1
|
Fang B, Edwards SV. Fitness consequences of structural variation inferred from a House Finch pangenome. Proc Natl Acad Sci U S A 2024; 121:e2409943121. [PMID: 39531493 PMCID: PMC11588099 DOI: 10.1073/pnas.2409943121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Genomic structural variants (SVs) play a crucial role in adaptive evolution, yet their average fitness effects and characterization with pangenome tools are understudied in wild animal populations. We constructed a pangenome for House Finches (Haemorhous mexicanus), a model for studies of host-pathogen coevolution, using long-read sequence data on 16 individuals (32 de novo-assembled haplotypes) and one outgroup. We identified 887,118 SVs larger than 50 base pairs, mostly (60%) involving repetitive elements, with reduced SV diversity in the eastern US as a result of its introduction by humans. The distribution of fitness effects of genome-wide SVs was estimated using maximum likelihood approaches and revealed that SVs in both coding and noncoding regions were on average more deleterious than smaller indels or single nucleotide polymorphisms. The reference-free pangenome facilitated identification of a > 10-My-old, 11-megabase-long pericentric inversion on chromosome 1. We found that the genotype frequencies of the inversion, estimated from 135 birds widely sampled temporally and geographically, increased steadily over the 25 y since House Finches were first exposed to the bacterial pathogen Mycoplasma gallisepticum and showed signatures of balancing selection, capturing genes related to immunity and telomerase activity. We also observed shorter telomeres in populations with a greater number of years exposure to Mycoplasma. Our study illustrates the utility of long-read sequencing and pangenome methods for understanding wild animal populations, estimating fitness effects of genome-wide SVs, and advancing our understanding of adaptive evolution through structural variation.
Collapse
Affiliation(s)
- Bohao Fang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| |
Collapse
|
2
|
Ipoutcha T, Tsarmpopoulos I, Gourgues G, Baby V, Dubos P, Hill GE, Arfi Y, Lartigue C, Thébault P, Bonneaud C, Sirand-Pugnet P. Evolution of the CRISPR-Cas9 defence system in Mycoplasma gallisepticum following colonization of a novel bird host. Microb Genom 2024; 10. [PMID: 39556419 DOI: 10.1099/mgen.0.001320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems are bacterial defences that target bacteriophages and mobile genetic elements. How these defences evolve in novel host environments remains largely unknown. We studied the evolution of the CRISPR-Cas system in Mycoplasma gallisepticum (also named Mycoplasmoides gallisepticum), a bacterial pathogen of poultry that jumped into a passerine host ~30 years ago. Over the decade following the host shift, all isolates displaying a functional CRISPR-Cas system were found not only to harbour completely new sets of spacers, but the DNA protospacer adjacent motif recognized by the main effector M. gallisepticum Cas9 (MgCas9) was also different. These changes in CRISPR-Cas diversity and specificity are consistent with a change in the community of phages and mobile elements infecting M. gallisepticum as it colonized the novel host. In the years following the host shift, we also detected a gradual rise in isolates displaying non-functional MgCas9. After 12 years, all circulating isolates harboured inactive forms only. This loss of CRISPR-Cas function comes at a time when the passerine host is known to have evolved widespread resistance, which in turn drove the evolution of increasing M. gallisepticum virulence through antagonistic coevolution. Such striking concordance in the rise of inactivated forms of CRISPR-Cas and the evolution of host resistance suggests that the inactivation of the CRISPR-Cas system was necessary for enabling adaptive bacterial responses to host-driven selection. We highlight the need to consider both host and pathogen selection pressures on bacteria for understanding the evolution of CRISPR-Cas systems and the key factors driving the emergence of a pathogenic bacterium in a novel host.
Collapse
Affiliation(s)
- Thomas Ipoutcha
- Univ. Bordeaux, INRAE, UMR BFP, F-33882, Villenave d'Ornon, France
| | | | | | - Vincent Baby
- Univ. Bordeaux, INRAE, UMR BFP, F-33882, Villenave d'Ornon, France
| | - Paul Dubos
- Univ. Bordeaux, INRAE, UMR BFP, F-33882, Villenave d'Ornon, France
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, Alabama, 36849-5414, USA
| | - Yonathan Arfi
- Univ. Bordeaux, INRAE, UMR BFP, F-33882, Villenave d'Ornon, France
| | - Carole Lartigue
- Univ. Bordeaux, INRAE, UMR BFP, F-33882, Villenave d'Ornon, France
| | - Patricia Thébault
- Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France
| | - Camille Bonneaud
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
- Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK
| | | |
Collapse
|
3
|
Hardy BM, Muths E, Funk WC, Bailey LL. Quantifying intraspecific variation in host resistance and tolerance to a lethal pathogen. J Anim Ecol 2024. [PMID: 38773788 DOI: 10.1111/1365-2656.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/14/2024] [Indexed: 05/24/2024]
Abstract
Testing for intraspecific variation for host tolerance or resistance in wild populations is important for informing conservation decisions about captive breeding, translocation, and disease treatment. Here, we test the importance of tolerance and resistance in multiple populations of boreal toads (Anaxyrus boreas boreas) against Batrachochytrium dendrobatidis (Bd), the amphibian fungal pathogen responsible for the greatest host biodiversity loss due to disease. Boreal toads have severely declined in Colorado (CO) due to Bd, but toad populations challenged with Bd in western Wyoming (WY) appear to be less affected. We used a common garden infection experiment to expose post-metamorphic toads sourced from four populations (2 in CO and 2 in WY) to Bd and monitored changes in mass, pathogen burden and survival for 8 weeks. We used a multi-state modelling approach to estimate weekly survival and transition probabilities between infected and cleared states, reflecting a dynamic infection process that traditional approaches fail to capture. We found that WY boreal toads are more tolerant to Bd infection with higher survival probabilities than those in CO when infected with identical pathogen burdens. WY toads also appeared more resistant to Bd with a higher probability of infection clearance and an average of 5 days longer to reach peak infection burdens. Our results demonstrate strong intraspecific differences in tolerance and resistance that likely contribute to why population declines vary regionally across this species. Our multi-state framework allowed us to gain inference on typically hidden disease processes when testing for host tolerance or resistance. Our findings demonstrate that describing an entire host species as 'tolerant' or 'resistant' (or lack thereof) is unwise without testing for intraspecific variation.
Collapse
Affiliation(s)
- Bennett M Hardy
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Erin Muths
- United States Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| | - W Chris Funk
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Larissa L Bailey
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
4
|
Dobelmann J, Manley R, Wilfert L. Caught in the act: the invasion of a viral vector changes viral prevalence and titre in native honeybees and bumblebees. Biol Lett 2024; 20:20230600. [PMID: 38715462 PMCID: PMC11135380 DOI: 10.1098/rsbl.2023.0600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/04/2024] [Accepted: 04/02/2024] [Indexed: 05/31/2024] Open
Abstract
Novel transmission routes change pathogen landscapes and may facilitate disease emergence. The varroa mite is a virus vector that switched to western honeybees at the beginning of the last century, leading to hive mortality, particularly in combination with RNA viruses. A recent invasion of varroa on the French island of Ushant introduced vector-mediated transmission to one of the last varroa-naive native honeybee populations and caused rapid changes in the honeybee viral community. These changes were characterized by a drastic increase in deformed wing virus type B prevalence and titre in honeybees, as well as knock-on effects in bumblebees, particularly in the year following the invasion. Slow bee paralysis virus also appeared in honeybees and bumblebees, with a 1 year delay, while black queen cell virus declined in honeybees. This study highlights the rapid and far-reaching effects of vector-borne transmission that can extend beyond the directly affected host species, and that the direction of the effect depends on the pathogen's virulence.
Collapse
Affiliation(s)
- Jana Dobelmann
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, Ulm89081, Germany
| | | | - Lena Wilfert
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, Ulm89081, Germany
| |
Collapse
|
5
|
Kuttiyarthu Veetil N, Henschen AE, Hawley DM, Melepat B, Dalloul RA, Beneš V, Adelman JS, Vinkler M. Varying conjunctival immune response adaptations of house finch populations to a rapidly evolving bacterial pathogen. Front Immunol 2024; 15:1250818. [PMID: 38370402 PMCID: PMC10869556 DOI: 10.3389/fimmu.2024.1250818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/11/2024] [Indexed: 02/20/2024] Open
Abstract
Pathogen adaptations during host-pathogen co-evolution can cause the host balance between immunity and immunopathology to rapidly shift. However, little is known in natural disease systems about the immunological pathways optimised through the trade-off between immunity and self-damage. The evolutionary interaction between the conjunctival bacterial infection Mycoplasma gallisepticum (MG) and its avian host, the house finch (Haemorhous mexicanus), can provide insights into such adaptations in immune regulation. Here we use experimental infections to reveal immune variation in conjunctival tissue for house finches captured from four distinct populations differing in the length of their co-evolutionary histories with MG and their disease tolerance (defined as disease severity per pathogen load) in controlled infection studies. To differentiate contributions of host versus pathogen evolution, we compared house finch responses to one of two MG isolates: the original VA1994 isolate and a more evolutionarily derived one, VA2013. To identify differential gene expression involved in initiation of the immune response to MG, we performed 3'-end transcriptomic sequencing (QuantSeq) of samples from the infection site, conjunctiva, collected 3-days post-infection. In response to MG, we observed an increase in general pro-inflammatory signalling, as well as T-cell activation and IL17 pathway differentiation, associated with a decrease in the IL12/IL23 pathway signalling. The immune response was stronger in response to the evolutionarily derived MG isolate compared to the original one, consistent with known increases in MG virulence over time. The host populations differed namely in pre-activation immune gene expression, suggesting population-specific adaptations. Compared to other populations, finches from Virginia, which have the longest co-evolutionary history with MG, showed significantly higher expression of anti-inflammatory genes and Th1 mediators. This may explain the evolution of disease tolerance to MG infection in VA birds. We also show a potential modulating role of BCL10, a positive B- and T-cell regulator activating the NFKB signalling. Our results illuminate potential mechanisms of house finch adaptation to MG-induced immunopathology, contributing to understanding of the host evolutionary responses to pathogen-driven shifts in immunity-immunopathology trade-offs.
Collapse
Affiliation(s)
| | - Amberleigh E. Henschen
- Department of Biological Sciences, The University of Memphis, Memphis, TN, United States
| | - Dana M. Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Balraj Melepat
- Department of Zoology, Charles University, Faculty of Science, Prague, Czechia
| | - Rami A. Dalloul
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | - Vladimír Beneš
- European Molecular Biology Laboratory (EMBL), Genomics Core Facility, Heidelberg, Germany
| | - James S. Adelman
- Department of Biological Sciences, The University of Memphis, Memphis, TN, United States
| | - Michal Vinkler
- Department of Zoology, Charles University, Faculty of Science, Prague, Czechia
| |
Collapse
|
6
|
Smith WJ, Jezierski MT, Dunn JC, Clegg SM. Parasite exchange and hybridisation at a wild-feral-domestic interface. Int J Parasitol 2023; 53:797-808. [PMID: 37474096 DOI: 10.1016/j.ijpara.2023.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/27/2023] [Accepted: 06/06/2023] [Indexed: 07/22/2023]
Abstract
Interactions between wild, feral, and domestic animals are of economic and conservation significance. The pigeon Columba livia is a synanthropic species in a feral form, but it also includes the rare Rock Dove. Columba livia is an important player at the wild-domestic interface, acting as a carrier of avian diseases, and the feral form threatens Rock Doves with extinction via hybridisation. Despite its abundance, little is known about drivers of disease prevalence in C. livia, or how disease and hybridisation represent synergistic threats to Rock Doves. We focused on infection by the parasite Trichomonas, first collating prevalence estimates in domestic and free-living populations from relevant studies of C. livia. Second, we characterised variation in the diversity and prevalence of Trichomonas among three C. livia populations in the United Kingdom: a feral, a Rock Dove, and a feral-wild hybrid population. Across multiple continents, free-living pigeons had lower Trichomonas infection than captive conspecifics, but the effect was weak. Environmental factors which could impact Trichomonas infection status did not explain variation in infection among populations. Among the British populations, strain diversity varied, and there was lower parasite prevalence in Rock Doves than feral pigeons. Individual infection status was not explained by the available covariates, including hybrid score and site. The drivers of Trichomonas prevalence are unclear, perhaps due to idiosyncratic local-scale drivers. However, given the population-level variation in both infection prevalence and introgressive hybridisation, the potential combined effects could accelerate the extinction of the Rock Dove. Further study of the synergistic effects of multiple types of biotic interactions at the wild-feral-domestic interface is warranted, especially where vagile, globally distributed and superabundant animals are involved.
Collapse
Affiliation(s)
- William J Smith
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, UK.
| | - Michał T Jezierski
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, UK
| | - Jenny C Dunn
- School of Life and Environmental Sciences, University of Lincoln, UK; School of Biology, University of Leeds, UK
| | - Sonya M Clegg
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, UK
| |
Collapse
|
7
|
Paxton KL, Cassin-Sackett L, Atkinson CT, Videvall E, Campana MG, Fleischer RC. Gene expression reveals immune response strategies of naïve Hawaiian honeycreepers experimentally infected with introduced avian malaria. J Hered 2023; 114:326-340. [PMID: 36869776 DOI: 10.1093/jhered/esad017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/01/2023] [Indexed: 03/05/2023] Open
Abstract
The unprecedented rise in the number of new and emerging infectious diseases in the last quarter century poses direct threats to human and wildlife health. The introduction to the Hawaiian archipelago of Plasmodium relictum and the mosquito vector that transmits the parasite has led to dramatic losses in endemic Hawaiian forest bird species. Understanding how mechanisms of disease immunity to avian malaria may evolve is critical as climate change facilitates increased disease transmission to high elevation habitats where malaria transmission has historically been low and the majority of the remaining extant Hawaiian forest bird species now reside. Here, we compare the transcriptomic profiles of highly susceptible Hawai'i 'amakihi (Chlorodrepanis virens) experimentally infected with P. relictum to those of uninfected control birds from a naïve high elevation population. We examined changes in gene expression profiles at different stages of infection to provide an in-depth characterization of the molecular pathways contributing to survival or mortality in these birds. We show that the timing and magnitude of the innate and adaptive immune response differed substantially between individuals that survived and those that succumbed to infection, and likely contributed to the observed variation in survival. These results lay the foundation for developing gene-based conservation strategies for Hawaiian honeycreepers by identifying candidate genes and cellular pathways involved in the pathogen response that correlate with a bird's ability to recover from malaria infection.
Collapse
Affiliation(s)
- Kristina L Paxton
- Center for Conservation Genomics, National Zoological Park and Conservation Biology Institute, Smithsonian Institution, Washington, DC 20008, USA
- Hawai'i Cooperative Studies Unit, University of Hawai'i Hilo, PO Box 44, Hawai'i National Park, HI 96718, USA
| | - Loren Cassin-Sackett
- Center for Conservation Genomics, National Zoological Park and Conservation Biology Institute, Smithsonian Institution, Washington, DC 20008, USA
- Department of Biology, University of Louisiana, Lafayette, LA 70503, USA
| | - Carter T Atkinson
- U.S. Geological Survey Pacific Island Ecosystems Research Center, PO Box 44, Hawai'i National Park, HI 96718, USA
| | - Elin Videvall
- Center for Conservation Genomics, National Zoological Park and Conservation Biology Institute, Smithsonian Institution, Washington, DC 20008, USA
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Michael G Campana
- Center for Conservation Genomics, National Zoological Park and Conservation Biology Institute, Smithsonian Institution, Washington, DC 20008, USA
| | - Robert C Fleischer
- Center for Conservation Genomics, National Zoological Park and Conservation Biology Institute, Smithsonian Institution, Washington, DC 20008, USA
| |
Collapse
|
8
|
Henschen AE, Vinkler M, Langager MM, Rowley AA, Dalloul RA, Hawley DM, Adelman JS. Rapid adaptation to a novel pathogen through disease tolerance in a wild songbird. PLoS Pathog 2023; 19:e1011408. [PMID: 37294834 DOI: 10.1371/journal.ppat.1011408] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/08/2023] [Indexed: 06/11/2023] Open
Abstract
Animal hosts can adapt to emerging infectious disease through both disease resistance, which decreases pathogen numbers, and disease tolerance, which limits damage during infection without limiting pathogen replication. Both resistance and tolerance mechanisms can drive pathogen transmission dynamics. However, it is not well understood how quickly host tolerance evolves in response to novel pathogens or what physiological mechanisms underlie this defense. Using natural populations of house finches (Haemorhous mexicanus) across the temporal invasion gradient of a recently emerged bacterial pathogen (Mycoplasma gallisepticum), we find rapid evolution of tolerance (<25 years). In particular, populations with a longer history of MG endemism have less pathology but similar pathogen loads compared with populations with a shorter history of MG endemism. Further, gene expression data reveal that more-targeted immune responses early in infection are associated with tolerance. These results suggest an important role for tolerance in host adaptation to emerging infectious diseases, a phenomenon with broad implications for pathogen spread and evolution.
Collapse
Affiliation(s)
- Amberleigh E Henschen
- Department of Biological Sciences, University of Memphis; Memphis, Tennessee, United States of America
- Department of Natural Resource Ecology and Management, Iowa State University; Ames, Iowa, United States of America
| | - Michal Vinkler
- Department of Zoology, Charles University; Prague, Czech Republic
| | - Marissa M Langager
- Department of Biological Sciences, Virginia Tech; Blacksburg, Virginia, United States of America
| | - Allison A Rowley
- Department of Biological Sciences, Virginia Tech; Blacksburg, Virginia, United States of America
| | - Rami A Dalloul
- Department of Poultry Science, University of Georgia; Athens, Georgia, United States of America
| | - Dana M Hawley
- Department of Biological Sciences, Virginia Tech; Blacksburg, Virginia, United States of America
| | - James S Adelman
- Department of Biological Sciences, University of Memphis; Memphis, Tennessee, United States of America
- Department of Natural Resource Ecology and Management, Iowa State University; Ames, Iowa, United States of America
| |
Collapse
|
9
|
Vinkler M, Fiddaman SR, Těšický M, O'Connor EA, Savage AE, Lenz TL, Smith AL, Kaufman J, Bolnick DI, Davies CS, Dedić N, Flies AS, Samblás MMG, Henschen AE, Novák K, Palomar G, Raven N, Samaké K, Slade J, Veetil NK, Voukali E, Höglund J, Richardson DS, Westerdahl H. Understanding the evolution of immune genes in jawed vertebrates. J Evol Biol 2023; 36:847-873. [PMID: 37255207 PMCID: PMC10247546 DOI: 10.1111/jeb.14181] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Driven by co-evolution with pathogens, host immunity continuously adapts to optimize defence against pathogens within a given environment. Recent advances in genetics, genomics and transcriptomics have enabled a more detailed investigation into how immunogenetic variation shapes the diversity of immune responses seen across domestic and wild animal species. However, a deeper understanding of the diverse molecular mechanisms that shape immunity within and among species is still needed to gain insight into-and generate evolutionary hypotheses on-the ultimate drivers of immunological differences. Here, we discuss current advances in our understanding of molecular evolution underpinning jawed vertebrate immunity. First, we introduce the immunome concept, a framework for characterizing genes involved in immune defence from a comparative perspective, then we outline how immune genes of interest can be identified. Second, we focus on how different selection modes are observed acting across groups of immune genes and propose hypotheses to explain these differences. We then provide an overview of the approaches used so far to study the evolutionary heterogeneity of immune genes on macro and microevolutionary scales. Finally, we discuss some of the current evidence as to how specific pathogens affect the evolution of different groups of immune genes. This review results from the collective discussion on the current key challenges in evolutionary immunology conducted at the ESEB 2021 Online Satellite Symposium: Molecular evolution of the vertebrate immune system, from the lab to natural populations.
Collapse
Affiliation(s)
- Michal Vinkler
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Martin Těšický
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Anna E. Savage
- Department of BiologyUniversity of Central FloridaFloridaOrlandoUSA
| | - Tobias L. Lenz
- Research Unit for Evolutionary ImmunogenomicsDepartment of BiologyUniversity of HamburgHamburgGermany
| | | | - Jim Kaufman
- Institute for Immunology and Infection ResearchUniversity of EdinburghEdinburghUK
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | | | - Neira Dedić
- Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic
| | - Andrew S. Flies
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - M. Mercedes Gómez Samblás
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
- Department of ParasitologyUniversity of GranadaGranadaSpain
| | | | - Karel Novák
- Department of Genetics and BreedingInstitute of Animal SciencePragueUhříněvesCzech Republic
| | - Gemma Palomar
- Faculty of BiologyInstitute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - Nynke Raven
- Department of ScienceEngineering and Build EnvironmentDeakin UniversityVictoriaWaurn PondsAustralia
| | - Kalifa Samaké
- Department of Genetics and MicrobiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Joel Slade
- Department of BiologyCalifornia State UniversityFresnoCaliforniaUSA
| | | | - Eleni Voukali
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Jacob Höglund
- Department of Ecology and GeneticsUppsala UniversitetUppsalaSweden
| | | | | |
Collapse
|
10
|
Reinoso-Pérez MT, Dhondt KV, Levitskiy AA, Dupont G, Tulman ER, Geary SJ, Dhondt AA. Are Purple Finches (Haemorhous purpureus) the Next Host for a Mycoplasmal Conjunctivitis Epidemic? Avian Dis 2023; 67:42-48. [PMID: 37140110 DOI: 10.1637/aviandiseases-d-22-00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/04/2023] [Indexed: 03/17/2023]
Abstract
Ever since 1994, when the bacterial pathogen Mycoplasma gallisepticum jumped from poultry to wild birds, it has been assumed that the primary host species of this pathogen in wild North American birds was the house finch (Haemorhous mexicanus), in which disease prevalence was higher than in any other bird species. Here we tested two hypotheses to explain a recent increase in disease prevalence in purple finches (Haemorhous purpureus) around Ithaca, New York. Hypothesis 1 is that, as M. gallisepticum evolved and became more virulent, it has also become better adapted to other finches. If this is correct, early isolates of M. gallisepticum should cause less-severe eye lesions in purple finches than in house finches, while more-recent isolates should cause eye lesions of similar severity in the two species. Hypothesis 2 is that, as house finch abundance declined following the M. gallisepticum epidemic, purple finches around Ithaca increased in abundance relative to house finches and purple finches are thus more frequently exposed to M. gallisepticum-infected house finches. This would then lead to an increase in M. gallisepticum prevalence in purple finches. Following an experimental infection with an early and a more-recent M. gallisepticum isolate, eye lesions in purple finches were more severe than in house finches. This did not a support Hypothesis 1; similarly, an analysis of Project Feeder Watch data collected around Ithaca did not show differences in changes in purple and house finches' abundance since 2006, a result which does not support Hypothesis 2. We conclude that purple finch populations will, unlike those of house finches, not suffer a severe decline because of a M. gallisepticum epidemic.
Collapse
Affiliation(s)
| | - Keila V. Dhondt
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | | | - Gates Dupont
- Department of Ecology and Evolution, Princeton University Princeton NJ 08544
| | - Edan R. Tulman
- Center of Excellence for Vaccine Research, Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CN 06269
| | - Steven J. Geary
- Center of Excellence for Vaccine Research, Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CN 06269
| | - André A. Dhondt
- Laboratory of Ornithology, Cornell University, Ithaca, NY 14850
| |
Collapse
|
11
|
Westphal GH, Stewart Merrill TE. Partitioning variance in immune traits in a zooplankton host-Fungal parasite system. Ecol Evol 2022; 12:e9640. [PMID: 36545366 PMCID: PMC9763022 DOI: 10.1002/ece3.9640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Host immune traits arise from both genetic and environmental sources of variation. When immune traits have a strong genetic basis, the presence and severity of disease in a population may influence the distribution of those traits. Our study addressed how two immune-related traits (gut penetrability and the hemocyte response) are shaped by genetic and environmental sources of variation, and how the presence of a virulent disease altered the relative frequency of these traits in natural populations. Daphnia dentifera hosts were sampled from five Indiana lakes between June and December 2017 before and during epidemics of their fungal pathogen, Metschnikowia bicuspidata. Collected Daphnia were experimentally exposed to Metschnikowia and assayed for their gut penetrability, hemocyte response, and multi-locus genotype. Mixed-effects models were constructed to partition variance in immune traits between genetic and environmental sources. We then isolated the genetic sources to produce genotype-specific estimates of immune traits for each multi-locus genotype. Finally, we assessed the relative frequency and dynamics of genotypes during epidemics and asked whether genotypes with more robust immune responses increased in frequency during epidemics. Although genotype was an important source of variation for both gut penetrability and the hemocyte response, environmental factors (e.g., resource availability, Metschnikowia prevalence, and co-infection) still explained a large portion of observed variation, suggesting a high degree of flexibility in Daphnia immune traits. Additionally, no significant associations were detected between a genotype's immune traits and its frequency in a population. Our study highlights the power of variance partitioning in understanding the factors driving variation in Daphnia traits and motivates further research on immunological flexibility and the ecological drivers of immune variation.
Collapse
Affiliation(s)
- Grace H. Westphal
- School of Integrative BiologyUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | | |
Collapse
|
12
|
Nilsson P, Ravinet M, Cui Y, Berg PR, Zhang Y, Guo R, Luo T, Song Y, Trucchi E, Hoff SNK, Lv R, Schmid BV, Easterday WR, Jakobsen KS, Stenseth NC, Yang R, Jentoft S. Polygenic plague resistance in the great gerbil uncovered by population sequencing. PNAS NEXUS 2022; 1:pgac211. [PMID: 36712379 PMCID: PMC9802093 DOI: 10.1093/pnasnexus/pgac211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 06/18/2023]
Abstract
Pathogens can elicit high selective pressure on hosts, potentially altering genetic diversity over short evolutionary timescales. Intraspecific variation in immune response is observable as variable survivability from specific infections. The great gerbil (Rhombomys opimus) is a rodent plague host with a heterogenic but highly resistant phenotype. Here, we investigate the genomic basis for plague-resistant phenotypes by exposing wild-caught great gerbils to plague (Yersinia pestis). Whole genome sequencing of 10 survivors and 10 moribund individuals revealed a subset of genomic regions showing elevated differentiation. Gene ontology analysis of candidate genes in these regions demonstrated enrichment of genes directly involved in immune functions, cellular metabolism and the regulation of apoptosis as well as pathways involved in transcription, translation, and gene regulation. Transcriptomic analysis revealed that the early activated great gerbil immune response to plague consisted of classical components of the innate immune system. Our approach combining challenge experiments with transcriptomics and population level sequencing, provides new insight into the genetic background of plague-resistance and confirms its complex nature, most likely involving multiple genes and pathways of both the immune system and regulation of basic cellular functions.
Collapse
Affiliation(s)
- Pernille Nilsson
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | | | | | | | | | - Rong Guo
- Xinjiang Center for Disease Control and Prevention, Urumqi 830002, China
| | - Tao Luo
- Xinjiang Center for Disease Control and Prevention, Urumqi 830002, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Emiliano Trucchi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Siv N K Hoff
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Ruichen Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Boris V Schmid
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - W Ryan Easterday
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | | | | | - Ruifu Yang
- To whom correspondence should be addressed:
| | | |
Collapse
|
13
|
Holland OJ, Toomey M, Ahrens C, Hoffmann AA, Croft LJ, Sherman CDH, Miller AD. Whole genome resequencing reveals signatures of rapid selection in a virus-affected commercial fishery. Mol Ecol 2022; 31:3658-3671. [PMID: 35555938 PMCID: PMC9327721 DOI: 10.1111/mec.16499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/11/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022]
Abstract
Infectious diseases are recognized as one of the greatest global threats to biodiversity and ecosystem functioning. Consequently, there is a growing urgency to understand the speed at which adaptive phenotypes can evolve and spread in natural populations to inform future management. Here we provide evidence of rapid genomic changes in wild Australian blacklip abalone (Haliotis rubra) following a major population crash associated with an infectious disease. Genome scans on H. rubra were performed using pooled whole genome resequencing data from commercial fishing stocks varying in historical exposure to haliotid herpesvirus-1 (HaHV-1). Approximately 25,000 single nucleotide polymorphism loci associated with virus exposure were identified, many of which mapped to genes known to contribute to HaHV-1 immunity in the New Zealand pāua (Haliotis iris) and herpesvirus response pathways in haliotids and other animal systems. These findings indicate genetic changes across a single generation in H. rubra fishing stocks decimated by HaHV-1, with stock recovery potentially determined by rapid evolutionary changes leading to virus resistance. This is a novel example of apparently rapid adaptation in natural populations of a nonmodel marine organism, highlighting the pace at which selection can potentially act to counter disease in wildlife communities.
Collapse
Affiliation(s)
- Owen J. Holland
- School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
- Deakin Genomics CentreDeakin UniversityGeelongVictoriaAustralia
| | - Madeline Toomey
- School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
- Deakin Genomics CentreDeakin UniversityGeelongVictoriaAustralia
| | - Collin Ahrens
- School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyAustralia
- Research Centre for Ecosystem ResilienceAustralian Institute of Botanical ScienceRoyal Botanic GardenSydneyNew South WalesAustralia
| | - Ary A. Hoffmann
- School of BioSciencesBio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Laurence J. Croft
- School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
- Deakin Genomics CentreDeakin UniversityGeelongVictoriaAustralia
| | - Craig D. H. Sherman
- School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
| | - Adam D. Miller
- School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
- Deakin Genomics CentreDeakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
14
|
McLean KD, Gowler CD, Dziuba MK, Zamani H, Hall SR, Duffy MA. Sexual recombination and temporal gene flow maintain host resistance and genetic diversity. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Lewis JA, Penley MJ, Sylla H, Ahumada SD, Morran LT. Antagonistic Coevolution Limits the Range of Host Defense in C. elegans Populations. Front Cell Infect Microbiol 2022. [DOI: 10.3389/fcimb.2022.758745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Host populations often evolve defenses against parasites due to the significant fitness costs imposed by infection. However, adaptation to a specific parasite may alter the effectiveness of the host’s defenses in general. Consequently, the specificity of host defense may be influenced by a host population’s evolutionary history with parasites. Further, the degree of reciprocal change within an interaction may profoundly alter the range of host defense, given that antagonistic coevolutionary interactions are predicted to favor defense against specific parasite genotypes. Here, we examined the effect of host evolutionary history on host defense range by assessing the mortality rates of Caenorhabditis elegans host populations exposed to an array of Serratia marcescens bacterial parasite strains. Importantly, each of the host populations were derived from the same genetic background but have different experimental evolution histories with parasites. Each of these histories (exposure to either heat-killed, fixed genotype, or coevolving parasites) carries a different level of evolutionary reciprocity. Overall, we observed an effect of host evolutionary history in that previously coevolved host populations were generally the most susceptible to novel parasite strains. This data demonstrates that host evolutionary history can have a significant impact on host defense, and that host-parasite coevolution can increase host susceptibility to novel parasites.
Collapse
|
16
|
Ruden RM, Adelman JS. Disease tolerance alters host competence in a wild songbird. Biol Lett 2021; 17:20210362. [PMID: 34699737 PMCID: PMC8548076 DOI: 10.1098/rsbl.2021.0362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/04/2021] [Indexed: 11/12/2022] Open
Abstract
Individuals can express a range of disease phenotypes during infection, with important implications for epidemics. Tolerance, in particular, is a host response that minimizes the per-pathogen fitness costs of infection. Because tolerant hosts show milder clinical signs and higher survival, despite similar pathogen burdens, their potential for prolonged pathogen shedding may facilitate the spread of pathogens. To test this, we simulated outbreaks of mycoplasmal conjunctivitis in house finches, asking how the speed of transmission varied with tissue-specific and behavioural components of tolerance, milder conjunctivitis and anorexia for a given pathogen load, respectively. Because tissue-specific tolerance hinders pathogen deposition onto bird feeders, important transmission hubs, we predicted it would slow transmission. Because behavioural tolerance should increase interactions with bird feeders, we predicted it would speed transmission. Our findings supported these predictions, suggesting that variation in tolerance could help identify individuals most likely to transmit pathogens.
Collapse
Affiliation(s)
- Rachel M. Ruden
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, USA
- Iowa Department of Natural Resources, Des Moines, IA, USA
| | - James S. Adelman
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, USA
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| |
Collapse
|
17
|
Spatial variation in gene expression of Tasmanian devil facial tumors despite minimal host transcriptomic response to infection. BMC Genomics 2021; 22:698. [PMID: 34579650 PMCID: PMC8477496 DOI: 10.1186/s12864-021-07994-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/08/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Transmissible cancers lie at the intersection of oncology and infectious disease, two traditionally divergent fields for which gene expression studies are particularly useful for identifying the molecular basis of phenotypic variation. In oncology, transcriptomics studies, which characterize the expression of thousands of genes, have identified processes leading to heterogeneity in cancer phenotypes and individual prognoses. More generally, transcriptomics studies of infectious diseases characterize interactions between host, pathogen, and environment to better predict population-level outcomes. Tasmanian devils have been impacted dramatically by a transmissible cancer (devil facial tumor disease; DFTD) that has led to widespread population declines. Despite initial predictions of extinction, populations have persisted at low levels, due in part to heterogeneity in host responses, particularly between sexes. However, the processes underlying this variation remain unknown. RESULTS We sequenced transcriptomes from healthy and DFTD-infected devils, as well as DFTD tumors, to characterize host responses to DFTD infection, identify differing host-tumor molecular interactions between sexes, and investigate the extent to which tumor gene expression varies among host populations. We found minimal variation in gene expression of devil lip tissues, either with respect to DFTD infection status or sex. However, 4088 genes were differentially expressed in tumors among our sampling localities. Pathways that were up- or downregulated in DFTD tumors relative to normal tissues exhibited the same patterns of expression with greater intensity in tumors from localities that experienced DFTD for longer. No mRNA sequence variants were associated with expression variation. CONCLUSIONS Expression variation among localities may reflect morphological differences in tumors that alter ratios of normal-to-tumor cells within biopsies. Phenotypic variation in tumors may arise from environmental variation or differences in host immune response that were undetectable in lip biopsies, potentially reflecting variation in host-tumor coevolutionary relationships among sites that differ in the time since DFTD arrival.
Collapse
|
18
|
Tobias ZJC, Fowler AE, Blakeslee AMH, Darling JA, Torchin ME, Miller AW, Ruiz GM, Tepolt CK. Invasion history shapes host transcriptomic response to a body-snatching parasite. Mol Ecol 2021; 30:4321-4337. [PMID: 34162013 PMCID: PMC10128110 DOI: 10.1111/mec.16038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/27/2021] [Accepted: 06/11/2021] [Indexed: 01/04/2023]
Abstract
By shuffling biogeographical distributions, biological invasions can both disrupt long-standing associations between hosts and parasites and establish new ones. This creates natural experiments with which to study the ecology and evolution of host-parasite interactions. In estuaries of the Gulf of Mexico, the white-fingered mud crab (Rhithropanopeus harrisii) is infected by a native parasitic barnacle, Loxothylacus panopaei (Rhizocephala), which manipulates host physiology and behaviour. In the 1960s, L. panopaei was introduced to the Chesapeake Bay and has since expanded along the southeastern Atlantic coast, while host populations in the northeast have so far been spared. We use this system to test the host's transcriptomic response to parasitic infection and investigate how this response varies with the parasite's invasion history, comparing populations representing (i) long-term sympatry between host and parasite, (ii) new associations where the parasite has invaded during the last 60 years and (iii) naïve hosts without prior exposure. A comparison of parasitized and control crabs revealed a core response, with widespread downregulation of transcripts involved in immunity and moulting. The transcriptional response differed between hosts from the parasite's native range and where it is absent, consistent with previous observations of increased susceptibility in populations lacking exposure to the parasite. Crabs from the parasite's introduced range, where prevalence is highest, displayed the most dissimilar response, possibly reflecting immune priming. These results provide molecular evidence for parasitic manipulation of host phenotype and the role of gene regulation in mediating host-parasite interactions.
Collapse
Affiliation(s)
- Zachary J. C. Tobias
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, MA, USA
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amy E. Fowler
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | | | - John A. Darling
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mark E. Torchin
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | | | - Gregory M. Ruiz
- Smithsonian Environmental Research, Center, Edgewater, MD, USA
| | - Carolyn K. Tepolt
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Smithsonian Environmental Research, Center, Edgewater, MD, USA
| |
Collapse
|
19
|
Lerner N, Luizzi V, Antonovics J, Bruns E, Hood ME. Resistance Correlations Influence Infection by Foreign Pathogens. Am Nat 2021; 198:206-218. [PMID: 34260867 PMCID: PMC8283004 DOI: 10.1086/715013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
AbstractReciprocal selection promotes the specificity of host-pathogen associations and resistance polymorphisms in response to disease. However, plants and animals also vary in response to pathogen species not previously encountered in nature, with potential effects on new disease emergence. Using anther smut disease, we show that resistance (measured as infection rates) to foreign pathogens can be correlated with standing variation in resistance to an endemic pathogen. In Silene vulgaris, genetic variation in resistance to its endemic anther smut pathogen correlated positively with resistance variation to an anther smut pathogen from another host, but the relationship was negative between anther smut and a necrotrophic pathogen. We present models describing the genetic basis for assessing resistance relationships between endemic and foreign pathogens and for quantifying infection probabilities on foreign pathogen introduction. We show that even when the foreign pathogen has a lower average infection ability than the endemic pathogen, infection outcomes are determined by the sign and strength of the regression of the host's genetic variation in infection rates by a foreign pathogen on variation in infection rates by an endemic pathogen as well as by resistance allele frequencies. Given that preinvasion equilibria of resistance are determined by factors including resistance costs, we show that protection against foreign pathogens afforded by positively correlated resistances can be lessened or even result in elevated infection risk at the population level, depending on local dynamics. Therefore, a pathogen's emergence potential could be influenced not only by its average infection rate but also by resistance variation resulting from prior selection imposed by endemic diseases.
Collapse
Affiliation(s)
- Noah Lerner
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Victoria Luizzi
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Janis Antonovics
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Emily Bruns
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Michael E. Hood
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| |
Collapse
|
20
|
McNew SM, Boquete MT, Espinoza‐Ulloa S, Andres JA, Wagemaker NCAM, Knutie SA, Richards CL, Clayton DH. Epigenetic effects of parasites and pesticides on captive and wild nestling birds. Ecol Evol 2021; 11:7713-7729. [PMID: 34188846 PMCID: PMC8216931 DOI: 10.1002/ece3.7606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Anthropogenic changes to the environment challenge animal populations to adapt to new conditions and unique threats. While the study of adaptation has focused on genetic variation, epigenetic mechanisms may also be important. DNA methylation is sensitive to environmental stressors, such as parasites and pesticides, which may affect gene expression and phenotype. We studied the effects of an invasive ectoparasite, Philornis downsi, on DNA methylation of Galápagos mockingbirds (Mimus parvulus). We used the insecticide permethrin to manipulate P. downsi presence in nests of free-living mockingbirds and tested for effects of parasitism on nestling mockingbirds using epiGBS, a reduced-representation bisulfite sequencing (RRBS) approach. To distinguish the confounding effects of insecticide exposure, we conducted a matching experiment exposing captive nestling zebra finches (Taeniopygia guttata) to permethrin. We used zebra finches because they were the closest model organism to mockingbirds that we could breed in controlled conditions. We identified a limited number of differentially methylated cytosines (DMCs) in parasitized versus nonparasitized mockingbirds, but the number was not more than expected by chance. In contrast, we saw clear effects of permethrin on methylation in captive zebra finches. DMCs in zebra finches paralleled documented effects of permethrin exposure on vertebrate cellular signaling and endocrine function. Our results from captive birds indicate a role for epigenetic processes in mediating sublethal nontarget effects of pyrethroid exposure in vertebrates. Environmental conditions in the field were more variable than the laboratory, which may have made effects of both parasitism and permethrin harder to detect in mockingbirds. RRBS approaches such as epiGBS may be a cost-effective way to characterize genome-wide methylation profiles. However, our results indicate that ecological epigenetic studies in natural populations should consider the number of cytosines interrogated and the depth of sequencing in order to have adequate power to detect small and variable effects.
Collapse
Affiliation(s)
- Sabrina M. McNew
- School of Biological SciencesUniversity of UtahSalt Lake CityUTUSA
- Cornell Lab of OrnithologyCornell UniversityIthacaNYUSA
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
| | - M. Teresa Boquete
- Department of Integrative BiologyUniversity of South FloridaTampaFLUSA
- Department of Evolutionary EcologyEstación Biológica de DoñanaCSICSevillaSpain
| | - Sebastian Espinoza‐Ulloa
- Department of BiologyUniversity of SaskatchewanSaskatoonSKCanada
- Facultad de MedicinaPontifica Universidad Católica del EcuadorQuitoEcuador
| | - Jose A. Andres
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
- Department of BiologyUniversity of SaskatchewanSaskatoonSKCanada
| | | | - Sarah A. Knutie
- School of Biological SciencesUniversity of UtahSalt Lake CityUTUSA
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsCTUSA
- Institute for Systems GenomicsUniversity of ConnecticutStorrsCTUSA
| | | | - Dale H. Clayton
- School of Biological SciencesUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
21
|
Bracamonte SE, Knopf K, Monaghan MT. Encapsulation of Anguillicola crassus reduces the abundance of adult parasite stages in the European eel (Anguilla anguilla). JOURNAL OF FISH DISEASES 2021; 44:771-782. [PMID: 33270932 DOI: 10.1111/jfd.13301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 06/12/2023]
Abstract
Encapsulation of the parasitic nematode Anguillicola crassus Kuwahara, Niimi & Hagaki is commonly observed in its native host, the Japanese eel (Anguilla japonica Temminck & Schlegel). Encapsulation has also been described in a novel host, the European eel (A. anguilla L.), and there is evidence that encapsulation frequency has increased since the introduction of A. crassus. We examined whether encapsulation of A. crassus provides an advantage to its novel host in Lake Müggelsee, NE Germany. We provide the first evidence that encapsulation was associated with reduced abundance of adult A. crassus. This pattern was consistent in samples taken 3 months apart. There was no influence of infection on the expression of the two metabolic genes studied, but the number of capsules was negatively correlated with the expression of two mhc II genes of the adaptive immune response, suggesting a reduced activation. Interestingly, eels that encapsulated A. crassus had higher abundances of two native parasites compared with non-encapsulating eels. We propose that the response of A. anguilla to infection by A. crassus may interfere with its reaction to other co-occurring parasites.
Collapse
Affiliation(s)
- Seraina E Bracamonte
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Klaus Knopf
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael T Monaghan
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
22
|
Searle CL, Christie MR. Evolutionary rescue in host-pathogen systems. Evolution 2021; 75:2948-2958. [PMID: 34018610 DOI: 10.1111/evo.14269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022]
Abstract
Natural populations encounter a variety of threats that can increase their risk of extinction. Populations can avoid extinction through evolutionary rescue (ER), which occurs when an adaptive, genetic response to selection allows a population to recover from an environmental change that would otherwise cause extinction. While the traditional framework for ER was developed with abiotic risk factors in mind, ER may also occur in response to a biotic source of demographic change, such as the introduction of a novel pathogen. We first describe how ER in response to a pathogen differs from the traditional ER framework; density-dependent transmission, pathogen evolution, and pathogen extinction can change the strength of selection imposed by a pathogen and make host population persistence more likely. We also discuss several variables that affect traditional ER (abundance, genetic diversity, population connectivity, and community composition) that also directly affect disease risk resulting in diverse outcomes for ER in host-pathogen systems. Thus, generalizations developed in studies of traditional ER may not be relevant for ER in response to the introduction of a pathogen. Incorporating pathogens into the framework of ER will lead to a better understanding of how and when populations can avoid extinction in response to novel pathogens.
Collapse
Affiliation(s)
- Catherine L Searle
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907
| | - Mark R Christie
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907.,Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, 47907
| |
Collapse
|
23
|
Gates DE, Staley M, Tardy L, Giraudeau M, Hill GE, McGraw KJ, Bonneaud C. Levels of pathogen virulence and host resistance both shape the antibody response to an emerging bacterial disease. Sci Rep 2021; 11:8209. [PMID: 33859241 PMCID: PMC8050079 DOI: 10.1038/s41598-021-87464-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/24/2021] [Indexed: 11/09/2022] Open
Abstract
Quantifying variation in the ability to fight infection among free-living hosts is challenging and often constrained to one or a few measures of immune activity. While such measures are typically taken to reflect host resistance, they can also be shaped by pathogen effects, for example, if more virulent strains trigger more robust immune responses. Here, we test the extent to which pathogen-specific antibody levels, a commonly used measure of immunocompetence, reflect variation in host resistance versus pathogen virulence, and whether these antibodies effectively clear infection. House finches (Haemorhous mexicanus) from resistant and susceptible populations were inoculated with > 50 isolates of their novel Mycoplasma gallisepticum pathogen collected over a 20-year period during which virulence increased. Serum antibody levels were higher in finches from resistant populations and increased with year of pathogen sampling. Higher antibody levels, however, did not subsequently give rise to greater reductions in pathogen load. Our results show that antibody responses can be shaped by levels of host resistance and pathogen virulence, and do not necessarily signal immune clearance ability. While the generality of this novel finding remains unclear, particularly outside of mycoplasmas, it cautions against using antibody levels as implicit proxies for immunocompetence and/or host resistance.
Collapse
Affiliation(s)
- Daisy E Gates
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Molly Staley
- Department Biological Science, Auburn University, Auburn, Alabama, 36849-5414, USA.,Biology Department, Loyola University Chicago, Chicago, IL, 60660-1537, USA
| | - Luc Tardy
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Mathieu Giraudeau
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, TR10 9FE, UK.,School of Life Sciences, Arizona State University, Tempe, AZ, 85287-4501, USA.,Centre for Ecological and Evolutionary Research On Cancer, UMR CNRS/IRD/UM 5290 MIVEGEC, 34394, Montpellier, France
| | - Geoffrey E Hill
- Department Biological Science, Auburn University, Auburn, Alabama, 36849-5414, USA
| | - Kevin J McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-4501, USA
| | - Camille Bonneaud
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, TR10 9FE, UK.
| |
Collapse
|
24
|
Hochachka WM, Dobson AP, Hawley DM, Dhondt AA. Host population dynamics in the face of an evolving pathogen. J Anim Ecol 2021; 90:1480-1491. [PMID: 33821505 DOI: 10.1111/1365-2656.13469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 02/19/2021] [Indexed: 11/28/2022]
Abstract
Interactions between hosts and pathogens are dynamic at both ecological and evolutionary levels. In the resultant 'eco-evolutionary dynamics' ecological and evolutionary processes affect each other. For example, the house finch Haemorhous mexicanus and its recently emerged pathogen, the bacterium Mycoplasma gallisepticum, form a system in which evidence suggests that changes in bacterial virulence through time enhance levels of host immunity in ways that drive the evolution of virulence in an arms race. We use data from two associated citizen science projects in order to determine whether this arms race has had any detectable effect at the population level in the north-eastern United States. We used data from two citizen science projects, based on observations of birds at bird feeders, which provide information on the long-term changes in sizes of aggregations of house finches (host population density), and the probabilities that these house finches have observable disease (disease prevalence). The initial emergence of M. gallisepticum caused a rapid halving of house finch densities; this was then followed by house finch populations remaining stable or slowly declining. Disease prevalence also decreased sharply after the initial emergence and has remained low, although with fluctuations through time. Surprisingly, while initially higher local disease prevalence was found at sites with higher local densities of finches, this relationship has reversed over time. The ability of a vertebrate host species, with a generation time of at least 1 year, to maintain stable populations in the face of evolved higher virulence of a bacterium, with generation times measurable in minutes, suggests that genetic changes in the host are insufficient to explain the observed population-level patterns. We suggest that acquired immunity plays an important role in the observed interaction between house finches and M. gallisepticum.
Collapse
Affiliation(s)
| | - Andrew P Dobson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Dana M Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | | |
Collapse
|
25
|
Brown CR, Hannebaum SL, O’Brien VA, Page CE, Rannala B, Roche EA, Wagnon GS, Knutie SA, Moore AT, Brown MB. The cost of ectoparasitism in Cliff Swallows declines over 35 years. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Charles R. Brown
- Department of Biological Sciences University of Tulsa 800 S. Tucker Dr. Tulsa Oklahoma 74104 USA
| | - Stacey L. Hannebaum
- Department of Biological Sciences University of Tulsa 800 S. Tucker Dr. Tulsa Oklahoma 74104 USA
| | - Valerie A. O’Brien
- Department of Biological Sciences University of Tulsa 800 S. Tucker Dr. Tulsa Oklahoma 74104 USA
| | - Catherine E. Page
- Department of Biological Sciences University of Tulsa 800 S. Tucker Dr. Tulsa Oklahoma 74104 USA
| | - Bruce Rannala
- Department of Evolution and Ecology University of California Davis California 95616 USA
| | - Erin A. Roche
- Department of Biological Sciences University of Tulsa 800 S. Tucker Dr. Tulsa Oklahoma 74104 USA
| | - Gigi S. Wagnon
- Department of Biological Sciences University of Tulsa 800 S. Tucker Dr. Tulsa Oklahoma 74104 USA
| | - Sarah A. Knutie
- Department of Ecology and Evolutionary Biology University of Connecticut 75 N. Eagleville Rd. Storrs Connecticut 06269 USA
| | - Amy T. Moore
- Department of Biological Sciences University of Tulsa 800 S. Tucker Dr. Tulsa Oklahoma 74104 USA
| | - Mary B. Brown
- Department of Biological Sciences University of Tulsa 800 S. Tucker Dr. Tulsa Oklahoma 74104 USA
| |
Collapse
|
26
|
Luzuriaga-Neira A, Sandmeier FC, Weitzman CL, Tracy CR, Bauschlicher SN, Tillett RL, Alvarez-Ponce D. Mycoplasma agassizii, an opportunistic pathogen of tortoises, shows very little genetic variation across the Mojave and Sonoran Deserts. PLoS One 2021; 16:e0245895. [PMID: 33534823 PMCID: PMC7857612 DOI: 10.1371/journal.pone.0245895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/10/2021] [Indexed: 12/01/2022] Open
Abstract
Mycoplasma agassizii is a common cause of upper respiratory tract disease in Mojave desert tortoises (Gopherus agassizii). So far, only two strains of this bacterium have been sequenced, and very little is known about its patterns of genetic diversity. Understanding genetic variability of this pathogen is essential to implement conservation programs for their threatened, long-lived hosts. We used next generation sequencing to explore the genomic diversity of 86 cultured samples of M. agassizii collected from mostly healthy Mojave and Sonoran desert tortoises in 2011 and 2012. All samples with enough sequencing coverage exhibited a higher similarity to M. agassizii strain PS6T (collected in Las Vegas Valley, Nevada) than to strain 723 (collected in Sanibel Island, Florida). All eight genomes with a sequencing coverage over 2x were subjected to multiple analyses to detect single-nucleotide polymorphisms (SNPs). Strikingly, even though we detected 1373 SNPs between strains PS6T and 723, we did not detect any SNP between PS6T and our eight samples. Our whole genome analyses reveal that M. agassizii strain PS6T may be present across a wide geographic extent in healthy Mojave and Sonoran desert tortoises.
Collapse
Affiliation(s)
- Agusto Luzuriaga-Neira
- Department of Biology, University of Nevada Reno, Reno, Nevada, United States of America
| | - Franziska C. Sandmeier
- Biology Department, Colorado State University, Pueblo, Colorado, United States of America
- * E-mail: (FCS); (DAP)
| | - Chava L. Weitzman
- Department of Biological Sciences, Virginia Polytechnic Institute, Blacksburg, Virginia, United States of America
| | - C. Richard Tracy
- Department of Biology, University of Nevada Reno, Reno, Nevada, United States of America
| | - Shalyn N. Bauschlicher
- Biology Department, Colorado State University, Pueblo, Colorado, United States of America
| | - Richard L. Tillett
- Nevada Center for Bioinformatics, University of Nevada, Reno, Nevada, United States of America
| | - David Alvarez-Ponce
- Department of Biology, University of Nevada Reno, Reno, Nevada, United States of America
- * E-mail: (FCS); (DAP)
| |
Collapse
|
27
|
Mayer M, Shine R, Brown GP. Rapid divergence of parasite infectivity and host resistance during a biological invasion. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Abstract
By perturbing co-evolved interactions, biological invasions provide an opportunity to study the evolution of interactions between hosts and their parasites on ecological timescales. We studied the interaction between the cane toad (Rhinella marina) and its direct-lifecycle lungworm (Rhabdias pseudosphaerocephala) that was brought from South America to Australia with the toads in 1935. Compared with infective parasite larvae from long-established (range-core) toad populations, parasite larvae from toads near the invasion front were larger, lived longer and were better able to resist exposure to toxin from the parotoid glands of toads. Experimentally, we infected the common-garden-reared progeny of toads from range-core and invasion-front populations within Australia with lungworms from both populations. Infective larvae from invasion-front (vs. range-core) populations of the parasite were more successful at entering toads (by skin penetration) and establishing infections in the lungs. Toads from invasion-front populations were less prone to infection by either type of larvae. Thus, within 84 years, parasites at an invasion front have increased infectivity, whereas hosts have increased resistance to parasite infection compared with range-core populations. Rapid evolution of traits might affect host–parasite interactions during biological invasions, generating unpredictable effects both on the invaders and on native ecosystems.
Collapse
Affiliation(s)
- Martin Mayer
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Richard Shine
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gregory P Brown
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
28
|
DeCandia AL, Schrom EC, Brandell EE, Stahler DR, vonHoldt BM. Sarcoptic mange severity is associated with reduced genomic variation and evidence of selection in Yellowstone National Park wolves ( Canis lupus). Evol Appl 2021; 14:429-445. [PMID: 33664786 PMCID: PMC7896714 DOI: 10.1111/eva.13127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/28/2020] [Accepted: 08/25/2020] [Indexed: 01/25/2023] Open
Abstract
Population genetic theory posits that molecular variation buffers against disease risk. Although this "monoculture effect" is well supported in agricultural settings, its applicability to wildlife populations remains in question. In the present study, we examined the genomics underlying individual-level disease severity and population-level consequences of sarcoptic mange infection in a wild population of canids. Using gray wolves (Canis lupus) reintroduced to Yellowstone National Park (YNP) as our focal system, we leveraged 25 years of observational data and biobanked blood and tissue to genotype 76,859 loci in over 400 wolves. At the individual level, we reported an inverse relationship between host genomic variation and infection severity. We additionally identified 410 loci significantly associated with mange severity, with annotations related to inflammation, immunity, and skin barrier integrity and disorders. We contextualized results within environmental, demographic, and behavioral variables, and confirmed that genetic variation was predictive of infection severity. At the population level, we reported decreased genome-wide variation since the initial gray wolf reintroduction event and identified evidence of selection acting against alleles associated with mange infection severity. We concluded that genomic variation plays an important role in disease severity in YNP wolves. This role scales from individual to population levels, and includes patterns of genome-wide variation in support of the monoculture effect and specific loci associated with the complex mange phenotype. Results yielded system-specific insights, while also highlighting the relevance of genomic analyses to wildlife disease ecology, evolution, and conservation.
Collapse
Affiliation(s)
| | - Edward C. Schrom
- Ecology & Evolutionary BiologyPrinceton UniversityPrincetonNJUSA
| | | | | | | |
Collapse
|
29
|
Valenzuela-Sánchez A, Wilber MQ, Canessa S, Bacigalupe LD, Muths E, Schmidt BR, Cunningham AA, Ozgul A, Johnson PTJ, Cayuela H. Why disease ecology needs life-history theory: a host perspective. Ecol Lett 2021; 24:876-890. [PMID: 33492776 DOI: 10.1111/ele.13681] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
When facing an emerging infectious disease of conservation concern, we often have little information on the nature of the host-parasite interaction to inform management decisions. However, it is becoming increasingly clear that the life-history strategies of host species can be predictive of individual- and population-level responses to infectious disease, even without detailed knowledge on the specifics of the host-parasite interaction. Here, we argue that a deeper integration of life-history theory into disease ecology is timely and necessary to improve our capacity to understand, predict and mitigate the impact of endemic and emerging infectious diseases in wild populations. Using wild vertebrates as an example, we show that host life-history characteristics influence host responses to parasitism at different levels of organisation, from individuals to communities. We also highlight knowledge gaps and future directions for the study of life-history and host responses to parasitism. We conclude by illustrating how this theoretical insight can inform the monitoring and control of infectious diseases in wildlife.
Collapse
Affiliation(s)
- Andrés Valenzuela-Sánchez
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile.,ONG Ranita de Darwin, Valdivia and Santiago, Chile.,Centro de Investigación para la Sustentabilidad, Universidad Andrés Bello, Santiago, Chile
| | - Mark Q Wilber
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.,Center for Wildlife Health, Department of Forestry, Wildlife and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Stefano Canessa
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Leonardo D Bacigalupe
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Erin Muths
- U.S. Geological Survey, 2150 Centre Avenue Bldg C, Fort Collins, Colorado, 80526, USA
| | - Benedikt R Schmidt
- Institut für Evolutionsbiologie und Umweltwissenschaften, Universität Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,Info Fauna Karch, UniMail, Bâtiment G, Bellevaux 51, 2000, Neuchâtel, Switzerland
| | - Andrew A Cunningham
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Arpat Ozgul
- Institut für Evolutionsbiologie und Umweltwissenschaften, Universität Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Pieter T J Johnson
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
| | - Hugo Cayuela
- IBIS, Department of Biology, University Laval, Pavillon Charles-Eugène-Marchand, Avenue de la Médecine, Quebec City, Canada.,Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
30
|
Zhang Y, Hill GE, Ge Z, Park NR, Taylor HA, Andreasen V, Tardy L, Kavazis AN, Bonneaud C, Hood WR. Effects of a Bacterial Infection on Mitochondrial Function and Oxidative Stress in a Songbird. Physiol Biochem Zool 2021; 94:71-82. [PMID: 33399516 DOI: 10.1086/712639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractAs a major physiological mechanism involved in cellular renewal and repair, immune function is vital to the body's capacity to support tissue maintenance and organismal survival. Because immune defenses can be energetically expensive, the activities of metabolically active organs, such as the liver, are predicted to increase during infection by most pathogens. However, some pathogens are immunosuppressive, which might reduce the metabolic capacities of select organs to suppress immune response. Mycoplasma gallisepticum (MG) is a well-known immunosuppressive bacterium that infects domestic chickens and turkeys as well as songbirds. In the house finch (Haemorhous mexicanus), which is the primary host for MG among songbird species, MG infects both the respiratory system and the conjunctiva of the eye, causing conspicuous swelling. To study the effect of a systemic bacterial infection on cellular respiration and oxidative damage in the house finch, we measured mitochondrial respiration, mitochondrial membrane potential, reactive oxygen species production, and oxidative damage in the livers of house finches that were wild caught and either infected with MG, as indicated by genetic screening for the pathogen, or free of MG infection. We observed that MG-infected house finches showed significantly lower oxidative lipid and protein damage in liver tissue compared with their uninfected counterparts. Moreover, using complex II substrates, we documented a nonsignificant trend for lower state 3 respiration of liver mitochondria in MG-infected house finches compared with uninfected house finches (P=0.07). These results are consistent with the hypothesis that MG suppresses organ function in susceptible hosts.
Collapse
|
31
|
Ebert D, Fields PD. Host-parasite co-evolution and its genomic signature. Nat Rev Genet 2020; 21:754-768. [PMID: 32860017 DOI: 10.1038/s41576-020-0269-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2020] [Indexed: 01/14/2023]
Abstract
Studies in diverse biological systems have indicated that host-parasite co-evolution is responsible for the extraordinary genetic diversity seen in some genomic regions, such as major histocompatibility (MHC) genes in jawed vertebrates and resistance genes in plants. This diversity is believed to evolve under balancing selection on hosts by parasites. However, the mechanisms that link the genomic signatures in these regions to the underlying co-evolutionary process are only slowly emerging. We still lack a clear picture of the co-evolutionary concepts and of the genetic basis of the co-evolving phenotypic traits in the interacting antagonists. Emerging genomic tools that provide new options for identifying underlying genes will contribute to a fuller understanding of the co-evolutionary process.
Collapse
Affiliation(s)
- Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland. .,Wissenschaftskolleg zu Berlin, Berlin, Germany.
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| |
Collapse
|
32
|
Bale NM, Leon AE, Hawley DM. Differential house finch leukocyte profiles during experimental infection with Mycoplasma gallisepticum isolates of varying virulence. Avian Pathol 2020; 49:342-354. [PMID: 32270701 DOI: 10.1080/03079457.2020.1753652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Leukocyte differentials are a useful tool for assessing systemic immunological changes during pathogen infections, particularly for non-model species. To date, no study has explored how experimental infection with a common bacterial pathogen, Mycoplasma gallisepticum (MG), influences the course and strength of haematological changes in the natural songbird host, house finches. Here we experimentally inoculated house finches with MG isolates known to vary in virulence, and quantified the proportions of circulating leukocytes over the entirety of infection. First, we found significant temporal effects of MG infection on the proportions of most cell types, with strong increases in heterophil and monocyte proportions during infection. Marked decreases in lymphocyte proportions also occurred during infection, though these proportional changes may simply be driven by correlated increases in other leukocytes. Second, we found significant effects of isolate virulence, with the strongest changes in cell proportions occurring in birds inoculated with the higher virulence isolates, and almost no detectable changes relative to sham treatment groups in birds inoculated with the lowest virulence isolate. Finally, we found that variation in infection severity positively predicted the proportion of circulating heterophils and lymphocytes, but the strength of these correlations was dependent on isolate. Taken together, these results indicate strong haematological changes in house finches during MG infection, with markedly different responses to MG isolates of varying virulence. These results are consistent with the possibility that evolved virulence in house finch MG results in higher degrees of immune stimulation and associated immunopathology, with potential direct benefits for MG transmission. RESEARCH HIGHLIGHTS House finches show a marked pro-inflammatory response to M. gallisepticum infection. Virulent pathogen isolates produce stronger finch white blood cell responses. Among birds, stronger white blood cell responses are associated with higher infection severity.
Collapse
Affiliation(s)
- Natalie M Bale
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Ariel E Leon
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Dana M Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
33
|
Dowling AJ, Hill GE, Bonneaud C. Multiple differences in pathogen-host cell interactions following a bacterial host shift. Sci Rep 2020; 10:6779. [PMID: 32322086 PMCID: PMC7176683 DOI: 10.1038/s41598-020-63714-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Novel disease emergence is often associated with changes in pathogen traits that enable pathogen colonisation, persistence and transmission in the novel host environment. While understanding the mechanisms underlying disease emergence is likely to have critical implications for preventing infectious outbreaks, such knowledge is often based on studies of viral pathogens, despite the fact that bacterial pathogens may exhibit very different life histories. Here, we investigate the ability of epizootic outbreak strains of the bacterial pathogen, Mycoplasma gallisepticum, which jumped from poultry into North American house finches (Haemorhous mexicanus), to interact with model avian cells. We found that house finch epizootic outbreak strains of M. gallisepticum displayed a greater ability to adhere to, invade, persist within and exit from cultured chicken embryonic fibroblasts, than the reference virulent (R_low) and attenuated (R_high) poultry strains. Furthermore, unlike the poultry strains, the house finch epizootic outbreak strain HF_1994 displayed a striking lack of cytotoxicity, even exerting a cytoprotective effect on avian cells. Our results suggest that, at epizootic outbreak in house finches, M. gallisepticum was particularly adept at using the intra-cellular environment, which may have facilitated colonisation, dissemination and immune evasion within the novel finch host. Whether this high-invasion phenotype is similarly displayed in interactions with house finch cells, and whether it contributed to the success of the host shift, remains to be determined.
Collapse
Affiliation(s)
- Andrea J Dowling
- Biosciences, College of Life and Environmental Science, Penryn Campus, University of Exeter, Cornwall, TR10 9FE, UK.
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL36849-5414, USA
| | - Camille Bonneaud
- Biosciences, College of Life and Environmental Science, Penryn Campus, University of Exeter, Cornwall, TR10 9FE, UK.
| |
Collapse
|
34
|
Becker DJ, Albery GF, Kessler MK, Lunn TJ, Falvo CA, Czirják GÁ, Martin LB, Plowright RK. Macroimmunology: The drivers and consequences of spatial patterns in wildlife immune defence. J Anim Ecol 2020; 89:972-995. [PMID: 31856309 DOI: 10.1111/1365-2656.13166] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 11/06/2019] [Indexed: 01/26/2023]
Abstract
The prevalence and intensity of parasites in wild hosts varies across space and is a key determinant of infection risk in humans, domestic animals and threatened wildlife. Because the immune system serves as the primary barrier to infection, replication and transmission following exposure, we here consider the environmental drivers of immunity. Spatial variation in parasite pressure, abiotic and biotic conditions, and anthropogenic factors can all shape immunity across spatial scales. Identifying the most important spatial drivers of immunity could help pre-empt infectious disease risks, especially in the context of how large-scale factors such as urbanization affect defence by changing environmental conditions. We provide a synthesis of how to apply macroecological approaches to the study of ecoimmunology (i.e. macroimmunology). We first review spatial factors that could generate spatial variation in defence, highlighting the need for large-scale studies that can differentiate competing environmental predictors of immunity and detailing contexts where this approach might be favoured over small-scale experimental studies. We next conduct a systematic review of the literature to assess the frequency of spatial studies and to classify them according to taxa, immune measures, spatial replication and extent, and statistical methods. We review 210 ecoimmunology studies sampling multiple host populations. We show that whereas spatial approaches are relatively common, spatial replication is generally low and unlikely to provide sufficient environmental variation or power to differentiate competing spatial hypotheses. We also highlight statistical biases in macroimmunology, in that few studies characterize and account for spatial dependence statistically, potentially affecting inferences for the relationships between environmental conditions and immune defence. We use these findings to describe tools from geostatistics and spatial modelling that can improve inference about the associations between environmental and immunological variation. In particular, we emphasize exploratory tools that can guide spatial sampling and highlight the need for greater use of mixed-effects models that account for spatial variability while also allowing researchers to account for both individual- and habitat-level covariates. We finally discuss future research priorities for macroimmunology, including focusing on latitudinal gradients, range expansions and urbanization as being especially amenable to large-scale spatial approaches. Methodologically, we highlight critical opportunities posed by assessing spatial variation in host tolerance, using metagenomics to quantify spatial variation in parasite pressure, coupling large-scale field studies with small-scale field experiments and longitudinal approaches, and applying statistical tools from macroecology and meta-analysis to identify generalizable spatial patterns. Such work will facilitate scaling ecoimmunology from individual- to habitat-level insights about the drivers of immune defence and help predict where environmental change may most alter infectious disease risk.
Collapse
Affiliation(s)
- Daniel J Becker
- Department of Biology, Indiana University, Bloomington, IN, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, USA
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | - Tamika J Lunn
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Caylee A Falvo
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Lynn B Martin
- Department of Global and Planetary Health, University of South Florida, Tampa, FL, USA
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
35
|
Bensch S. Scott V. Edwards—Recipient of the 2019 Molecular Ecology Prize. Mol Ecol 2020; 29:20-22. [DOI: 10.1111/mec.15348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
O'Connor EA, Westerdahl H, Burri R, Edwards SV. Avian MHC Evolution in the Era of Genomics: Phase 1.0. Cells 2019; 8:E1152. [PMID: 31561531 PMCID: PMC6829271 DOI: 10.3390/cells8101152] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Birds are a wonderfully diverse and accessible clade with an exceptional range of ecologies and behaviors, making the study of the avian major histocompatibility complex (MHC) of great interest. In the last 20 years, particularly with the advent of high-throughput sequencing, the avian MHC has been explored in great depth in several dimensions: its ability to explain ecological patterns in nature, such as mating preferences; its correlation with parasite resistance; and its structural evolution across the avian tree of life. Here, we review the latest pulse of avian MHC studies spurred by high-throughput sequencing. Despite high-throughput approaches to MHC studies, substantial areas remain in need of improvement with regard to our understanding of MHC structure, diversity, and evolution. Recent studies of the avian MHC have nonetheless revealed intriguing connections between MHC structure and life history traits, and highlight the advantages of long-term ecological studies for understanding the patterns of MHC variation in the wild. Given the exceptional diversity of birds, their accessibility, and the ease of sequencing their genomes, studies of avian MHC promise to improve our understanding of the many dimensions and consequences of MHC variation in nature. However, significant improvements in assembling complete MHC regions with long-read sequencing will be required for truly transformative studies.
Collapse
Affiliation(s)
| | | | - Reto Burri
- Department of Population Ecology, Institute of Ecology & Evolution, Friedrich Schiller University Jena, 07737 Jena, Germany.
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
37
|
Staley M, Bonneaud C, McGraw KJ, Vleck CM, Hill GE. Detection of Mycoplasma gallisepticum in House Finches ( Haemorhous mexicanus) from Arizona. Avian Dis 2019; 62:14-17. [PMID: 29620468 DOI: 10.1637/11610-021317-reg.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In 1994, an endemic poultry pathogen, Mycoplasma gallisepticum (MG), was identified as the causative agent of a novel disease in house finches ( Haemorhous mexicanus). After an initial outbreak in Maryland, MG spread rapidly throughout eastern North American populations of house finches. Subsequently, MG spread slowly through the northern interior of North America and then into the Pacific Northwest, finally reaching California in 2006. Until 2009, there were no reports of MG in the southwestern United States east of California. In August 2011, after reports of house finches displaying conjunctivitis characteristic of MG infection in Arizona, we trapped house finches at bird feeders in central Arizona (Tempe) and southern Arizona (Tucson and Green Valley) to assay for MG infection. Upon capture, we noted whether birds exhibited conjunctivitis, and we collected choanal swabs to test for the presence of MG DNA using PCR. We detected MG in finches captured from Green Valley (in ∼12% of birds captured), but not in finches from Tucson or Tempe. Based on resampling of house finches at these sites in July 2014, we suggest that central Arizona finches likely remain unexposed to MG. We also suggest that low urban connectivity between arid habitats of southern and central Arizona or a reduction in the prevalence of MG after its initial arrival in Arizona may be limiting the spread of MG from south to north in Arizona. In addition, the observed conjunctivitis-like signs in house finches that were negative for MG by PCR may be caused primarily by avian pox virus.
Collapse
Affiliation(s)
- Molly Staley
- A Department of Biological Sciences, Auburn University, Auburn, AL 36849.,B Chicago Zoological Society, Brookfield, IL 60513
| | - Camille Bonneaud
- D Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9EF, United Kingdom
| | - Kevin J McGraw
- E School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | - Carol M Vleck
- F Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011
| | - Geoffrey E Hill
- A Department of Biological Sciences, Auburn University, Auburn, AL 36849
| |
Collapse
|
38
|
Bonneaud C, Tardy L, Giraudeau M, Hill GE, McGraw KJ, Wilson AJ. Evolution of both host resistance and tolerance to an emerging bacterial pathogen. Evol Lett 2019. [DOI: 10.1002/evl3.133] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Camille Bonneaud
- Centre for Ecology and Conservation; University of Exeter; Penryn Cornwall TR10 9FE United Kingdom
| | - Luc Tardy
- Centre for Ecology and Conservation; University of Exeter; Penryn Cornwall TR10 9FE United Kingdom
| | - Mathieu Giraudeau
- Centre for Ecology and Conservation; University of Exeter; Penryn Cornwall TR10 9FE United Kingdom
- School of Life Sciences; Arizona State University; Tempe Arizona 85287
- Current address: Centre for Ecological and Evolutionary Research on Cancer; UMR CNRS/IRD/UM 5290 MIVEGEC; 34394 Montpellier France
| | - Geoffrey E. Hill
- Department of Biological Sciences; Auburn University; Auburn Alabama 36849
| | - Kevin J. McGraw
- School of Life Sciences; Arizona State University; Tempe Arizona 85287
| | - Alastair J. Wilson
- Centre for Ecology and Conservation; University of Exeter; Penryn Cornwall TR10 9FE United Kingdom
| |
Collapse
|
39
|
Contrasting evolution of virulence and replication rate in an emerging bacterial pathogen. Proc Natl Acad Sci U S A 2019; 116:16927-16932. [PMID: 31371501 PMCID: PMC6708350 DOI: 10.1073/pnas.1901556116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With increasing antibiotic resistance, there is a pressing need to understand how host resistance naturally influences bacterial virulence and replication rates. We test this in an infection experiment using 55 isolates of a bacterium, which were collected over the course of the epidemic following its natural emergence in a North American songbird. We demonstrate virulence has increased linearly from outbreak to the present day, encompassing >150,000 bacterial generations. Despite this, bacterial replication rate only increased during the initial spread of host resistance but not thereafter. Thus, contrary to common assumptions, virulence and replication rates can evolve independently, particularly after the initial spread of host resistance. Host resistance through immune clearance is predicted to favor pathogens that are able to transmit faster and are hence more virulent. Increasing pathogen virulence is, in turn, typically assumed to be mediated by increasing replication rates. However, experiments designed to test how pathogen virulence and replication rates evolve in response to increasing host resistance, as well as the relationship between the two, are rare and lacking for naturally evolving host–pathogen interactions. We inoculated 55 isolates of Mycoplasma gallisepticum, collected over 20 y from outbreak, into house finches (Haemorhous mexicanus) from disease-unexposed populations, which have not evolved protective immunity to M. gallisepticum. We show using 3 different metrics of virulence (body mass loss, symptom severity, and putative mortality rate) that virulence has increased linearly over >150,000 bacterial generations since outbreak (1994 to 2015). By contrast, while replication rates increased from outbreak to the initial spread of resistance (1994 to 2004), no further increases have occurred subsequently (2007 to 2015). Finally, as a consequence, we found that any potential mediating effect of replication rate on virulence evolution was restricted to the period when host resistance was initially increasing in the population. Taken together, our results show that pathogen virulence and replication rates can evolve independently, particularly after the initial spread of host resistance. We hypothesize that the evolution of pathogen virulence can be driven primarily by processes such as immune manipulation after resistance spreads in host populations.
Collapse
|
40
|
Cheng TL, Gerson A, Moore MS, Reichard JD, DeSimone J, Willis CKR, Frick WF, Kilpatrick AM. Higher fat stores contribute to persistence of little brown bat populations with white-nose syndrome. J Anim Ecol 2019; 88:591-600. [PMID: 30779125 DOI: 10.1111/1365-2656.12954] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/30/2018] [Indexed: 11/28/2022]
Abstract
The persistence of populations declining from novel stressors depends, in part, on their ability to respond by trait change via evolution or plasticity. White-nose syndrome (WNS) has caused rapid declines in several North America bat species by disrupting hibernation behaviour, leading to body fat depletion and starvation. However, some populations of Myotis lucifugus now persist with WNS by unknown mechanisms. We examined whether persistence of M. lucifigus with WNS could be explained by increased body fat in early winter, which would allow bats to tolerate the increased energetic costs associated with WNS. We also investigated whether bats were escaping infection or resistant to infection as an alternative mechanism explaining persistence. We measured body fat in early and late winter during initial WNS invasion and 8 years later at six sites where bats are now persisting. We also measured infection prevalence and intensity in persisting populations. Infection prevalence was not significantly lower than observed in declining populations. However, at two sites, infection loads were lower than observed in declining populations. Body fat in early winter was significantly higher in four of the six persisting populations than during WNS invasion. Physiological models of energy use indicated that these higher fat stores could reduce WNS mortality by 58%-70%. These results suggest that differences in fat storage and infection dynamics have reduced the impacts of WNS in many populations. Increases in body fat provide a potential mechanism for management intervention to help conserve bat populations.
Collapse
Affiliation(s)
- Tina L Cheng
- Department of Ecology and Evolutionary Biology, University of California, UC Santa Cruz, California.,Bat Conservation International, Austin, Texas
| | - Alexander Gerson
- Department of Biology, University of Massachusetts, Amherst, Amherst, Massachusetts
| | - Marianne S Moore
- College of Integrative Science and Arts, Arizona State University, Mesa, Arizona
| | | | - Joely DeSimone
- Department of Biology, University of Massachusetts, Amherst, Amherst, Massachusetts
| | - Craig K R Willis
- Department of Biology and Centre for Forest Interdisciplinary Research, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Winifred F Frick
- Department of Ecology and Evolutionary Biology, University of California, UC Santa Cruz, California.,Bat Conservation International, Austin, Texas
| | - Auston Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, UC Santa Cruz, California
| |
Collapse
|
41
|
Tavalire HF, Beechler BR, Buss PE, Gorsich EE, Hoal EG, le Roex N, Spaan JM, Spaan RS, van Helden PD, Ezenwa VO, Jolles AE. Context-dependent costs and benefits of tuberculosis resistance traits in a wild mammalian host. Ecol Evol 2018; 8:12712-12726. [PMID: 30619576 PMCID: PMC6308860 DOI: 10.1002/ece3.4699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/02/2018] [Accepted: 10/12/2018] [Indexed: 12/24/2022] Open
Abstract
Disease acts as a powerful driver of evolution in natural host populations, yet individuals in a population often vary in their susceptibility to infection. Energetic trade-offs between immune and reproductive investment lead to the evolution of distinct life history strategies, driven by the relative fitness costs and benefits of resisting infection. However, examples quantifying the cost of resistance outside of the laboratory are rare. Here, we observe two distinct forms of resistance to bovine tuberculosis (bTB), an important zoonotic pathogen, in a free-ranging African buffalo (Syncerus caffer) population. We characterize these phenotypes as "infection resistance," in which hosts delay or prevent infection, and "proliferation resistance," in which the host limits the spread of lesions caused by the pathogen after infection has occurred. We found weak evidence that infection resistance to bTB may be heritable in this buffalo population (h 2 = 0.10) and comes at the cost of reduced body condition and marginally reduced survival once infected, but also associates with an overall higher reproductive rate. Infection-resistant animals thus appear to follow a "fast" pace-of-life syndrome, in that they reproduce more quickly but die upon infection. In contrast, proliferation resistance had no apparent costs and was associated with measures of positive host health-such as having a higher body condition and reproductive rate. This study quantifies striking phenotypic variation in pathogen resistance and provides evidence for a link between life history variation and a disease resistance trait in a wild mammalian host population.
Collapse
Affiliation(s)
- Hannah F. Tavalire
- Department of Integrative BiologyOregon State UniversityCorvallisOregon
- The Institute of Ecology and EvolutionUniversity of OregonEugeneOregon
- Present address:
Prevention Science InstituteUniversity of OregonEugeneOregon
- Present address:
Institute of Ecology and EvolutionUniversity of OregonEugeneOregon
| | | | | | - Erin E. Gorsich
- College of Veterinary MedicineOregon State UniversityCorvallisOregon
- Present address:
Erin E. Gorsich, Zeeman Institute: Systems Biology and Infectious Disease Epidemiology Research (SBIDER)University of WarwickCoventryUK
- Present address:
School of Life SciencesUniversity of WarwickCoventryUK
| | - Eileen G. Hoal
- South African Medical Research Council, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Health SciencesStellenbosch UniversityTygerbergSouth Africa
| | - Nikki le Roex
- South African Medical Research Council, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Health SciencesStellenbosch UniversityTygerbergSouth Africa
| | - Johannie M. Spaan
- Department of Integrative BiologyOregon State UniversityCorvallisOregon
| | - Robert S. Spaan
- Department of Fisheries and WildlifeOregon State UniversityCorvallisOregon
| | - Paul D. van Helden
- South African Medical Research Council, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Health SciencesStellenbosch UniversityTygerbergSouth Africa
| | - Vanessa O. Ezenwa
- Odum School of Ecology and Department of Infectious Diseases, College of Veterinary MedicineUniversity of GeorgiaAthensGeorgia
| | - Anna E. Jolles
- Department of Integrative BiologyOregon State UniversityCorvallisOregon
- College of Veterinary MedicineOregon State UniversityCorvallisOregon
| |
Collapse
|
42
|
Cassin-Sackett L, Callicrate TE, Fleischer RC. Parallel evolution of gene classes, but not genes: Evidence from Hawai'ian honeycreeper populations exposed to avian malaria. Mol Ecol 2018; 28:568-583. [PMID: 30298567 DOI: 10.1111/mec.14891] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 10/14/2018] [Accepted: 10/19/2018] [Indexed: 12/29/2022]
Abstract
Adaptation in nature is ubiquitous, yet characterizing its genomic basis is difficult because population demographics cause correlations with nonadaptive loci. Introduction events provide opportunities to observe adaptation over known spatial and temporal scales, facilitating the identification of genes involved in adaptation. The pathogen causing avian malaria, Plasmodium relictum, was introduced to Hawai'i in the 1930s and elicited extinctions and precipitous population declines in native honeycreepers. After a sharp initial population decline, the Hawai'i 'amakihi (Chlorodrepanis virens) has evolved tolerance to the parasite at low elevations where P. relictum exists, and can sustain infection without major fitness consequences. High-elevation, unexposed populations of 'amakihi display little to no tolerance. To explore the genomic basis of adaptation to P. relictum in low-elevation 'amakihi, we genotyped 125 'amakihi from the island of Hawai'i via hybridization capture to 40,000 oligonucleotide baits containing SNPs and used the reference 'amakihi genome to identify genes potentially under selection from malaria. We tested for outlier loci between low- and high-elevation population pairs and identified loci with signatures of selection within low-elevation populations. In some cases, genes commonly involved in the immune response (e.g., major histocompatibility complex) were associated with malaria presence in the population. We also detected several novel candidate loci that may be implicated in surviving malaria infection (e.g., beta-defensin, glycoproteins and interleukin-related genes). Our results suggest that rapid adaptation to pathogens may occur through changes in different immune genes, but in the same classes of genes, across populations.
Collapse
Affiliation(s)
- Loren Cassin-Sackett
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia.,Department of Integrative Biology, University of South Florida, Tampa, Florida
| | - Taylor E Callicrate
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia.,Species Conservation Toolkit Initiative, Department of Conservation Science, Chicago Zoological Society, Brookfield, Illinois
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia
| |
Collapse
|
43
|
Zhang X, Zhang Y, Wang YH, Shen SK. Transcriptome Analysis of Cinnamomum chago: A Revelation of Candidate Genes for Abiotic Stress Response and Terpenoid and Fatty Acid Biosyntheses. Front Genet 2018; 9:505. [PMID: 30455715 PMCID: PMC6231050 DOI: 10.3389/fgene.2018.00505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 10/08/2018] [Indexed: 12/26/2022] Open
Abstract
Cinnamomum chago, an endangered species endemic to Yunnan province, possesses large economic and phylogenetic values in Lauraceae. However, the genomic information of this species remains relatively unexplored. In this study, we used RNAseq technology to characterize and annotate the C. chago transcriptome and identify candidate genes involved in special metabolic pathways and gene-associated simple sequence repeats (SSRs) and single-nucleotide polymorphism (SNP). A total of 129,097 unigenes, with a mean length of 667 bp and an N50 length of 1,062 bp, were assembled. Among these genes, 56,887 (44.07%) unigenes were successfully annotated using at least one database. Furthermore, 47 and 46 candidate genes were identified in terpenoid biosynthesis and fatty acid biosynthesis, respectively. A total of 22 candidate genes participated in at least one abiotic stress response of C. chago. Additionally, a total of 25,654 SSRs and 640 SNPs were also identified. Based on these potential loci, 55 novel expressed sequence tag (EST)-SSR primers were successfully developed. This work provides comprehensive transcriptomic data that can be used to establish a valuable information platform for gene prediction, signaling pathway investigation, and molecular marker development for C. chago and other related species. Such a platform can facilitate further studies on germplasm conservation and utilization of Lauraceae species.
Collapse
Affiliation(s)
| | | | | | - Shi-Kang Shen
- School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
44
|
Gates DE, Valletta JJ, Bonneaud C, Recker M. Quantitative host resistance drives the evolution of increased virulence in an emerging pathogen. J Evol Biol 2018; 31:1704-1714. [PMID: 30107064 DOI: 10.1111/jeb.13366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/31/2018] [Accepted: 08/09/2018] [Indexed: 12/01/2022]
Abstract
Emergent infectious diseases can have a devastating impact on host populations. The high selective pressures on both the hosts and the pathogens frequently lead to rapid adaptations not only in pathogen virulence but also host resistance following an initial outbreak. However, it is often unclear whether hosts will evolve to avoid infection-associated fitness costs by preventing the establishment of infection (here referred to as qualitative resistance) or by limiting its deleterious effects through immune functioning (here referred to as quantitative resistance). Equally, the evolutionary repercussions these different resistance mechanisms have for the pathogen are often unknown. Here, we investigate the co-evolutionary dynamics of pathogen virulence and host resistance following the epizootic outbreak of the highly pathogenic bacterium Mycoplasma gallisepticum in North American house finches (Haemorhous mexicanus). Using an evolutionary modelling approach and with a specific emphasis on the evolved resistance trait, we demonstrate that the rapid increase in the frequency of resistant birds following the outbreak is indicative of strong selection pressure to reduce infection-associated mortality. This, in turn, created the ecological conditions that selected for increased bacterial virulence. Our results thus suggest that quantitative host resistance was the key factor underlying the evolutionary interactions in this natural host-pathogen system.
Collapse
Affiliation(s)
| | - John Joseph Valletta
- Centre for Mathematics & the Environment, University of Exeter, Penryn, Cornwall, UK
| | | | - Mario Recker
- Centre for Mathematics & the Environment, University of Exeter, Penryn, Cornwall, UK
| |
Collapse
|
45
|
Rapid Antagonistic Coevolution in an Emerging Pathogen and Its Vertebrate Host. Curr Biol 2018; 28:2978-2983.e5. [PMID: 30197084 DOI: 10.1016/j.cub.2018.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/24/2018] [Accepted: 07/02/2018] [Indexed: 02/02/2023]
Abstract
Host-pathogen coevolution is assumed to play a key role in eco-evolutionary processes, including epidemiological dynamics and the evolution of sexual reproduction [1-4]. Despite this, direct evidence for host-pathogen coevolution is exceptional [5-7], particularly in vertebrate hosts. Indeed, although vertebrate hosts have been shown to evolve in response to pathogens or vice versa [8-12], there is little evidence for the necessary reciprocal changes in the success of both antagonists over time [13]. Here, we generate a time-shift experiment to demonstrate adaptive, reciprocal changes in North American house finches (Haemorhous mexicanus) and their emerging bacterial pathogen, Mycoplasma gallisepticum [14-16]. Our experimental design is made possible by the existence of disease-exposed and unexposed finch populations, which were known to exhibit equivalent responses to experimental inoculation until the recent spread of genetic resistance in the former [14, 17]. Whereas inoculations with pathogen isolates from epidemic outbreak caused comparable sub-lethal eye swelling in hosts from exposed (hereafter adapted) and unexposed (hereafter ancestral) populations, inoculations with isolates sampled after the spread of resistance were threefold more likely to cause lethal symptoms in hosts from ancestral populations. Similarly, the probability that pathogens successfully established an infection in the primary host and, before inducing death, transmitted to an uninfected sentinel was highest when recent isolates were inoculated in hosts from ancestral populations and lowest when early isolates were inoculated in hosts from adapted populations. Our results demonstrate antagonistic host-pathogen coevolution, with hosts and pathogens displaying increased resistance and virulence in response to each other over time.
Collapse
|
46
|
Afanasyeva A, Bockwoldt M, Cooney CR, Heiland I, Gossmann TI. Human long intrinsically disordered protein regions are frequent targets of positive selection. Genome Res 2018; 28:975-982. [PMID: 29858274 PMCID: PMC6028134 DOI: 10.1101/gr.232645.117] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/01/2018] [Indexed: 12/20/2022]
Abstract
Intrinsically disordered regions occur frequently in proteins and are characterized by a lack of a well-defined three-dimensional structure. Although these regions do not show a higher order of structural organization, they are known to be functionally important. Disordered regions are rapidly evolving, largely attributed to relaxed purifying selection and an increased role of genetic drift. It has also been suggested that positive selection might contribute to their rapid diversification. However, for our own species, it is currently unknown whether positive selection has played a role during the evolution of these protein regions. Here, we address this question by investigating the evolutionary pattern of more than 6600 human proteins with intrinsically disordered regions and their ordered counterparts. Our comparative approach with data from more than 90 mammalian genomes uses a priori knowledge of disordered protein regions, and we show that this increases the power to detect positive selection by an order of magnitude. We can confirm that human intrinsically disordered regions evolve more rapidly, not only within humans but also across the entire mammalian phylogeny. They have, however, experienced substantial evolutionary constraint, hinting at their fundamental functional importance. We find compelling evidence that disordered protein regions are frequent targets of positive selection and estimate that the relative rate of adaptive substitutions differs fourfold between disordered and ordered protein regions in humans. Our results suggest that disordered protein regions are important targets of genetic innovation and that the contribution of positive selection in these regions is more pronounced than in other protein parts.
Collapse
Affiliation(s)
- Arina Afanasyeva
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S102TN, United Kingdom.,Institute of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, Saint-Petersburg 195251, Russia.,Petersburg Nuclear Physics Institute, B.P. Konstantinov NRC Kurchatov Institute, Gatchina, Leningrad District 188300, Russia.,National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki City, Osaka 567-0085, Japan
| | - Mathias Bockwoldt
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Christopher R Cooney
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S102TN, United Kingdom
| | - Ines Heiland
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Toni I Gossmann
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S102TN, United Kingdom
| |
Collapse
|
47
|
Voyles J, Woodhams DC, Saenz V, Byrne AQ, Perez R, Rios-Sotelo G, Ryan MJ, Bletz MC, Sobell FA, McLetchie S, Reinert L, Rosenblum EB, Rollins-Smith LA, Ibáñez R, Ray JM, Griffith EJ, Ross H, Richards-Zawacki CL. Shifts in disease dynamics in a tropical amphibian assemblage are not due to pathogen attenuation. Science 2018; 359:1517-1519. [PMID: 29599242 DOI: 10.1126/science.aao4806] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 03/01/2018] [Indexed: 11/02/2022]
Abstract
Infectious diseases rarely end in extinction. Yet the mechanisms that explain how epidemics subside are difficult to pinpoint. We investigated host-pathogen interactions after the emergence of a lethal fungal pathogen in a tropical amphibian assemblage. Some amphibian host species are recovering, but the pathogen is still present and is as pathogenic today as it was almost a decade ago. In addition, some species have defenses that are more effective now than they were before the epidemic. These results suggest that host recoveries are not caused by pathogen attenuation and may be due to shifts in host responses. Our findings provide insights into the mechanisms underlying disease transitions, which are increasingly important to understand in an era of emerging infectious diseases and unprecedented global pandemics.
Collapse
Affiliation(s)
- Jamie Voyles
- Department of Biology, University of Nevada, Reno, Reno, NV, USA.
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts-Boston, Boston, MA, USA.,Smithsonian Tropical Research Institute, Ancón, Panamá
| | - Veronica Saenz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Allison Q Byrne
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Rachel Perez
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| | | | - Mason J Ryan
- Department of Biology, University of Nevada, Reno, Reno, NV, USA.,Arizona Game and Fish Department, Phoenix, AZ, USA
| | - Molly C Bletz
- Department of Biology, University of Massachusetts-Boston, Boston, MA, USA
| | - Florence Ann Sobell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shawna McLetchie
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Laura Reinert
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Louise A Rollins-Smith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Ancón, Panamá.,Sistema Nacional de Investigación, Panamá, Panamá
| | | | | | - Heidi Ross
- Smithsonian Tropical Research Institute, Ancón, Panamá
| | - Corinne L Richards-Zawacki
- Smithsonian Tropical Research Institute, Ancón, Panamá.,Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
48
|
Survival, gene and metabolite responses of Litoria verreauxii alpina frogs to fungal disease chytridiomycosis. Sci Data 2018; 5:180033. [PMID: 29509187 PMCID: PMC5839156 DOI: 10.1038/sdata.2018.33] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022] Open
Abstract
The fungal skin disease chytridiomycosis has caused the devastating decline and extinction of hundreds of amphibian species globally, yet the potential for evolving resistance, and the underlying pathophysiological mechanisms remain poorly understood. We exposed 406 naïve, captive-raised alpine tree frogs (Litoria verreauxii alpina) from multiple populations (one evolutionarily naïve to chytridiomycosis) to the aetiological agent Batrachochytrium dendrobatidis in two concurrent and controlled infection experiments. We investigated (A) survival outcomes and clinical pathogen burdens between populations and clutches, and (B) individual host tissue responses to chytridiomycosis. Here we present multiple interrelated datasets associated with these exposure experiments, including animal signalment, survival and pathogen burden of 355 animals from Experiment A, and the following datasets related to 61 animals from Experiment B: animal signalment and pathogen burden; raw RNA-Seq reads from skin, liver and spleen tissues; de novo assembled transcriptomes for each tissue type; raw gene expression data; annotation data for each gene; and raw metabolite expression data from skin and liver tissues. These data provide an extensive baseline for future analyses.
Collapse
|
49
|
Fleming-Davies AE, Williams PD, Dhondt AA, Dobson AP, Hochachka WM, Leon AE, Ley DH, Osnas EE, Hawley DM. Incomplete host immunity favors the evolution of virulence in an emergent pathogen. Science 2018; 359:1030-1033. [PMID: 29496878 PMCID: PMC6317705 DOI: 10.1126/science.aao2140] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/12/2018] [Indexed: 12/21/2022]
Abstract
Immune memory evolved to protect hosts from reinfection, but incomplete responses that allow future reinfection may inadvertently select for more-harmful pathogens. We present empirical and modeling evidence that incomplete immunity promotes the evolution of higher virulence in a natural host-pathogen system. We performed sequential infections of house finches with Mycoplasma gallisepticum strains of various levels of virulence. Virulent bacterial strains generated stronger host protection against reinfection than less virulent strains and thus excluded less virulent strains from infecting previously exposed hosts. In a two-strain model, the resulting fitness advantage selected for an almost twofold increase in pathogen virulence. Thus, the same immune systems that protect hosts from infection can concomitantly drive the evolution of more-harmful pathogens in nature.
Collapse
Affiliation(s)
- Arietta E Fleming-Davies
- Department of Biology, University of San Diego, San Diego, CA 92110, USA.
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biology, Radford University, Radford, VA 24141, USA
| | - Paul D Williams
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | - André A Dhondt
- Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Andrew P Dobson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | | | - Ariel E Leon
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - David H Ley
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Erik E Osnas
- U.S. Fish and Wildlife Service, Anchorage, AK 99503, USA
| | - Dana M Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
50
|
Grogan LF, Cashins SD, Skerratt LF, Berger L, McFadden MS, Harlow P, Hunter DA, Scheele BC, Mulvenna J. Evolution of resistance to chytridiomycosis is associated with a robust early immune response. Mol Ecol 2018; 27:919-934. [DOI: 10.1111/mec.14493] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/30/2017] [Accepted: 09/18/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Laura F. Grogan
- One Health Research Group College of Public Health, Medical and Veterinary Sciences James Cook University Townsville QLD Australia
- Griffith Wildlife Disease Ecology Group Environmental Futures Research Institute School of Environment Griffith University Nathan QLD Australia
- Genetics and Computational Biology QIMR Berghofer Medical Research Institute Brisbane QLD Australia
| | - Scott D. Cashins
- One Health Research Group College of Public Health, Medical and Veterinary Sciences James Cook University Townsville QLD Australia
| | - Lee F. Skerratt
- One Health Research Group College of Public Health, Medical and Veterinary Sciences James Cook University Townsville QLD Australia
| | - Lee Berger
- One Health Research Group College of Public Health, Medical and Veterinary Sciences James Cook University Townsville QLD Australia
| | | | - Peter Harlow
- Taronga Conservation Society Australia Mosman NSW Australia
| | - David A. Hunter
- Ecosystems and Threatened Species South West Region Office of Environment and Heritage NSW Department of Premier and Cabinet Queanbeyan NSW Australia
| | - Ben C. Scheele
- One Health Research Group College of Public Health, Medical and Veterinary Sciences James Cook University Townsville QLD Australia
- Fenner School of Environment and Society Australian National University Canberra ACT Australia
| | - Jason Mulvenna
- Genetics and Computational Biology QIMR Berghofer Medical Research Institute Brisbane QLD Australia
- School of Biomedical Sciences The University of Queensland Brisbane QLD Australia
| |
Collapse
|