1
|
Yang H, Wang S, Zhao M, Liao Y, Wang F, Yin X. Metabolic engineering of Escherichia coli for seleno-methylselenocysteine production. J Biotechnol 2024; 395:22-30. [PMID: 39260702 DOI: 10.1016/j.jbiotec.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/04/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Selenium (Se) is an essential trace element for life. Seleno-methylselenocysteine (SeMCys) can serve as a Se supplement with anticarcinogenic activity and can improve cognitive deficits. We engineered Escherichia coli for microbial production of SeMCys. The genes involved in the synthesis of SeMCys were divided into three modules-the selenocysteine (SeCys) synthesis, methyl donor synthesis and SMT modules-and expressed in plasmids with different copy numbers. The higher copy number of the SeCys synthesis module facilitated SeMCys production. The major routes for SeCys degradation were then modified. Deletion of the cysteine desulfurase gene csdA or sufS improved SeMCys production the most, and the strain that knocked out both genes doubled SeMCys production. The addition of serine in the mid-logarithmic growth phase significantly improved SeMCys synthesis. When the serine synthetic pathway was enhanced, SeMCys production increased by 12.5 %. Fed-batch culture for sodium selenite supplementation in the early stationary phase improved SeMCys production to 3.715 mg/L. This is the first report of the metabolic engineering of E. coli for the production of SeMCys and provide information on Se metabolism.
Collapse
Affiliation(s)
- Hulin Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng RD 11, Beijing 100048, China; School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing 100048, China
| | - Shizhuo Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng RD 11, Beijing 100048, China; School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing 100048, China
| | - Meiyi Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng RD 11, Beijing 100048, China; School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing 100048, China
| | - Yonghong Liao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng RD 11, Beijing 100048, China; School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing 100048, China
| | - Fenghuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng RD 11, Beijing 100048, China; School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing 100048, China
| | - Xian Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng RD 11, Beijing 100048, China; School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing 100048, China.
| |
Collapse
|
2
|
Yin X, Zhao M, Zhou Y, Yang H, Liao Y, Wang F. Optimized methyl donor and reduced precursor degradation pathway for seleno-methylselenocysteine production in Bacillus subtilis. Microb Cell Fact 2023; 22:215. [PMID: 37853389 PMCID: PMC10585787 DOI: 10.1186/s12934-023-02203-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/08/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Seleno-methylselenocysteine (SeMCys) is an effective component of selenium supplementation with anti-carcinogenic potential that can ameliorate neuropathology and cognitive deficits. In a previous study, a SeMCys producing strain of Bacillus subtilis GBACB was generated by releasing feedback inhibition by overexpression of cysteine-insensitive serine O-acetyltransferase, enhancing the synthesis of S-adenosylmethionine as methyl donor by overexpression of S-adenosylmethionine synthetase, and expressing heterologous selenocysteine methyltransferase. In this study, we aimed to improve GBACB SeMCys production by synthesizing methylmethionine as a donor to methylate selenocysteine and by inhibiting the precursor degradation pathway. RESULTS First, the performance of three methionine S-methyltransferases that provide methylmethionine as a methyl donor for SeMCys production was determined. Integration of the NmMmt gene into GBACB improved SeMCys production from 20.7 to 687.4 μg/L. Next, the major routes for the degradation of selenocysteine, which is the precursor of SeMCys, were revealed by comparing selenocysteine hyper-accumulating and non-producing strains at the transcriptional level. The iscSB knockout strain doubled SeMCys production. Moreover, deleting sdaA, which is responsible for the degradation of serine as a precursor of selenocysteine, enhanced SeMCys production to 4120.3 μg/L. Finally, the culture conditions in the flasks were optimized. The strain was tolerant to higher selenite content in the liquid medium and the titer of SeMCys reached 7.5 mg/L. CONCLUSIONS The significance of methylmethionine as a methyl donor for SeMCys production in B. subtilis is reported, and enhanced precursor supply facilitates SeMCys synthesis. The results represent the highest SeMCys production to date and provide insight into Se metabolism.
Collapse
Affiliation(s)
- Xian Yin
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
- School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
| | - Meiyi Zhao
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
- School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
| | - Yu Zhou
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
- School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
| | - Hulin Yang
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
- School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China
| | - Yonghong Liao
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China.
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China.
- School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China.
| | - Fenghuan Wang
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China.
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China.
- School of Light Industry, Beijing Technology and Business University, Fucheng RD 11, Beijing, 100048, China.
| |
Collapse
|
3
|
Manta B, Makarova NE, Mariotti M. The selenophosphate synthetase family: A review. Free Radic Biol Med 2022; 192:63-76. [PMID: 36122644 DOI: 10.1016/j.freeradbiomed.2022.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022]
Abstract
Selenophosphate synthetases use selenium and ATP to synthesize selenophosphate. This is required for biological utilization of selenium, most notably for the synthesis of the non-canonical amino acid selenocysteine (Sec). Therefore, selenophosphate synthetases underlie all functions of selenoproteins, which include redox homeostasis, protein quality control, hormone regulation, metabolism, and many others. This protein family comprises two groups, SelD/SPS2 and SPS1. The SelD/SPS2 group represent true selenophosphate synthetases, enzymes central to selenium metabolism which are present in all Sec-utilizing organisms across the tree of life. Notably, many SelD/SPS2 proteins contain Sec as catalytic residue in their N-terminal flexible selenium-binding loop, while others replace it with cysteine (Cys). The SPS1 group comprises proteins originated through gene duplications of SelD/SPS2 in metazoa in which the Sec/Cys-dependent catalysis was disrupted. SPS1 proteins do not synthesize selenophosphate and are not required for Sec synthesis. They have essential regulatory functions related to redox homeostasis and pyridoxal phosphate, which affect signaling pathways for growth and differentiation. In this review, we summarize the knowledge about the selenophosphate synthetase family acquired through decades of research, encompassing their structure, mechanism, function, and evolution.
Collapse
Affiliation(s)
- Bruno Manta
- Laboratorio de Genómica Microbiana, Institut Pasteur Montevideo, Uruguay, Cátedra de Fisiopatología, Facultad de Odontología, Universidad de la República, Uruguay
| | - Nadezhda E Makarova
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Avinguda Diagonal 643, Barcelona, 08028, Catalonia, Spain
| | - Marco Mariotti
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Avinguda Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| |
Collapse
|
4
|
Das M, Dewan A, Shee S, Singh A. The Multifaceted Bacterial Cysteine Desulfurases: From Metabolism to Pathogenesis. Antioxidants (Basel) 2021; 10:997. [PMID: 34201508 PMCID: PMC8300815 DOI: 10.3390/antiox10070997] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 12/02/2022] Open
Abstract
Living cells have developed a relay system to efficiently transfer sulfur (S) from cysteine to various thio-cofactors (iron-sulfur (Fe-S) clusters, thiamine, molybdopterin, lipoic acid, and biotin) and thiolated tRNA. The presence of such a transit route involves multiple protein components that allow the flux of S to be precisely regulated as a function of environmental cues to avoid the unnecessary accumulation of toxic concentrations of soluble sulfide (S2-). The first enzyme in this relay system is cysteine desulfurase (CSD). CSD catalyzes the release of sulfane S from L-cysteine by converting it to L-alanine by forming an enzyme-linked persulfide intermediate on its conserved cysteine residue. The persulfide S is then transferred to diverse acceptor proteins for its incorporation into the thio-cofactors. The thio-cofactor binding-proteins participate in essential and diverse cellular processes, including DNA repair, respiration, intermediary metabolism, gene regulation, and redox sensing. Additionally, CSD modulates pathogenesis, antibiotic susceptibility, metabolism, and survival of several pathogenic microbes within their hosts. In this review, we aim to comprehensively illustrate the impact of CSD on bacterial core metabolic processes and its requirement to combat redox stresses and antibiotics. Targeting CSD in human pathogens can be a potential therapy for better treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Amit Singh
- Centre for Infectious Disease Research, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; (M.D.); (A.D.); (S.S.)
| |
Collapse
|
5
|
McCown PJ, Ruszkowska A, Kunkler CN, Breger K, Hulewicz JP, Wang MC, Springer NA, Brown JA. Naturally occurring modified ribonucleosides. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1595. [PMID: 32301288 PMCID: PMC7694415 DOI: 10.1002/wrna.1595] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022]
Abstract
The chemical identity of RNA molecules beyond the four standard ribonucleosides has fascinated scientists since pseudouridine was characterized as the "fifth" ribonucleotide in 1951. Since then, the ever-increasing number and complexity of modified ribonucleosides have been found in viruses and throughout all three domains of life. Such modifications can be as simple as methylations, hydroxylations, or thiolations, complex as ring closures, glycosylations, acylations, or aminoacylations, or unusual as the incorporation of selenium. While initially found in transfer and ribosomal RNAs, modifications also exist in messenger RNAs and noncoding RNAs. Modifications have profound cellular outcomes at various levels, such as altering RNA structure or being essential for cell survival or organism viability. The aberrant presence or absence of RNA modifications can lead to human disease, ranging from cancer to various metabolic and developmental illnesses such as Hoyeraal-Hreidarsson syndrome, Bowen-Conradi syndrome, or Williams-Beuren syndrome. In this review article, we summarize the characterization of all 143 currently known modified ribonucleosides by describing their taxonomic distributions, the enzymes that generate the modifications, and any implications in cellular processes, RNA structure, and disease. We also highlight areas of active research, such as specific RNAs that contain a particular type of modification as well as methodologies used to identify novel RNA modifications. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Phillip J. McCown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Agnieszka Ruszkowska
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
- Present address:
Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| | - Charlotte N. Kunkler
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Kurtis Breger
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jacob P. Hulewicz
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Matthew C. Wang
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Noah A. Springer
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jessica A. Brown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
6
|
Scortecci JF, Serrão VHB, Fernandes AF, Basso LG, Gutierrez RF, Araujo APU, Neto MO, Thiemann OH. Initial steps in selenocysteine biosynthesis: The interaction between selenocysteine lyase and selenophosphate synthetase. Int J Biol Macromol 2020; 156:18-26. [DOI: 10.1016/j.ijbiomac.2020.03.241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/29/2020] [Accepted: 03/28/2020] [Indexed: 10/24/2022]
|
7
|
C5-Substituted 2-Selenouridines Ensure Efficient Base Pairing with Guanosine; Consequences for Reading the NNG-3' Synonymous mRNA Codons. Int J Mol Sci 2020; 21:ijms21082882. [PMID: 32326096 PMCID: PMC7216251 DOI: 10.3390/ijms21082882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022] Open
Abstract
5-Substituted 2-selenouridines (R5Se2U) are post-transcriptional modifications present in the first anticodon position of transfer RNA. Their functional role in the regulation of gene expression is elusive. Here, we present efficient syntheses of 5-methylaminomethyl-2-selenouridine (1, mnm5Se2U), 5-carboxymethylaminomethyl-2-selenouridine (2, cmnm5Se2U), and Se2U (3) alongside the crystal structure of the latter nucleoside. By using pH-dependent potentiometric titration, pKa values for the N3H groups of 1–3 were assessed to be significantly lower compared to their 2-thio- and 2-oxo-congeners. At physiological conditions (pH 7.4), Se2-uridines 1 and 2 preferentially adopted the zwitterionic form (ZI, ca. 90%), with the positive charge located at the amino alkyl side chain and the negative charge at the Se2-N3-O4 edge. As shown by density functional theory (DFT) calculations, this ZI form efficiently bound to guanine, forming the so-called “new wobble base pair”, which was accepted by the ribosome architecture. These data suggest that the tRNA anticodons with wobble R5Se2Us may preferentially read the 5′-NNG-3′ synonymous codons, unlike their 2-thio- and 2-oxo-precursors, which preferentially read the 5′-NNA-3′ codons. Thus, the interplay between the levels of U-, S2U- and Se2U-tRNA may have a dominant role in the epitranscriptomic regulation of gene expression via reading of the synonymous 3′-A- and 3′-G-ending codons.
Collapse
|
8
|
Abstract
Signaling by H2S is proposed to occur via persulfidation, a posttranslational modification of cysteine residues (RSH) to persulfides (RSSH). Persulfidation provides a framework for understanding the physiological and pharmacological effects of H2S. Due to the inherent instability of persulfides, their chemistry is understudied. In this review, we discuss the biologically relevant chemistry of H2S and the enzymatic routes for its production and oxidation. We cover the chemical biology of persulfides and the chemical probes for detecting them. We conclude by discussing the roles ascribed to protein persulfidation in cell signaling pathways.
Collapse
Affiliation(s)
- Milos R. Filipovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Jasmina Zivanovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Facultad de Ciencias and Center for Free Radical and Biomedical Research, Universidad de la Republica, 11400 Montevideo, Uruguay
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600, United States
| |
Collapse
|
9
|
Zheng C, Black KA, Dos Santos PC. Diverse Mechanisms of Sulfur Decoration in Bacterial tRNA and Their Cellular Functions. Biomolecules 2017; 7:biom7010033. [PMID: 28327539 PMCID: PMC5372745 DOI: 10.3390/biom7010033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/10/2017] [Accepted: 03/16/2017] [Indexed: 01/01/2023] Open
Abstract
Sulfur-containing transfer ribonucleic acids (tRNAs) are ubiquitous biomolecules found in all organisms that possess a variety of functions. For decades, their roles in processes such as translation, structural stability, and cellular protection have been elucidated and appreciated. These thionucleosides are found in all types of bacteria; however, their biosynthetic pathways are distinct among different groups of bacteria. Considering that many of the thio-tRNA biosynthetic enzymes are absent in Gram-positive bacteria, recent studies have addressed how sulfur trafficking is regulated in these prokaryotic species. Interestingly, a novel proposal has been given for interplay among thionucleosides and the biosynthesis of other thiocofactors, through participation of shared-enzyme intermediates, the functions of which are impacted by the availability of substrate as well as metabolic demand of thiocofactors. This review describes the occurrence of thio-modifications in bacterial tRNA and current methods for detection of these modifications that have enabled studies on the biosynthesis and functions of S-containing tRNA across bacteria. It provides insight into potential modes of regulation and potential evolutionary events responsible for divergence in sulfur metabolism among prokaryotes.
Collapse
Affiliation(s)
- Chenkang Zheng
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27101, USA.
| | | | | |
Collapse
|
10
|
Shin J, Song Y, Jeong Y, Cho BK. Analysis of the Core Genome and Pan-Genome of Autotrophic Acetogenic Bacteria. Front Microbiol 2016; 7:1531. [PMID: 27733845 PMCID: PMC5039349 DOI: 10.3389/fmicb.2016.01531] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 09/12/2016] [Indexed: 01/07/2023] Open
Abstract
Acetogens are obligate anaerobic bacteria capable of reducing carbon dioxide (CO2) to multicarbon compounds coupled to the oxidation of inorganic substrates, such as hydrogen (H2) or carbon monoxide (CO), via the Wood-Ljungdahl pathway. Owing to the metabolic capability of CO2 fixation, much attention has been focused on understanding the unique pathways associated with acetogens, particularly their metabolic coupling of CO2 fixation to energy conservation. Most known acetogens are phylogenetically and metabolically diverse bacteria present in 23 different bacterial genera. With the increased volume of available genome information, acetogenic bacterial genomes can be analyzed by comparative genome analysis. Even with the genetic diversity that exists among acetogens, the Wood-Ljungdahl pathway, a central metabolic pathway, and cofactor biosynthetic pathways are highly conserved for autotrophic growth. Additionally, comparative genome analysis revealed that most genes in the acetogen-specific core genome were associated with the Wood-Ljungdahl pathway. The conserved enzymes and those predicted as missing can provide insight into biological differences between acetogens and allow for the discovery of promising candidates for industrial applications.
Collapse
Affiliation(s)
- Jongoh Shin
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology Daejeon, South Korea
| | - Yoseb Song
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology Daejeon, South Korea
| | - Yujin Jeong
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology Daejeon, South Korea
| | - Byung-Kwan Cho
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and TechnologyDaejeon, South Korea; Intelligent Synthetic Biology CenterDaejeon, South Korea
| |
Collapse
|
11
|
High-Throughput Screening of Coenzyme Preference Change of Thermophilic 6-Phosphogluconate Dehydrogenase from NADP(+) to NAD(.). Sci Rep 2016; 6:32644. [PMID: 27587230 PMCID: PMC5009329 DOI: 10.1038/srep32644] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/10/2016] [Indexed: 11/09/2022] Open
Abstract
Coenzyme engineering that changes NAD(P) selectivity of redox enzymes is an important tool in metabolic engineering, synthetic biology, and biocatalysis. Here we developed a high throughput screening method to identify mutants of 6-phosphogluconate dehydrogenase (6PGDH) from a thermophilic bacterium Moorella thermoacetica with reversed coenzyme selectivity from NADP+ to NAD+. Colonies of a 6PGDH mutant library growing on the agar plates were treated by heat to minimize the background noise, that is, the deactivation of intracellular dehydrogenases, degradation of inherent NAD(P)H, and disruption of cell membrane. The melted agarose solution containing a redox dye tetranitroblue tetrazolium (TNBT), phenazine methosulfate (PMS), NAD+, and 6-phosphogluconate was carefully poured on colonies, forming a second semi-solid layer. More active 6PGDH mutants were examined via an enzyme-linked TNBT-PMS colorimetric assay. Positive mutants were recovered by direct extraction of plasmid from dead cell colonies followed by plasmid transformation into E. coli TOP10. By utilizing this double-layer screening method, six positive mutants were obtained from two-round saturation mutagenesis. The best mutant 6PGDH A30D/R31I/T32I exhibited a 4,278-fold reversal of coenzyme selectivity from NADP+ to NAD+. This screening method could be widely used to detect numerous redox enzymes, particularly for thermophilic ones, which can generate NAD(P)H reacted with the redox dye TNBT.
Collapse
|
12
|
|
13
|
The cysteine desulfurase IscS of Mycobacterium tuberculosis is involved in iron-sulfur cluster biogenesis and oxidative stress defence. Biochem J 2014; 459:467-78. [PMID: 24548275 DOI: 10.1042/bj20130732] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The complex multiprotein systems for the assembly of protein-bound iron-sulfur (Fe-S) clusters are well defined in Gram-negative model organisms. However, little is known about Fe-S cluster biogenesis in other bacterial species. The ISC (iron-sulfur cluster) operon of Mycobacterium tuberculosis lacks several genes known to be essential for the function of this system in other organisms. However, the cysteine desulfurase IscSMtb (Rv number Rv3025c; Mtb denotes M. tuberculosis) is conserved in this important pathogen. The present study demonstrates that deleting iscSMtb renders the cells microaerophilic and hypersensitive to oxidative stress. Moreover, the ∆iscSMtb mutant shows impaired Fe-S cluster-dependent enzyme activity, clearly indicating that IscSMtb is associated with Fe-S cluster assembly. An extensive interaction network of IscSMtb with Fe-S proteins was identified, suggesting a novel mechanism of sulfur transfer by direct interaction with apoproteins. Interestingly, the highly homologous IscS of Escherichia coli failed to complement the ∆iscSMtb mutant and showed a less diverse protein-interaction profile. To identify a structural basis for these observations we determined the crystal structure of IscSMtb, which mirrors adaptations made in response to an ISC operon devoid of IscU-like Fe-S cluster scaffold proteins. We conclude that in M. tuberculosis IscS has been redesigned during evolution to compensate for the deletion of large parts of the ISC operon.
Collapse
|
14
|
Transcriptional Response of Selenopolypeptide Genes and Selenocysteine Biosynthesis Machinery Genes in Escherichia coli during Selenite Reduction. Int J Microbiol 2014; 2014:394835. [PMID: 24839442 PMCID: PMC4009273 DOI: 10.1155/2014/394835] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 02/28/2014] [Accepted: 03/16/2014] [Indexed: 01/05/2023] Open
Abstract
Bacteria can reduce toxic selenite into less toxic, elemental selenium (Se0), but the mechanism on how bacterial cells reduce selenite at molecular level is still not clear. We used Escherichia coli strain K12, a common bacterial strain, as a model to study its growth response to sodium selenite (Na2SeO3) treatment and then used quantitative real-time PCR (qRT-PCR) to quantify transcript levels of three E. coli selenopolypeptide genes and a set of machinery genes for selenocysteine (SeCys) biosynthesis and incorporation into polypeptides, whose involvements in the selenite reduction are largely unknown. We determined that 5 mM Na2SeO3 treatment inhibited growth by ∼50% while 0.001 to 0.01 mM treatments stimulated cell growth by ∼30%. Under 50% inhibitory or 30% stimulatory Na2SeO3 concentration, selenopolypeptide genes (fdnG, fdoG, and fdhF) whose products require SeCys but not SeCys biosynthesis machinery genes were found to be induced ≥2-fold. In addition, one sulfur (S) metabolic gene iscS and two previously reported selenite-responsive genes sodA and gutS were also induced ≥2-fold under 50% inhibitory concentration. Our findings provide insight about the detoxification of selenite in E. coli via induction of these genes involved in the selenite reduction process.
Collapse
|
15
|
Kaur M, Rob A, Caton-Williams J, Huang Z. Biochemistry of Nucleic Acids Functionalized with Sulfur, Selenium, and Tellurium: Roles of the Single-Atom Substitution. ACTA ACUST UNITED AC 2013. [DOI: 10.1021/bk-2013-1152.ch005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Manindar Kaur
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Abdur Rob
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | | | - Zhen Huang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
16
|
Biogenesis of [Fe–S] cluster in Firmicutes: an unexploited field of investigation. Antonie Van Leeuwenhoek 2013; 104:283-300. [DOI: 10.1007/s10482-013-9966-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
|
17
|
Structural and mechanistic basis for enhanced translational efficiency by 2-thiouridine at the tRNA anticodon wobble position. J Mol Biol 2013; 425:3888-906. [PMID: 23727144 DOI: 10.1016/j.jmb.2013.05.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 11/22/2022]
Abstract
The 2-thiouridine (s(2)U) at the wobble position of certain bacterial and eukaryotic tRNAs enhances aminoacylation kinetics, assists proper codon-anticodon base pairing at the ribosome A-site, and prevents frameshifting during translation. By mass spectrometry of affinity-purified native Escherichia coli tRNA1(Gln)UUG, we show that the complete modification at the wobble position 34 is 5-carboxyaminomethyl-2-thiouridine (cmnm(5)s(2)U). The crystal structure of E. coli glutaminyl-tRNA synthetase (GlnRS) bound to native tRNA1(Gln) and ATP demonstrates that cmnm(5)s(2)U34 improves the order of a previously unobserved 11-amino-acid surface loop in the distal β-barrel domain of the enzyme and imparts other local rearrangements of nearby amino acids that create a binding pocket for the 2-thio moiety. Together with previously solved structures, these observations explain the degenerate recognition of C34 and modified U34 by GlnRS. Comparative pre-steady-state aminoacylation kinetics of native tRNA1(Gln), synthetic tRNA1(Gln) containing s(2)U34 as sole modification, and unmodified wild-type and mutant tRNA1(Gln) and tRNA2(Gln) transcripts demonstrates that the exocyclic sulfur moiety improves tRNA binding affinity to GlnRS 10-fold compared with the unmodified transcript and that an additional fourfold improvement arises from the presence of the cmnm(5) moiety. Measurements of Gln-tRNA(Gln) interactions at the ribosome A-site show that the s(2)U modification enhances binding affinity to the glutamine codons CAA and CAG and increases the rate of GTP hydrolysis by E. coli EF-Tu by fivefold.
Collapse
|
18
|
Liu Y, Zhu X, Nakamura A, Orlando R, Söll D, Whitman WB. Biosynthesis of 4-thiouridine in tRNA in the methanogenic archaeon Methanococcus maripaludis. J Biol Chem 2012; 287:36683-92. [PMID: 22904325 DOI: 10.1074/jbc.m112.405688] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
4-Thiouridine (s(4)U) is a conserved modified nucleotide at position 8 of bacterial and archaeal tRNAs and plays a role in protecting cells from near-UV killing. Escherichia coli employs the following two enzymes for its synthesis: the cysteine desulfurase IscS, which forms a Cys persulfide enzyme adduct from free Cys; and ThiI, which adenylates U8 and transfers sulfur from IscS to form s(4)U. The C-terminal rhodanese-like domain (RLD) of ThiI is responsible for the sulfurtransferase activity. The mechanism of s(4)U biosynthesis in archaea is not known as many archaea lack cysteine desulfurase and an RLD of the putative ThiI. Using the methanogenic archaeon Methanococcus maripaludis, we show that deletion of ThiI (MMP1354) abolished the biosynthesis of s(4)U but not of thiamine. MMP1354 complements an Escherichia coli ΔthiI mutant for s(4)U formation, indicating that MMP1354 is sufficient for sulfur incorporation into s(4)U. In the absence of an RLD, MMP1354 uses Cys(265) and Cys(268) located in the PP-loop pyrophosphatase domain to generate persulfide and disulfide intermediates for sulfur transfer. In vitro assays suggest that S(2-) is a physiologically relevant sulfur donor for s(4)U formation catalyzed by MMP1354 (K(m) for Na(2)S is ∼1 mm). Thus, methanogenic archaea developed a strategy for sulfur incorporation into s(4)U that differs from bacteria; this may be an adaptation to life in sulfide-rich environments.
Collapse
Affiliation(s)
- Yuchen Liu
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
19
|
Su D, Ojo TT, Söll D, Hohn MJ. Selenomodification of tRNA in archaea requires a bipartite rhodanese enzyme. FEBS Lett 2012; 586:717-21. [PMID: 22293502 PMCID: PMC3309168 DOI: 10.1016/j.febslet.2012.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 01/18/2012] [Accepted: 01/18/2012] [Indexed: 10/14/2022]
Abstract
5-Methylaminomethyl-2-selenouridine (mnm(5)Se(2)U) is found in the first position of the anticodon in certain tRNAs from bacteria, archaea and eukaryotes. This selenonucleoside is formed in Escherichia coli from the corresponding thionucleoside mnm(5)S(2)U by the monomeric enzyme YbbB. This nucleoside is present in the tRNA of Methanococcales, yet the corresponding 2-selenouridine synthase is unknown in archaea and eukaryotes. Here we report that a bipartite ybbB ortholog is present in all members of the Methanococcales. Gene deletions in Methanococcus maripaludis and in vitro activity assays confirm that the two proteins act in trans to form in tRNA a selenonucleoside, presumably mnm(5)Se(2)U. Phylogenetic data suggest a primal origin of seleno-modified tRNAs.
Collapse
Affiliation(s)
- Dan Su
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Temitope T. Ojo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
- Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Michael J. Hohn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| |
Collapse
|
20
|
Collins R, Johansson AL, Karlberg T, Markova N, van den Berg S, Olesen K, Hammarström M, Flores A, Schüler H, Schiavone LH, Brzezinski P, Arnér ESJ, Högbom M. Biochemical discrimination between selenium and sulfur 1: a single residue provides selenium specificity to human selenocysteine lyase. PLoS One 2012; 7:e30581. [PMID: 22295093 PMCID: PMC3266270 DOI: 10.1371/journal.pone.0030581] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 12/19/2011] [Indexed: 11/24/2022] Open
Abstract
Selenium and sulfur are two closely related basic elements utilized in nature for a vast array of biochemical reactions. While toxic at higher concentrations, selenium is an essential trace element incorporated into selenoproteins as selenocysteine (Sec), the selenium analogue of cysteine (Cys). Sec lyases (SCLs) and Cys desulfurases (CDs) catalyze the removal of selenium or sulfur from Sec or Cys and generally act on both substrates. In contrast, human SCL (hSCL) is specific for Sec although the only difference between Sec and Cys is the identity of a single atom. The chemical basis of this selenium-over-sulfur discrimination is not understood. Here we describe the X-ray crystal structure of hSCL and identify Asp146 as the key residue that provides the Sec specificity. A D146K variant resulted in loss of Sec specificity and appearance of CD activity. A dynamic active site segment also provides the structural prerequisites for direct product delivery of selenide produced by Sec cleavage, thus avoiding release of reactive selenide species into the cell. We thus here define a molecular determinant for enzymatic specificity discrimination between a single selenium versus sulfur atom, elements with very similar chemical properties. Our findings thus provide molecular insights into a key level of control in human selenium and selenoprotein turnover and metabolism.
Collapse
Affiliation(s)
- Ruairi Collins
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Ann-Louise Johansson
- Stockholm Center for Biomembrane Research, Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences C4, Stockholm University, Stockholm, Sweden
| | - Tobias Karlberg
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Natalia Markova
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Susanne van den Berg
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Kenneth Olesen
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Martin Hammarström
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Alex Flores
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Herwig Schüler
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Lovisa Holmberg Schiavone
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Peter Brzezinski
- Stockholm Center for Biomembrane Research, Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences C4, Stockholm University, Stockholm, Sweden
| | - Elias S. J. Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Högbom
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Stockholm Center for Biomembrane Research, Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences C4, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
21
|
Bolstad HM, Wood MJ. An in vivo method for characterization of protein interactions within sulfur trafficking systems of E. coli. J Proteome Res 2010; 9:6740-51. [PMID: 20936830 DOI: 10.1021/pr100920r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sulfur trafficking systems are multiprotein systems that synthesize sulfur-containing cofactors such as iron-sulfur clusters. The sulfur is derived enzymatically from cysteine and transferred between nucleophilic cysteine residues within proteins until incorporation into the relevant cofactor. As these systems are poorly understood, we have developed an in vivo method for characterizing these interactions and have applied our method to the SUF system of Escherichia coli, which is responsible for iron-sulfur cluster biogenesis under oxidative stress and iron limitation. Proteins that interact covalently with SufE were trapped in vivo, purified, and identified by mass spectrometry. We identified SufE-SufS and SufE-SufB interactions, interactions previously demonstrated in vitro, indicating that our method has the ability to identify physiologically relevant interactions. The sulfur acceptor function of SufE is likely due to the low pK(a) of its active site C51, which we determined to be 6.3 ± 0.7. We found that SufE interacts with several Fe-S cluster proteins, further supporting the validity of the method, and with tryptophanase, glutaredoxin-3, and glutaredoxin-4, possibly suggesting a role for these enzymes in iron-sulfur biogenesis by the SUF system. Our results indicate that this method could serve as a general tool for the determination of sulfur trafficking mechanisms.
Collapse
Affiliation(s)
- Heather M Bolstad
- Department of Environmental Toxicology, University of California, Davis, California 95616, United States
| | | |
Collapse
|
22
|
Ruiz M, Bettache A, Janicki A, Vinella D, Zhang CC, Latifi A. The alr2505 (osiS) gene from Anabaena sp. strain PCC7120 encodes a cysteine desulfurase induced by oxidative stress. FEBS J 2010; 277:3715-25. [DOI: 10.1111/j.1742-4658.2010.07772.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Paris Z, Changmai P, Rubio MAT, Zíková A, Stuart KD, Alfonzo JD, Lukes J. The Fe/S cluster assembly protein Isd11 is essential for tRNA thiolation in Trypanosoma brucei. J Biol Chem 2010; 285:22394-402. [PMID: 20442400 DOI: 10.1074/jbc.m109.083774] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fe/S clusters are part of the active site of many enzymes and are essential for cell viability. In eukaryotes the cysteine desulfurase Nfs (IscS) donates the sulfur during Fe/S cluster assembly and was thought sufficient for this reaction. Moreover, Nfs is indispensable for tRNA thiolation, a modification generally required for tRNA function and protein synthesis. Recently, Isd11 was discovered as an integral part of the Nfs activity at an early step of Fe/S cluster assembly. Here we show, using a combination of genetic, molecular, and biochemical approaches, that Isd11, in line with its strong association with Nfs, is localized in the mitochondrion of T. brucei. In addition to its involvement in Fe/S assembly, Isd11 also partakes in both cytoplasmic and mitochondrial tRNA thiolation, whereas Mtu1, another protein proposed to collaborate with Nfs in tRNA thiolation, is required for this process solely within the mitochondrion. Taken together these data place Isd11 at the center of these sulfur transactions and raises the possibility of a connection between Fe/S metabolism and protein synthesis, helping integrate two seemingly unrelated pathways.
Collapse
Affiliation(s)
- Zdenek Paris
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 37005 Ceské Budejovice (Budweis), Czech Republic
| | | | | | | | | | | | | |
Collapse
|
24
|
Zhang W, Urban A, Mihara H, Leimkühler S, Kurihara T, Esaki N. IscS functions as a primary sulfur-donating enzyme by interacting specifically with MoeB and MoaD in the biosynthesis of molybdopterin in Escherichia coli. J Biol Chem 2009; 285:2302-8. [PMID: 19946146 DOI: 10.1074/jbc.m109.082172] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The persulfide sulfur formed on an active site cysteine residue of pyridoxal 5'-phosphate-dependent cysteine desulfurases is subsequently incorporated into the biosynthetic pathways of a variety of sulfur-containing cofactors and thionucleosides. In molybdenum cofactor biosynthesis, MoeB activates the C terminus of the MoaD subunit of molybdopterin (MPT) synthase to form MoaD-adenylate, which is subsequently converted to a thiocarboxylate for the generation of the dithiolene group of MPT. It has been shown that three cysteine desulfurases (CsdA, SufS, and IscS) of Escherichia coli can transfer sulfur from l-cysteine to the thiocarboxylate of MoaD in vitro. Here, we demonstrate by surface plasmon resonance analyses that IscS, but not CsdA or SufS, interacts with MoeB and MoaD. MoeB and MoaD can stimulate the IscS activity up to 1.6-fold. Analysis of the sulfuration level of MoaD isolated from strains defective in cysteine desulfurases shows a largely decreased sulfuration level of the protein in an iscS deletion strain but not in a csdA/sufS deletion strain. We also show that another iscS deletion strain of E. coli accumulates compound Z, a direct oxidation product of the immediate precursor of MPT, to the same extent as an MPT synthase-deficient strain. In contrast, analysis of the content of compound Z in DeltacsdA and DeltasufS strains revealed no such accumulation. These findings indicate that IscS is the primary physiological sulfur-donating enzyme for the generation of the thiocarboxylate of MPT synthase in MPT biosynthesis.
Collapse
Affiliation(s)
- Wanjiao Zhang
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Yoshizawa S, Böck A. The many levels of control on bacterial selenoprotein synthesis. Biochim Biophys Acta Gen Subj 2009; 1790:1404-14. [DOI: 10.1016/j.bbagen.2009.03.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 11/28/2022]
|
26
|
Paris Z, Rubio MAT, Lukes J, Alfonzo JD. Mitochondrial tRNA import in Trypanosoma brucei is independent of thiolation and the Rieske protein. RNA (NEW YORK, N.Y.) 2009; 15:1398-1406. [PMID: 19465685 PMCID: PMC2704085 DOI: 10.1261/rna.1589109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 04/13/2009] [Indexed: 05/27/2023]
Abstract
Due to a complete lack of the tRNA genes in the mitochondrial genome of Trypanosoma brucei, all tRNAs needed for mitochondrial translation have to be imported into the organelle from the cytosol. A previous study showed that the modified nucleotide s(2)U could act as a negative determinant for mitochondrial tRNA import in another kinetoplastid, Leishmania tarentolae. We have investigated whether the same type of cytosolic control for tRNA retention exists in T. brucei. Based on Northern analysis with subcellular RNA fractions and in vitro import assays, we demonstrate that silencing of the cysteine desulfurase, TbNfs (TbIscS), the key enzyme in tRNA thiolation (s(2)U) and Fe-S cluster formation in vivo, has no effect on tRNA partitioning. This observation is especially surprising in light of a recent report suggesting that in L. tropica the Rieske Fe-S protein is an essential component of the RNA import complex (RIC). In line with the above observation, we also show that down-regulation of the Rieske protein by RNA interference, similar to the TbNfs knockdowns, has no effect on import. The data presented here supports the view that in T. brucei: (1) s(2)U is not a negative determinant for tRNA import; (2) the Rieske protein is not an essential component of the import machinery, and (3) since the Rieske protein is essential for respiration and maintenance of inner mitochondrial membrane potential, neither process plays a critical role in tRNA import. We therefore suggest that the T. brucei import machinery differs substantially from what has been described in Leishmania.
Collapse
Affiliation(s)
- Zdenek Paris
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 Ceské Budejovice (Budweis), Czech Republic
| | | | | | | |
Collapse
|
27
|
Phytoremediation of selenium using transgenic plants. Curr Opin Biotechnol 2009; 20:207-12. [DOI: 10.1016/j.copbio.2009.02.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 02/02/2009] [Indexed: 11/21/2022]
|
28
|
|
29
|
Caton-Williams J, Huang Z. Biochemistry of selenium-derivatized naturally occurring and unnatural nucleic acids. Chem Biodivers 2008; 5:396-407. [PMID: 18357549 DOI: 10.1002/cbdv.200890040] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Selenium (Se) can provide unique biochemical and biological functions, and properties to macromolecules, including protein and RNA. Although Se has not yet been found in DNA, identification of the presence of Se in natural tRNAs has led to discovery of the naturally occurring 2-selenouridine and 5-[(methylamino)methyl]-2-selenouridine (mnm(5)se(2)U). The Se-atoms at C(2) of the modified uridines are introduced by 2-selenouridine synthase via displacement of the S-atoms in the corresponding 2-thiouridine nucleotides of the tRNAs, and selenophosphate is used as the Se donor. The research indicated that mnm(5)se(2)U is located at the first or wobble position of the anticodons in several bacterial tRNAs, including tRNA(Lys), tRNA(Glu), and tRNA(Gln). The 2-seleno functionality on this modified nucleotide probably improves the translation accuracy and/or efficiency. These observations in vivo suggest that the presence of Se can provide natural RNAs with useful properties to better function and survival. To further investigate the biochemical and structural properties of Se-derivatized nucleic acids (SeNA), we have pioneered chemical and enzymatic synthesis of Se-derivatized nucleic acids, and introduced Se into both RNA and DNA at a variety of positions by atom-specific replacement of oxygen. This review outlines the recent advancements in chemical and biochemical syntheses, and studies of SeNAs, and their potential applications in structural and functional investigation of nucleic acids and their protein complexes.
Collapse
|
30
|
The iscS gene deficiency affects the expression of pyrimidine metabolism genes. Biochem Biophys Res Commun 2008; 372:407-11. [PMID: 18482579 DOI: 10.1016/j.bbrc.2008.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 05/01/2008] [Indexed: 11/23/2022]
Abstract
Inactivation of iscS encoding cysteine desulfurase results in a slow growth phenotype associated with the deficiency of iron-sulfur clusters, thiamine, NAD, and tRNA thionucleosides in Escherichia coli. However, the other roles of iscSin vivo are unknown. By using differential screening strategies, we identified 2 pyrimidine salvage enzymes, namely, uridine phosphorylase and cytidine deaminase, which were down-regulated in the iscS mutant. Both enzymes are positively regulated by the cAMP receptor protein (CRP). We also identified a novel protein complex, namely, YeiT-YeiA, whose expression level was decreased in the iscS mutant. The recombinant YeiT-YeiA complex exhibited NADH-dependent dihydropyrimidine dehydrogenase activity, indicating its role in pyrimidine metabolism. The presence of a CRP-binding consensus sequence on the 5'-upstream of the yeiT-YeiA gene suggests its regulation by CRP. These results provide a clue to the possible role of iscS in pyrimidine metabolism by gene regulation.
Collapse
|
31
|
Frazzon APG, Ramirez MV, Warek U, Balk J, Frazzon J, Dean DR, Winkel BSJ. Functional analysis of Arabidopsis genes involved in mitochondrial iron-sulfur cluster assembly. PLANT MOLECULAR BIOLOGY 2007; 64:225-40. [PMID: 17417719 DOI: 10.1007/s11103-007-9147-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 02/01/2007] [Indexed: 05/14/2023]
Abstract
Machinery for the assembly of the iron-sulfur ([Fe-S]) clusters that function as cofactors in a wide variety of proteins has been identified in microbes, insects, and animals. Homologs of the genes involved in [Fe-S] cluster biogenesis have recently been found in plants, as well, and point to the existence of two distinct systems in these organisms, one located in plastids and one in mitochondria. Here we present the first biochemical confirmation of the activity of two components of the mitochondrial machinery in Arabidopsis, AtNFS1 and AtISU1. Analysis of the expression patterns of the corresponding genes, as well as AtISU2 and AtISU3, and the phenotypes of plants in which these genes are up or down-regulated are consistent with a role for the mitochondrial [Fe-S] assembly system in the maturation of proteins required for normal plant development.
Collapse
|
32
|
|
33
|
Abstract
The presence of sulfur in cofactors has been appreciated for over a century, but the trafficking and delivery of sulfur to cofactors and nucleosides is still not fully understood. In the last decade, great strides have been made toward understanding those processes and the enzymes that conduct them, including cysteine desulfurases and rhodanese homology domain proteins. The persulfide group (R-S-SH) predominantly serves as the sulfur donor, and sulfur incorporation pathways share enzymes to a remarkable degree. Mechanisms for the use of persulfide groups are illustrated with the relatively simple case of 4-thiourdine generation, and further possibilities are illuminated by the 2-thiouridine and cofactor biosynthetic systems. The rationale and ramifications of sharing enzymes between sulfur incorporation pathways are discussed, including implications for interpreting genetic or genomic data that indicate a role for a sulfur transfer protein in a particular biological process.
Collapse
Affiliation(s)
- Eugene G Mueller
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
| |
Collapse
|
34
|
Abstract
Iron-sulfur [Fe-S] clusters are ubiquitous and evolutionary ancient prosthetic groups that are required to sustain fundamental life processes. Owing to their remarkable structural plasticity and versatile chemical/electronic features [Fe-S] clusters participate in electron transfer, substrate binding/activation, iron/sulfur storage, regulation of gene expression, and enzyme activity. Formation of intracellular [Fe-S] clusters does not occur spontaneously but requires a complex biosynthetic machinery. Three different types of [Fe-S] cluster biosynthetic systems have been discovered, and all of them are mechanistically unified by the requirement for a cysteine desulfurase and the participation of an [Fe-S] cluster scaffolding protein. Important mechanistic questions related to [Fe-S] cluster biosynthesis involve the molecular details of how [Fe-S] clusters are assembled on scaffold proteins, how [Fe-S] clusters are transferred from scaffolds to target proteins, how various accessory proteins participate in [Fe-S] protein maturation, and how the biosynthetic process is regulated.
Collapse
Affiliation(s)
- Deborah C Johnson
- Department of Biochemistry, Virginia Polytechnic Institute, Blacksburg, Virginia 24061, USA.
| | | | | | | |
Collapse
|
35
|
Biosynthesis and function of tRNA wobble modifications. FINE-TUNING OF RNA FUNCTIONS BY MODIFICATION AND EDITING 2005. [DOI: 10.1007/b106361] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Umeda N, Suzuki T, Yukawa M, Ohya Y, Shindo H, Watanabe K, Suzuki T. Mitochondria-specific RNA-modifying Enzymes Responsible for the Biosynthesis of the Wobble Base in Mitochondrial tRNAs. J Biol Chem 2005; 280:1613-24. [PMID: 15509579 DOI: 10.1074/jbc.m409306200] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human mitochondrial (mt) tRNA(Lys) has a taurine-containing modified uridine, 5-taurinomethyl-2-thiouridine (taum5s2U), at its anticodon wobble position. We previously found that the mt tRNA(Lys), carrying the A8344G mutation from cells of patients with myoclonus epilepsy associated with ragged-red fibers (MERRF), lacks the taum5s2U modification. Here we describe the identification and characterization of a tRNA-modifying enzyme MTU1 (mitochondrial tRNA-specific 2-thiouridylase 1) that is responsible for the 2-thiolation of the wobble position in human and yeast mt tRNAs. Disruption of the yeast MTU1 gene eliminated the 2-thio modification of mt tRNAs and impaired mitochondrial protein synthesis, which led to reduced respiratory activity. Furthermore, when MTO1 or MSS1, which are responsible for the C5 substituent of the modified uridine, was disrupted along with MTU1, a much more severe reduction in mitochondrial activity was observed. Thus, the C5 and 2-thio modifications act synergistically in promoting efficient cognate codon decoding. Partial inactivation of MTU1 in HeLa cells by small interference RNA also reduced their oxygen consumption and resulted in mitochondria with defective membrane potentials, which are similar phenotypic features observed in MERRF.
Collapse
Affiliation(s)
- Noriko Umeda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Outten FW, Djaman O, Storz G. A suf operon requirement for Fe-S cluster assembly during iron starvation in Escherichia coli. Mol Microbiol 2004; 52:861-72. [PMID: 15101990 DOI: 10.1111/j.1365-2958.2004.04025.x] [Citation(s) in RCA: 332] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The suf and isc operons of Escherichia coli have been implicated in Fe-S cluster assembly. However, it has been unclear why E. coli has two systems for Fe-S cluster biosynthesis. We have examined the regulatory characteristics and mutant phenotypes of both operons to discern if the two operons have redundant functions or if their cellular roles are divergent. Both operons are similarly induced by hydrogen peroxide and the iron chelator 2,2'-dipyridyl, although by different mechanisms. Regulation of the isc operon is mediated by IscR, whereas the suf operon requires OxyR and IHF for the response to oxidative stress and Fur for induction by iron starvation. Simultaneous deletion of iscS and most suf genes is synthetically lethal. However, although the suf and isc operons have overlapping functions, they act as distinct complexes because the SufS desulphurase alone cannot substitute for the IscS enzyme. In addition, suf deletion mutants are more sensitive to iron starvation than isc mutants, and the activity of the Fe-S enzyme gluconate dehydratase is diminished in the suf mutant during iron starvation. These findings are consistent with the model that the isc operon encodes the housekeeping Fe-S cluster assembly system in E. coli, whereas the suf operon is specifically adapted to synthesize Fe-S clusters when iron or sulphur metabolism is disrupted by iron starvation or oxidative stress.
Collapse
Affiliation(s)
- F Wayne Outten
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
38
|
Lauhon CT, Skovran E, Urbina HD, Downs DM, Vickery LE. Substitutions in an active site loop of Escherichia coli IscS result in specific defects in Fe-S cluster and thionucleoside biosynthesis in vivo. J Biol Chem 2004; 279:19551-8. [PMID: 14978044 DOI: 10.1074/jbc.m401261200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
IscS catalyzes the fragmentation of l-cysteine to l-alanine and sulfane sulfur in the form of a cysteine persulfide in the active site of the enzyme. In Escherichia coli IscS, the active site cysteine Cys(328) resides in a flexible loop that potentially influences both the formation and stability of the cysteine persulfide as well as the specificity of sulfur transfer to protein substrates. Alanine-scanning substitution of this 14 amino acid region surrounding Cys(328) identified additional residues important for IscS function in vivo. Two mutations, S326A and L333A, resulted in strains that were severely impaired in Fe-S cluster synthesis in vivo. The mutant strains were deficient in Fe-S cluster-dependent tRNA thionucleosides (s(2)C and ms(2)i(6)A) yet showed wild type levels of Fe-S-independent thionucleosides (s(4)U and mnm(5)s(2)U) that require persulfide formation and transfer. In vitro, the mutant proteins were similar to wild type in both cysteine desulfurase activity and sulfur transfer to IscU. These results indicate that residues in the active site loop can selectively affect Fe-S cluster biosynthesis in vivo without detectably affecting persulfide delivery and suggest that additional assays may be necessary to fully represent the functions of IscS in Fe-S cluster formation.
Collapse
Affiliation(s)
- Charles T Lauhon
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA.
| | | | | | | | | |
Collapse
|
39
|
Nakai Y, Umeda N, Suzuki T, Nakai M, Hayashi H, Watanabe K, Kagamiyama H. Yeast Nfs1p is involved in thio-modification of both mitochondrial and cytoplasmic tRNAs. J Biol Chem 2004; 279:12363-8. [PMID: 14722066 DOI: 10.1074/jbc.m312448200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The IscS protein is a pyridoxal phosphate-containing cysteine desulfurase involved in iron-sulfur cluster biogenesis. In prokaryotes, IscS is also involved in various metabolic functions, including thio-modification of tRNA. By contrast, the eukaryotic ortholog of IscS (Nfs1) has thus far been shown to be functional only in mitochondrial iron-sulfur cluster biogenesis. We demonstrate here that yeast Nfs1p is also required for the post-transcriptional thio-modification of both mitochondrial (mt) and cytoplasmic (cy) tRNAs in vivo. Depletion of Nfs1p resulted in an immediate impairment of the 2-thio-modification of 5-carboxymethylaminomethyl-2-thiouridine at the wobble positions of mt-tRNA(UUU)(Lys) and mt-tRNA(UUG)(Gln). In addition, we observed a severe reduction in the 2-thio-modification of 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U) of cy-tRNA(UUU)(Lys2) and cy-tRNA(UUC)(Glu3), although the effect was somewhat delayed compared with that seen in mt-tRNAs. Mass spectrometry analysis revealed an increase in 5-methoxycarbonylmethyluridine concomitant with a decrease in mcm(5)s(2)U in cy-tRNAs that were prepared from Nfs1p-depleted cells. These results suggest that Nfs1p is involved in the 2-thio-modification of both 5-carboxymethylaminomethyl-2-thiouridine in mt-tRNAs and mcm(5)s(2)U in cy-tRNAs.
Collapse
Affiliation(s)
- Yumi Nakai
- Department of Biochemistry, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | | | | | | | | | | | | |
Collapse
|
40
|
Wolfe MD, Ahmed F, Lacourciere GM, Lauhon CT, Stadtman TC, Larson TJ. Functional Diversity of the Rhodanese Homology Domain. J Biol Chem 2004; 279:1801-9. [PMID: 14594807 DOI: 10.1074/jbc.m310442200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli has eight genes predicted to encode sulfurtransferases having the active site consensus sequence Cys-Xaa-Xaa-Gly. One of these genes, ybbB, is frequently found within bacterial operons that contain selD, the selenophosphate synthetase gene, suggesting a role in selenium metabolism. We show that ybbB is required in vivo for the specific substitution of selenium for sulfur in 2-thiouridine residues in E. coli tRNA. This modified tRNA nucleoside, 5-methylaminomethyl-2-selenouridine (mnm(5)se(2)U), is located at the wobble position of the anticodons of tRNA(Lys), tRNA(Glu), and tRNA(1)(Gln). Nucleoside analysis of tRNAs from wild-type and ybbB mutant strains revealed that production of mnm(5)se(2)U is lost in the ybbB mutant but that 5-methylaminomethyl-2-thiouridine, the mnm(5)se(2)U precursor, is unaffected by deletion of ybbB. Thus, ybbB is not required for the initial sulfurtransferase reaction but rather encodes a 2-selenouridine synthase that replaces a sulfur atom in 2-thiouridine in tRNA with selenium. Purified 2-selenouridine synthase containing a C-terminal His(6) tag exhibited spectral properties consistent with tRNA bound to the enzyme. In vitro mnm(5)se(2)U synthesis is shown to be dependent on 2-selenouridine synthase, SePO(3), and tRNA. Finally, we demonstrate that the conserved Cys(97) (but not Cys(96)) in the rhodanese sequence motif Cys(96)-Cys(97)-Xaa-Xaa-Gly is required for 2-selenouridine synthase in vivo activity. These data are consistent with the ybbB gene encoding a tRNA 2-selenouridine synthase and identifies a new role for the rhodanese homology domain in enzymes.
Collapse
Affiliation(s)
- Matt D Wolfe
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8012, USA
| | | | | | | | | | | |
Collapse
|
41
|
Wangeline AL, Burkhead JL, Hale KL, Lindblom SD, Terry N, Pilon M, Pilon-Smits EAH. Overexpression of ATP sulfurylase in Indian mustard: effects on tolerance and accumulation of twelve metals. JOURNAL OF ENVIRONMENTAL QUALITY 2004; 33:54-60. [PMID: 14964358 DOI: 10.2134/jeq2004.5400] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Indian mustard [Brassica juncea (L.) Czern.] transgenics overexpressing ATP sulfurylase (APS plants) were shown previously to have higher levels of total thiols, S, and Se. The present study explores the effect of ATP sulfurylase overexpression on tolerance and accumulation of other metals, both oxyanions and cations, reasoning that some anions may react directly with ATP sulfurylase, while other ions may be bound by its thiol end products. The APS transgenics were compared with wild-type plants with respect to tolerance and accumulation of As, Cd, Cr, Cu, Hg, Mn, Mo, Ni, Pb, V, W, and Zn, supplied individually in agar medium (seedlings) or in hydroponics (mature plants). At the seedling stage, APS transgenics were more tolerant than wild type to As(III), As(V), Cd, Cu, Hg, and Zn, but less tolerant to Mo and V. The APS seedlings had up to 2.5-fold higher shoot concentrations of As(III), As(V), Hg, Mo, Pb, and V, and somewhat lower Cr levels. Mature APS plants contained up to 2.5-fold higher shoot concentrations of Cd, Cr, Cu, Mo, V, and W than wild type. They also contained 1.5- to 2-fold higher levels of the essential elements Fe, Mo, and S in most of the treatments. Mature APS plants showed no differences in metal tolerance compared with the wild type. Overexpression of ATP sulfurylase may be a promising approach to create plants with enhanced phytoextraction capacity for mixtures of metals.
Collapse
Affiliation(s)
- Ami L Wangeline
- Biology Department, Colorado State University, A/Z Building, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Outten FW, Wood MJ, Munoz FM, Storz G. The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe-S cluster assembly in Escherichia coli. J Biol Chem 2003; 278:45713-9. [PMID: 12941942 DOI: 10.1074/jbc.m308004200] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sufABCDSE operon of the Gram-negative bacterium Escherichia coli is induced by oxidative stress and iron deprivation. To examine the biochemical roles of the Suf proteins, we purified all of the proteins and assayed their effect on SufS cysteine desulfurase activity. Here we report that the SufE protein can stimulate the cysteine desulfurase activity of the SufS enzyme up to 8-fold and accepts sulfane sulfur from SufS. This sulfur transfer process from SufS to SufE is sheltered from the environment based on its resistance to added reductants and on the analysis of available crystal structures of the proteins. We also found that the SufB, SufC, and SufD proteins associate in a stable complex and that, in the presence of SufE, the SufBCD complex further stimulates SufS activity up to 32-fold. Thus, the SufE protein and the SufBCD complex act synergistically to modulate the cysteine desulfurase activity of SufS. We propose that this sulfur transfer mechanism may be important for limiting sulfide release during oxidative stress conditions in vivo.
Collapse
Affiliation(s)
- F Wayne Outten
- Cell Biology and Metabolism Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
43
|
Kurihara T, Mihara H, Kato SI, Yoshimura T, Esaki N. Assembly of iron-sulfur clusters mediated by cysteine desulfurases, IscS, CsdB and CSD, from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1647:303-9. [PMID: 12686149 DOI: 10.1016/s1570-9639(03)00078-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cysteine desulfurase plays a principal role in the assembly of iron-sulfur clusters by mobilizing the sulfur atom of L-cysteine. The active site cysteine residue of the enzyme attacks the sulfur atom of L-cysteine to form a cysteine persulfide residue, and the substrate-derived sulfur atom of this residue is incorporated into iron-sulfur clusters. Escherichia coli has three cysteine desulfurases named IscS, CsdB and CSD. We found that each of them facilitates the formation of the iron-sulfur cluster of ferredoxin in vitro. Since IscU, an iron-sulfur protein of E. coli, is believed to function as a scaffold for the cluster assembly in vivo, we examined whether IscS, CsdB and CSD interact with IscU to deliver the sulfur atom to IscU. By surface plasmon resonance analysis, we found that only IscS interacts with IscU. We isolated the IscS/IscU complex, determined the residues involved in the formation of the complex, and obtained data suggesting that the sulfur transfer from IscS to IscU is initiated by the attack of Cys63 of IscU on the S gamma atom of the cysteine persulfide residue transiently produced on IscS.
Collapse
Affiliation(s)
- Tatsuo Kurihara
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
44
|
Thanbichler M, Böck A. The function of SECIS RNA in translational control of gene expression in Escherichia coli. EMBO J 2002; 21:6925-34. [PMID: 12486013 PMCID: PMC139081 DOI: 10.1093/emboj/cdf673] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The incorporation of selenocysteine into proteins is directed by specific UGA codons and mRNA secondary structures, designated SECIS elements. In bacteria, these elements are positioned within the reading frame of selenoprotein mRNAs immediately downstream of the triplet coding for selenocysteine, and they tether a complex of the selenocysteine-specific elongation factor SelB, GTP and selenocysteyl-tRNA(Sec) to the site of UGA decoding. A SECIS-like structure was identified in the 5' non-translated region of the selAB transcript, encoding selenocysteine synthase and SelB. It specifically binds to SelB and the formation of a SelB.GTP.selenocysteyl-tRNA(Sec) complex on the SECIS-like element represses expression of the downstream gene. This effect is abolished by mutations preventing formation of the complex. The regulatory pattern observed correlated with the levels of sel gene products. As quaternary complex formation on the SECIS-like element did not influence the transcription rate and only slightly reduced the level of selAB mRNA, it was concluded that the structure is involved in regulating translation initiation efficiency, thereby coupling selenocysteine biosynthesis to the availability of the trace element selenium.
Collapse
Affiliation(s)
| | - August Böck
- Department of Biology I, Microbiology, University of Munich, Maria-Ward-Straße 1a, D-80638 Munich, Germany
Corresponding author e-mail:
| |
Collapse
|
45
|
Abstract
Escherichia coli tRNA contains four naturally occurring nucleosides modified with sulfur. Cysteine is the intracellular sulfur source for each of these modified bases. We previously found that the iscS gene, a member of the nifS cysteine desulfurase gene family, is required for 4-thiouridine biosynthesis in E. coli. Since IscS does not bind tRNA, its role is the mobilization and distribution of sulfur to enzymes that catalyze the sulfur insertion steps. In addition to iscS, E. coli contains two other nifS homologs, csdA and csdB, each of which has cysteine desulfurase activity and could potentially donate sulfur for thionucleoside biosynthesis. Double csdA csdB and iscS csdA mutants were prepared or obtained, and all mutants were analyzed for thionucleoside content. It was found that unfractionated tRNA isolated from the iscS mutant strain contained <5% of the level of sulfur found in the parent strain. High-pressure liquid chromatography analysis of tRNA nuclease digests from the mutant strain grown in the presence of [(35)S]cysteine showed that only a small fraction of 2-thiocytidine was present, while the other thionucleosides were absent when cells were isolated during log phase. As expected, digests from the iscS mutant strain contained 6-N-dimethylallyl adenosine (i(6)A) in place of 6-N-dimethylallyl-2-methylthioadenosine and 5-methylaminomethyl uridine (mnm(5)U) instead of 5-methylaminomethyl-2-thiouridine. Prolonged growth of the iscS and iscS csdA mutant strains revealed a gradual increase in levels of 2-thiocytidine and 6-N-dimethylallyl-2-methylthioadenosine with extended incubation (>24 h), while the thiouridines remained absent. This may be due to a residual level of Fe-S cluster biosynthesis in iscS deletion strains. An overall scheme for thionucleoside biosynthesis in E. coli is discussed.
Collapse
Affiliation(s)
- Charles T Lauhon
- School of Pharmacy, University of Wisconsin, Madison 53705, USA.
| |
Collapse
|
46
|
Pilon-Smits EAH, Garifullina GF, Abdel-Ghany S, Kato SI, Mihara H, Hale KL, Burkhead JL, Esaki N, Kurihara T, Pilon M. Characterization of a NifS-like chloroplast protein from Arabidopsis. Implications for its role in sulfur and selenium metabolism. PLANT PHYSIOLOGY 2002; 130:1309-18. [PMID: 12427997 PMCID: PMC166651 DOI: 10.1104/pp.102.010280] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2002] [Revised: 06/28/2002] [Accepted: 07/04/2002] [Indexed: 05/18/2023]
Abstract
NifS-like proteins catalyze the formation of elemental sulfur (S) and alanine from cysteine (Cys) or of elemental selenium (Se) and alanine from seleno-Cys. Cys desulfurase activity is required to produce the S of iron (Fe)-S clusters, whereas seleno-Cys lyase activity is needed for the incorporation of Se in selenoproteins. In plants, the chloroplast is the location of (seleno) Cys formation and a location of Fe-S cluster formation. The goal of these studies was to identify and characterize chloroplast NifS-like proteins. Using seleno-Cys as a substrate, it was found that 25% to 30% of the NifS activity in green tissue in Arabidopsis is present in chloroplasts. A cDNA encoding a putative chloroplast NifS-like protein, AtCpNifS, was cloned, and its chloroplast localization was confirmed using immunoblot analysis and in vitro import. AtCpNIFS is expressed in all major tissue types. The protein was expressed in Escherichia coli and purified. The enzyme contains a pyridoxal 5' phosphate cofactor and is a dimer. It is a type II NifS-like protein, more similar to bacterial seleno-Cys lyases than to Cys desulfurases. The enzyme is active on both seleno-Cys and Cys but has a much higher activity toward the Se substrate. The possible role of AtCpNifS in plastidic Fe-S cluster formation or in Se metabolism is discussed.
Collapse
|
47
|
Pilon-Smits EAH, Garifullina GF, Abdel-Ghany S, Kato SI, Mihara H, Hale KL, Burkhead JL, Esaki N, Kurihara T, Pilon M. Characterization of a NifS-like chloroplast protein from Arabidopsis. Implications for its role in sulfur and selenium metabolism. PLANT PHYSIOLOGY 2002; 130:1309-1318. [PMID: 12427997 DOI: 10.1104/pp.010280.the] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
NifS-like proteins catalyze the formation of elemental sulfur (S) and alanine from cysteine (Cys) or of elemental selenium (Se) and alanine from seleno-Cys. Cys desulfurase activity is required to produce the S of iron (Fe)-S clusters, whereas seleno-Cys lyase activity is needed for the incorporation of Se in selenoproteins. In plants, the chloroplast is the location of (seleno) Cys formation and a location of Fe-S cluster formation. The goal of these studies was to identify and characterize chloroplast NifS-like proteins. Using seleno-Cys as a substrate, it was found that 25% to 30% of the NifS activity in green tissue in Arabidopsis is present in chloroplasts. A cDNA encoding a putative chloroplast NifS-like protein, AtCpNifS, was cloned, and its chloroplast localization was confirmed using immunoblot analysis and in vitro import. AtCpNIFS is expressed in all major tissue types. The protein was expressed in Escherichia coli and purified. The enzyme contains a pyridoxal 5' phosphate cofactor and is a dimer. It is a type II NifS-like protein, more similar to bacterial seleno-Cys lyases than to Cys desulfurases. The enzyme is active on both seleno-Cys and Cys but has a much higher activity toward the Se substrate. The possible role of AtCpNifS in plastidic Fe-S cluster formation or in Se metabolism is discussed.
Collapse
|