Some bacteria also regulate when to modify phosphates on LPS at the inner membrane in order to become resistant to cationic antimicrobial peptides. The multi-protein Lpt trans-envelope machine, which transports LPS from the inner to the outer membrane, must therefore handle a variety of substrates. The most poorly understood step in LPS transport is how the ATP-binding cassette LptB2 FG transporter extracts LPS from the inner membrane. Here, we define residue K34 in LptG as a site within the structural cavity of the Escherichia coli LptB2 FG transporter that interacts electrostatically with phosphates on unmodified LPS. Alterations to this residue cause transport defects that are suppressed by the activation of the BasSR two-component signaling system, which results in modifications to the LPS phosphates. We also show this residue is part of a larger site in LptG that differentially contributes to the transport of unmodified and modified LPS.
Collapse
Affiliation(s)
- Blake R Bertani
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
| | - Rebecca J Taylor
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Emma Nagy
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Natividad Ruiz
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
49
|
Schultz KM, Fischer MA, Noey EL, Klug CS. Disruption of the E. coli LptC dimerization interface and characterization of lipopolysaccharide and LptA binding to monomeric LptC. Protein Sci 2018; 27:1407-1417. [PMID: 29672978 PMCID: PMC6153404 DOI: 10.1002/pro.3429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/15/2018] [Accepted: 04/17/2018] [Indexed: 11/10/2022]
Abstract
Lipopolysaccharide (LPS) is an essential element of nearly all Gram-negative bacterial outer membranes and serves to protect the cell from adverse environmental stresses. Seven members of the lipopolysaccharide transport (Lpt) protein family function together to transport LPS from the inner membrane (IM) to the outer leaflet of the outer membrane of bacteria such as Escherichia coli. Each of these proteins has a solved crystal structure, including LptC, which is a largely periplasmic protein that is associated with the IM LptB2 FG complex and anchored to the membrane by an N-terminal helix. LptC directly binds LPS and is hypothesized to be involved in the transfer of LPS to another periplasmic protein, LptA. Purified and in solution, LptC forms a dimer. Here, point mutations designed to disrupt formation of the dimer are characterized using site-directed spin labeling double electron electron resonance (DEER) spectroscopy, light scattering, circular dichroism, and computational modeling. The computational studies reveal the molecular interactions that drive dimerization of LptC and elucidate how the disruptive mutations change this interaction, while the DEER and light scattering studies identify which mutants disrupt the dimer. And, using electron paramagnetic resonance spectroscopy and comparing the results to the previous quantitative characterization of the interactions between dimeric LptC and LPS and LptA, the functional consequences of monomeric LptC were also determined. These results indicate that disruption of the dimer does not affect LPS or LptA binding and that monomeric LptC binds LPS and LptA at levels similar to dimeric LptC.
Collapse
Affiliation(s)
- Kathryn M. Schultz
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsin53226
| | - Matthew A. Fischer
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsin53226
| | - Elizabeth L. Noey
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsin53226
| | - Candice S. Klug
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsin53226
| |
Collapse
|
50
|
Abstract
Our understanding of the complex molecular processes of living organisms at the molecular level is growing exponentially. This knowledge, together with a powerful arsenal of tools for manipulating the structures of macromolecules, is allowing chemists to to harness and reprogram the cellular machinery in ways previously unimaged. Here we review one example in which the genetic code itself has been expanded with new building blocks that allow us to probe and manipulate the structures and functions of proteins with unprecedented precision.
Collapse
Affiliation(s)
- Douglas D. Young
- Department of Chemistry, College of William & Mary,
P.O. Box 8795, Williamsburg, VA 23187 (USA)
| | - Peter G. Schultz
- Department of Chemistry, The Scripps Research Institute,
La Jolla, CA 92037 (USA),
| |
Collapse
|