1
|
Fenner JL, Newberry C, Todd C, Range RC. Anterior-Posterior Wnt Signaling Network Conservation between Indirect Developing Sea Urchin and Hemichordate Embryos. Integr Comp Biol 2024; 64:1214-1225. [PMID: 38769605 PMCID: PMC11579615 DOI: 10.1093/icb/icae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/28/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024] Open
Abstract
How animal body plans evolved and diversified is a major question in evolutionary developmental biology. To address this question, it is important to characterize the exact molecular mechanisms that establish the major embryonic axes that give rise to the adult animal body plan. The anterior-posterior (AP) axis is the first axis to be established in most animal embryos, and in echinoderm sea urchin embryos its formation is governed by an integrated network of three different Wnt signaling pathways: Wnt/β-catenin, Wnt/JNK, and Wnt/PKC pathways. The extent to which this embryonic patterning mechanism is conserved among deuterostomes, or more broadly in metazoans, is an important open question whose answers could lead to a deeper appreciation of the evolution of the AP axis. Because Ambulacrarians (echinoderms and hemichordates) reside in a key phylogenetic position as the sister group to chordates, studies in these animals can help inform on how chordate body plans may have evolved. Here, we assayed the spatiotemporal gene expression of a subset of sea urchin AP Wnt patterning gene orthologs in the hemichordate, Schizocardium californicum. Our results show that positioning of the anterior neuroectoderm (ANE) to a territory around the anterior pole during early AP formation is spatially and temporally similar between indirect developing hemichordates and sea urchins. Furthermore, we show that the expression of wnt8 and frizzled5/8, two known drivers of ANE patterning in sea urchins, is similar in hemichordate embryos. Lastly, our results highlight divergence in embryonic expression of several early expressed Wnt genes (wnt1, wnt2, and wnt4). These results suggest that expression of the sea urchin AP Wnt signaling network is largely conserved in indirect developing hemichordates setting the foundation for future functional studies in S. californicum.
Collapse
Affiliation(s)
- Jennifer L Fenner
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Callum Newberry
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Callie Todd
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ryan C Range
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
2
|
Rees JM, Kirk K, Gattoni G, Hockman D, Sleight VA, Ritter DJ, Benito-Gutierrez È, Knapik EW, Crump JG, Fabian P, Gillis JA. A pre-vertebrate endodermal origin of calcitonin-producing neuroendocrine cells. Development 2024; 151:dev202821. [PMID: 39109637 PMCID: PMC11698069 DOI: 10.1242/dev.202821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/25/2024] [Indexed: 09/17/2024]
Abstract
Vertebrate calcitonin-producing cells (C-cells) are neuroendocrine cells that secrete the small peptide hormone calcitonin in response to elevated blood calcium levels. Whereas mouse C-cells reside within the thyroid gland and derive from pharyngeal endoderm, avian C-cells are located within ultimobranchial glands and have been reported to derive from the neural crest. We use a comparative cell lineage tracing approach in a range of vertebrate model systems to resolve the ancestral embryonic origin of vertebrate C-cells. We find, contrary to previous studies, that chick C-cells derive from pharyngeal endoderm, with neural crest-derived cells instead contributing to connective tissue intimately associated with C-cells in the ultimobranchial gland. This endodermal origin of C-cells is conserved in a ray-finned bony fish (zebrafish) and a cartilaginous fish (the little skate, Leucoraja erinacea). Furthermore, we discover putative C-cell homologs within the endodermally-derived pharyngeal epithelium of the ascidian Ciona intestinalis and the amphioxus Branchiostoma lanceolatum, two invertebrate chordates that lack neural crest cells. Our findings point to a conserved endodermal origin of C-cells across vertebrates and to a pre-vertebrate origin of this cell type along the chordate stem.
Collapse
Affiliation(s)
- Jenaid M. Rees
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Katie Kirk
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Giacomo Gattoni
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Dorit Hockman
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town 7935, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town 7935, South Africa
| | | | - Dylan J. Ritter
- Department of Cell and Developmental Biology, Vanderbilt School of Medicine, Nashville, TN 37240, USA
| | | | - Ela W. Knapik
- Department of Cell and Developmental Biology, Vanderbilt School of Medicine, Nashville, TN 37240, USA
- Vanderbilt Genetics Institute, Vanderbilt School of Medicine, Nashville, TN 37232, USA
| | - J. Gage Crump
- Eli and Edythe Broad Center for Regenerative Medicine, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Peter Fabian
- Eli and Edythe Broad Center for Regenerative Medicine, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - J. Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
3
|
Dai Y, Zhong Y, Pan R, Yuan L, Fu Y, Chen Y, Du J, Li M, Wang X, Liu H, Shi C, Liu G, Zhu P, Shimeld S, Zhou X, Li G. Evolutionary origin of the chordate nervous system revealed by amphioxus developmental trajectories. Nat Ecol Evol 2024; 8:1693-1710. [PMID: 39025981 DOI: 10.1038/s41559-024-02469-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
The common ancestor of all vertebrates had a highly sophisticated nervous system, but questions remain about the evolution of vertebrate neural cell types. The amphioxus, a chordate that diverged before the origin of vertebrates, can inform vertebrate evolution. Here we develop and analyse a single-cell RNA-sequencing dataset from seven amphioxus embryo stages to understand chordate cell type evolution and to study vertebrate neural cell type origins. We identified many new amphioxus cell types, including homologues to the vertebrate hypothalamus and neurohypophysis, rooting the evolutionary origin of these structures. On the basis of ancestor-descendant reconstruction of cell trajectories of the amphioxus and other species, we inferred expression dynamics of transcription factor genes throughout embryogenesis and identified three ancient developmental routes forming chordate neurons. We characterized cell specification at the mechanistic level and generated mutant lines to examine the function of five key transcription factors involved in neural specification. Our results show three developmental origins for the vertebrate nervous system: an anterior FoxQ2-dependent mechanism that is deeply conserved in invertebrates, a less-conserved route leading to more posterior neurons in the vertebrate spinal cord and a mechanism for specifying neuromesoderm progenitors that is restricted to chordates. The evolution of neuromesoderm progenitors may have led to a dramatic shift in posterior neural and mesodermal cell fate decisions and the body elongation process in a stem chordate.
Collapse
Affiliation(s)
- Yichen Dai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China
| | - Yanhong Zhong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Rongrong Pan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Liang Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Yongheng Fu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yuwei Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Juan Du
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China
| | - Meng Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China
| | - Xiao Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China
| | - Huimin Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chenggang Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Gaoming Liu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China
| | - Pingfen Zhu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China
| | | | - Xuming Zhou
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China.
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
4
|
Mohajer F, Khoradmehr A, Riazalhosseini B, Zendehboudi T, Nabipour I, Baghban N. In vitro detection of marine invertebrate stem cells: utilizing molecular and cellular biology techniques and exploring markers. Front Cell Dev Biol 2024; 12:1440091. [PMID: 39239558 PMCID: PMC11374967 DOI: 10.3389/fcell.2024.1440091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Marine invertebrate stem cells (MISCs) represent a distinct category of pluripotent and totipotent cells with remarkable abilities for self-renewal and differentiation into multiple germ layers, akin to their vertebrate counterparts. These unique cells persist throughout an organism's adult life and have been observed in various adult marine invertebrate phyla. MISCs play crucial roles in numerous biological processes, including developmental biology phenomena specific to marine invertebrates, such as senescence, delayed senescence, whole-body regeneration, and asexual reproduction. Furthermore, they serve as valuable models for studying stem cell biology. Despite their significance, information about MISCs remains scarce and scattered in the scientific literature. In this review, we have carefully collected and summarized valuable information about MISC detection by perusing the articles that study and detect MISCs in various marine invertebrate organisms. The review begins by defining MISCs and highlighting their unique features compared to vertebrates. It then discusses the common markers for MISC detection and in vitro techniques employed in invertebrate and vertebrates investigation. This comprehensive review provides researchers and scientists with a cohesive and succinct overview of MISC characteristics, detection methods, and associated biological phenomena in marine invertebrate organisms. We aim to offer a valuable resource to researchers and scientists interested in marine invertebrate stem cells, fostering a better understanding of their broader implications in biology. With ongoing advancements in scientific techniques and the continued exploration of marine invertebrate species, we anticipate that further discoveries will expand our knowledge of MISCs and their broader implications in biology.
Collapse
Affiliation(s)
- Fatemeh Mohajer
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Behnaz Riazalhosseini
- The Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tuba Zendehboudi
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Neda Baghban
- Food Control Laboratory, Food and Drug Deputy, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
5
|
Taylor E, Corsini M, Heyland A. Shared regulatory function of non-genomic thyroid hormone signaling in echinoderm skeletogenesis. EvoDevo 2024; 15:10. [PMID: 39113104 PMCID: PMC11304627 DOI: 10.1186/s13227-024-00226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/22/2024] [Indexed: 08/10/2024] Open
Abstract
Thyroid hormones are crucial regulators of metamorphosis and development in bilaterians, particularly in chordate deuterostomes. Recent evidence suggests a role for thyroid hormone signaling, principally via 3,5,3',5'-Tetraiodo-L-thyronine (T4), in the regulation of metamorphosis, programmed cell death and skeletogenesis in echinoids (sea urchins and sand dollars) and sea stars. Here, we test whether TH signaling in skeletogenesis is a shared trait of Echinozoa (Echinoida and Holothouroida) and Asterozoa (Ophiourida and Asteroida). We demonstrate dramatic acceleration of skeletogenesis after TH treatment in three classes of echinoderms: sea urchins, sea stars, and brittle stars (echinoids, asteroids, and ophiuroids). Fluorescently labeled thyroid hormone analogues reveal thyroid hormone binding to cells proximal to regions of skeletogenesis in the gut and juvenile rudiment. We also identify, for the first time, a potential source of thyroxine during gastrulation in sea urchin embryos. Thyroxine-positive cells are present in tip of the archenteron. In addition, we detect thyroid hormone binding to the cell membrane and nucleus during metamorphic development in echinoderms. Immunohistochemistry of phosphorylated MAPK in the presence and absence of TH-binding inhibitors suggests that THs may act via phosphorylation of MAPK (ERK1/2) to accelerate initiation of skeletogenesis in the three echinoderm groups. Together, these results indicate that TH regulation of mesenchyme cell activity via integrin-mediated MAPK signaling may be a conserved mechanism for the regulation of skeletogenesis in echinoderm development. In addition, TH action via a nuclear thyroid hormone receptor may regulate metamorphic development. Our findings shed light on potentially ancient pathways of thyroid hormone activity in echinoids, ophiuroids, and asteroids, or on a signaling system that has been repeatedly co-opted to coordinate metamorphic development in bilaterians.
Collapse
Affiliation(s)
- Elias Taylor
- College of Biological Sciences, University of Guelph, Integrative Biology, Guelph, ON, N1G-2W1, Canada.
| | - Megan Corsini
- College of Biological Sciences, University of Guelph, Integrative Biology, Guelph, ON, N1G-2W1, Canada
| | - Andreas Heyland
- College of Biological Sciences, University of Guelph, Integrative Biology, Guelph, ON, N1G-2W1, Canada
| |
Collapse
|
6
|
Buono L, Annona G, Magri MS, Negueruela S, Sepe RM, Caccavale F, Maeso I, Arnone MI, D’Aniello S. Conservation of cis-Regulatory Syntax Underlying Deuterostome Gastrulation. Cells 2024; 13:1121. [PMID: 38994973 PMCID: PMC11240583 DOI: 10.3390/cells13131121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
Throughout embryonic development, the shaping of the functional and morphological characteristics of embryos is orchestrated by an intricate interaction between transcription factors and cis-regulatory elements. In this study, we conducted a comprehensive analysis of deuterostome cis-regulatory landscapes during gastrulation, focusing on four paradigmatic species: the echinoderm Strongylocentrotus purpuratus, the cephalochordate Branchiostoma lanceolatum, the urochordate Ciona intestinalis, and the vertebrate Danio rerio. Our approach involved comparative computational analysis of ATAC-seq datasets to explore the genome-wide blueprint of conserved transcription factor binding motifs underlying gastrulation. We identified a core set of conserved DNA binding motifs associated with 62 known transcription factors, indicating the remarkable conservation of the gastrulation regulatory landscape across deuterostomes. Our findings offer valuable insights into the evolutionary molecular dynamics of embryonic development, shedding light on conserved regulatory subprograms and providing a comprehensive perspective on the conservation and divergence of gene regulation underlying the gastrulation process.
Collapse
Affiliation(s)
- Lorena Buono
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.A.); (R.M.S.); (F.C.); (M.I.A.)
| | - Giovanni Annona
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.A.); (R.M.S.); (F.C.); (M.I.A.)
- Department of Research Infrastructure for Marine Biological Resources (RIMAR), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Marta Silvia Magri
- Centro Andaluz de Biología del Desarollo (CABD), Universidad Pablo de Olavide, 41013 Sevilla, Spain;
| | | | - Rosa Maria Sepe
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.A.); (R.M.S.); (F.C.); (M.I.A.)
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton, 80133 Naples, Italy
| | - Filomena Caccavale
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.A.); (R.M.S.); (F.C.); (M.I.A.)
| | - Ignacio Maeso
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain;
- Institut de Recerca de la Biodiversitat (IRBio), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Maria Ina Arnone
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.A.); (R.M.S.); (F.C.); (M.I.A.)
| | - Salvatore D’Aniello
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.A.); (R.M.S.); (F.C.); (M.I.A.)
| |
Collapse
|
7
|
Kurtova AI, Finoshin AD, Aparina MS, Gazizova GR, Kozlova OS, Voronova SN, Shagimardanova EI, Ivashkin EG, Voronezhskaya EE. Expanded expression of pro-neurogenic factor SoxB1 during larval development of gastropod Lymnaea stagnalis suggests preadaptation to prolonged neurogenesis in Mollusca. Front Neurosci 2024; 18:1346610. [PMID: 38638695 PMCID: PMC11024475 DOI: 10.3389/fnins.2024.1346610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/01/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction The remarkable diversity observed in the structure and development of the molluscan nervous system raises intriguing questions regarding the molecular mechanisms underlying neurogenesis in Mollusca. The expression of SoxB family transcription factors plays a pivotal role in neuronal development, thereby offering valuable insights into the strategies of neurogenesis. Methods In this study, we conducted gene expression analysis focusing on SoxB-family transcription factors during early neurogenesis in the gastropod Lymnaea stagnalis. We employed a combination of hybridization chain reaction in situ hybridization (HCR-ISH), immunocytochemistry, confocal microscopy, and cell proliferation assays to investigate the spatial and temporal expression patterns of LsSoxB1 and LsSoxB2 from the gastrula stage to hatching, with particular attention to the formation of central ring ganglia. Results Our investigation reveals that LsSoxB1 demonstrates expanded ectodermal expression from the gastrula to the hatching stage, whereas expression of LsSoxB2 in the ectoderm ceases by the veliger stage. LsSoxB1 is expressed in the ectoderm of the head, foot, and visceral complex, as well as in forming ganglia and sensory cells. Conversely, LsSoxB2 is mostly restricted to the subepithelial layer and forming ganglia cells during metamorphosis. Proliferation assays indicate a uniform distribution of dividing cells in the ectoderm across all developmental stages, suggesting the absence of distinct neurogenic zones with increased proliferation in gastropods. Discussion Our findings reveal a spatially and temporally extended pattern of SoxB1 expression in a gastropod representative compared to other lophotrochozoan species. This prolonged and widespread expression of SoxB genes may be interpreted as a form of transcriptional neoteny, representing a preadaptation to prolonged neurogenesis. Consequently, it could contribute to the diversification of nervous systems in gastropods and lead to an increase in the complexity of the central nervous system in Mollusca.
Collapse
Affiliation(s)
- Anastasia I. Kurtova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander D. Finoshin
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Margarita S. Aparina
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Guzel R. Gazizova
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Olga S. Kozlova
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Svetlana N. Voronova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena I. Shagimardanova
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Life Improvement by Future Technologies Center “LIFT”, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Evgeny G. Ivashkin
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
8
|
Lemaître QIB, Bartsch N, Kouzel IU, Busengdal H, Richards GS, Steinmetz PRH, Rentzsch F. NvPrdm14d-expressing neural progenitor cells contribute to non-ectodermal neurogenesis in Nematostella vectensis. Nat Commun 2023; 14:4854. [PMID: 37563174 PMCID: PMC10415408 DOI: 10.1038/s41467-023-39789-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/29/2023] [Indexed: 08/12/2023] Open
Abstract
Neurogenesis has been studied extensively in the ectoderm, from which most animals generate the majority of their neurons. Neurogenesis from non-ectodermal tissue is, in contrast, poorly understood. Here we use the cnidarian Nematostella vectensis as a model to provide new insights into the molecular regulation of non-ectodermal neurogenesis. We show that the transcription factor NvPrdm14d is expressed in a subpopulation of NvSoxB(2)-expressing endodermal progenitor cells and their NvPOU4-expressing progeny. Using a new transgenic reporter line, we show that NvPrdm14d-expressing cells give rise to neurons in the body wall and in close vicinity of the longitudinal retractor muscles. RNA-sequencing of NvPrdm14d::GFP-expressing cells and gene knockdown experiments provide candidate genes for the development and function of these neurons. Together, the identification of a population of endoderm-specific neural progenitor cells and of previously undescribed putative motoneurons in Nematostella provide new insights into the regulation of non-ectodermal neurogenesis.
Collapse
Affiliation(s)
- Quentin I B Lemaître
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Natascha Bartsch
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
- Department for Biological Sciences, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Ian U Kouzel
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Henriette Busengdal
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Gemma Sian Richards
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | | | - Fabian Rentzsch
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.
- Department for Biological Sciences, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.
| |
Collapse
|
9
|
Rusin LY. Evolution of homology: From archetype towards a holistic concept of cell type. J Morphol 2023; 284:e21569. [PMID: 36789784 DOI: 10.1002/jmor.21569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
The concept of homology lies in the heart of comparative biological science. The distinction between homology as structure and analogy as function has shaped the evolutionary paradigm for a century and formed the axis of comparative anatomy and embryology, which accept the identity of structure as a ground measure of relatedness. The advent of single-cell genomics overturned the classical view of cell homology by establishing a backbone regulatory identity of cell types, the basic biological units bridging the molecular and phenotypic dimensions, to reveal that the cell is the most flexible unit of living matter and that many approaches of classical biology need to be revised to understand evolution and diversity at the cellular level. The emerging theory of cell types explicitly decouples cell identity from phenotype, essentially allowing for the divergence of evolutionarily related morphotypes beyond recognition, as well as it decouples ontogenetic cell lineage from cell-type phylogeny, whereby explicating that cell types can share common descent regardless of their structure, function or developmental origin. The article succinctly summarizes current progress and opinion in this field and formulates a more generalistic view of biological cell types as avatars, transient or terminal cell states deployed in a continuum of states by the developmental programme of one and the same omnipotent cell, capable of changing or combining identities with distinct evolutionary histories or inventing ad hoc identities that never existed in evolution or development. It highlights how the new logic grounded in the regulatory nature of cell identity transforms the concepts of cell homology and phenotypic stability, suggesting that cellular evolution is inherently and massively network-like, with one-to-one homologies being rather uncommon and restricted to shallower levels of the animal tree of life.
Collapse
Affiliation(s)
- Leonid Y Rusin
- Laboratory for Mathematic Methods and Models in Bioinformatics, Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
- EvoGenome Analytics LLC, Odintsovo, Moscow Region, Russia
| |
Collapse
|
10
|
Konrad KD, Song JL. microRNA-124 regulates Notch and NeuroD1 to mediate transition states of neuronal development. Dev Neurobiol 2023; 83:3-27. [PMID: 36336988 PMCID: PMC10440801 DOI: 10.1002/dneu.22902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 09/12/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
MicroRNAs regulate gene expression by destabilizing target mRNA and/or inhibiting translation in animal cells. The ability to mechanistically dissect miR-124's function during specification, differentiation, and maturation of neurons during development within a single system has not been accomplished. Using the sea urchin embryo, we take advantage of the manipulability of the embryo and its well-documented gene regulatory networks (GRNs). We incorporated NeuroD1 as part of the sea urchin neuronal GRN and determined that miR-124 inhibition resulted in aberrant gut contractions, swimming velocity, and neuronal development. Inhibition of miR-124 resulted in an increased number of cells expressing transcription factors (TFs) associated with progenitor neurons and a concurrent decrease of mature and functional neurons. Results revealed that in the early blastula/gastrula stages, miR-124 regulates undefined factors during neuronal specification and differentiation. In the late gastrula/larval stages, miR-124 regulates Notch and NeuroD1 during the transition between neuronal differentiation and maturation. Overall, we have improved the neuronal GRN and identified miR-124 to play a prolific role in regulating various transitions of neuronal development.
Collapse
Affiliation(s)
- Kalin D Konrad
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
11
|
Díaz-Martínez JP, Mejía-Gutiérrez LM, Islas-Villanueva V, Benítez-Villalobos F. Trioecy is maintained as a time-stable mating system in the pink sea urchin Toxopneustes roseus from the Mexican Pacific. Sci Rep 2022; 12:21408. [PMID: 36496463 PMCID: PMC9741619 DOI: 10.1038/s41598-022-26059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
Trioecy is a sexual system that consists of the co-occurrence of females, males and hermaphrodites in a population and is common in plants; however, in animals it is uncommon and poorly understood. In echinoderms, trioecy had never been recorded until now. Frequencies of females, males, and hermaphrodites were evaluated and gametogenic development was histologically characterized in a population of Toxopneustes roseus inhabiting the Mexican Pacific. Trioecy in this population is functional and temporally stable, since the three sexes coexisted in each sampling month. The hermaphrodites presented similar gametogenic development as the females and males and participated during the spawning season, contributing to the population's reproductive process. Trioecy is considered an evolutionarily transitory state, and it is extremely difficult to explain its presence in a species. We hypothesize that continuous ocean warming represents a threat to the survival of this population of T. roseus, since its early developmental stages, which represent a population bottleneck, are more vulnerable to high temperatures than other sea urchins inhabiting the area, while its population density is significantly lower. These conditions generate a strongly stressed environment, which is the determining factor that maintains the stability of trioecy in the species in which it has been studied.
Collapse
Affiliation(s)
- Julia Patricia Díaz-Martínez
- Programa de Posgrado en Ecología Marina, División de Estudios de Posgrado, Universidad del Mar Campus Puerto Ángel, Cd. Universitaria S/N, 70902, Oaxaca, Mexico
| | - Leobarda Margarita Mejía-Gutiérrez
- Programa de Posgrado en Ecología Marina, División de Estudios de Posgrado, Universidad del Mar Campus Puerto Ángel, Cd. Universitaria S/N, 70902, Oaxaca, Mexico
| | - Valentina Islas-Villanueva
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Av. de los Insurgentes Sur 1582, 03940, Mexico, Mexico
- Instituto de Genética, Universidad del Mar Campus Puerto Ángel, Cd. Universitaria S/N, 70902, Oaxaca, Mexico
| | | |
Collapse
|
12
|
Vidal B, Gulez B, Cao WX, Leyva-Diaz E, Reilly MB, Tekieli T, Hobert O. The enteric nervous system of the C. elegans pharynx is specified by the Sine oculis-like homeobox gene ceh-34. eLife 2022; 11:76003. [PMID: 35324425 PMCID: PMC8989417 DOI: 10.7554/elife.76003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Overarching themes in the terminal differentiation of the enteric nervous system, an autonomously acting unit of animal nervous systems, have so far eluded discovery. We describe here the overall regulatory logic of enteric nervous system differentiation of the nematode Caenorhabditis elegans that resides within the foregut (pharynx) of the worm. A C. elegans homolog of the Drosophila Sine oculis homeobox gene, ceh-34, is expressed in all 14 classes of interconnected pharyngeal neurons from their birth throughout their life time, but in no other neuron type of the entire animal. Constitutive and temporally controlled ceh-34 removal shows that ceh-34 is required to initiate and maintain the neuron type-specific terminal differentiation program of all pharyngeal neuron classes, including their circuit assembly. Through additional genetic loss of function analysis, we show that within each pharyngeal neuron class, ceh-34 cooperates with different homeodomain transcription factors to individuate distinct pharyngeal neuron classes. Our analysis underscores the critical role of homeobox genes in neuronal identity specification and links them to the control of neuronal circuit assembly of the enteric nervous system. Together with the pharyngeal nervous system simplicity as well as its specification by a Sine oculis homolog, our findings invite speculations about the early evolution of nervous systems.
Collapse
Affiliation(s)
- Berta Vidal
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Burcu Gulez
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Wen Xi Cao
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Eduardo Leyva-Diaz
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Molly B Reilly
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Tessa Tekieli
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| |
Collapse
|
13
|
Abstract
This review reports recent findings on the specification and patterning of neurons that establish the larval nervous system of the sea urchin embryo. Neurons originate in three regions of the embryo. Perturbation analyses enabled construction of gene regulatory networks controlling the several neural cell types. Many of the mechanisms described reflect shared features of all metazoans and others are conserved among deuterostomes. This nervous system with a very small number of neurons supports the feeding and swimming behaviors of the larva until metamorphosis when an adult nervous system replaces that system.
Collapse
Affiliation(s)
- David R McClay
- Department of Biology, Duke University, Durham, NC, United States.
| |
Collapse
|
14
|
Paganos P, Voronov D, Musser JM, Arendt D, Arnone MI. Single-cell RNA sequencing of the Strongylocentrotus purpuratus larva reveals the blueprint of major cell types and nervous system of a non-chordate deuterostome. eLife 2021; 10:70416. [PMID: 34821556 PMCID: PMC8683087 DOI: 10.7554/elife.70416] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Identifying the molecular fingerprint of organismal cell types is key for understanding their function and evolution. Here, we use single-cell RNA sequencing (scRNA-seq) to survey the cell types of the sea urchin early pluteus larva, representing an important developmental transition from non-feeding to feeding larva. We identify 21 distinct cell clusters, representing cells of the digestive, skeletal, immune, and nervous systems. Further subclustering of these reveal a highly detailed portrait of cell diversity across the larva, including the identification of neuronal cell types. We then validate important gene regulatory networks driving sea urchin development and reveal new domains of activity within the larval body. Focusing on neurons that co-express Pdx-1 and Brn1/2/4, we identify an unprecedented number of genes shared by this population of neurons in sea urchin and vertebrate endocrine pancreatic cells. Using differential expression results from Pdx-1 knockdown experiments, we show that Pdx1 is necessary for the acquisition of the neuronal identity of these cells. We hypothesize that a network similar to the one orchestrated by Pdx1 in the sea urchin neurons was active in an ancestral cell type and then inherited by neuronal and pancreatic developmental lineages in sea urchins and vertebrates.
Collapse
Affiliation(s)
- Periklis Paganos
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Danila Voronov
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Jacob M Musser
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg, Germany
| | - Detlev Arendt
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg, Germany
| | - Maria Ina Arnone
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| |
Collapse
|
15
|
Carter HF, Thompson JR, Elphick MR, Oliveri P. The Development and Neuronal Complexity of Bipinnaria Larvae of the Sea Star Asterias rubens. Integr Comp Biol 2021; 61:337-351. [PMID: 34048552 PMCID: PMC8427176 DOI: 10.1093/icb/icab103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Free-swimming planktonic larvae are a key stage in the development of many marine phyla, and studies of these organisms have contributed to our understanding of major genetic and evolutionary processes. Although transitory, these larvae often attain a remarkable degree of tissue complexity, with well-defined musculature and nervous systems. Among the best studied are larvae belonging to the phylum Echinodermata, but with work largely focused on the pluteus larvae of sea urchins (class Echinoidea). The greatest diversity of larval strategies among echinoderms is found in the class Asteroidea (sea stars), organisms that are rapidly emerging as experimental systems for genetic and developmental studies. However, the bipinnaria larvae of sea stars have only been studied in detail in a small number of species and although they have been relatively well described neuro-anatomically, they are poorly understood neurochemically. Here, we have analyzed embryonic development and bipinnaria larval anatomy in the common North Atlantic sea star Asterias rubens, using a variety of staining methods in combination with confocal microscopy. Importantly, the chemical complexity of the nervous system of bipinnaria larvae was revealed through use of a diverse set of antibodies, with identification of at least three centers of differing neurochemical signature within the previously described nervous system: the anterior apical organ, oral region, and ciliary bands. Furthermore, the anatomy of the musculature and sites of cell division in bipinnaria larvae was analyzed. Comparisons of developmental progression and molecular anatomy across the Echinodermata provided a basis for hypotheses on the shared evolutionary and developmental processes that have shaped this group of animals. We conclude that bipinnaria larvae appear to be remarkably conserved across ∼200 million years of evolutionary time and may represent a strong evolutionary and/or developmental constraint on species utilizing this larval strategy.
Collapse
Affiliation(s)
- Hugh F Carter
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
- Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, UK
| | - Jeffrey R Thompson
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
- UCL Centre for Life’s Origins and Evolution (CLOE), University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
- UCL Centre for Life’s Origins and Evolution (CLOE), University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
16
|
Moroz LL. Multiple Origins of Neurons From Secretory Cells. Front Cell Dev Biol 2021; 9:669087. [PMID: 34307354 PMCID: PMC8293673 DOI: 10.3389/fcell.2021.669087] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Leonid L. Moroz
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, United States
| |
Collapse
|
17
|
Bronchain O, Philippe-Caraty L, Anquetil V, Ciapa B. Precise regulation of presenilin expression is required for sea urchin early development. J Cell Sci 2021; 134:jcs258382. [PMID: 34313316 DOI: 10.1242/jcs.258382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/24/2021] [Indexed: 11/20/2022] Open
Abstract
Presenilins (PSENs) are widely expressed across eukaryotes. Two PSENs are expressed in humans, where they play a crucial role in Alzheimer's disease (AD). Each PSEN can be part of the γ-secretase complex, which has multiple substrates, including Notch and amyloid-β precursor protein (AβPP) - the source of amyloid-β (Aβ) peptides that compose the senile plaques during AD. PSENs also interact with various proteins independently of their γ-secretase activity. They can then be involved in numerous cellular functions, which makes their role in a given cell and/or organism complex to decipher. We have established the Paracentrotus lividus sea urchin embryo as a new model to study the role of PSEN. In the sea urchin embryo, the PSEN gene is present in unduplicated form and encodes a protein highly similar to human PSENs. Our results suggest that PSEN expression must be precisely tuned to control the course of the first mitotic cycles and the associated intracellular Ca2+ transients, the execution of gastrulation and, probably in association with ciliated cells, the establishment of the pluteus. We suggest that it would be relevant to study the role of PSEN within the gene regulatory network deciphered in the sea urchin.
Collapse
Affiliation(s)
- Odile Bronchain
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Laetitia Philippe-Caraty
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Vincent Anquetil
- Sorbonne Université, Inserm U1127, CNRS UMR 7225, Institut du Cerveau (ICM), F-75013, Paris, France
| | - Brigitte Ciapa
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
18
|
Wavreil FDM, Poon J, Wessel GM, Yajima M. Light-induced, spatiotemporal control of protein in the developing embryo of the sea urchin. Dev Biol 2021; 478:13-24. [PMID: 34147471 DOI: 10.1016/j.ydbio.2021.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 11/18/2022]
Abstract
Differential protein regulation is a critical biological process that regulates cellular activity and controls cell fate determination. It is especially important during early embryogenesis when post-transcriptional events predominate differential fate specification in many organisms. Light-induced approaches have been a powerful technology to interrogate protein functions with temporal and spatial precision, even at subcellular levels within a cell by controlling laser irradiation on the confocal microscope. However, application and efficacy of these tools need to be tested for each model system or for the cell type of interest because of the complex nature of each system. Here, we introduce two types of light-induced approaches to track and control proteins at a subcellular level in the developing embryo of the sea urchin. We found that the photoconvertible fluorescent protein Kaede is highly efficient to distinguish pre-existing and newly synthesized proteins with no apparent phototoxicity, even when interrogating proteins associated with the mitotic spindle. Further, chromophore-assisted light inactivation (CALI) using miniSOG successfully inactivated target proteins of interest in the vegetal cortex and selectively delayed or inhibited asymmetric cell division. Overall, these light-induced manipulations serve as important molecular tools to identify protein function for for subcellular interrogations in developing embryos.
Collapse
Affiliation(s)
- Florence D M Wavreil
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA
| | - Jessica Poon
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA
| | - Gary M Wessel
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA
| | - Mamiko Yajima
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA.
| |
Collapse
|
19
|
Tsironis I, Paganos P, Gouvi G, Tsimpos P, Stamopoulou A, Arnone MI, Flytzanis CN. Coup-TF: A maternal factor essential for differentiation along the embryonic axes in the sea urchin Paracentrotus lividus. Dev Biol 2021; 475:131-144. [PMID: 33484706 DOI: 10.1016/j.ydbio.2020.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/27/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Coup-TF, a member of the nuclear receptor super-family, is present in the pool of maternal mRNAs and proteins in the sea urchin egg. The presence of this protein seems to be essential for the execution of the early developmental program, leading to all three embryonic layers. Our results demonstrate that Pl-Coup-TF morphants, i.e. Pl-Coup-TF morpholino knockdown embryos, resemble blastulae that lack archenteron at 24 hpf (hours post fertilization), a stage at which normal embryos reach the end of gastrulation in Paracentrotus lividus. At 48 hpf, when normal embryos reach the pluteus larva stage, the morphants are seemingly underdeveloped and lack the characteristic skeletal rods. Nevertheless, the morphant embryos express vegetal endomesodermal marker genes, such as Pl-Blimp1, Pl-Endo16, Pl-Alx1 and Pl-Tbr as judged by in situ hybridization experiments. The anterior neuroectoderm genes, Pl-FoxQ2, Pl-Six3 and Pl-Pax6, are also expressed in the morphant embryos, but Pl-Hbn and Pl-Fez mRNAs, which encode proteins significant for the differentiation of serotonergic neurons, are not detected. Consequently, Pl-Coup-TF morphants at 48 hpf lack serotonergic neurons, whereas normal 48 hpf plutei exhibit the formation of two bilateral pairs of such neurons in the apical organ. Furthermore, genes indicative of the ciliary band formation, Pl-Hnf6, Pl-Dri, Pl-FoxG and Pl-Otx, are not expressed in Pl-Coup-TF morphants, suggesting the disruption of this neurogenic territory as well. In addition, the Pl-SynB gene, a marker of differentiated neurons, is silent leading to the hypothesis that Pl-Coup-TF morphants might lack all types of neurons. On the contrary, the genes expressing signaling molecules, which establish the ventral/dorsal axis, Pl-Nodal and Pl-Lefty show the characteristic ventral lateral expression pattern, Pl-Bmp2/4, which activates the dorsal ectoderm GRN is down-regulated and Pl-Chordin is aberrantly over-expressed in the entire ectoderm. The identity of ectodermal cells in Pl-Coup-TF morphant embryos, was probed for expression of the ventral marker Pl-Gsc which was over-expressed and dorsal markers, Pl-IrxA and Pl-Hox7, which were silent. Therefore, we propose that maternal Pl-Coup-TF is essential for correct dissemination of the early embryonic signaling along both animal/vegetal and ventral/dorsal axes. Limiting Pl-Coup-TF's quantity, results in an embryo without digestive and nervous systems, skeleton and ciliary band that cannot survive past the initial 48 h of development.
Collapse
Affiliation(s)
- Ioannis Tsironis
- Department of Biology, University of Patras, Patras, 26500, Greece
| | - Periklis Paganos
- Department of Biology, University of Patras, Patras, 26500, Greece; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Georgia Gouvi
- Department of Biology, University of Patras, Patras, 26500, Greece
| | | | | | - Maria Ina Arnone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | | |
Collapse
|
20
|
Slota LA, Miranda E, Peskin B, McClay DR. Developmental origin of peripheral ciliary band neurons in the sea urchin embryo. Dev Biol 2020; 459:72-78. [PMID: 31881199 PMCID: PMC7080585 DOI: 10.1016/j.ydbio.2019.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
Abstract
In the sea urchin larva, most neurons lie within an ectodermal region called the ciliary band. Our understanding of the mechanisms of specification and patterning of these peripheral ciliary band neurons is incomplete. Here, we first examine the gene regulatory landscape from which this population of neural progenitors arise in the neuroectoderm. We show that ciliary band neural progenitors first appear in a bilaterally symmetric pattern on the lateral edges of chordin expression in the neuroectoderm. Later in development, these progenitors appear in a salt-and-pepper pattern in the ciliary band where they express soxC, and prox, which are markers of neural specification, and begin to express synaptotagminB, a marker of differentiated neurons. We show that the ciliary band expresses the acid sensing ion channel gene asicl, which suggests that ciliary band neurons control the larva's ability to discern touch sensitivity. Using a chemical inhibitor of MAPK signaling, we show that this signaling pathway is required for proper specification and patterning of ciliary band neurons. Using live imaging, we show that these neural progenitors undergo small distance migrations in the embryo. We then show that the normal swimming behavior of the larvae is compromised if the neurogenesis pathway is perturbed. The developmental sequence of ciliary band neurons is very similar to that of neural crest-derived sensory neurons in vertebrates and may provide insights into the evolution of sensory neurons in deuterostomes.
Collapse
Affiliation(s)
- Leslie A Slota
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Esther Miranda
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Brianna Peskin
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - David R McClay
- Department of Biology, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
21
|
Martín-Durán JM, Hejnol A. A developmental perspective on the evolution of the nervous system. Dev Biol 2019; 475:181-192. [PMID: 31610146 DOI: 10.1016/j.ydbio.2019.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 06/02/2018] [Accepted: 10/04/2019] [Indexed: 12/20/2022]
Abstract
The evolution of nervous systems in animals has always fascinated biologists, and thus multiple evolutionary scenarios have been proposed to explain the appearance of neurons and complex neuronal centers. However, the absence of a robust phylogenetic framework for animal interrelationships, the lack of a mechanistic understanding of development, and a recapitulative view of animal ontogeny have traditionally limited these scenarios. Only recently, the integration of advanced molecular and morphological studies in a broad range of animals has allowed to trace the evolution of developmental and neuronal characters on a better-resolved animal phylogeny. This has falsified most traditional scenarios for nervous system evolution, paving the way for the emergence of new testable hypotheses. Here we summarize recent progress in studies of nervous system development in major animal lineages and formulate some of the arising questions. In particular, we focus on how lineage analyses of nervous system development and a comparative study of the expression of neural-related genes has influenced our understanding of the evolution of an elaborated central nervous system in Bilateria. We argue that a phylogeny-guided study of neural development combining thorough descriptive and functional analyses is key to establish more robust scenarios for the origin and evolution of animal nervous systems.
Collapse
Affiliation(s)
- José M Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thørmohlensgate 55, 5006, Bergen, Norway; School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK.
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thørmohlensgate 55, 5006, Bergen, Norway.
| |
Collapse
|
22
|
Annunziata R, Andrikou C, Perillo M, Cuomo C, Arnone MI. Development and evolution of gut structures: from molecules to function. Cell Tissue Res 2019; 377:445-458. [PMID: 31446445 DOI: 10.1007/s00441-019-03093-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022]
Abstract
The emergence of a specialized system for food digestion and nutrient absorption was a crucial innovation for multicellular organisms. Digestive systems with different levels of complexity evolved in different animals, with the endoderm-derived one-way gut of most bilaterians to be the prevailing and more specialized form. While the molecular events regulating the early phases of embryonic tissue specification have been deeply investigated in animals occupying different phylogenetic positions, the mechanisms underlying gut patterning and gut-associated structures differentiation are still mostly obscure. In this review, we describe the main discoveries in gut and gut-associated structures development in echinoderm larvae (mainly for sea urchin and, when available, for sea star) and compare them with existing information in vertebrates. An impressive degree of conservation emerges when comparing the transcription factor toolkits recruited for gut cells and tissue differentiation in animals as diverse as echinoderms and vertebrates, thus suggesting that their function emerged in the deuterostome ancestor.
Collapse
Affiliation(s)
- Rossella Annunziata
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa comunale, 80121, Naples, Italy
| | - Carmen Andrikou
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa comunale, 80121, Naples, Italy
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Margherita Perillo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa comunale, 80121, Naples, Italy
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting St, Providence, RI, 02912, USA
| | - Claudia Cuomo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa comunale, 80121, Naples, Italy
| | - Maria I Arnone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa comunale, 80121, Naples, Italy.
| |
Collapse
|
23
|
Abstract
Although morphologies are diverse, the common pattern in bilaterians is for passage of food in the gut to be controlled by nerves and endodermally derived neuron-like cells. In vertebrates, nitric oxide (NO) derived from enteric nerves controls relaxation of the pyloric sphincter. Here, we show that in the larvae of sea urchins, there are endoderm-derived neuronal nitric oxide synthase (nNOS)-positive cells expressing pan-neural marker, Synaptotagmin-B (SynB), in sphincters and that NO regulates the relaxation of the pyloric sphincter. Our results indicate that NO-dependent pylorus regulation is a shared feature within the deuterostomes, and we speculate that it was a characteristic of stem deuterostomes.
Collapse
Affiliation(s)
- Junko Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| |
Collapse
|
24
|
Slota LA, Miranda EM, McClay DR. Spatial and temporal patterns of gene expression during neurogenesis in the sea urchin Lytechinus variegatus. EvoDevo 2019; 10:2. [PMID: 30792836 PMCID: PMC6371548 DOI: 10.1186/s13227-019-0115-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/30/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The sea urchin is a basal deuterostome that is more closely related to vertebrates than many organisms traditionally used to study neurogenesis. This phylogenetic position means that the sea urchin can provide insights into the evolution of the nervous system by helping resolve which developmental processes are deuterostome innovations, which are innovations in other clades, and which are ancestral. However, the nervous system of echinoderms is one of the least understood of all major metazoan phyla. To gain insights into echinoderm neurogenesis, spatial and temporal gene expression data are essential. Then, functional data will enable the building of a detailed gene regulatory network for neurogenesis in the sea urchin that can be compared across metazoans to resolve questions about how nervous systems evolved. RESULTS Here, we analyze spatiotemporal gene expression during sea urchin neurogenesis for genes that have been shown to be neurogenic in one or more species. We report the expression of 21 genes expressed in areas of neurogenesis in the sea urchin embryo from blastula stage (just before neural progenitors begin their specification sequence) through pluteus larval stage (when much of the nervous system has been patterned). Among those 21 gene expression patterns, we report expression of 11 transcription factors and 2 axon guidance genes, each expressed in discrete domains in the neuroectoderm or in the endoderm. Most of these genes are expressed in and around the ciliary band. Some including the transcription factors Lv-mbx, Lv-dmrt, Lv-islet, and Lv-atbf1, the nuclear protein Lv-prohibitin, and the guidance molecule Lv-semaa are expressed in the endoderm where they are presumably involved in neurogenesis in the gut. CONCLUSIONS This study builds a foundation to study how neurons are specified and evolved by analyzing spatial and temporal gene expression during neurogenesis in a basal deuterostome. With these expression patterns, we will be able to understand what genes are required for neural development in the sea urchin. These data can be used as a starting point to (1) build a spatial gene regulatory network for sea urchin neurogenesis, (2) identify how subtypes of neurons are specified, (3) perform comparative studies with the sea urchin, protostome, and vertebrate organisms.
Collapse
Affiliation(s)
- Leslie A. Slota
- Department of Biology, Duke University, 124 Science Dr., Box 90338, Durham, NC 27708 USA
| | - Esther M. Miranda
- Department of Biology, Duke University, 124 Science Dr., Box 90338, Durham, NC 27708 USA
| | - David R. McClay
- Department of Biology, Duke University, 124 Science Dr., Box 90338, Durham, NC 27708 USA
| |
Collapse
|
25
|
Brokhman I, Xu J, Coles BL, Razavi R, Engert S, Lickert H, Babona-Pilipos R, Morshead CM, Sibley E, Chen C, van der Kooy D. Dual embryonic origin of the mammalian enteric nervous system. Dev Biol 2019; 445:256-270. [DOI: 10.1016/j.ydbio.2018.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 02/05/2023]
|
26
|
McClay DR, Miranda E, Feinberg SL. Neurogenesis in the sea urchin embryo is initiated uniquely in three domains. Development 2018; 145:dev167742. [PMID: 30413529 PMCID: PMC6240313 DOI: 10.1242/dev.167742] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022]
Abstract
Many marine larvae begin feeding within a day of fertilization, thus requiring rapid development of a nervous system to coordinate feeding activities. Here, we examine the patterning and specification of early neurogenesis in sea urchin embryos. Lineage analysis indicates that neurons arise locally in three regions of the embryo. Perturbation analyses showed that when patterning is disrupted, neurogenesis in the three regions is differentially affected, indicating distinct patterning requirements for each neural domain. Six transcription factors that function during proneural specification were identified and studied in detail. Perturbations of these proneural transcription factors showed that specification occurs differently in each neural domain prior to the Delta-Notch restriction signal. Though gene regulatory network state changes beyond the proneural restriction are largely unresolved, the data here show that the three neural regions already differ from each other significantly early in specification. Future studies that define the larval nervous system in the sea urchin must therefore separately characterize the three populations of neurons that enable the larva to feed, to navigate, and to move food particles through the gut.
Collapse
Affiliation(s)
- David R McClay
- Department of Biology, 124 Science Drive, Duke University, Durham, NC 27708, USA
| | - Esther Miranda
- Department of Biology, 124 Science Drive, Duke University, Durham, NC 27708, USA
| | - Stacy L Feinberg
- Department of Biology, 124 Science Drive, Duke University, Durham, NC 27708, USA
| |
Collapse
|
27
|
Wood NJ, Mattiello T, Rowe ML, Ward L, Perillo M, Arnone MI, Elphick MR, Oliveri P. Neuropeptidergic Systems in Pluteus Larvae of the Sea Urchin Strongylocentrotus purpuratus: Neurochemical Complexity in a "Simple" Nervous System. Front Endocrinol (Lausanne) 2018; 9:628. [PMID: 30410468 PMCID: PMC6209648 DOI: 10.3389/fendo.2018.00628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022] Open
Abstract
The nervous system of the free-living planktonic larvae of sea urchins is relatively "simple," but sufficiently complex to enable sensing of the environment and control of swimming and feeding behaviors. At the pluteus stage of development, the nervous system comprises a central ganglion of serotonergic neurons located in the apical organ and sensory and motor neurons associated with the ciliary band and the gut. Neuropeptides are key mediators of neuronal signaling in nervous systems but currently little is known about neuropeptidergic systems in sea urchin larvae. Analysis of the genome sequence of the sea urchin Strongylocentrotus purpuratus has enabled the identification of 38 genes encoding neuropeptide precursors (NP) in this species. Here we characterize for the first time the expression of nine of these NP genes in S. purpuratus larvae, providing a basis for a functional understanding of the neurochemical organization of the larval nervous system. In order to accomplish this we used single and double in situ hybridization, coupled with immunohistochemistry, to investigate NP gene expression in comparison with known markers (e.g., the neurotransmitter serotonin). Several sub-populations of cells that express one or more NP genes were identified, which are located in the apica organ, at the base of the arms, around the mouth, in the ciliary band and in the mid- and fore-gut. Furthermore, high levels of cell proliferation were observed in neurogenic territories, consistent with an increase in the number of neuropeptidergic cells at late larval stages. This study has revealed that the sea urchin larval nervous system is far more complex at a neurochemical level than was previously known. Our NP gene expression map provides the basis for future work, aimed at understanding the role of diverse neuropeptides in control of various aspects of embryonic and larval behavior.
Collapse
Affiliation(s)
- Natalie J. Wood
- Centre for Life's Origins and Evolution, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Teresa Mattiello
- Centre for Life's Origins and Evolution, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Matthew L. Rowe
- Centre for Life's Origins and Evolution, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Lizzy Ward
- Centre for Life's Origins and Evolution, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | | | | - Maurice R. Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Paola Oliveri
- Centre for Life's Origins and Evolution, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
28
|
Slota LA, McClay DR. Identification of neural transcription factors required for the differentiation of three neuronal subtypes in the sea urchin embryo. Dev Biol 2018; 435:138-149. [PMID: 29331498 PMCID: PMC5837949 DOI: 10.1016/j.ydbio.2017.12.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 12/30/2022]
Abstract
Correct patterning of the nervous system is essential for an organism's survival and complex behavior. Embryologists have used the sea urchin as a model for decades, but our understanding of sea urchin nervous system patterning is incomplete. Previous histochemical studies identified multiple neurotransmitters in the pluteus larvae of several sea urchin species. However, little is known about how, where and when neural subtypes are differentially specified during development. Here, we examine the molecular mechanisms of neuronal subtype specification in 3 distinct neural subtypes in the Lytechinus variegatus larva. We show that these subtypes are specified through Delta/Notch signaling and identify a different transcription factor required for the development of each neural subtype. Our results show achaete-scute and neurogenin are proneural for the serotonergic neurons of the apical organ and cholinergic neurons of the ciliary band, respectively. We also show that orthopedia is not proneural but is necessary for the differentiation of the cholinergic/catecholaminergic postoral neurons. Interestingly, these transcription factors are used similarly during vertebrate neurogenesis. We believe this study is a starting point for building a neural gene regulatory network in the sea urchin and for finding conserved deuterostome neurogenic mechanisms.
Collapse
Affiliation(s)
- Leslie A Slota
- Department of Biology, Duke University, Durham, NC 27708, United States
| | - David R McClay
- Department of Biology, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
29
|
Hinman VF, Burke RD. Embryonic neurogenesis in echinoderms. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e316. [PMID: 29470839 DOI: 10.1002/wdev.316] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 01/09/2023]
Abstract
The phylogenetic position of echinoderms is well suited to revealing shared features of deuterostomes that distinguish them from other bilaterians. Although echinoderm neurobiology remains understudied, genomic resources, molecular methods, and systems approaches have enabled progress in understanding mechanisms of embryonic neurogenesis. Even though the morphology of echinoderm larvae is diverse, larval nervous systems, which arise during gastrulation, have numerous similarities in their organization. Diverse neural subtypes and specialized sensory neurons have been identified and details of neuroanatomy using neuron-specific labels provide hypotheses for neural function. The early patterning of ectoderm and specification of axes has been well studied in several species and underlying gene regulatory networks have been established. The cells giving rise to central and peripheral neural components have been identified in urchins and sea stars. Neurogenesis includes typical metazoan features of asymmetric division of neural progenitors and in some cases limited proliferation of neural precursors. Delta/Notch signaling has been identified as having critical roles in regulating neural patterning and differentiation. Several transcription factors functioning in pro-neural phases of specification, neural differentiation, and sub-type specification have been identified and structural or functional components of neurons are used as differentiation markers. Several methods for altering expression in embryos have revealed aspects of a regulatory hierarchy of transcription factors in neurogenesis. Interfacing neurogenic gene regulatory networks to the networks regulating ectodermal domains and identifying the spatial and temporal inputs that pattern the larval nervous system is a major challenge that will contribute substantially to our understanding of the evolution of metazoan nervous systems. This article is categorized under: Comparative Development and Evolution > Model Systems Comparative Development and Evolution > Body Plan Evolution Early Embryonic Development > Gastrulation and Neurulation.
Collapse
Affiliation(s)
- Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Robert D Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| |
Collapse
|
30
|
Anishchenko E, Arnone MI, D'Aniello S. SoxB2 in sea urchin development: implications in neurogenesis, ciliogenesis and skeletal patterning. EvoDevo 2018; 9:5. [PMID: 29479411 PMCID: PMC5817722 DOI: 10.1186/s13227-018-0094-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/01/2018] [Indexed: 11/21/2022] Open
Abstract
Background Current studies in evolutionary developmental biology are focused on the reconstruction of gene regulatory networks in target animal species. From decades, the scientific interest on genetic mechanisms orchestrating embryos development has been increasing in consequence to the fact that common features shared by evolutionarily distant phyla are being clarified. In 2011, a study across eumetazoan species showed for the first time the existence of a highly conserved non-coding element controlling the SoxB2 gene, which is involved in the early specification of the nervous system. This discovery raised several questions about SoxB2 function and regulation in deuterostomes from an evolutionary point of view. Results Due to the relevant phylogenetic position within deuterostomes, the sea urchin Strongylocentrotus purpuratus represents an advantageous animal model in the field of evolutionary developmental biology. Herein, we show a comprehensive study of SoxB2 functions in sea urchins, in particular its expression pattern in a wide range of developmental stages, and its co-localization with other neurogenic markers, as SoxB1, SoxC and Elav. Moreover, this work provides a detailed description of the phenotype of sea urchin SoxB2 knocked-down embryos, confirming its key function in neurogenesis and revealing, for the first time, its additional roles in oral and aboral ectoderm cilia and skeletal rod morphology. Conclusions We concluded that SoxB2 in sea urchins has a neurogenic function; however, this gene could have multiple roles in sea urchin embryogenesis, expanding its expression in non-neurogenic cells. We showed that SoxB2 is functionally conserved among deuterostomes and suggested that in S. purpuratus this gene acquired additional functions, being involved in ciliogenesis and skeletal patterning. Electronic supplementary material The online version of this article (10.1186/s13227-018-0094-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evgeniya Anishchenko
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121 Naples, Italy
| | - Maria Ina Arnone
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121 Naples, Italy
| | - Salvatore D'Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
31
|
Erkenbrack EM. Notch-mediated lateral inhibition is an evolutionarily conserved mechanism patterning the ectoderm in echinoids. Dev Genes Evol 2018; 228:1-11. [PMID: 29249002 DOI: 10.1007/s00427-017-0599-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
Notch signaling is a crucial cog in early development of euechinoid sea urchins, specifying both non-skeletogenic mesodermal lineages and serotonergic neurons in the apical neuroectoderm. Here, the spatial distributions and function of delta, gcm, and hesc, three genes critical to these processes in euechinoids, are examined in the distantly related cidaroid sea urchin Eucidaris tribuloides. Spatial distribution and experimental perturbation of delta and hesc suggest that the function of Notch signaling in ectodermal patterning in early development of E. tr ibuloides is consistent with canonical lateral inhibition. Delta transcripts were observed in t he archenteron, apical ectoderm, and lateral ectoderm in gastrulating e mbryos of E. tribuloides. Perturbation of Notch signaling by either delta morpholino or treatment of DAPT downregulated hesc and upregulated delta and gcm, resulting in ectopic expression of delta and gcm. Similarly, hesc perturbation mirrored the effects of delta perturbation. Interestingly, perturbation of delta or hesc resulted in more cells expressing gcm and supernumerary pigment cells, suggesting that pigment cell proliferation is regulated by Notch in E. tribuloides. These results are consistent with an evolutionary scenario whereby, in the echinoid ancestor, Notch signaling was deployed in the ectoderm to specify neurogenic progenitors and controlled pigment cell proliferation in the dorsal ectoderm.
Collapse
Affiliation(s)
- Eric M Erkenbrack
- Yale Systems Biology Institute, Yale University, West Haven, CT, 06516, USA.
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
32
|
Gazave E, Lemaître QIB, Balavoine G. The Notch pathway in the annelid Platynereis: insights into chaetogenesis and neurogenesis processes. Open Biol 2017; 7:rsob.160242. [PMID: 28148821 PMCID: PMC5356439 DOI: 10.1098/rsob.160242] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023] Open
Abstract
Notch is a key signalling pathway playing multiple and varied functions during development. Notch regulates the selection of cells with a neurogenic fate and maintains a pool of yet uncommitted precursors through lateral inhibition, both in insects and in vertebrates. Here, we explore the functions of Notch in the annelid Platynereis dumerilii (Lophotrochozoa). Conserved components of the pathway are identified and a scenario for their evolution in metazoans is proposed. Unexpectedly, neither Notch nor its ligands are expressed in the neurogenic epithelia of the larva at the time when massive neurogenesis begins. Using chemical inhibitors and neural markers, we demonstrate that Notch plays no major role in the general neurogenesis of larvae. Instead, we find Notch components expressed in nascent chaetal sacs, the organs that produce the annelid bristles. Impairing Notch signalling induces defects in chaetal sac formation, abnormalities in chaetae producing cells and a change of identity of chaeta growth accessory cells. This is the first bilaterian species in which the early neurogenesis processes appear to occur without a major involvement of the Notch pathway. Instead, Notch is co-opted to pattern annelid-specific organs, likely through a lateral inhibition process. These features reinforce the view that Notch signalling has been recruited multiple times in evolution due to its remarkable ‘toolkit’ nature.
Collapse
Affiliation(s)
- Eve Gazave
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Quentin I B Lemaître
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Guillaume Balavoine
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| |
Collapse
|
33
|
Liebeskind BJ, Hofmann HA, Hillis DM, Zakon HH. Evolution of Animal Neural Systems. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2017. [DOI: 10.1146/annurev-ecolsys-110316-023048] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nervous systems are among the most spectacular products of evolution. Their provenance and evolution have been of interest and often the subjects of intense debate since the late nineteenth century. The genomics era has provided researchers with a new set of tools with which to study the early evolution of neurons, and recent progress on the molecular evolution of the first neurons has been both exciting and frustrating. It has become increasingly obvious that genomic data are often insufficient to reconstruct complex phenotypes in deep evolutionary time because too little is known about how gene function evolves over deep time. Therefore, additional functional data across the animal tree are a prerequisite to a fuller understanding of cell evolution. To this end, we review the functional modules of neurons and the evolution of their molecular components, and we introduce the idea of hierarchical molecular evolution.
Collapse
Affiliation(s)
- Benjamin J. Liebeskind
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, Texas 78712
| | - Hans A. Hofmann
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, Texas 78712
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78712
| | - David M. Hillis
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, Texas 78712
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
| | - Harold H. Zakon
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, Texas 78712
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
- Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
34
|
Mellott DO, Thisdelle J, Burke RD. Notch signaling patterns neurogenic ectoderm and regulates the asymmetric division of neural progenitors in sea urchin embryos. Development 2017; 144:3602-3611. [PMID: 28851710 DOI: 10.1242/dev.151720] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023]
Abstract
We have examined regulation of neurogenesis by Delta/Notch signaling in sea urchin embryos. At gastrulation, neural progenitors enter S phase coincident with expression of Sp-SoxC. We used a BAC containing GFP knocked into the Sp-SoxC locus to label neural progenitors. Live imaging and immunolocalizations indicate that Sp-SoxC-expressing cells divide to produce pairs of adjacent cells expressing GFP. Over an interval of about 6 h, one cell fragments, undergoes apoptosis and expresses high levels of activated Caspase3. A Notch reporter indicates that Notch signaling is activated in cells adjacent to cells expressing Sp-SoxC. Inhibition of γ-secretase, injection of Sp-Delta morpholinos or CRISPR/Cas9-induced mutation of Sp-Delta results in supernumerary neural progenitors and neurons. Interfering with Notch signaling increases neural progenitor recruitment and pairs of neural progenitors. Thus, Notch signaling restricts the number of neural progenitors recruited and regulates the fate of progeny of the asymmetric division. We propose a model in which localized signaling converts ectodermal and ciliary band cells to neural progenitors that divide asymmetrically to produce a neural precursor and an apoptotic cell.
Collapse
Affiliation(s)
- Dan O Mellott
- Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W 2Y2
| | - Jordan Thisdelle
- Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W 2Y2
| | - Robert D Burke
- Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W 2Y2
| |
Collapse
|
35
|
Luo S, Horvitz HR. The CDK8 Complex and Proneural Proteins Together Drive Neurogenesis from a Mesodermal Lineage. Curr Biol 2017; 27:661-672. [PMID: 28238659 DOI: 10.1016/j.cub.2017.01.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/08/2016] [Accepted: 01/26/2017] [Indexed: 11/25/2022]
Abstract
At least some animal species can generate neurons from mesoderm or endoderm, but the underlying mechanisms remain unknown. We screened for C. elegans mutants in which the presumptive mesoderm-derived I4 neuron adopts a muscle-like cell fate. From this screen, we identified HLH-3, the C. elegans homolog of a mammalian proneural protein (Ascl1) used for in vitro neuronal reprogramming, as required for efficient I4 neurogenesis. We discovered that the CDK-8 Mediator kinase module acts together with a second proneural protein, HLH-2, and in parallel to HLH-3 to promote I4 neurogenesis. Genetic analysis revealed that CDK-8 most likely promotes I4 neurogenesis by inhibiting the CDK-7/CYH-1 (CDK7/cyclin H) kinase module of the transcription initiation factor TFIIH. Ectopic expression of HLH-2 and HLH-3 together promoted expression of neuronal features in non-neuronal cells. These findings reveal that the Mediator CDK8 kinase module can promote non-ectodermal neurogenesis and suggest that inhibiting CDK7/cyclin H might similarly promote neurogenesis.
Collapse
Affiliation(s)
- Shuo Luo
- Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - H Robert Horvitz
- Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
36
|
Focareta L, Cole AG. Analyses of Sox-B and Sox-E Family Genes in the Cephalopod Sepia officinalis: Revealing the Conserved and the Unusual. PLoS One 2016; 11:e0157821. [PMID: 27331398 PMCID: PMC4917168 DOI: 10.1371/journal.pone.0157821] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/05/2016] [Indexed: 11/18/2022] Open
Abstract
Cephalopods provide an unprecedented opportunity for comparative studies of the developmental genetics of organ systems that are convergent with analogous vertebrate structures. The Sox-family of transcription factors is an important class of DNA-binding proteins that are known to be involved in many aspects of differentiation, but have been largely unstudied in lophotrochozoan systems. Using a degenerate primer strategy we have isolated coding sequence for three members of the Sox family of transcription factors from a cephalopod mollusk, the European cuttlefish Sepia officinalis: Sof-SoxE, Sof-SoxB1, and Sof-SoxB2. Analyses of their expression patterns during organogenesis reveals distinct spatial and temporal expression domains. Sof-SoxB1 shows early ectodermal expression throughout the developing epithelium, which is gradually restricted to presumptive sensory epithelia. Expression within the nervous system appears by mid-embryogenesis. Sof-SoxB2 expression is similar to Sof-SoxB1 within the developing epithelia in early embryogenesis, however appears in largely non-overlapping expression domains within the central nervous system and is not expressed in the maturing sensory epithelium. In contrast, Sof-SoxE is expressed throughout the presumptive mesodermal territories at the onset of organogenesis. As development proceeds, Sof-SoxE expression is elevated throughout the developing peripheral circulatory system. This expression disappears as the circulatory system matures, but expression is maintained within undifferentiated connective tissues throughout the animal, and appears within the nervous system near the end of embryogenesis. SoxB proteins are widely known for their role in neural specification in numerous phylogenetic lineages. Our data suggests that Sof-SoxB genes play similar roles in cephalopods. In contrast, Sof-SoxE appears to be involved in the early stages of vasculogenesis of the cephalopod closed circulatory system, a novel role for a member of this gene family.
Collapse
|
37
|
Wei Z, Angerer LM, Angerer RC. Neurogenic gene regulatory pathways in the sea urchin embryo. Development 2016; 143:298-305. [PMID: 26657764 PMCID: PMC4725339 DOI: 10.1242/dev.125989] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 11/26/2015] [Indexed: 01/18/2023]
Abstract
During embryogenesis the sea urchin early pluteus larva differentiates 40-50 neurons marked by expression of the pan-neural marker synaptotagmin B (SynB) that are distributed along the ciliary band, in the apical plate and pharyngeal endoderm, and 4-6 serotonergic neurons that are confined to the apical plate. Development of all neurons has been shown to depend on the function of Six3. Using a combination of molecular screens and tests of gene function by morpholino-mediated knockdown, we identified SoxC and Brn1/2/4, which function sequentially in the neurogenic regulatory pathway and are also required for the differentiation of all neurons. Misexpression of Brn1/2/4 at low dose caused an increase in the number of serotonin-expressing cells and at higher dose converted most of the embryo to a neurogenic epithelial sphere expressing the Hnf6 ciliary band marker. A third factor, Z167, was shown to work downstream of the Six3 and SoxC core factors and to define a branch specific for the differentiation of serotonergic neurons. These results provide a framework for building a gene regulatory network for neurogenesis in the sea urchin embryo.
Collapse
Affiliation(s)
- Zheng Wei
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lynne M Angerer
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert C Angerer
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
38
|
Liebeskind BJ, Hillis DM, Zakon HH, Hofmann HA. Complex Homology and the Evolution of Nervous Systems. Trends Ecol Evol 2015; 31:127-135. [PMID: 26746806 DOI: 10.1016/j.tree.2015.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 02/07/2023]
Abstract
We examine the complex evolution of animal nervous systems and discuss the ramifications of this complexity for inferring the nature of early animals. Although reconstructing the origins of nervous systems remains a central challenge in biology, and the phenotypic complexity of early animals remains controversial, a compelling picture is emerging. We now know that the nervous system and other key animal innovations contain a large degree of homoplasy, at least on the molecular level. Conflicting hypotheses about early nervous system evolution are due primarily to differences in the interpretation of this homoplasy. We highlight the need for explicit discussion of assumptions and discuss the limitations of current approaches for inferring ancient phenotypic states.
Collapse
Affiliation(s)
- Benjamin J Liebeskind
- Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA; Center for Computational Biology and Bioinformatics, University of Texas, Austin, TX 78712.
| | - David M Hillis
- Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA; Center for Computational Biology and Bioinformatics, University of Texas, Austin, TX 78712; Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Harold H Zakon
- Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA; Center for Computational Biology and Bioinformatics, University of Texas, Austin, TX 78712; Department of Integrative Biology, University of Texas, Austin, TX 78712, USA; Department of Neuroscience, University of Texas, Austin, TX 78712, USA; Institute for Neuroscience, University of Texas, Austin, TX 78712, USA; Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Hans A Hofmann
- Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA; Center for Computational Biology and Bioinformatics, University of Texas, Austin, TX 78712; Department of Integrative Biology, University of Texas, Austin, TX 78712, USA; Department of Neuroscience, University of Texas, Austin, TX 78712, USA; Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
39
|
Martik ML, McClay DR. Deployment of a retinal determination gene network drives directed cell migration in the sea urchin embryo. eLife 2015; 4. [PMID: 26402456 PMCID: PMC4621380 DOI: 10.7554/elife.08827] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/23/2015] [Indexed: 12/29/2022] Open
Abstract
Gene regulatory networks (GRNs) provide a systems-level orchestration of an organism's genome encoded anatomy. As biological networks are revealed, they continue to answer many questions including knowledge of how GRNs control morphogenetic movements and how GRNs evolve. The migration of the small micromeres to the coelomic pouches in the sea urchin embryo provides an exceptional model for understanding the genomic regulatory control of morphogenesis. An assay using the robust homing potential of these cells reveals a ‘coherent feed-forward’ transcriptional subcircuit composed of Pax6, Six3, Six1/2, Eya, and Dach1 that is responsible for the directed homing mechanism of these multipotent progenitors. The linkages of that circuit are strikingly similar to a circuit involved in retinal specification in Drosophila suggesting that systems-level tasks can be highly conserved even though the tasks drive unrelated processes in different animals. DOI:http://dx.doi.org/10.7554/eLife.08827.001 Within an animal embryo, groups of cells tend to move, or migrate, between different areas before they form into tissues and organs. These cell migrations are regulated by hundreds of genes, which must be expressed at the right time and in the right place. Cells use proteins called transcription factors to regulate the expression of genes. These proteins work together in circuit board-like networks called gene regulatory networks in order to drive different aspects of development, including cell migration. The sea urchin is a useful model organism to study how animals develop. This is because these marine animals express many of the same genes as humans, but they can be easily manipulated and studied in the laboratory. In a developing sea urchin embryo, cells called the small micromeres move towards one end of animal and get incorporated into a pocket-like structure known as the coelomic pouch. From this pouch, these cells mature and eventually contribute to the adult germ cells (the precursors to the sperm and eggs). Martik and McClay have now analyzed how small micromeres make their way to their final location in the coelomic pouch. Micromeres were labeled with a dye that fluoresces green so that they could be tracked under a microscope. This revealed that, like other moving cells, micromeres actively change their shape as they migrate. Furthermore, when micromeres were experimentally moved to abnormal locations in the sea urchin embryo, they were still able to actively home in on the coelomic pouch no matter their starting location. Martik and McClay then identified five transcription factors expressed in the coelomic pouch in the sea urchin that are involved in this homing activity. Reducing the expression of any of these transcription factors was enough to hinder the ability of the micromeres to find their way to the coelomic pouch. Further experiments and analysis then revealed that these five transcription factors work together in a sub-circuit, which is in turn embedded in a larger gene regulatory network. This sub-circuit that drives cell migration is unexpectedly similar to another circuit in the fruit fly Drosophila. Intriguingly, the sub-circuit in the fly controls eye development, which is unrelated to cell homing and migration. These observations raise the possibility that this circuit has been conserved as a unit over millions of years of evolution and redeployed in new networks under completely different circumstances. The data also suggest the possibility that additional conserved sub-circuits will be identified as more systems are analyzed in detail. DOI:http://dx.doi.org/10.7554/eLife.08827.002
Collapse
Affiliation(s)
- Megan L Martik
- University Program in Genetics and Genomics, Duke University, Durham, United States
| | - David R McClay
- Department of Biology, Duke University, Durham, United States
| |
Collapse
|
40
|
Mashanov VS, Zueva OR, García-Arrarás JE. Expression of pluripotency factors in echinoderm regeneration. Cell Tissue Res 2014; 359:521-536. [PMID: 25468557 DOI: 10.1007/s00441-014-2040-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/16/2014] [Indexed: 12/15/2022]
Abstract
Cell dedifferentiation is an integral component of post-traumatic regeneration in echinoderms. As dedifferentiated cells become multipotent, we asked if this spontaneous broadening of developmental potential is associated with the action of the same pluripotency factors (known as Yamanaka factors) that were used to induce pluripotency in specialized mammalian cells. In this study, we investigate the expression of orthologs of the four Yamanaka factors in regeneration of two different organs, the radial nerve cord and the digestive tube, in the sea cucumber Holothuria glaberrima. All four pluripotency factors are expressed in uninjured animals, although their expression domains do not always overlap. In regeneration, the expression levels of the four genes were not regulated in a coordinated way, but instead showed different dynamics for individual genes and also were different between the radial nerve and the gut. SoxB1, the ortholog of the mammalian Sox2, was drastically downregulated in the regenerating intestine, suggesting that this factor is not required for dedifferentiation/regeneration in this organ. On the other hand, during the early post-injury stage, Myc, the sea cucumber ortholog of c-Myc, was significantly upregulated in both the intestine and the radial nerve cord and is therefore hypothesized to play a central role in dedifferentiation/regeneration of various tissue types.
Collapse
Affiliation(s)
- Vladimir S Mashanov
- Department of Biology, University of Puerto Rico, PO Box 70377, San Juan, PR, 00936-8377, USA.
| | - Olga R Zueva
- Department of Biology, University of Puerto Rico, PO Box 70377, San Juan, PR, 00936-8377, USA
| | - José E García-Arrarás
- Department of Biology, University of Puerto Rico, PO Box 70377, San Juan, PR, 00936-8377, USA
| |
Collapse
|
41
|
Can the ‘neuron theory’ be complemented by a universal mechanism for generic neuronal differentiation. Cell Tissue Res 2014; 359:343-84. [DOI: 10.1007/s00441-014-2049-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 12/19/2022]
|
42
|
Burke RD, Moller DJ, Krupke OA, Taylor VJ. Sea urchin neural development and the metazoan paradigm of neurogenesis. Genesis 2014; 52:208-21. [PMID: 25368883 DOI: 10.1002/dvg.22750] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Summary:Urchin embryos continue to prove useful as a means of studying embryonic signaling and gene regulatory networks, which together control early development. Recent progress in understanding the molecular mechanisms underlying the patterning of ectoderm has renewed interest in urchin neurogenesis. We have employed an emerging model of neurogenesis that appears to be broadly shared by metazoans as a framework for this review. We use the model to provide context and summarize what is known about neurogenesis in urchin embryos. We review morphological features of the differentiation phase of neurogenesis and summarize current understanding of neural specification and regulation of proneural networks. Delta-Notch signaling is a common feature of metazoan neurogenesis that produces committed progenitors and it appears to be a critical phase of neurogenesis in urchin embryos. Descriptions of the differentiation phase of neurogenesis indicate a stereotypic sequence of neural differentiation and patterns of axonal growth. Features of neural differentiation are consistent with localized signals guiding growth cones with trophic, adhesive, and tropic cues. Urchins are a facile, postgenomic model with the potential of revealing many shared and derived features of deuterostome neurogenesis.
Collapse
Affiliation(s)
- Robert D Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC Canada
| | | | | | | |
Collapse
|
43
|
Annunziata R, Perillo M, Andrikou C, Cole AG, Martinez P, Arnone MI. Pattern and process during sea urchin gut morphogenesis: the regulatory landscape. Genesis 2014; 52:251-68. [PMID: 24376127 DOI: 10.1002/dvg.22738] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/16/2013] [Indexed: 01/02/2023]
Abstract
The development of the endoderm is a multistage process. From the initial specification of the endodermal domain in the embryo to the final regionalization of the gut, there are multiple stages that require the involvement of complex gene regulatory networks. In one concrete case, the sea urchin embryo, some of these stages and their genetic control are (relatively) well understood. Several studies have underscored the relevance of individual transcription factor activities in the process, but very few have focused the attention on gene interactions within specific gene regulatory networks (GRNs). Sea urchins offer an ideal system to study the different factors involved in the morphogenesis of the gut. Here we review the knowledge gained over the last 10 years on the process and its regulation, from the early specification of endodermal lineages to the late events linked to the patterning of functional domains in the gut. A lesson of remarkable importance has been learnt from comparison of the mechanisms involved in gut formation in different bilaterian animals; some of these genetic mechanisms are particularly well conserved. Patterning the gut seems to involve common molecular players and shared interactions, whether we look at mammals or echinoderms. This astounding degree of conservation reveals some key aspects of deep homology that are most probably shared by all bilaterian guts.
Collapse
Affiliation(s)
- Rossella Annunziata
- Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
44
|
Katow H, Katow T, Abe K, Ooka S, Kiyomoto M, Hamanaka G. Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme cells of sea urchin larvae. Biol Open 2014; 3:94-102. [PMID: 24357228 PMCID: PMC3892164 DOI: 10.1242/bio.20136882] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/21/2013] [Indexed: 12/29/2022] Open
Abstract
The ontogenetic origin of blastocoelar glutamate decarboxylase (GAD)-expressing cells (GADCs) in larvae of the sea urchin Hemicentrotus pulcherrimus was elucidated. Whole-mount in situ hybridisation (WISH) detected transcription of the gene that encodes GAD in H. pulcherrimus (Hp-gad) in unfertilised eggs and all blastomeres in morulae. However, at and after the swimming blastula stage, the transcript accumulation was particularly prominent in clumps of ectodermal cells throughout the embryonic surface. During the gastrula stage, the transcripts also accumulated in the endomesoderm and certain blastocoelar cells. Consistent with the increasing number of Hp-gad transcribing cells, immunoblot analysis indicated that the relative abundance of Hp-Gad increased considerably from the early gastrula stage until the prism stage. The expression pattern of GADCs determined by immunohistochemistry was identical to the pattern of Hp-gad transcript accumulation determined using WISH. In early gastrulae, GADCs formed blastocoelar cell aggregates around the blastopore with primary mesenchyme cells. The increase in the number of blastocoelar GADCs was inversely proportional to the number of ectodermal GADCs ranging from a few percent of total GADCs in early gastrulae to 80% in late prism larvae; this depended on ingression of ectodermal GADCs into the blastocoel. Some of the blastocoelar GADCs were fluorescein-positive in the larvae that developed from the 16-cell stage chimeric embryos; these comprised fluorescein-labeled mesomeres and unlabelled macromeres and micromeres. Our finding indicates that some of the blastocoelar GADCs are derived from the mesomeres and thus they are the new group of mesenchyme cells, the tertiary mesenchyme cells.
Collapse
Affiliation(s)
- Hideki Katow
- Division of Developmental Biology, Research Center for Marine Biology, Tohoku University, Asamushi, Aomori 039-3501, Japan
| | - Tomoko Katow
- Division of Developmental Biology, Research Center for Marine Biology, Tohoku University, Asamushi, Aomori 039-3501, Japan
| | - Kouki Abe
- Division of Developmental Biology, Research Center for Marine Biology, Tohoku University, Asamushi, Aomori 039-3501, Japan
- Present address: Nara Institute of Science and Technology, Laboratory of Neuronal Cell Morphogenesis, Graduate School of Biological Sciences, Ikoma 630-0192, Japan
| | - Shioh Ooka
- Division of Developmental Biology, Research Center for Marine Biology, Tohoku University, Asamushi, Aomori 039-3501, Japan
- Present address: Tokyo University of Marine Science and Technology, Field Science Center, Tateyama Station (Banda), Chiba 294-0308, Japan
| | - Masato Kiyomoto
- Marine and Coastal Research Center, Ochanomizu University, Tateyama, Chiba 294-0301, Japan
| | - Gen Hamanaka
- Marine and Coastal Research Center, Ochanomizu University, Tateyama, Chiba 294-0301, Japan
| |
Collapse
|
45
|
Moroz LL. Phylogenomics meets neuroscience: how many times might complex brains have evolved? ACTA BIOLOGICA HUNGARICA 2012; 63 Suppl 2:3-19. [PMID: 22776469 DOI: 10.1556/abiol.63.2012.suppl.2.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The origin of complex centralized brains is one of the major evolutionary transitions in the history of animals. Monophyly (i.e. presence of a centralized nervous system in urbilateria) vs polyphyly (i.e. multiple origins by parallel centralization of nervous systems within several lineages) are two historically conflicting scenarios to explain such transitions. However, recent phylogenomic and cladistic analysis suggests that complex brains may have independently evolved at least 9 times within different animal lineages. Indeed, even within the phylum Mollusca cephalization might have occurred at least 5 times. Emerging molecular data further suggest that at the genomic level such transitions might have been achieved by changes in expression of just a few transcriptional factors - not surprising since such events might happen multiple times over 700 million years of animal evolution. Both cladistic and genomic analyses also imply that neurons themselves evolved more than once. Ancestral polarized secretory cells were likely involved in coordination of ciliated locomotion in early animals, and these cells can be considered as evolutionary precursors of neurons within different lineages. Under this scenario, the origins of neurons can be linked to adaptations to stress/injury factors in the form of integrated regeneration-type cellular response with secretory signaling peptides as early neurotransmitters. To further reconstruct the parallel evolution of nervous systems genomic approaches are essential to probe enigmatic neurons of basal metazoans, selected lophotrochozoans (e.g. phoronids, brachiopods) and deuterostomes.
Collapse
Affiliation(s)
- L L Moroz
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd. St. Augustine Florida 32080, USA.
| |
Collapse
|
46
|
Wei Z, Range R, Angerer R, Angerer L. Axial patterning interactions in the sea urchin embryo: suppression of nodal by Wnt1 signaling. Development 2012; 139:1662-9. [PMID: 22438568 DOI: 10.1242/dev.075051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wnt and Nodal signaling pathways are required for initial patterning of cell fates along anterior-posterior (AP) and dorsal-ventral (DV) axes, respectively, of sea urchin embryos during cleavage and early blastula stages. These mechanisms are connected because expression of nodal depends on early Wnt/β-catenin signaling. Here, we show that an important subsequent function of Wnt signaling is to control the shape of the nodal expression domain and maintain correct specification of different cell types along the axes of the embryo. In the absence of Wnt1, the posterior-ventral region of the embryo is severely altered during early gastrulation. Strikingly, at this time, nodal and its downstream target genes gsc and bra are expressed ectopically, extending posteriorly to the blastopore. They override the initial specification of posterior-ventral ectoderm and endoderm fates, eliminating the ventral contribution to the gut and displacing the ciliary band dorsally towards, and occasionally beyond, the blastopore. Consequently, in Wnt1 morphants, the blastopore is located at the border of the re-specified posterior-ventral oral ectoderm and by larval stages it is in the same plane near the stomodeum on the ventral side. In normal embryos, a Nodal-dependent process downregulates wnt1 expression in dorsal posterior cells during early gastrulation, focusing Wnt1 signaling to the posterior-ventral region where it suppresses nodal expression. These subsequent interactions between Wnt and Nodal signaling are thus mutually antagonistic, each limiting the range of the other's activity, in order to maintain and stabilize the body plan initially established by those same signaling pathways in the early embryo.
Collapse
Affiliation(s)
- Zheng Wei
- National Institute for Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20891, USA
| | | | | | | |
Collapse
|
47
|
Yaguchi J, Angerer LM, Inaba K, Yaguchi S. Zinc finger homeobox is required for the differentiation of serotonergic neurons in the sea urchin embryo. Dev Biol 2012; 363:74-83. [PMID: 22210002 PMCID: PMC3288183 DOI: 10.1016/j.ydbio.2011.12.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 12/07/2011] [Accepted: 12/13/2011] [Indexed: 12/18/2022]
Abstract
Serotonergic neurons differentiate in the neurogenic animal plate ectoderm of the sea urchin embryo. The regulatory mechanisms that control the specification or differentiation of these neurons in the sea urchin embryo are not yet understood, although, after the genome was sequenced, many genes encoding transcription factors expressed in this region were identified. Here, we report that zinc finger homeobox (zfhx1/z81) is expressed in serotonergic neural precursor cells, using double in situ hybridization screening with a serotonergic neural marker, tryptophan 5-hydroxylase (tph) encoding a serotonin synthase that is required for the differentiation of serotonergic neurons. zfhx1/z81 begins to be expressed at gastrula stage in individual cells in the anterior neuroectoderm, some of which also express delta. zfhx1/z81 expression gradually disappears as neural differentiation begins with tph expression. When the translation of Zfhx1/Z81 is blocked by morpholino injection, embryos express neither tph nor the neural marker synaptotagminB in cells of the animal plate, and serotonergic neurons do not differentiate. In contrast, Zfhx1/Z81 morphants do express fez, another neural precursor marker, which appears to function in the initial phase of specification/differentiation of serotonergic neurons. In addition, zfhx1/z81 is one of the targets suppressed in the animal plate by anti-neural signals such as Nodal as well as Delta-Notch. We conclude that Zfhx1/Z81 functions during the specification of individual anterior neural precursors and promotes the expression of tph and synaptotagminB, required for the differentiation of serotonergic neurons.
Collapse
Affiliation(s)
- Junko Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
- Initiative for the Promotion of Young Scientists’ Independent Research, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Lynne M. Angerer
- Developmental Mechanisms Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. MSC 4326, Bethesda, MD 20892, USA
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
- Initiative for the Promotion of Young Scientists’ Independent Research, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| |
Collapse
|
48
|
Angerer LM, Yaguchi S, Angerer RC, Burke RD. The evolution of nervous system patterning: insights from sea urchin development. Development 2011; 138:3613-23. [PMID: 21828090 PMCID: PMC3152920 DOI: 10.1242/dev.058172] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent studies of the sea urchin embryo have elucidated the mechanisms that localize and pattern its nervous system. These studies have revealed the presence of two overlapping regions of neurogenic potential at the beginning of embryogenesis, each of which becomes progressively restricted by separate, yet linked, signals, including Wnt and subsequently Nodal and BMP. These signals act to specify and localize the embryonic neural fields - the anterior neuroectoderm and the more posterior ciliary band neuroectoderm - during development. Here, we review these conserved nervous system patterning signals and consider how the relationships between them might have changed during deuterostome evolution.
Collapse
Affiliation(s)
- Lynne M Angerer
- National Institute for Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
49
|
Yaguchi S, Yaguchi J, Wei Z, Jin Y, Angerer LM, Inaba K. Fez function is required to maintain the size of the animal plate in the sea urchin embryo. Development 2011; 138:4233-43. [PMID: 21852402 DOI: 10.1242/dev.069856] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Partitioning ectoderm precisely into neurogenic and non-neurogenic regions is an essential step for neurogenesis of almost all bilaterian embryos. Although it is widely accepted that antagonism between BMP and its inhibitors primarily sets up the border between these two types of ectoderm, it is unclear how such extracellular, diffusible molecules create a sharp and precise border at the single-cell level. Here, we show that Fez, a zinc finger protein, functions as an intracellular factor attenuating BMP signaling specifically within the neurogenic region at the anterior end of sea urchin embryos, termed the animal plate. When Fez function is blocked, the size of this neurogenic ectoderm becomes smaller than normal. However, this reduction is rescued in Fez morphants simply by blocking BMP2/4 translation, indicating that Fez maintains the size of the animal plate by attenuating BMP2/4 function. Consistent with this, the gradient of BMP activity along the aboral side of the animal plate, as measured by pSmad1/5/8 levels, drops significantly in cells expressing Fez and this steep decline requires Fez function. Our data reveal that this neurogenic ectoderm produces an intrinsic system that attenuates BMP signaling to ensure the establishment of a stable, well-defined neural territory, the animal plate.
Collapse
Affiliation(s)
- Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan.
| | | | | | | | | | | |
Collapse
|