1
|
Abstract
Ribosomes synthesize protein in all cells. Maintaining both the correct number and composition of ribosomes is critical for protein homeostasis. To address this challenge, cells have evolved intricate quality control mechanisms during assembly to ensure that only correctly matured ribosomes are released into the translating pool. However, these assembly-associated quality control mechanisms do not deal with damage that arises during the ribosomes' exceptionally long lifetimes and might equally compromise their function or lead to reduced ribosome numbers. Recent research has revealed that ribosomes with damaged ribosomal proteins can be repaired by the release of the damaged protein, thereby ensuring ribosome integrity at a fraction of the energetic cost of producing new ribosomes, appropriate for stress conditions. In this article, we cover the types of ribosome damage known so far, and then we review the known repair mechanisms before surveying the literature for possible additional instances of repair.
Collapse
Affiliation(s)
- Yoon-Mo Yang
- Current affiliation: Graduate School of Biomedical Science and Engineering and Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea;
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Katrin Karbstein
- Current affiliation: Department of Biochemistry, Vanderbilt School of Medicine, Vanderbilt University, Nashville, Tennessee, USA;
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| |
Collapse
|
2
|
Liu P, Zhang R, Song X, Tian X, Guan Y, Li L, He M, He C, Ding N. RTCB deficiency triggers colitis in mice by influencing the NF-κB and Wnt/β-catenin signaling pathways. Acta Biochim Biophys Sin (Shanghai) 2024; 56:405-413. [PMID: 38425245 PMCID: PMC11292128 DOI: 10.3724/abbs.2023279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/25/2023] [Indexed: 03/02/2024] Open
Abstract
RNA terminal phosphorylase B (RTCB) has been shown to play a significant role in multiple physiological processes. However, the specific role of RTCB in the mouse colon remains unclear. In this study, we employ a conditional knockout mouse model to investigate the effects of RTCB depletion on the colon and the potential molecular mechanisms. We assess the efficiency and phenotype of Rtcb knockout using PCR, western blot analysis, histological staining, and immunohistochemistry. Compared with the control mice, the Rtcb-knockout mice exhibit compromised colonic barrier integrity and prominent inflammatory cell infiltration. In the colonic tissues of Rtcb-knockout mice, the protein levels of TNF-α, IL-8, and p-p65 are increased, whereas the levels of IKKβ and IκBα are decreased. Moreover, the level of GSK3β is increased, whereas the levels of Wnt3a, β-catenin, and LGR5 are decreased. Collectively, our findings unveil a close association between RTCB and colonic tissue homeostasis and demonstrate that RTCB deficiency can lead to dysregulation of both the NF-κB and Wnt/β-catenin signaling pathways in colonic cells.
Collapse
Affiliation(s)
- Peiyan Liu
- />College of Life ScienceShandong Normal UniversityJinan250014China
| | - Ruitao Zhang
- />College of Life ScienceShandong Normal UniversityJinan250014China
| | - Xiaotong Song
- />College of Life ScienceShandong Normal UniversityJinan250014China
| | - Xiaohua Tian
- />College of Life ScienceShandong Normal UniversityJinan250014China
| | - Yichao Guan
- />College of Life ScienceShandong Normal UniversityJinan250014China
| | - Licheng Li
- />College of Life ScienceShandong Normal UniversityJinan250014China
| | - Mei He
- />College of Life ScienceShandong Normal UniversityJinan250014China
| | - Chengqiang He
- />College of Life ScienceShandong Normal UniversityJinan250014China
| | - Naizheng Ding
- />College of Life ScienceShandong Normal UniversityJinan250014China
| |
Collapse
|
3
|
Gerber JL, Morales Guzmán SI, Worf L, Hubbe P, Kopp J, Peschek J. Structural and mechanistic insights into activation of the human RNA ligase RTCB by Archease. Nat Commun 2024; 15:2378. [PMID: 38493148 PMCID: PMC10944509 DOI: 10.1038/s41467-024-46568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
RNA ligases of the RTCB-type play an essential role in tRNA splicing, the unfolded protein response and RNA repair. RTCB is the catalytic subunit of the pentameric human tRNA ligase complex. RNA ligation by the tRNA ligase complex requires GTP-dependent activation of RTCB. This active site guanylylation reaction relies on the activation factor Archease. The mechanistic interplay between both proteins has remained unknown. Here, we report a biochemical and structural analysis of the human RTCB-Archease complex in the pre- and post-activation state. Archease reaches into the active site of RTCB and promotes the formation of a covalent RTCB-GMP intermediate through coordination of GTP and metal ions. During the activation reaction, Archease prevents futile RNA substrate binding to RTCB. Moreover, monomer structures of Archease and RTCB reveal additional states within the RNA ligation mechanism. Taken together, we present structural snapshots along the reaction cycle of the human tRNA ligase.
Collapse
Affiliation(s)
- Janina Lara Gerber
- Heidelberg University, Biochemistry Center (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | | | - Lorenz Worf
- Heidelberg University, Biochemistry Center (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Petra Hubbe
- Heidelberg University, Biochemistry Center (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Jürgen Kopp
- Heidelberg University, Biochemistry Center (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Jirka Peschek
- Heidelberg University, Biochemistry Center (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany.
| |
Collapse
|
4
|
Shuman S. RNA Repair: Hiding in Plain Sight. Annu Rev Genet 2023; 57:461-489. [PMID: 37722686 DOI: 10.1146/annurev-genet-071719-021856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Enzymes that phosphorylate, dephosphorylate, and ligate RNA 5' and 3' ends were discovered more than half a century ago and were eventually shown to repair purposeful site-specific endonucleolytic breaks in the RNA phosphodiester backbone. The pace of discovery and characterization of new candidate RNA repair activities in taxa from all phylogenetic domains greatly exceeds our understanding of the biological pathways in which they act. The key questions anent RNA break repair in vivo are (a) identifying the triggers, agents, and targets of RNA cleavage and (b) determining whether RNA repair results in restoration of the original RNA, modification of the RNA (by loss or gain at the ends), or rearrangements of the broken RNA segments (i.e., RNA recombination). This review provides a perspective on the discovery, mechanisms, and physiology of purposeful RNA break repair, highlighting exemplary repair pathways (e.g., tRNA restriction-repair and tRNA splicing) for which genetics has figured prominently in their elucidation.
Collapse
Affiliation(s)
- Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA;
| |
Collapse
|
5
|
Moncan M, Rakhsh-Khorshid H, Eriksson LA, Samali A, Gorman AM. Insights into the structure and function of the RNA ligase RtcB. Cell Mol Life Sci 2023; 80:352. [PMID: 37935993 PMCID: PMC10630183 DOI: 10.1007/s00018-023-05001-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023]
Abstract
To be functional, some RNAs require a processing step involving splicing events. Each splicing event necessitates an RNA ligation step. RNA ligation is a process that can be achieved with various intermediaries such as self-catalysing RNAs, 5'-3' and 3'-5' RNA ligases. While several types of RNA ligation mechanisms occur in human, RtcB is the only 3'-5' RNA ligase identified in human cells to date. RtcB RNA ligation activity is well known to be essential for the splicing of XBP1, an essential transcription factor of the unfolded protein response; as well as for the maturation of specific intron-containing tRNAs. As such, RtcB is a core factor in protein synthesis and homeostasis. Taking advantage of the high homology between RtcB orthologues in archaea, bacteria and eukaryotes, this review will provide an introduction to the structure of RtcB and the mechanism of 3'-5' RNA ligation. This analysis is followed by a description of the mechanisms regulating RtcB activity and localisation, its known partners and its various functions from bacteria to human with a specific focus on human cancer.
Collapse
Affiliation(s)
- Matthieu Moncan
- Apoptosis Research Centre, University of Galway, Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Hassan Rakhsh-Khorshid
- Apoptosis Research Centre, University of Galway, Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Göteborg, Sweden
| | - Afshin Samali
- Apoptosis Research Centre, University of Galway, Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
- CÚRAM SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Adrienne M Gorman
- Apoptosis Research Centre, University of Galway, Galway, Ireland.
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland.
- CÚRAM SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland.
- Biomedical Sciences, Upper Newcastle, University of Galway, Galway, H91 W2TY, Ireland.
| |
Collapse
|
6
|
Saito M, Inose R, Sato A, Tomita M, Suzuki H, Kanai A. Systematic Analysis of Diverse Polynucleotide Kinase Clp1 Family Proteins in Eukaryotes: Three Unique Clp1 Proteins of Trypanosoma brucei. J Mol Evol 2023; 91:669-686. [PMID: 37606665 PMCID: PMC10598085 DOI: 10.1007/s00239-023-10128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023]
Abstract
The Clp1 family proteins, consisting of the Clp1 and Nol9/Grc3 groups, have polynucleotide kinase (PNK) activity at the 5' end of RNA strands and are important enzymes in the processing of some precursor RNAs. However, it remains unclear how this enzyme family diversified in the eukaryotes. We performed a large-scale molecular evolutionary analysis of the full-length genomes of 358 eukaryotic species to classify the diverse Clp1 family proteins. The average number of Clp1 family proteins in eukaryotes was 2.3 ± 1.0, and most representative species had both Clp1 and Nol9/Grc3 proteins, suggesting that the Clp1 and Nol9/Grc3 groups were already formed in the eukaryotic ancestor by gene duplication. We also detected an average of 4.1 ± 0.4 Clp1 family proteins in members of the protist phylum Euglenozoa. For example, in Trypanosoma brucei, there are three genes of the Clp1 group and one gene of the Nol9/Grc3 group. In the Clp1 group proteins encoded by these three genes, the C-terminal domains have been replaced by unique characteristics domains, so we designated these proteins Tb-Clp1-t1, Tb-Clp1-t2, and Tb-Clp1-t3. Experimental validation showed that only Tb-Clp1-t2 has PNK activity against RNA strands. As in this example, N-terminal and C-terminal domain replacement also contributed to the diversification of the Clp1 family proteins in other eukaryotic species. Our analysis also revealed that the Clp1 family proteins in humans and plants diversified through isoforms created by alternative splicing.
Collapse
Affiliation(s)
- Motofumi Saito
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-0882, Japan
| | - Rerina Inose
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
| | - Asako Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-0882, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, 252-0882, Japan
| | - Haruo Suzuki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, 252-0882, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan.
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-0882, Japan.
- Faculty of Environment and Information Studies, Keio University, Fujisawa, 252-0882, Japan.
| |
Collapse
|
7
|
He TT, Xu YF, Li X, Wang X, Li JY, Ou-Yang D, Cheng HS, Li HY, Qin J, Huang Y, Wang HY. A linear and circular dual-conformation noncoding RNA involved in oxidative stress tolerance in Bacillus altitudinis. Nat Commun 2023; 14:5722. [PMID: 37714854 PMCID: PMC10504365 DOI: 10.1038/s41467-023-41491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023] Open
Abstract
Circular RNAs have been extensively studied in eukaryotes, but their presence and/or biological functionality in bacteria are unclear. Here, we show that a regulatory noncoding RNA (DucS) exists in both linear and circular conformation in Bacillus altitudinis. The linear forms promote B. altitudinis tolerance to H2O2 stress, partly through increased translation of a stress-responsive gene, htrA. The 3' end sequences of the linear forms are crucial for RNA circularization, and formation of circular forms can decrease the levels of the regulatory linear cognates. Bioinformatic analysis of available RNA-seq datasets from 30 bacterial species revealed multiple circular RNA candidates, distinct from DucS, for all the examined species. Experiments testing for the presence of selected circular RNA candidates in four species successfully validated 7 out of 9 candidates from B. altitudinis and 4 out of 5 candidates from Bacillus paralicheniformis; However, none of the candidates tested for Bacillus subtilis and Escherichia coli were detected. Our work identifies a dual-conformation regulatory RNA in B. altitutidinis, and indicates that circular RNAs exist in diverse bacteria. However, circularization of specific RNAs does not seem to be conserved across species, and the circularization mechanisms and biological functionality of the circular forms remain unclear.
Collapse
Affiliation(s)
- Ting-Ting He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yun-Fan Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Xiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Xia Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jie-Yu Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Dan Ou-Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Han-Sen Cheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Hao-Yang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jia Qin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yu Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Hai-Yan Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
9
|
Kurasz JE, Crawford MC, Porwollik S, Gregory O, Tadlock KR, Balding EC, Weinert EE, McClelland M, Karls AC. Strain-Specific Gifsy-1 Prophage Genes Are Determinants for Expression of the RNA Repair Operon during the SOS Response in Salmonella enterica Serovar Typhimurium. J Bacteriol 2023; 205:e0026222. [PMID: 36622230 PMCID: PMC9879122 DOI: 10.1128/jb.00262-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
The adaptation of Salmonella enterica serovar Typhimurium to stress conditions involves expression of genes within the regulon of the alternative sigma factor RpoN (σ54). RpoN-dependent transcription requires an activated bacterial enhancer binding protein (bEBP) that hydrolyzes ATP to remodel the RpoN-holoenzyme-promoter complex for transcription initiation. The bEBP RtcR in S. Typhimurium strain 14028s is activated by genotoxic stress to direct RpoN-dependent expression of the RNA repair operon rsr-yrlBA-rtcBA. The molecular signal for RtcR activation is an oligoribonucleotide with a 3'-terminal 2',3'-cyclic phosphate. We show in S. Typhimurium 14028s that the molecular signal is not a direct product of nucleic acid damage, but signal generation is dependent on a RecA-controlled SOS-response pathway, specifically, induction of prophage Gifsy-1. A genome-wide mutant screen and utilization of Gifsy prophage-cured strains indicated that the nucleoid-associated protein Fis and the Gifsy-1 prophage significantly impact RtcR activation. Directed-deletion analysis and genetic mapping by transduction demonstrated that a three-gene region (STM14_3218-3220) in Gifsy-1, which is variable between S. Typhimurium strains, is required for RtcR activation in strain 14028s and that the absence of STM14_3218-3220 in the Gifsy-1 prophages of S. Typhimurium strains LT2 and 4/74, which renders these strains unable to activate RtcR during genotoxic stress, can be rescued by complementation in cis by the region encompassing STM14_3218-3220. Thus, even though RtcR and the RNA repair operon are highly conserved in Salmonella enterica serovars, RtcR-dependent expression of the RNA repair operon in S. Typhimurium is controlled by a variable region of a prophage present in only some strains. IMPORTANCE The transcriptional activator RtcR and the RNA repair proteins whose expression it regulates, RtcA and RtcB, are widely conserved in Proteobacteria. In Salmonella Typhimurium 14028s, genotoxic stress activates RtcR to direct RpoN-dependent expression of the rsr-yrlBA-rtcBA operon. This work identifies key elements of a RecA-dependent pathway that generates the signal for RtcR activation in strain 14028s. This signaling pathway requires the presence of a specific region within the prophage Gifsy-1, yet this region is absent in most other wild-type Salmonella strains. Thus, we show that the activity of a widely conserved regulatory protein can be controlled by prophages with narrow phylogenetic distributions. This work highlights an underappreciated phenomenon where bacterial physiological functions are altered due to genetic rearrangement of prophages.
Collapse
Affiliation(s)
| | | | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California–Irvine School of Medicine, Irvine, California, USA
| | - Oliver Gregory
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | | - Eve C. Balding
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Emily E. Weinert
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California–Irvine School of Medicine, Irvine, California, USA
| | - Anna C. Karls
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
10
|
Nicked tRNAs are stable reservoirs of tRNA halves in cells and biofluids. Proc Natl Acad Sci U S A 2023; 120:e2216330120. [PMID: 36652478 PMCID: PMC9942843 DOI: 10.1073/pnas.2216330120] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nonvesicular extracellular RNAs (nv-exRNAs) constitute the majority of the extracellular RNAome, but little is known about their stability, function, and potential use as disease biomarkers. Herein, we measured the stability of several naked RNAs when incubated in human serum, urine, and cerebrospinal fluid (CSF). We identified extracellularly produced tRNA-derived small RNAs (tDRs) with half-lives of several hours in CSF. Contrary to widespread assumptions, these intrinsically stable small RNAs are full-length tRNAs containing broken phosphodiester bonds (i.e., nicked tRNAs). Standard molecular biology protocols, including phenol-based RNA extraction and heat, induce the artifactual denaturation of nicked tRNAs and the consequent in vitro production of tDRs. Broken bonds are roadblocks for reverse transcriptases, preventing amplification and/or sequencing of nicked tRNAs in their native state. To solve this, we performed enzymatic repair of nicked tRNAs purified under native conditions, harnessing the intrinsic activity of phage and bacterial tRNA repair systems. Enzymatic repair regenerated an RNase R-resistant tRNA-sized band in northern blot and enabled RT-PCR amplification of full-length tRNAs. We also separated nicked tRNAs from tDRs by chromatographic methods under native conditions, identifying nicked tRNAs inside stressed cells and in vesicle-depleted human biofluids. Dissociation of nicked tRNAs produces single-stranded tDRs that can be spontaneously taken up by human epithelial cells, positioning stable nv-exRNAs as potentially relevant players in intercellular communication pathways.
Collapse
|
11
|
Gao L, Ma X. Transcriptome Analysis of Acinetobacter baumannii in Rapid Response to Subinhibitory Concentration of Minocycline. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16095. [PMID: 36498165 PMCID: PMC9741440 DOI: 10.3390/ijerph192316095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The increasing emergence of multidrug-resistant Acinetobacter baumannii brings great threats to public health. Minocycline is a kind of semisynthetic derivative of the antibacterial drug tetracycline and is often used to treat infections caused by multidrug-resistant A. baumannii with other antibiotics. However, minocycline-resistant A. baumannii appears constantly. To rapidly explore the response of A. baumannii to minocycline stress, RNA-seq was carried out to compare the difference in the transcriptome of A. baumannii ATCC19606 in the presence or absence of minocycline. The results showed that 25 genes were differentially expressed, including 10 downregulated genes and 15 upregulated genes, and 24 sRNA were upregulated and 24 were downregulated based on the filter criteria (Log2FC > 1 or <−1 and FDR < 0.05). RtcB family protein and ABC transporter ATP-binding protein were upregulated by 2.6- and 11.3-fold, and molecular chaperone GroES, chaperonin GroL, class C beta-lactamase ADC-158, amino acid ABC transporter permease, and APC family permease were downregulated by at least two-fold in the presence of half-MIC minocycline. The differentially expressed genes are mainly involved in the stress response, the GroES/GroEL chaperonin system, and transport metabolic pathways. sRNA 1248 was significantly upregulated, and sRNA 1767, 5182, and 6984 were downregulated in a rapid response to minocycline. These results provide insights into the adaptive mechanism of A. baumannii to minocycline.
Collapse
Affiliation(s)
- Lili Gao
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaochun Ma
- Experimental Animal Center, Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
12
|
Jacewicz A, Dantuluri S, Shuman S. Structures of RNA ligase RtcB in complexes with divalent cations and GTP. RNA (NEW YORK, N.Y.) 2022; 28:1509-1518. [PMID: 36130078 PMCID: PMC9745838 DOI: 10.1261/rna.079327.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Pyrococcus horikoshii (Pho) RtcB exemplifies a family of binuclear transition metal- and GTP-dependent RNA ligases that join 3'-phosphate and 5'-OH ends via RtcB-(histidinyl-N)-GMP and RNA3'pp5'G intermediates. We find that guanylylation of PhoRtcB is optimal with manganese and less effective with cobalt and nickel. Zinc and copper are inactive and potently inhibit manganese-dependent guanylylation. We report crystal structures of PhoRtcB in complexes with GTP and permissive (Mn, Co, Ni) or inhibitory (Zn, Cu) metals. Zinc and copper occupy the M1 and M2 sites adjacent to the GTP phosphates, as do manganese, cobalt, and nickel. The identity/positions of enzymic ligands for M1 (His234, His329, Cys98) and M2 (Cys98, Asp95, His203) are the same for permissive and inhibitory metals. The differences pertain to: (i) the coordination geometries and phosphate contacts of the metals; and (ii) the orientation of the His404 nucleophile with respect to the GTP α-phosphate and pyrophosphate leaving group. M2 metal coordination geometry correlates with metal cofactor activity, whereby inhibitory Zn2 and Cu2 assume a tetrahedral configuration and contact only the GTP γ-phosphate, whereas Mn2, Co2, and Ni2 coordination complexes are pentahedral and contact the β- and γ-phosphates. The His404-Nε-Pα-O(α-β) angle is closer to apical in Mn (179°), Co (171°), and Ni (169°) structures than in Zn (160°) and Cu (155°) structures. The octahedral Mn1 geometry in our RtcB•GTP•Mn2+ structure, in which Mn1 contacts α-, β-, and γ-phosphates, transitions to a tetrahedral configuration after formation of RtcB•(His404)-GMP•Mn2+ and departure of pyrophosphate.
Collapse
Affiliation(s)
- Agata Jacewicz
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Swathi Dantuluri
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
13
|
Weixler L, Feijs KLH, Zaja R. ADP-ribosylation of RNA in mammalian cells is mediated by TRPT1 and multiple PARPs. Nucleic Acids Res 2022; 50:9426-9441. [PMID: 36018800 PMCID: PMC9458441 DOI: 10.1093/nar/gkac711] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
RNA function relies heavily on posttranscriptional modifications. Recently, it was shown that certain PARPs and TRPT1 can ADP-ribosylate RNA in vitro. Traditionally, intracellular ADP-ribosylation has been considered mainly as a protein posttranslational modification. To date, it is not clear whether RNA ADP-ribosylation occurs in cells. Here we present evidence that different RNA species are ADP-ribosylated in human cells. The modification of cellular RNA is mediated by several transferases such as TRPT1, PARP10, PARP11, PARP12 and PARP15 and is counteracted by different hydrolases including TARG1, PARG and ARH3. In addition, diverse cellular stressors can modulate the content of ADP-ribosylated RNA in cells. We next investigated potential consequences of ADP-ribosylation for RNA and found that ADPr-capped mRNA is protected against XRN1 mediated degradation but is not translated. T4 RNA ligase 1 can ligate ADPr-RNA in absence of ATP, resulting in the incorporation of an abasic site. We thus provide the first evidence of RNA ADP-ribosylation in mammalian cells and postulate potential functions of this novel RNA modification.
Collapse
Affiliation(s)
- Lisa Weixler
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Karla L H Feijs
- Correspondence may also be addressed to Karla L.H. Feijs. Tel: +49 2418080692; Fax: +49 2418082427;
| | - Roko Zaja
- To whom correspondence should be addressed. Tel: +49 2418037944; Fax: +49 2418082427;
| |
Collapse
|
14
|
Role of circular RNAs in disease progression and diagnosis of cancers: An overview of recent advanced insights. Int J Biol Macromol 2022; 220:973-984. [PMID: 35977596 DOI: 10.1016/j.ijbiomac.2022.08.085] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/19/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023]
Abstract
Tumor microenvironment (TME) is a crucial regulator of tumor progression and cells in the TME release a number of molecules that are responsible for anaplasticity, invasion, metastasis of tumor, establishing stem cell niches, up-regulation and down-regulation of various pathways in cancer cells, interfering with immune surveillance and immune escape. Moreover, they can serve as diagnostic markers, and determine effective therapies. Among them, CircRNAs have gained special attention due to their involvement in mutated pathways in cancers. By functioning as a molecular sponge for miRNAs, binding with proteins, and directing selective splicing. CircRNAs modify the immunological environment of cancers to promote their growth. Besides of critical role in tumor growth, circRNAs are emerging as potential candidates as biomarkers for diagnosis cancer therapy. Also, circRNAs vaccination even offers a novel approach to tumor immunotherapy. Over the recent years, studies are advocating that circRNAs have tissue specific tumor specific expression patterns, which indicates their potential clinical utility. Especially, circRNAs have emerged as potential predictive and prognostic biomarkers. Although, there has been significant progress in deciphering the role of circRNA in cancers, literature lacks comprehensive overview on this topic. Keeping in view of these significant discoveries, this review systematically discusses circRNA and their role in the tumor in different dimensions.
Collapse
|
15
|
Tian Y, Zeng F, Raybarman A, Fatma S, Carruthers A, Li Q, Huang RH. Sequential rescue and repair of stalled and damaged ribosome by bacterial PrfH and RtcB. Proc Natl Acad Sci U S A 2022; 119:e2202464119. [PMID: 35858322 PMCID: PMC9304027 DOI: 10.1073/pnas.2202464119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/10/2022] [Indexed: 01/14/2023] Open
Abstract
RtcB is involved in transfer RNA (tRNA) splicing in archaeal and eukaryotic organisms. However, most RtcBs are found in bacteria, whose tRNAs have no introns. Because tRNAs are the substrates of archaeal and eukaryotic RtcB, it is assumed that bacterial RtcBs are for repair of damaged tRNAs. Here, we show that a subset of bacterial RtcB, denoted RtcB2 herein, specifically repair ribosomal damage in the decoding center. To access the damage site for repair, however, the damaged 70S ribosome needs to be dismantled first, and this is accomplished by bacterial PrfH. Peptide-release assays revealed that PrfH is only active with the damaged 70S ribosome but not with the intact one. A 2.55-Å cryo-electron microscopy structure of PrfH in complex with the damaged 70S ribosome provides molecular insight into PrfH discriminating between the damaged and the intact ribosomes via specific recognition of the cleaved 3'-terminal nucleotide. RNA repair assays demonstrated that RtcB2 efficiently repairs the damaged 30S ribosomal subunit but not the damaged tRNAs. Cell-based assays showed that the RtcB2-PrfH pair reverse the damage inflicted by ribosome-specific ribotoxins in vivo. Thus, our combined biochemical, structural, and cell-based studies have uncovered a bacterial defense system specifically evolved to reverse the lethal ribosomal damage in the decoding center for cell survival.
Collapse
Affiliation(s)
- Yannan Tian
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Fuxing Zeng
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, People’s Republic of China
| | - Adrika Raybarman
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Shirin Fatma
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Amy Carruthers
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Qingrong Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, People’s Republic of China
| | - Raven H. Huang
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
16
|
Gerber JL, Köhler S, Peschek J. Eukaryotic tRNA splicing - one goal, two strategies, many players. Biol Chem 2022; 403:765-778. [PMID: 35621519 DOI: 10.1515/hsz-2021-0402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/10/2022] [Indexed: 12/28/2022]
Abstract
Transfer RNAs (tRNAs) are transcribed as precursor molecules that undergo several maturation steps before becoming functional for protein synthesis. One such processing mechanism is the enzyme-catalysed splicing of intron-containing pre-tRNAs. Eukaryotic tRNA splicing is an essential process since intron-containing tRNAs cannot fulfil their canonical function at the ribosome. Splicing of pre-tRNAs occurs in two steps: The introns are first excised by a tRNA-splicing endonuclease and the exons are subsequently sealed by an RNA ligase. An intriguing complexity has emerged from newly identified tRNA splicing factors and their interplay with other RNA processing pathways during the past few years. This review summarises our current understanding of eukaryotic tRNA splicing and the underlying enzyme machinery. We highlight recent structural advances and how they have shaped our mechanistic understanding of tRNA splicing in eukaryotic cells. A special focus lies on biochemically distinct strategies for exon-exon ligation in fungi versus metazoans.
Collapse
Affiliation(s)
- Janina L Gerber
- Biochemistry Center (BZH), Heidelberg University, D-69120 Heidelberg, Germany
| | - Sandra Köhler
- Biochemistry Center (BZH), Heidelberg University, D-69120 Heidelberg, Germany
| | - Jirka Peschek
- Biochemistry Center (BZH), Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
17
|
Liu Y, Takagi Y, Sugijanto M, Nguyen KDM, Hirata A, Hori H, Ho CK. Genetic and Functional Analyses of Archaeal ATP-Dependent RNA Ligase in C/D Box sRNA Circularization and Ribosomal RNA Processing. Front Mol Biosci 2022; 9:811548. [PMID: 35445080 PMCID: PMC9014305 DOI: 10.3389/fmolb.2022.811548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/08/2022] [Indexed: 11/24/2022] Open
Abstract
RNA ligases play important roles in repairing and circularizing RNAs post-transcriptionally. In this study, we generated an allelic knockout of ATP-dependent RNA ligase (Rnl) in the hyperthermophilic archaeon Thermococcus kodakarensis to identify its biological targets. A comparative analysis of circular RNA reveals that the Rnl-knockout strain represses circularization of C/D box sRNAs without affecting the circularization of tRNA and rRNA processing intermediates. Recombinant archaeal Rnl could circularize C/D box sRNAs with a mutation in the conserved C/D box sequence element but not when the terminal stem structures were disrupted, suggesting that proximity of the two ends could be critical for intramolecular ligation. Furthermore, T. kodakarensis accumulates aberrant RNA fragments derived from ribosomal RNA in the absence of Rnl. These results suggest that Rnl is responsible for C/D box sRNA circularization and may also play a role in ribosomal RNA processing.
Collapse
Affiliation(s)
- Yancheng Liu
- Human Biology Program, University of Tsukuba, Tsukuba, Japan
| | - Yuko Takagi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Milyadi Sugijanto
- Doctoral Program in Medical Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | | | - Akira Hirata
- Department of Natural Science, Graduate School of Technology, Industrial and Social Science, Tokushima University, Tokushima, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - C. Kiong Ho
- Human Biology Program, University of Tsukuba, Tsukuba, Japan
- Doctoral Program in Medical Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
18
|
Olzog VJ, Freist LI, Goldmann R, Fallmann J, Weinberg CE. Application of RtcB ligase to monitor self-cleaving ribozyme activity by RNA-seq. Biol Chem 2022; 403:705-715. [PMID: 35025187 DOI: 10.1515/hsz-2021-0408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/24/2021] [Indexed: 11/15/2022]
Abstract
Self-cleaving ribozymes are catalytic RNAs and can be found in all domains of life. They catalyze a site-specific cleavage that results in a 5' fragment with a 2',3' cyclic phosphate (2',3' cP) and a 3' fragment with a 5' hydroxyl (5' OH) end. Recently, several strategies to enrich self-cleaving ribozymes by targeted biochemical methods have been introduced by us and others. Here, we develop an alternative strategy in which 5' OH RNAs are specifically ligated by RtcB ligase, which first guanylates the 3' phosphate of the adapter and then ligates it directly to RNAs with 5' OH ends. Our results demonstrate that adapter ligation to highly structured ribozyme fragments is much more efficient using the thermostable RtcB ligase from Pyrococcus horikoshii than the broadly applied Escherichia coli enzyme. Moreover, we investigated DNA, RNA and modified RNA adapters for their suitability in RtcB ligation reactions. We used the optimized RtcB-mediated ligation to produce RNA-seq libraries and captured a spiked 3' twister ribozyme fragment from E. coli total RNA. This RNA-seq-based method is applicable to detect ribozyme fragments as well as other cellular RNAs with 5' OH termini from total RNA.
Collapse
Affiliation(s)
- V Janett Olzog
- Faculty of Life Sciences, Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Lena I Freist
- Faculty of Life Sciences, Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Robin Goldmann
- Department of Computer Science, Bioinformatics Group, and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany
| | - Jörg Fallmann
- Department of Computer Science, Bioinformatics Group, and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany
| | - Christina E Weinberg
- Faculty of Life Sciences, Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| |
Collapse
|
19
|
Kroupova A, Ackle F, Asanović I, Weitzer S, Boneberg FM, Faini M, Leitner A, Chui A, Aebersold R, Martinez J, Jinek M. Molecular architecture of the human tRNA ligase complex. eLife 2021; 10:e71656. [PMID: 34854379 PMCID: PMC8668186 DOI: 10.7554/elife.71656] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/01/2021] [Indexed: 01/23/2023] Open
Abstract
RtcB enzymes are RNA ligases that play essential roles in tRNA splicing, unfolded protein response, and RNA repair. In metazoa, RtcB functions as part of a five-subunit tRNA ligase complex (tRNA-LC) along with Ddx1, Cgi-99, Fam98B, and Ashwin. The human tRNA-LC or its individual subunits have been implicated in additional cellular processes including microRNA maturation, viral replication, DNA double-strand break repair, and mRNA transport. Here, we present a biochemical analysis of the inter-subunit interactions within the human tRNA-LC along with crystal structures of the catalytic subunit RTCB and the N-terminal domain of CGI-99. We show that the core of the human tRNA-LC is assembled from RTCB and the C-terminal alpha-helical regions of DDX1, CGI-99, and FAM98B, all of which are required for complex integrity. The N-terminal domain of CGI-99 displays structural homology to calponin-homology domains, and CGI-99 and FAM98B associate via their N-terminal domains to form a stable subcomplex. The crystal structure of GMP-bound RTCB reveals divalent metal coordination geometry in the active site, providing insights into its catalytic mechanism. Collectively, these findings shed light on the molecular architecture and mechanism of the human tRNA ligase complex and provide a structural framework for understanding its functions in cellular RNA metabolism.
Collapse
Affiliation(s)
- Alena Kroupova
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Fabian Ackle
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Igor Asanović
- Max Perutz Labs, Vienna BioCenter (VBC)ViennaAustria
| | | | | | - Marco Faini
- Department of Biology, Institute of Molecular Systems Biology, ETH ZurichZurichSwitzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH ZurichZurichSwitzerland
| | - Alessia Chui
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH ZurichZurichSwitzerland
| | | | - Martin Jinek
- Department of Biochemistry, University of ZurichZurichSwitzerland
| |
Collapse
|
20
|
Dadashi M, Chen L, Nasimian A, Ghavami S, Duan K. Putative RNA Ligase RtcB Affects the Switch between T6SS and T3SS in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:12561. [PMID: 34830443 PMCID: PMC8619066 DOI: 10.3390/ijms222212561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/22/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is a significant cause of infection in immunocompromised individuals, cystic fibrosis patients, and burn victims. To benefit its survival, the bacterium adapt to either a motile or sessile lifestyle when infecting the host. The motile bacterium has an often activated type III secretion system (T3SS), which is virulent to the host, whereas the sessile bacterium harbors an active T6SS and lives in biofilms. Regulatory pathways involving Gac-Rsm or secondary messengers such as c-di-GMP determine which lifestyle is favorable for P. aeruginosa. Here, we introduce the RNA binding protein RtcB as a modulator of the switch between motile and sessile bacterial lifestyles. Using the wild-type P. aeruginosa PAO1, and a retS mutant PAO1(∆retS) in which T3SS is repressed and T6SS active, we show that deleting rtcB led to simultaneous expression of T3SS and T6SS in both PAO1(∆rtcB) and PAO1(∆rtcB∆retS). The deletion of rtcB also increased biofilm formation in PAO1(∆rtcB) and restored the motility of PAO1(∆rtcB∆retS). RNA-sequencing data suggested RtcB as a global modulator affecting multiple virulence factors, including bacterial secretion systems. Competitive killing and infection assays showed that the three T6SS systems (H1, H2, and H3) in PAO1(∆rtcB) were activated into a functional syringe, and could compete with Escherichia coli and effectively infect lettuce. Western blotting and RT-PCR results showed that RtcB probably exerted its function through RsmA in PAO1(∆rtcB∆retS). Quantification of c-di-GMP showed an elevated intracellular levels in PAO1(∆rtcB), which likely drove the switch between T6SS and T3SS, and contributed to the altered phenotypes and characteristics observed. Our data demonstrate a pivotal role of RtcB in the virulence of P. aeruginosa by controlling multiple virulence determinants, such as biofilm formation, motility, pyocyanin production, T3SS, and T6SS secretion systems towards eukaryotic and prokaryotic cells. These findings suggest RtcB as a potential target for controlling P. aeruginosa colonization, establishment, and pathogenicity.
Collapse
Affiliation(s)
- Maryam Dadashi
- Department of Oral Biology, Rady Faculty of Health Sciences, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB R3E 0W2, Canada;
| | - Lin Chen
- College of Life Sciences, Northwest University, Xi’an 710069, China;
| | - Ahmad Nasimian
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada; (A.N.); (S.G.)
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada; (A.N.); (S.G.)
| | - Kangmin Duan
- Department of Oral Biology, Rady Faculty of Health Sciences, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB R3E 0W2, Canada;
- Department of Medical Microbiology and Infectious Disease, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| |
Collapse
|
21
|
Litke JL, Jaffrey SR. Trans ligation of RNAs to generate hybrid circular RNAs using highly efficient autocatalytic transcripts. Methods 2021; 196:104-112. [PMID: 33992775 DOI: 10.1016/j.ymeth.2021.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs are useful entities for various biotechnology applications, such as templating translation and binding or sequestering miRNA and RNA binding proteins. Circular RNA as highly resistant to degradation in cells and are more long-lived than linear RNAs. Here, we describe a method for intracellular trans ligation of RNA transcripts that can generate hybrid circular RNAs. These hybrid circular RNAs comprise two separate RNA that are covalently linked by ligation to form a circular RNA. By incorporating self-cleaving ribozymes at each site of ligation, trans ligation of the transcripts occurs in mammalian cells with no additional material. We provide a protocol for designing and testing trans ligation of transcripts and demonstrate detection of hybrid circular RNAs using fluorescence microscopy.
Collapse
Affiliation(s)
- Jacob L Litke
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
22
|
Breuer R, Gomes-Filho JV, Randau L. Conservation of Archaeal C/D Box sRNA-Guided RNA Modifications. Front Microbiol 2021; 12:654029. [PMID: 33776983 PMCID: PMC7994747 DOI: 10.3389/fmicb.2021.654029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
Post-transcriptional modifications fulfill many important roles during ribosomal RNA maturation in all three domains of life. Ribose 2'-O-methylations constitute the most abundant chemical rRNA modification and are, for example, involved in RNA folding and stabilization. In archaea, these modification sites are determined by variable sets of C/D box sRNAs that guide the activity of the rRNA 2'-O-methyltransferase fibrillarin. Each C/D box sRNA contains two guide sequences that can act in coordination to bridge rRNA sequences. Here, we will review the landscape of archaeal C/D box sRNA genes and their target sites. One focus is placed on the apparent accelerated evolution of guide sequences and the varied pairing of the two individual guides, which results in different rRNA modification patterns and RNA chaperone activities.
Collapse
Affiliation(s)
| | | | - Lennart Randau
- Prokaryotic RNA Biology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
23
|
Banerjee A, Goldgur Y, Shuman S. Structure of 3'-PO 4/5'-OH RNA ligase RtcB in complex with a 5'-OH oligonucleotide. RNA (NEW YORK, N.Y.) 2021; 27:rna.078692.121. [PMID: 33619169 PMCID: PMC8051266 DOI: 10.1261/rna.078692.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
RtcB enzymes comprise a widely distributed family of manganese- and GTP-dependent RNA repair enzymes that join 2',3'-cyclic phosphate ends to 5'-OH ends via RtcB-(histidinyl-N)-GMP, RNA 3'-phosphate, and RNA3'pp5'G intermediates. RtcB can ligate either 5'-OH RNA or 5'-OH DNA strands in vitro. The nucleic acid contacts of RtcB are uncharted. Here we report a 2.7 Å crystal structure of Pyrococcus horikoshii RtcB in complex with a 6-mer 5'-OH DNA oligonucleotide HOA1pT2pG3pT4pC5pC6, which reveals enzymic contacts of Asn202 to the terminal 5'-OH nucleophile; Arg238 to the A1pT2 and T2pG3 phosphates; Arg190 and Gln194 to the T2pG3 phosphate; and an Arg190 π-cation interaction with the G3 nucleobase. The structural insights affirm functional studies of E. coli RtcB that implicated the conserved counterpart of Arg238 in engagement of the 5'-OH strand for ligation. The essential active site Cys98 that coordinates two manganese ions is oxidized to cysteine sulfonic acid in our structure, raising the prospect that RtcB activity might be sensitive to modulation during oxidative stress.
Collapse
|
24
|
An RNA Repair Operon Regulated by Damaged tRNAs. Cell Rep 2020; 33:108527. [PMID: 33357439 PMCID: PMC7790460 DOI: 10.1016/j.celrep.2020.108527] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/03/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Many bacteria contain an RNA repair operon, encoding the RtcB RNA ligase and the RtcA RNA cyclase, that is regulated by the RtcR transcriptional activator. Although RtcR contains a divergent version of the CARF (CRISPR-associated Rossman fold) oligonucleotide-binding regulatory domain, both the specific signal that regulates operon expression and the substrates of the encoded enzymes are unknown. We report that tRNA fragments activate operon expression. Using a genetic screen in Salmonella enterica serovar Typhimurium, we find that the operon is expressed in the presence of mutations that cause tRNA fragments to accumulate. RtcA, which converts RNA phosphate ends to 2′, 3′-cyclic phosphate, is also required. Operon expression and tRNA fragment accumulation also occur upon DNA damage. The CARF domain binds 5′ tRNA fragments ending in cyclic phosphate, and RtcR oligomerizes upon binding these ligands, a prerequisite for operon activation. Our studies reveal a signaling pathway involving broken tRNAs and implicate the operon in tRNA repair. Hughes et al. demonstrate that a bacterial RNA repair operon, containing the RtcB RNA ligase and the RtcA RNA cyclase, is regulated by binding of 5′ tRNA halves ending in 2′, 3′-cyclic phosphate to the RtcR transcriptional activator. These studies show how tRNA fragments can regulate bacterial gene expression.
Collapse
|
25
|
Abstract
Ro60 ribonucleoproteins (RNPs), composed of the ring-shaped Ro 60-kDa (Ro60) protein and noncoding RNAs called Y RNAs, are present in all three domains of life. Ro60 was first described as an autoantigen in patients with rheumatic disease, and Ro60 orthologs have been identified in 3% to 5% of bacterial genomes, spanning the majority of phyla. Their functions have been characterized primarily in Deinococcus radiodurans, the first sequenced bacterium with a recognizable ortholog. In D. radiodurans, the Ro60 ortholog enhances the ability of 3'-to-5' exoribonucleases to degrade structured RNA during several forms of environmental stress. Y RNAs are regulators that inhibit or allow the interactions of Ro60 with other proteins and RNAs. Studies of Ro60 RNPs in other bacteria hint at additional functions, since the most conserved Y RNA contains a domain that is a close tRNA mimic and Ro60 RNPs are often encoded adjacent to components of RNA repair systems.
Collapse
Affiliation(s)
- Soyeong Sim
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA; , , ,
| | - Kevin Hughes
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA; , , ,
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Xinguo Chen
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA; , , ,
| | - Sandra L Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA; , , ,
| |
Collapse
|
26
|
Circular RNAs in Gastric Cancer: Potential Biomarkers and Therapeutic Targets. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2790679. [PMID: 32685459 PMCID: PMC7345955 DOI: 10.1155/2020/2790679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022]
Abstract
Circular RNAs (circRNAs), as a recently established group of endogenous noncoding RNAs, have been involved in the occurrence and development of different malignancies. Gastric cancer (GC) remains a globally significant contributor to death in cancer patients due to insufficient early diagnosis, limited treatment measures, and poor prognosis. An increasing number of studies have found that many circRNAs are dysregulated in GC and are closely associated with its tumorigenesis and metastasis. Thus, circRNAs have the potential to serve as diagnostic and prognostic biomarkers and even therapeutic targets. This review comprehensively summarizes the most recent findings on how circRNAs influence GC progression and their clinical value. In addition, we present several methological deficiencies in the studies and provide some promising ideas for future research.
Collapse
|
27
|
A Functional Non-coding RNA Is Produced from xbp-1 mRNA. Neuron 2020; 107:854-863.e6. [PMID: 32640191 DOI: 10.1016/j.neuron.2020.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/23/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022]
Abstract
The xbp-1 mRNA encodes the XBP-1 transcription factor, a critical part of the unfolded protein response. Here we report that an RNA fragment produced from xbp-1 mRNA cleavage is a biologically active non-coding RNA (ncRNA) essential for axon regeneration in Caenorhabditis elegans. We show that the xbp-1 ncRNA acts independently of the protein-coding function of the xbp-1 transcript as part of a dual output xbp-1 mRNA stress response axis. Structural analysis indicates that the function of the xbp-1 ncRNA depends on a single RNA stem; this stem forms only in the cleaved xbp-1 ncRNA fragment. Disruption of this stem abolishes the non-coding, but not the coding, function of the endogenous xbp-1 transcript. Thus, cleavage of the xbp-1 mRNA bifurcates it into a coding and a non-coding pathway; modulation of the two pathways may allow neurons to fine-tune their response to injury and other stresses.
Collapse
|
28
|
Qi L, Li J, Jia J, Yue L, Dong X. Comprehensive analysis of the pre-ribosomal RNA maturation pathway in a methanoarchaeon exposes the conserved circularization and linearization mode in archaea. RNA Biol 2020; 17:1427-1441. [PMID: 32449429 DOI: 10.1080/15476286.2020.1771946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The ribosomal RNA (rRNA) genes are generally organized as an operon and cotranscribed into a polycistronic precursor; therefore, processing and maturation of pre-rRNAs are essential for ribosome biogenesis. However, rRNA maturation pathways of archaea, particularly of methanoarchaea, are scarcely known. Here, we thoroughly elucidated the maturation pathway of the rRNA operon (16S-tRNAAla-23S-tRNACys-5S) in Methanolobus psychrophilus, one representative of methanoarchaea. Enzymatic assay demonstrated that EndA, a tRNA splicing endoribonuclease, cleaved bulge-helix-bulge (BHB) motifs buried in the processing stems of pre-16S and pre-23S rRNAs. Northern blot and quantitative PCR detected splicing-coupled circularization of pre-16S and pre-23S rRNAs, which accounted for 2% and 12% of the corresponding rRNAs, respectively. Importantly, endoribonuclease Nob1 was determined to linearize circular pre-16S rRNA at the mature 3' end so to expose the anti-Shine-Dalgarno sequence, while circular pre-23S rRNA was linearized at the mature 5' end by an unknown endoribonuclease. The resultant 5' and 3' extension in linearized pre-16S and pre-23S rRNAs were finally matured through 5'-3' and 3'-5' exoribonucleolytic trimming, respectively. Additionally, a novel processing pathway of endoribonucleolysis coupled with exoribonucleolysis was identified for the pre-5S rRNA maturation in this methanogen, which could be also conserved in most methanogenic euryarchaea. Based on evaluating the phylogenetic conservation of the key elements that are involved in circularization and linearization of pre-rRNA maturation, we predict that the rRNA maturation mode revealed here could be prevalent among archaea.
Collapse
Affiliation(s)
- Lei Qi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing, PR China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing, PR China.,College of Life Sciences, University of Chinese Academy of Sciences , Beijing, PR China
| | - Jia Jia
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing, PR China.,College of Life Sciences, University of Chinese Academy of Sciences , Beijing, PR China
| | - Lei Yue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing, PR China.,College of Life Sciences, University of Chinese Academy of Sciences , Beijing, PR China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing, PR China.,College of Life Sciences, University of Chinese Academy of Sciences , Beijing, PR China
| |
Collapse
|
29
|
Duan S, Gao W, Chen Z, Li Z, Li S, Gan J, Chen X, Li J. Crystal structure of human archease, a key cofactor of tRNA splicing ligase complex. Int J Biochem Cell Biol 2020; 122:105744. [PMID: 32234548 DOI: 10.1016/j.biocel.2020.105744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 11/26/2022]
Abstract
The human archease, hereafter named HArch, is identified as a key cofactor of the tRNA-splicing ligase complex, and a potential therapeutic target for treating nervous system injuries. However, little is known about the structural basis of HArch in tRNA maturation, mRNA splicing, and RNA repair. Here we report the crystal structures of HArch and its two mutants D51A and D178A with resolutions ranging from 1.96 Å to 3.4 Å. HArch is composed of an extended N-terminal protrusion domain (NTD) and one compacted C-terminal domain (CTD). Unlike previously reported homologous proteins, the NTD of the first subunit interacts with the CTD of the second one, and this interaction might be important for maintaining protein stability. Moreover, HArch interacts and colocalizes with RNA ligase RTCB in cells. Our current study reveals the atomic structure of HArch and may help us understand its function in mRNA splicing.
Collapse
Affiliation(s)
- Shuyan Duan
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, China
| | - Wenqing Gao
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, China
| | - Zijun Chen
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, China
| | - Zhengyang Li
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, China
| | - Suhua Li
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, China
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, China
| | - Xiangjun Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
30
|
Saito M, Sato A, Nagata S, Tamaki S, Tomita M, Suzuki H, Kanai A. Large-Scale Molecular Evolutionary Analysis Uncovers a Variety of Polynucleotide Kinase Clp1 Family Proteins in the Three Domains of Life. Genome Biol Evol 2020; 11:2713-2726. [PMID: 31513263 PMCID: PMC6777427 DOI: 10.1093/gbe/evz195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2019] [Indexed: 01/13/2023] Open
Abstract
Clp1, a polyribonucleotide 5′-hydroxyl kinase in eukaryotes, is involved in pretRNA splicing and mRNA 3′-end formation. Enzymes similar in amino acid sequence to Clp1, Nol9, and Grc3, are present in some eukaryotes and are involved in prerRNA processing. However, our knowledge of how these Clp1 family proteins evolved and diversified is limited. We conducted a large-scale molecular evolutionary analysis of the Clp1 family proteins in all living organisms for which protein sequences are available in public databases. The phylogenetic distribution and frequencies of the Clp1 family proteins were investigated in complete genomes of Bacteria, Archaea and Eukarya. In total, 3,557 Clp1 family proteins were detected in the three domains of life, Bacteria, Archaea, and Eukarya. Many were from Archaea and Eukarya, but a few were found in restricted, phylogenetically diverse bacterial species. The domain structures of the Clp1 family proteins also differed among the three domains of life. Although the proteins were, on average, 555 amino acids long (range, 196–2,728), 122 large proteins with >1,000 amino acids were detected in eukaryotes. These novel proteins contain the conserved Clp1 polynucleotide kinase domain and various other functional domains. Of these proteins, >80% were from Fungi or Protostomia. The polyribonucleotide kinase activity of Thermus scotoductus Clp1 (Ts-Clp1) was characterized experimentally. Ts-Clp1 preferentially phosphorylates single-stranded RNA oligonucleotides (Km value for ATP, 2.5 µM), or single-stranded DNA at higher enzyme concentrations. We propose a comprehensive assessment of the diversification of the Clp1 family proteins and the molecular evolution of their functional domains.
Collapse
Affiliation(s)
- Motofumi Saito
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Asako Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Shohei Nagata
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Satoshi Tamaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Haruo Suzuki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| |
Collapse
|
31
|
Manwar MR, Shao C, Shi X, Wang J, Lin Q, Tong Y, Kang Y, Yu J. The bacterial RNA ligase RtcB accelerates the repair process of fragmented rRNA upon releasing the antibiotic stress. SCIENCE CHINA. LIFE SCIENCES 2020; 63:251-258. [PMID: 31250189 DOI: 10.1007/s11427-018-9405-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/10/2018] [Indexed: 12/23/2022]
Abstract
RtcB, a highly conserved RNA ligase, is found in all three domains of life, and demonstrated to be an essential tRNA splicing component in archaea and metazoans. However, the biological functions of RtcB in bacteria, where there is no splicing, remains to be clarified. We first performed bioinformatics analysis which revealed highly conserved structures and presumably conserved functions of RtcB in bacteria. However, its orthologs only occur in ∼ 0.5% of bacterial species across diverse phyla with significant signals of frequent horizontal transfer, highlighting its non-essential role in bacteria. Next, by constructing an rtcB-knockout strain, we find that the removal of antibiotic stress induces a significant impact on rtcB expression in wild-type strain, and furthermore the depletion of RtcB (ARtcB strain) delays the recovery process. Our transcriptomic analysis, comprising the 3'-end labeling of RNAs, highlights a significant increase in unmapped reads and cleaved rRNAs in the Δ RtcB strain, particularly during recovery. Our observations suggest that the conserved RNA ligase RtcB, repairs damaged rRNAs following stress, which potentially saves energy and accelerates recovery of its host. We propose that acquisition of RtcB by diverse bacterial taxa provides a competitive advantage under stressful conditions.
Collapse
Affiliation(s)
- Muhammad Ramzan Manwar
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Changjun Shao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xing Shi
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jian Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiang Lin
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yigang Tong
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yu Kang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
32
|
Abstract
Long interspersed element-1s (L1s) encode 2 proteins (ORF1p and ORF2p) that preferentially mobilize (i.e., retrotranspose) their encoding messenger RNA (mRNA) transcript. ORF1p and/or ORF2p can also mobilize other cellular RNAs, including short interspersed elements (SINEs), U6 small nuclear RNA (snRNA), and mRNAs. Here, we demonstrate the RNA ligase RtcB can join U6 snRNA to L1 or other cellular RNAs to create chimeric RNAs; retrotransposition of the resultant chimeric RNAs leads to chimeric pseudogene formation; and chimeric U6/L1 RNAs are part of the transcriptome in multiple human cells. These data suggest RNA ligation contributes to the plasticity of the transcriptome and that the retrotransposition of chimeric RNAs can generate genetic variation in the human genome. Long interspersed element-1 (LINE-1 or L1) amplifies via retrotransposition. Active L1s encode 2 proteins (ORF1p and ORF2p) that bind their encoding transcript to promote retrotransposition in cis. The L1-encoded proteins also promote the retrotransposition of small-interspersed element RNAs, noncoding RNAs, and messenger RNAs in trans. Some L1-mediated retrotransposition events consist of a copy of U6 RNA conjoined to a variably 5′-truncated L1, but how U6/L1 chimeras are formed requires elucidation. Here, we report the following: The RNA ligase RtcB can join U6 RNAs ending in a 2′,3′-cyclic phosphate to L1 RNAs containing a 5′-OH in vitro; depletion of endogenous RtcB in HeLa cell extracts reduces U6/L1 RNA ligation efficiency; retrotransposition of U6/L1 RNAs leads to U6/L1 pseudogene formation; and a unique cohort of U6/L1 chimeric RNAs are present in multiple human cell lines. Thus, these data suggest that U6 small nuclear RNA (snRNA) and RtcB participate in the formation of chimeric RNAs and that retrotransposition of chimeric RNA contributes to interindividual genetic variation.
Collapse
|
33
|
Duan S, Chen Z, Li Z, Ji R, Gan J, Li J. Purification and enzymatic characterization of the RNA ligase RTCB from Thermus thermophilus. Biotechnol Lett 2019; 41:1051-1057. [PMID: 31280403 DOI: 10.1007/s10529-019-02707-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/04/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To identify the key residues of Thermus thermophilus (T. thermophilus) RTCB in RNA ligation and DNA activation. RESULTS The biochemical activities of RTCB from T. thermophilus were purified, characterized, and compared. Structure and sequence alignment between T. thermophilus RTCB and Pyrococcus horikoshii (P. horikoshii) RTCB identified six conserved residues (D64, D95, N203, H204, E207, H399) that were essential for RNA ligation. Mutation analysis showed that the expression levels of mutants D95A, N203A, H204A, E207A and H399A were relatively low. Compared to wide-type RTCB, variant D64A protein had no RNA ligation and DNA activation activity. In addition, T. thermophilus RTCB showed acceptable catalytic activity of 3'-phosphate DNA activation at 37 °C. CONCLUSION D64 was proved to be essential for RTCB-catalyzed RNA ligation and DNA activation (from 37 to 70 °C) in T. thermophilus.
Collapse
Affiliation(s)
- Shuyan Duan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, 200438, Shanghai, China
| | - Zijun Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, 200438, Shanghai, China
| | - Zhengyang Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, 200438, Shanghai, China
| | - Rui Ji
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, 200438, Shanghai, China
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, 200438, Shanghai, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, 200438, Shanghai, China.
| |
Collapse
|
34
|
Becker HF, L'Hermitte-Stead C, Myllykallio H. Diversity of circular RNAs and RNA ligases in archaeal cells. Biochimie 2019; 164:37-44. [PMID: 31212038 DOI: 10.1016/j.biochi.2019.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/13/2019] [Indexed: 01/16/2023]
Abstract
Circular RNAs (circRNAs) differ structurally from other types of RNAs and are resistant against exoribonucleases. Although they have been detected in all domains of life, it remains unclear how circularization affects or changes functions of these ubiquitous nucleic acid circles. The biogenesis of circRNAs has been mostly described as a backsplicing event, but in archaea, where RNA splicing is a rare phenomenon, a second pathway for circRNA formation was described in the cases of rRNAs processing, tRNA intron excision, and Box C/D RNAs formation. At least in some archaeal species, circRNAs are formed by a ligation step catalyzed by an atypic homodimeric RNA ligase belonging to Rnl3 family. In this review, we describe archaeal circRNA transcriptomes obtained using high throughput sequencing technologies on Sulfolobus solfataricus, Pyrococcus abyssi and Nanoarchaeum equitans cells. We will discuss the distribution of circular RNAs among the different RNA categories and present the Rnl3 ligase family implicated in the circularization activity. Special focus is given for the description of phylogenetic distributions, protein structures, and substrate specificities of archaeal RNA ligases.
Collapse
Affiliation(s)
- Hubert F Becker
- LOB, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau, France; Sorbonne Université, Faculté des Sciences et Ingénierie, 75005, Paris, France.
| | | | - Hannu Myllykallio
- LOB, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau, France
| |
Collapse
|
35
|
Litke JL, Jaffrey SR. Highly efficient expression of circular RNA aptamers in cells using autocatalytic transcripts. Nat Biotechnol 2019; 37:667-675. [PMID: 30962542 PMCID: PMC6554452 DOI: 10.1038/s41587-019-0090-6] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 03/01/2019] [Indexed: 12/13/2022]
Abstract
RNA aptamers and RNA aptamer-based devices can be genetically encoded and expressed in cells to probe and manipulate cellular function. However, their usefulness in the mammalian cell is limited by low expression and rapid degradation. Here we describe the Tornado (Twister-optimized RNA for durable overexpression) expression system for achieving rapid RNA circularization, resulting in RNA aptamers with high stability and expression levels. Tornado-expressed transcripts contain an RNA of interest flanked by Twister ribozymes. The ribozymes rapidly undergo autocatalytic cleavage, leaving termini that are ligated by the ubiquitous endogenous RNA ligase RtcB. Using this approach, protein-binding aptamers that otherwise have minimal effects in cells become potent inhibitors of cellular signaling. Additionally, an RNA-based fluorescent metabolite biosensor for S-adenosyl methionine (SAM) that is expressed at low levels when expressed as a linear RNA achieves levels sufficient for detection of intracellular SAM dynamics when expressed as a circular RNA. The Tornado expression system thus markedly enhances the utility of RNA-based approaches in the mammalian cell.
Collapse
Affiliation(s)
- Jacob L Litke
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, The Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Samie R Jaffrey
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, The Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
36
|
The Origin and Evolution of Release Factors: Implications for Translation Termination, Ribosome Rescue, and Quality Control Pathways. Int J Mol Sci 2019; 20:ijms20081981. [PMID: 31018531 PMCID: PMC6514570 DOI: 10.3390/ijms20081981] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 01/26/2023] Open
Abstract
The evolution of release factors catalyzing the hydrolysis of the final peptidyl-tRNA bond and the release of the polypeptide from the ribosome has been a longstanding paradox. While the components of the translation apparatus are generally well-conserved across extant life, structurally unrelated release factor peptidyl hydrolases (RF-PHs) emerged in the stems of the bacterial and archaeo-eukaryotic lineages. We analyze the diversification of RF-PH domains within the broader evolutionary framework of the translation apparatus. Thus, we reconstruct the possible state of translation termination in the Last Universal Common Ancestor with possible tRNA-like terminators. Further, evolutionary trajectories of the several auxiliary release factors in ribosome quality control (RQC) and rescue pathways point to multiple independent solutions to this problem and frequent transfers between superkingdoms including the recently characterized ArfT, which is more widely distributed across life than previously appreciated. The eukaryotic RQC system was pieced together from components with disparate provenance, which include the long-sought-after Vms1/ANKZF1 RF-PH of bacterial origin. We also uncover an under-appreciated evolutionary driver of innovation in rescue pathways: effectors deployed in biological conflicts that target the ribosome. At least three rescue pathways (centered on the prfH/RFH, baeRF-1, and C12orf65 RF-PH domains), were likely innovated in response to such conflicts.
Collapse
|
37
|
Hirata A. Recent Insights Into the Structure, Function, and Evolution of the RNA-Splicing Endonucleases. Front Genet 2019; 10:103. [PMID: 30809252 PMCID: PMC6379350 DOI: 10.3389/fgene.2019.00103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/30/2019] [Indexed: 11/13/2022] Open
Abstract
RNA-splicing endonuclease (EndA) cleaves out introns from archaeal and eukaryotic precursor (pre)-tRNA and is essential for tRNA maturation. In archaeal EndA, the molecular mechanisms underlying complex assembly, substrate recognition, and catalysis have been well understood. Recently, certain studies have reported novel findings including the identification of new subunit types in archaeal EndA structures, providing insights into the mechanism underlying broad substrate specificity. Further, metagenomics analyses have enabled the acquisition of numerous DNA sequences of EndAs and intron-containing pre-tRNAs from various species, providing information regarding the co-evolution of substrate specificity of archaeal EndAs and tRNA genetic diversity, and the evolutionary pathway of archaeal and eukaryotic EndAs. Although the complex structure of the heterothermic form of eukaryotic EndAs is unknown, previous reports regarding their functions indicated that mutations in human EndA cause neurological disorders including pontocerebellar hypoplasia and progressive microcephaly, and yeast EndA significantly cleaves mitochondria-localized mRNA encoding cytochrome b mRNA processing 1 (Cpb1) for mRNA maturation. This mini-review summarizes the aforementioned results, discusses their implications, and offers my personal opinion regarding future directions for the analysis of the structure and function of EndAs.
Collapse
Affiliation(s)
- Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| |
Collapse
|
38
|
Abstract
Y RNAs are noncoding RNAs (ncRNAs) that are present in most animal cells and also in many bacteria. These RNAs were discovered because they are bound by the Ro60 protein, a major target of autoantibodies in patients with some systemic autoimmune rheumatic diseases. Studies of Ro60 and Y RNAs in Deinococcus radiodurans, the first sequenced bacterium with a Ro60 ortholog, revealed that they function with 3'-to-5' exoribonucleases to alter the composition of RNA populations during some forms of environmental stress. In the best-characterized example, Y RNA tethers the Ro60 protein to the exoribonuclease polynucleotide phosphorylase, allowing this exoribonuclease to degrade structured RNAs more effectively. Y RNAs can also function as gates to regulate access of other RNAs to the Ro60 central cavity. Recent studies in the enteric bacterium Salmonella enterica serovar Typhimurium resulted in the discovery that Y RNAs are widely present in bacteria. Remarkably, the most-conserved subclass of bacterial Y RNAs contains a domain that mimics tRNA. In this review, we discuss the structure, conservation, and known functions of bacterial Y RNAs as well as the certainty that more bacterial Y RNAs and additional roles for these ncRNAs remain to be uncovered.
Collapse
|
39
|
Clouet-d'Orval B, Batista M, Bouvier M, Quentin Y, Fichant G, Marchfelder A, Maier LK. Insights into RNA-processing pathways and associated RNA-degrading enzymes in Archaea. FEMS Microbiol Rev 2018; 42:579-613. [PMID: 29684129 DOI: 10.1093/femsre/fuy016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022] Open
Abstract
RNA-processing pathways are at the centre of regulation of gene expression. All RNA transcripts undergo multiple maturation steps in addition to covalent chemical modifications to become functional in the cell. This includes destroying unnecessary or defective cellular RNAs. In Archaea, information on mechanisms by which RNA species reach their mature forms and associated RNA-modifying enzymes are still fragmentary. To date, most archaeal actors and pathways have been proposed in light of information gathered from Bacteria and Eukarya. In this context, this review provides a state of the art overview of archaeal endoribonucleases and exoribonucleases that cleave and trim RNA species and also of the key small archaeal proteins that bind RNAs. Furthermore, synthetic up-to-date views of processing and biogenesis pathways of archaeal transfer and ribosomal RNAs as well as of maturation of stable small non-coding RNAs such as CRISPR RNAs, small C/D and H/ACA box guide RNAs, and other emerging classes of small RNAs are described. Finally, prospective post-transcriptional mechanisms to control archaeal messenger RNA quality and quantity are discussed.
Collapse
Affiliation(s)
- Béatrice Clouet-d'Orval
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Manon Batista
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Marie Bouvier
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Yves Quentin
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Gwennaele Fichant
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | | | | |
Collapse
|
40
|
Unlu I, Lu Y, Wang X. The cyclic phosphodiesterase CNP and RNA cyclase RtcA fine-tune noncanonical XBP1 splicing during ER stress. J Biol Chem 2018; 293:19365-19376. [PMID: 30355738 PMCID: PMC6302167 DOI: 10.1074/jbc.ra118.004872] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
The activity of X box-binding protein 1 (XBP1), a master transcriptional regulator of endoplasmic reticulum (ER) homeostasis and the unfolded protein response (UPR), is controlled by a two-step noncanonical splicing reaction in the cytoplasm. The first step of nuclease cleavage by inositol-requiring enzyme 1 (IRE1), a protein kinase/endoribonuclease, is conserved in all eukaryotic cells. The second step of RNA ligation differs biochemically among species. In yeast, tRNA ligase 1 (Trl1) and tRNA 2'-phosphotransferase 1 (Tpt1) act through a 5'-PO4/3'-OH pathway. In metazoans, RNA 2',3'-cyclic phosphate and 5'-OH ligase (RtcB) ligate XBP1 exons via a 3'-PO4/5'-OH reaction. Although RtcB has been identified as the primary RNA ligase, evidence suggests that yeast-like ligase components may also operate in mammals. In this study, using mouse and human cell lines along with in vitro splicing assays, we investigated whether these components contribute to XBP1 splicing during ER stress. We found that the mammalian 2'-phosphotransferase Trpt1 does not contribute to XBP1 splicing even in the absence of RtcB. Instead, we found that 2',3'-cyclic nucleotide phosphodiesterase (CNP) suppresses RtcB-mediated XBP1 splicing by hydrolyzing 2',3'-cyclic phosphate into 2'-phosphate on the cleaved exon termini. By contrast, RNA 3'-terminal cyclase (RtcA), which converts 2'-phosphate back to 2',3'-cyclic phosphate, facilitated XBP1 splicing by increasing the number of compatible RNA termini for RtcB. Taken together, our results provide evidence that CNP and RtcA fine-tune XBP1 output during ER stress.
Collapse
Affiliation(s)
- Irem Unlu
- From the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| | - Yanyan Lu
- From the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| | - Xiaozhong Wang
- From the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
41
|
Structural Basis for tRNA Mimicry by a Bacterial Y RNA. Structure 2018; 26:1635-1644.e3. [PMID: 30318468 DOI: 10.1016/j.str.2018.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/03/2018] [Accepted: 09/10/2018] [Indexed: 12/29/2022]
Abstract
Noncoding Y RNAs are present in both animal cells and many bacteria. In all species examined, Y RNAs tether the Ro60 protein to an effector protein to perform various cellular functions. Recently, a new Y RNA subfamily was identified in bacteria. Bioinformatic analyses of these YrlA (Y RNA-like A) RNAs predict that the effector-binding domain resembles tRNA. We present the structure of this domain, the overall folding of which is strikingly similar to canonical tRNAs. The tertiary interactions that are responsible for stabilizing tRNA are present in YrlA, making it a close tRNA mimic. However, YrlA lacks a free CCA end and contains a kink in the stem corresponding to the anticodon stem. Since nucleotides in the D and T stems are conserved among YrlAs, they may be an interaction site for an unknown factor. Our experiments identify YrlA RNAs as a new class of tRNA mimics.
Collapse
|
42
|
Kaneta A, Fujishima K, Morikazu W, Hori H, Hirata A. The RNA-splicing endonuclease from the euryarchaeaon Methanopyrus kandleri is a heterotetramer with constrained substrate specificity. Nucleic Acids Res 2018; 46:1958-1972. [PMID: 29346615 PMCID: PMC5829648 DOI: 10.1093/nar/gky003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/25/2017] [Accepted: 01/03/2018] [Indexed: 11/14/2022] Open
Abstract
Four different types (α4, α'2, (αβ)2 and ϵ2) of RNA-splicing endonucleases (EndAs) for RNA processing are known to exist in the Archaea. Only the (αβ)2 and ϵ2 types can cleave non-canonical introns in precursor (pre)-tRNA. Both enzyme types possess an insert associated with a specific loop, allowing broad substrate specificity in the catalytic α units. Here, the hyperthermophilic euryarchaeon Methanopyrus kandleri (MKA) was predicted to harbor an (αβ)2-type EndA lacking the specific loop. To characterize MKA EndA enzymatic activity, we constructed a fusion protein derived from MKA α and β subunits (fMKA EndA). In vitro assessment demonstrated complete removal of the canonical bulge-helix-bulge (BHB) intron structure from MKA pre-tRNAAsn. However, removal of the relaxed BHB structure in MKA pre-tRNAGlu was inefficient compared to crenarchaeal (αβ)2 EndA, and the ability to process the relaxed intron within mini-helix RNA was not detected. fMKA EndA X-ray structure revealed a shape similar to that of other EndA types, with no specific loop. Mapping of EndA types and their specific loops and the tRNA gene diversity among various Archaea suggest that MKA EndA is evolutionarily related to other (αβ)2-type EndAs found in the Thaumarchaeota, Crenarchaeota and Aigarchaeota but uniquely represents constrained substrate specificity.
Collapse
Affiliation(s)
- Ayano Kaneta
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Kosuke Fujishima
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Wataru Morikazu
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
43
|
Yoshinari S, Liu Y, Gollnick P, Ho CK. Cleavage of 3'-terminal adenosine by archaeal ATP-dependent RNA ligase. Sci Rep 2017; 7:11662. [PMID: 28912583 PMCID: PMC5599603 DOI: 10.1038/s41598-017-11693-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/29/2017] [Indexed: 01/15/2023] Open
Abstract
Methanothermobacter thermoautotrophicus RNA ligase (MthRnl) catalyzes formation of phosphodiester bonds between the 5′-phosphate and 3′-hydroxyl termini of single-stranded RNAs. It can also react with RNA with a 3′-phosphate end to generate a 2′,3′-cyclic phosphate. Here, we show that MthRnl can additionally remove adenosine from the 3′-terminus of the RNA to produce 3′-deadenylated RNA, RNA(3′-rA). This 3′-deadenylation activity is metal-dependent and requires a 2′-hydroxyl at both the terminal adenosine and the penultimate nucleoside. Residues that contact the ATP/AMP in the MthRnl crystal structures are essential for the 3′-deadenylation activity, suggesting that 3′-adenosine may occupy the ATP-binding pocket. The 3′-end of cleaved RNA(3′-rA) consists of 2′,3′-cyclic phosphate which protects RNA(3′-rA) from ligation and further deadenylation. These findings suggest that ATP-dependent RNA ligase may act on a specific set of 3′-adenylated RNAs to regulate their processing and downstream biological events.
Collapse
Affiliation(s)
- Shigeo Yoshinari
- Department of Biological Sciences, State University of New York, Buffalo, NY, 14260, United States of America
| | - Yancheng Liu
- Human Biology Program, School of Integrative and Global Majors, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Paul Gollnick
- Department of Biological Sciences, State University of New York, Buffalo, NY, 14260, United States of America
| | - C Kiong Ho
- Department of Biological Sciences, State University of New York, Buffalo, NY, 14260, United States of America. .,Human Biology Program, School of Integrative and Global Majors, University of Tsukuba, Ibaraki, 305-8575, Japan. .,Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
44
|
Nandy A, Saenz-Méndez P, Gorman AM, Samali A, Eriksson LA. Homology model of the human tRNA splicing ligase RtcB. Proteins 2017; 85:1983-1993. [PMID: 28707320 DOI: 10.1002/prot.25352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/28/2017] [Accepted: 07/11/2017] [Indexed: 12/25/2022]
Abstract
RtcB is an essential human tRNA ligase required for ligating the 2',3'-cyclic phosphate and 5'-hydroxyl termini of cleaved tRNA halves during tRNA splicing and XBP1 fragments during endoplasmic reticulum stress. Activation of XBP1 has been implicated in various human tumors including breast cancer. Here we present, for the first time, a homology model of human RtcB (hRtcB) in complex with manganese and covalently bound GMP built from the Pyrococcus horikoshii RtcB (bRtcB) crystal structure, PDB ID 4DWQA. The structure is analyzed in terms of stereochemical quality, folding reliability, secondary structure similarity with bRtcB, druggability of the active site binding pocket and its metal-binding microenvironment. In comparison with bRtcB, loss of a manganese-coordinating water and movement of Asn226 (Asn202 in 4DWQA) to form metal-ligand coordination, demonstrates the uniqueness of the hRtcB model. Rotation of GMP leads to the formation of an additional metal-ligand coordination (Mn-O). Umbrella sampling simulations of Mn binding in wild type and the catalytically inactive C122A mutant reveal a clear reduction of Mn binding ability in the mutant, thus explaining the loss of activity therein. Our results furthermore clearly show that the GTP binding site of the enzyme is a well-defined pocket that can be utilized as target site for in silico drug discovery.
Collapse
Affiliation(s)
- Argha Nandy
- Apoptosis Research Center, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Patricia Saenz-Méndez
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden.,Computational Chemistry and Biology Group, Facultad de Química, Universidad de la República, Montevideo, 11800, Uruguay
| | - Adrienne M Gorman
- Apoptosis Research Center, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Center, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden
| |
Collapse
|
45
|
Poothong J, Tirasophon W, Kaufman RJ. Functional analysis of the mammalian RNA ligase for IRE1 in the unfolded protein response. Biosci Rep 2017; 37:BSR20160574. [PMID: 28093457 PMCID: PMC5333776 DOI: 10.1042/bsr20160574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 12/22/2016] [Accepted: 01/16/2017] [Indexed: 12/17/2022] Open
Abstract
The unfolded protein response (UPR) is a conserved signalling pathway activated on the accumulation of unfolded proteins within the endoplasmic reticulum (ER), termed ER stress. Upon ER stress, HAC1/XBP1 undergoes exon/intron-specific excision by inositol requiring enzyme 1 (IRE1) to remove an intron and liberate the 5' and 3' exons. In yeast, the 5' and 3' HAC1 exons are subsequently ligated by tRNA ligase (Rlg1p), whereas XBP1 ligation in mammalian cells is catalysed by a recently identified ligase, RtcB. In the present study, RNA ligase activity of the human RtcB (hRtcB) involved in the unconventional splicing of XBP1/HAC1 mRNA was explored in an rlg1-100 mutant yeast strain. Distinct from Escherichia coli RtcB and Rlg1p, expression of hRtcB alone inefficiently complemented HAC1/XBP1 splicing and the hRtcB cofactor (archease) was required to promote enzymatic activity of hRtcB to catalyse RNA ligation.
Collapse
Affiliation(s)
- Juthakorn Poothong
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, U.S.A
| | - Witoon Tirasophon
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, U.S.A.
| |
Collapse
|
46
|
Noto JJ, Schmidt CA, Matera AG. Engineering and expressing circular RNAs via tRNA splicing. RNA Biol 2017; 14:978-984. [PMID: 28402213 DOI: 10.1080/15476286.2017.1317911] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Circular (circ)RNAs have recently become a subject of great biologic interest. It is now clear that they represent a diverse and abundant class of RNAs with regulated expression and evolutionarily conserved functions. There are several mechanisms by which RNA circularization can occur in vivo. Here, we focus on the biogenesis of tRNA intronic circular RNAs (tricRNAs) in archaea and animals, and we detail their use as research tools for orthogonal, directed circRNA expression in vivo.
Collapse
Affiliation(s)
- John J Noto
- a Curriculum in Genetics and Molecular Biology , The University of North Carolina at Chapel Hill , Chapel Hill , NC , USA.,b Integrative Program for Biological and Genome Sciences , The University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - Casey A Schmidt
- a Curriculum in Genetics and Molecular Biology , The University of North Carolina at Chapel Hill , Chapel Hill , NC , USA.,b Integrative Program for Biological and Genome Sciences , The University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - A Gregory Matera
- a Curriculum in Genetics and Molecular Biology , The University of North Carolina at Chapel Hill , Chapel Hill , NC , USA.,b Integrative Program for Biological and Genome Sciences , The University of North Carolina at Chapel Hill , Chapel Hill , NC , USA.,c Lineberger Comprehensive Cancer Center , The University of North Carolina at Chapel Hill , Chapel Hill , NC , USA.,d Department of Biology , The University of North Carolina at Chapel Hill , Chapel Hill , NC , USA.,e Department of Genetics , The University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| |
Collapse
|
47
|
Abstract
An invitation to write a "Reflections" type of article creates a certain ambivalence: it is a great honor, but it also infers the end of your professional career. Before you vanish for good, your colleagues look forward to an interesting but entertaining account of the ups-and-downs of your past research and your views on science in general, peppered with indiscrete anecdotes about your former competitors and collaborators. What follows will disappoint those who await complaint and criticism, for example, about the difficulties of doing research in the 1960s and 1970s in Eastern Europe, or those seeking very personal revelations. My scientific life has in fact seen many happy coincidences, much good fortune, and several lucky escapes from situations that at the time were quite scary. I have also been fortunate with regard to competitors and collaborators, particularly because, whenever possible, I tried to "neutralize" my rivals by collaborating with them - to the benefit of all. I recommend this strategy to young researchers to dispel the nightmares that can occur when competing against powerful contenders. I have been blessed with the selection of my research topic: RNA biology. Over the last five decades, new and unexpected RNA-related phenomena emerged almost yearly. I experienced them very personally while studying transcription, translation, RNA splicing, ribosome biogenesis, and more recently, different classes of regulatory non-coding RNAs, including microRNAs. Some selected research and para-research stories, also covering many wonderful people I had a privilege to work with, are summarized below.
Collapse
Affiliation(s)
- Witold Filipowicz
- Friedrich Miescher Institute for Biomedical Research, Maulberstrasse 66, 4058 Basel, Switzerland.
| |
Collapse
|
48
|
Becker HF, Héliou A, Djaout K, Lestini R, Regnier M, Myllykallio H. High-throughput sequencing reveals circular substrates for an archaeal RNA ligase. RNA Biol 2017; 14:1075-1085. [PMID: 28277897 DOI: 10.1080/15476286.2017.1302640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
It is only recently that the abundant presence of circular RNAs (circRNAs) in all kingdoms of Life, including the hyperthermophilic archaeon Pyrococcus abyssi, has emerged. This led us to investigate the physiologic significance of a previously observed weak intramolecular ligation activity of Pab1020 RNA ligase. Here we demonstrate that this enzyme, despite sharing significant sequence similarity with DNA ligases, is indeed an RNA-specific polynucleotide ligase efficiently acting on physiologically significant substrates. Using a combination of RNA immunoprecipitation assays and RNA-seq, our genome-wide studies revealed 133 individual circRNA loci in P. abyssi. The large majority of these loci interacted with Pab1020 in cells and circularization of selected C/D Box and 5S rRNA transcripts was confirmed biochemically. Altogether these studies revealed that Pab1020 is required for RNA circularization. Our results further suggest the functional speciation of an ancestral NTase domain and/or DNA ligase toward RNA ligase activity and prompt for further characterization of the widespread functions of circular RNAs in prokaryotes. Detailed insight into the cellular substrates of Pab1020 may facilitate the development of new biotechnological applications e.g. in ligation of preadenylated adaptors to RNA molecules.
Collapse
Affiliation(s)
- Hubert F Becker
- a LOB, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay , Palaiseau , France.,b Sorbonne Universités, UPMC Univ Paris 06 , 4 Place Jussieu, Paris , France
| | - Alice Héliou
- a LOB, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay , Palaiseau , France.,c LIX, Ecole Polytechnique, CNRS, Université Paris-Saclay, INRIA , Palaiseau , France
| | - Kamel Djaout
- a LOB, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay , Palaiseau , France
| | - Roxane Lestini
- a LOB, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay , Palaiseau , France
| | - Mireille Regnier
- c LIX, Ecole Polytechnique, CNRS, Université Paris-Saclay, INRIA , Palaiseau , France
| | - Hannu Myllykallio
- a LOB, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay , Palaiseau , France
| |
Collapse
|
49
|
Burroughs AM, Aravind L. RNA damage in biological conflicts and the diversity of responding RNA repair systems. Nucleic Acids Res 2016; 44:8525-8555. [PMID: 27536007 PMCID: PMC5062991 DOI: 10.1093/nar/gkw722] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/08/2016] [Indexed: 12/16/2022] Open
Abstract
RNA is targeted in biological conflicts by enzymatic toxins or effectors. A vast diversity of systems which repair or ‘heal’ this damage has only recently become apparent. Here, we summarize the known effectors, their modes of action, and RNA targets before surveying the diverse systems which counter this damage from a comparative genomics viewpoint. RNA-repair systems show a modular organization with extensive shuffling and displacement of the constituent domains; however, a general ‘syntax’ is strongly maintained whereby systems typically contain: a RNA ligase (either ATP-grasp or RtcB superfamilies), nucleotidyltransferases, enzymes modifying RNA-termini for ligation (phosphatases and kinases) or protection (methylases), and scaffold or cofactor proteins. We highlight poorly-understood or previously-uncharacterized repair systems and components, e.g. potential scaffolding cofactors (Rot/TROVE and SPFH/Band-7 modules) with their respective cognate non-coding RNAs (YRNAs and a novel tRNA-like molecule) and a novel nucleotidyltransferase associating with diverse ligases. These systems have been extensively disseminated by lateral transfer between distant prokaryotic and microbial eukaryotic lineages consistent with intense inter-organismal conflict. Components have also often been ‘institutionalized’ for non-conflict roles, e.g. in RNA-splicing and in RNAi systems (e.g. in kinetoplastids) which combine a distinct family of RNA-acting prim-pol domains with DICER-like proteins.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
50
|
Engl C, Schaefer J, Kotta-Loizou I, Buck M. Cellular and molecular phenotypes depending upon the RNA repair system RtcAB of Escherichia coli. Nucleic Acids Res 2016; 44:9933-9941. [PMID: 27402162 PMCID: PMC5175333 DOI: 10.1093/nar/gkw628] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/06/2016] [Accepted: 06/23/2016] [Indexed: 11/24/2022] Open
Abstract
RNA ligases function pervasively across the three kingdoms of life for RNA repair, splicing and can be stress induced. The RtcB protein (also HSPC117, C22orf28, FAAP and D10Wsu52e) is one such conserved ligase, involved in tRNA and mRNA splicing. However, its physiological role is poorly described, especially in bacteria. We now show in Escherichia coli bacteria that the RtcR activated rtcAB genes function for ribosome homeostasis involving rRNA stability. Expression of rtcAB is activated by agents and genetic lesions which impair the translation apparatus or may cause oxidative damage in the cell. Rtc helps the cell to survive challenges to the translation apparatus, including ribosome targeting antibiotics. Further, loss of Rtc causes profound changes in chemotaxis and motility. Together, our data suggest that the Rtc system is part of a previously unrecognized adaptive response linking ribosome homeostasis with basic cell physiology and behaviour.
Collapse
Affiliation(s)
- Christoph Engl
- Faculty of Natural Sciences, Division of Cell & Molecular Biology, Imperial College London, London SW7 2AZ, UK .,Institute for Global Food Security, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Jorrit Schaefer
- Faculty of Natural Sciences, Division of Cell & Molecular Biology, Imperial College London, London SW7 2AZ, UK
| | - Ioly Kotta-Loizou
- Faculty of Natural Sciences, Division of Cell & Molecular Biology, Imperial College London, London SW7 2AZ, UK
| | - Martin Buck
- Faculty of Natural Sciences, Division of Cell & Molecular Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|