1
|
Reis CLB, Matsumoto MAN, Stuani MBS, Romano FL, Scariot R, Schroder AGD, Nelson-Filho P, Kirschneck C, Beisel-Memmert S, Küchler EC. Single Nucleotide Polymorphisms in RUNX2 and BMP2 contributes to different vertical facial profile. PLoS One 2024; 19:e0303551. [PMID: 38771832 PMCID: PMC11108145 DOI: 10.1371/journal.pone.0303551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/27/2024] [Indexed: 05/23/2024] Open
Abstract
The vertical facial profile is a crucial factor for facial harmony with significant implications for both aesthetic satisfaction and orthodontic treatment planning. However, the role of single nucleotide polymorphisms (SNPs) in the development of vertical facial proportions is still poorly understood. This study aimed to investigate the potential impact of some SNPs in genes associated with craniofacial bone development on the establishment of different vertical facial profiles. Vertical facial profiles were assessed by two senior orthodontists through pre-treatment digital lateral cephalograms. The vertical facial profile type was determined by recommended measurement according to the American Board of Orthodontics. Healthy orthodontic patients were divided into the following groups: "Normodivergent" (control group), "Hyperdivergent" and "Hypodivergent". Patients with a history of orthodontic or facial surgical intervention were excluded. Genomic DNA extracted from saliva samples was used for the genotyping of 7 SNPs in RUNX2, BMP2, BMP4 and SMAD6 genes using real-time polymerase chain reactions (PCR). The genotype distribution between groups was evaluated by uni- and multivariate analysis adjusted by age (alpha = 5%). A total of 272 patients were included, 158 (58.1%) were "Normodivergent", 68 (25.0%) were "Hyperdivergent", and 46 (16.9%) were "Hypodivergent". The SNPs rs1200425 (RUNX2) and rs1005464 (BMP2) were associated with a hyperdivergent vertical profile in uni- and multivariate analysis (p-value < 0.05). Synergistic effect was observed when evaluating both SNPs rs1200425- rs1005464 simultaneously (Prevalence Ratio = 4.0; 95% Confidence Interval = 1.2-13.4; p-value = 0.022). In conclusion, this study supports a link between genetic factors and the establishment of vertical facial profiles. SNPs in RUNX2 and BMP2 genes were identified as potential contributors to hyperdivergent facial profiles.
Collapse
Affiliation(s)
- Caio Luiz Bitencourt Reis
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Mirian Aiko Nakane Matsumoto
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Maria Bernadete Sasso Stuani
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Fábio Lourenço Romano
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Rafaela Scariot
- Department of Stomatology, Federal University of Paraná, Curitiba, Brazil
| | | | - Paulo Nelson-Filho
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Svenja Beisel-Memmert
- Department of Orthodontics, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Erika Calvano Küchler
- Department of Orthodontics, University Hospital Bonn, Medical Faculty, Bonn, Germany
| |
Collapse
|
2
|
Chen X, Li J, Xiang A, Guan H, Su P, Zhang L, Zhang D, Yu Q. BMP and activin receptor membrane bound inhibitor: BAMBI has multiple roles in gene expression and diseases (Review). Exp Ther Med 2024; 27:28. [PMID: 38125356 PMCID: PMC10728939 DOI: 10.3892/etm.2023.12316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/20/2023] [Indexed: 12/23/2023] Open
Abstract
BMP and activin membrane-bound inhibitor (BAMBI) is a transmembrane glycoprotein, known as a pseudo-receptor for TGFβ, as, while its extracellular domain is similar to that of type I TGFβ receptors, its intracellular structure is shorter and lacks a serine/threonine phosphokinase signaling motif. BAMBI can regulate numerous biological phenomena, including glucose and lipid metabolism, inflammatory responses, and cell proliferation and differentiation. Furthermore, abnormal expression of BAMBI at the mRNA and protein levels contributes to various human pathologies, including obesity and cancer. In the present review, the structure of BAMBI is briefly introduced and its associated signaling pathways and physiological functions are described. Understanding of BAMBI structure and function may contribute to knowledge regarding the occurrence of diseases, including obesity and diabetes, among others. The present review provides a theoretical foundation for the development of BAMBI as a potential biomarker or therapeutic target.
Collapse
Affiliation(s)
- Xiaochang Chen
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an, Shaanxi 710021, P.R. China
- Department of Basic Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Jue Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Aoqi Xiang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Hua Guan
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Peihong Su
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Lusha Zhang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Dian Zhang
- Department of Basic Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Qi Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an, Shaanxi 710021, P.R. China
| |
Collapse
|
3
|
Zhu R, Santat LA, Markson JS, Nandagopal N, Gregrowicz J, Elowitz MB. Reconstitution of morphogen shuttling circuits. SCIENCE ADVANCES 2023; 9:eadf9336. [PMID: 37436981 PMCID: PMC10337948 DOI: 10.1126/sciadv.adf9336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Developing tissues form spatial patterns by establishing concentration gradients of diffusible signaling proteins called morphogens. The bone morphogenetic protein (BMP) morphogen pathway uses a family of extracellular modulators to reshape signaling gradients by actively "shuttling" ligands to different locations. It has remained unclear what circuits are sufficient to enable shuttling, what other patterns they can generate, and whether shuttling is evolutionarily conserved. Here, using a synthetic, bottom-up approach, we compared the spatiotemporal dynamics of different extracellular circuits. Three proteins-Chordin, Twsg, and the BMP-1 protease-successfully displaced gradients by shuttling ligands away from the site of production. A mathematical model explained the different spatial dynamics of this and other circuits. Last, combining mammalian and Drosophila components in the same system suggests that shuttling is a conserved capability. Together, these results reveal principles through which extracellular circuits control the spatiotemporal dynamics of morphogen signaling.
Collapse
Affiliation(s)
- Ronghui Zhu
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Leah A. Santat
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Joseph S. Markson
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Jan Gregrowicz
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Michael B. Elowitz
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
4
|
Radhakrishnan K, Luu M, Iaria J, Sutherland JM, McLaughlin EA, Zhu HJ, Loveland KL. Activin and BMP Signalling in Human Testicular Cancer Cell Lines, and a Role for the Nucleocytoplasmic Transport Protein Importin-5 in their Crosstalk. Cells 2023; 12:cells12071000. [PMID: 37048077 PMCID: PMC10093041 DOI: 10.3390/cells12071000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
Testicular germ cell tumours (TGCTs) are the most common malignancy in young men. Originating from foetal testicular germ cells that fail to differentiate correctly, TGCTs appear after puberty as germ cell neoplasia in situ cells that transform through unknown mechanisms into distinct seminoma and non-seminoma tumour types. A balance between activin and BMP signalling may influence TGCT emergence and progression, and we investigated this using human cell line models of seminoma (TCam-2) and non-seminoma (NT2/D1). Activin A- and BMP4-regulated transcripts measured at 6 h post-treatment by RNA-sequencing revealed fewer altered transcripts in TCam-2 cells but a greater responsiveness to activin A, while BMP4 altered more transcripts in NT2/D1 cells. Activin significantly elevated transcripts linked to pluripotency, cancer, TGF-β, Notch, p53, and Hippo signalling in both lines, whereas BMP4 altered TGF-β, pluripotency, Hippo and Wnt signalling components. Dose-dependent antagonism of BMP4 signalling by activin A in TCam-2 cells demonstrated signalling crosstalk between these two TGF-β superfamily arms. Levels of the nuclear transport protein, IPO5, implicated in BMP4 and WNT signalling, are highly regulated in the foetal mouse germline. IPO5 knockdown in TCam-2 cells using siRNA blunted BMP4-induced transcript changes, indicating that IPO5 levels could determine TGF-β signalling pathway outcomes in TGCTs.
Collapse
Affiliation(s)
- Karthika Radhakrishnan
- Centre for Reproductive Health, Hudson Institute of Medical Research, 27-31 Kanooka Grove, Clayton, VIC 3168, Australia
- Correspondence: (K.R.); (K.L.L.)
| | - Michael Luu
- Centre for Reproductive Health, Hudson Institute of Medical Research, 27-31 Kanooka Grove, Clayton, VIC 3168, Australia
| | - Josie Iaria
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC 3050, Australia
| | - Jessie M. Sutherland
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, NSW 2305, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW 2305, Australia
| | - Eileen A. McLaughlin
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, NSW 2305, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW 2305, Australia
- Faculty of Science, Medicine and Health, University of Wollongong, Gwynneville, NSW 2500, Australia
| | - Hong-Jian Zhu
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC 3050, Australia
| | - Kate L. Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, 27-31 Kanooka Grove, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3800, Australia
- Correspondence: (K.R.); (K.L.L.)
| |
Collapse
|
5
|
Sarma U, Ripka L, Anyaegbunam UA, Legewie S. Modeling Cellular Signaling Variability Based on Single-Cell Data: The TGFβ-SMAD Signaling Pathway. Methods Mol Biol 2023; 2634:215-251. [PMID: 37074581 DOI: 10.1007/978-1-0716-3008-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Nongenetic heterogeneity is key to cellular decisions, as even genetically identical cells respond in very different ways to the same external stimulus, e.g., during cell differentiation or therapeutic treatment of disease. Strong heterogeneity is typically already observed at the level of signaling pathways that are the first sensors of external inputs and transmit information to the nucleus where decisions are made. Since heterogeneity arises from random fluctuations of cellular components, mathematical models are required to fully describe the phenomenon and to understand the dynamics of heterogeneous cell populations. Here, we review the experimental and theoretical literature on cellular signaling heterogeneity, with special focus on the TGFβ/SMAD signaling pathway.
Collapse
Affiliation(s)
- Uddipan Sarma
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Lorenz Ripka
- Institute of Molecular Biology (IMB), Mainz, Germany
- Department of Systems Biology, Institute for Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Uchenna Alex Anyaegbunam
- Institute of Molecular Biology (IMB), Mainz, Germany
- Department of Systems Biology, Institute for Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Stefan Legewie
- Institute of Molecular Biology (IMB), Mainz, Germany.
- Department of Systems Biology, Institute for Biomedical Genetics, University of Stuttgart, Stuttgart, Germany.
- Stuttgart Research Center for Systems Biology, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
6
|
Rankin SA, Zorn AM. The homeodomain transcription factor Ventx2 regulates respiratory progenitor cell number and differentiation timing during
Xenopus
lung development. Dev Growth Differ 2022; 64:347-361. [PMID: 36053777 PMCID: PMC10088502 DOI: 10.1111/dgd.12807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 11/28/2022]
Abstract
Ventx2 is an Antennapedia superfamily/NK-like subclass homeodomain transcription factor best known for its roles in the regulation of early dorsoventral patterning during Xenopus gastrulation and in the maintenance of neural crest multipotency. In this work we characterize the spatiotemporal expression pattern of ventx2 in progenitor cells of the Xenopus respiratory system epithelium. We find that ventx2 is directly induced by BMP signaling in the ventral foregut prior to nkx2-1, the earliest epithelial marker of the respiratory lineage. Functional studies demonstrate that Ventx2 regulates the number of Nkx2-1/Sox9+ respiratory progenitor cells induced during foregut development, the timing and level of surfactant protein gene expression, and proper tracheal-esophageal separation. Our data suggest that Ventx2 regulates the balance of respiratory progenitor cell expansion and differentiation. While the ventx gene family has been lost from the mouse genome during evolution, humans have retained a ventx2-like gene (VENTX). Finally, we discuss how our findings might suggest a possible function of VENTX in human respiratory progenitor cells.
Collapse
Affiliation(s)
- Scott A. Rankin
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center Cincinnati OH
| | - Aaron M. Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center Cincinnati OH
- University of Cincinnati, College of Medicine, Department of Pediatrics Cincinnati OH
| |
Collapse
|
7
|
Michiue T, Tsukano K. Feedback Regulation of Signaling Pathways for Precise Pre-Placodal Ectoderm Formation in Vertebrate Embryos. J Dev Biol 2022; 10:35. [PMID: 36135368 PMCID: PMC9504399 DOI: 10.3390/jdb10030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Intracellular signaling pathways are essential to establish embryonic patterning, including embryonic axis formation. Ectodermal patterning is also governed by a series of morphogens. Four ectodermal regions are thought to be controlled by morphogen gradients, but some perturbations are expected to occur during dynamic morphogenetic movement. Therefore, a mechanism to define areas precisely and reproducibly in embryos, including feedback regulation of signaling pathways, is necessary. In this review, we outline ectoderm pattern formation and signaling pathways involved in the establishment of the pre-placodal ectoderm (PPE). We also provide an example of feedback regulation of signaling pathways for robust formation of the PPE, showing the importance of this regulation.
Collapse
Affiliation(s)
- Tatsuo Michiue
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | |
Collapse
|
8
|
Kolbe N, Hexemer L, Bammert LM, Loewer A, Lukáčová-Medvid’ová M, Legewie S. Data-based stochastic modeling reveals sources of activity bursts in single-cell TGF-β signaling. PLoS Comput Biol 2022; 18:e1010266. [PMID: 35759468 PMCID: PMC9269928 DOI: 10.1371/journal.pcbi.1010266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 07/08/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
Cells sense their surrounding by employing intracellular signaling pathways that transmit hormonal signals from the cell membrane to the nucleus. TGF-β/SMAD signaling encodes various cell fates, controls tissue homeostasis and is deregulated in diseases such as cancer. The pathway shows strong heterogeneity at the single-cell level, but quantitative insights into mechanisms underlying fluctuations at various time scales are still missing, partly due to inefficiency in the calibration of stochastic models that mechanistically describe signaling processes. In this work we analyze single-cell TGF-β/SMAD signaling and show that it exhibits temporal stochastic bursts which are dose-dependent and whose number and magnitude correlate with cell migration. We propose a stochastic modeling approach to mechanistically describe these pathway fluctuations with high computational efficiency. Employing high-order numerical integration and fitting to burst statistics we enable efficient quantitative parameter estimation and discriminate models that assume noise in different reactions at the receptor level. This modeling approach suggests that stochasticity in the internalization of TGF-β receptors into endosomes plays a key role in the observed temporal bursting. Further, the model predicts the single-cell dynamics of TGF-β/SMAD signaling in untested conditions, e.g., successfully reflects memory effects of signaling noise and cellular sensitivity towards repeated stimulation. Taken together, our computational framework based on burst analysis, noise modeling and path computation scheme is a suitable tool for the data-based modeling of complex signaling pathways, capable of identifying the source of temporal noise.
Collapse
Affiliation(s)
- Niklas Kolbe
- Institute of Geometry and Practical Mathematics, RWTH Aachen University, Aachen, Germany
| | - Lorenz Hexemer
- Institute of Molecular Biology (IMB), Mainz, Germany
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
| | | | - Alexander Loewer
- Systems Biology of the Stress Response, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | | | - Stefan Legewie
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
9
|
Tsukano K, Yamamoto T, Watanabe T, Michiue T. Xenopus Dusp6 modulates FGF signaling precisely to pattern pre-placodal ectoderm. Dev Biol 2022; 488:81-90. [DOI: 10.1016/j.ydbio.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022]
|
10
|
Hota SK, Rao KS, Blair AP, Khalilimeybodi A, Hu KM, Thomas R, So K, Kameswaran V, Xu J, Polacco BJ, Desai RV, Chatterjee N, Hsu A, Muncie JM, Blotnick AM, Winchester SAB, Weinberger LS, Hüttenhain R, Kathiriya IS, Krogan NJ, Saucerman JJ, Bruneau BG. Brahma safeguards canalization of cardiac mesoderm differentiation. Nature 2022; 602:129-134. [PMID: 35082446 PMCID: PMC9196993 DOI: 10.1038/s41586-021-04336-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/08/2021] [Indexed: 12/26/2022]
Abstract
Differentiation proceeds along a continuum of increasingly fate-restricted intermediates, referred to as canalization1,2. Canalization is essential for stabilizing cell fate, but the mechanisms that underlie robust canalization are unclear. Here we show that the BRG1/BRM-associated factor (BAF) chromatin-remodelling complex ATPase gene Brm safeguards cell identity during directed cardiogenesis of mouse embryonic stem cells. Despite the establishment of a well-differentiated precardiac mesoderm, Brm-/- cells predominantly became neural precursors, violating germ layer assignment. Trajectory inference showed a sudden acquisition of a non-mesodermal identity in Brm-/- cells. Mechanistically, the loss of Brm prevented de novo accessibility of primed cardiac enhancers while increasing the expression of neurogenic factor POU3F1, preventing the binding of the neural suppressor REST and shifting the composition of BRG1 complexes. The identity switch caused by the Brm mutation was overcome by increasing BMP4 levels during mesoderm induction. Mathematical modelling supports these observations and demonstrates that Brm deletion affects cell fate trajectory by modifying saddle-node bifurcations2. In the mouse embryo, Brm deletion exacerbated mesoderm-deleted Brg1-mutant phenotypes, severely compromising cardiogenesis, and reveals an in vivo role for Brm. Our results show that Brm is a compensable safeguard of the fidelity of mesoderm chromatin states, and support a model in which developmental canalization is not a rigid irreversible path, but a highly plastic trajectory.
Collapse
Affiliation(s)
- Swetansu K Hota
- Gladstone Institutes, San Francisco, CA, USA.
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA.
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA.
| | - Kavitha S Rao
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | | | - Ali Khalilimeybodi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kevin M Hu
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | | | - Kevin So
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Vasumathi Kameswaran
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Jiewei Xu
- Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
| | - Benjamin J Polacco
- Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
| | | | | | - Austin Hsu
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | | | - Aaron M Blotnick
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Sarah A B Winchester
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Leor S Weinberger
- Gladstone Institutes, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Ruth Hüttenhain
- Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
| | - Irfan S Kathiriya
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Nevan J Krogan
- Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA, USA.
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA.
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA.
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
11
|
Abstract
TGF-β family heterodimeric ligands show increased or exclusive signaling compared to homodimeric ligands in both vertebrate and insect development as well as in therapeutically relevant processes, like osteogenesis. However, the mechanisms that differentiate heterodimer and homodimer signaling remain uncharacterized. We show that BMP antagonists do not account for the exclusive signaling of Bmp2/7 heterodimers in zebrafish development. We found that overexpressed homodimers can signal but surprisingly require two distinct type I receptors, like heterodimers, indicating a required activity of the heteromeric type I receptor complex. We further demonstrate that a canonical type I receptor function has been delegated to only one of these receptors, Acvr1. Our findings should inform both basic and translational research in multiple TGF-β family signaling contexts. Heterodimeric TGF-β ligands outperform homodimers in a variety of developmental, cell culture, and therapeutic contexts; however, the mechanisms underlying this increased potency remain uncharacterized. Here, we use dorsal–ventral axial patterning of the zebrafish embryo to interrogate the BMP2/7 heterodimer signaling mechanism. We demonstrate that differential interactions with BMP antagonists do not account for the reduced signaling ability of homodimers. Instead, we find that while overexpressed BMP2 homodimers can signal, they require two nonredundant type I receptors, one from the Acvr1 subfamily and one from the Bmpr1 subfamily. This implies that all BMP signaling within the zebrafish gastrula, even BMP2 homodimer signaling, requires Acvr1. This is particularly surprising as BMP2 homodimers do not bind Acvr1 in vitro. Furthermore, we find that the roles of the two type I receptors are subfunctionalized within the heterodimer signaling complex, with the kinase activity of Acvr1 being essential, while that of Bmpr1 is not. These results suggest that the potency of the Bmp2/7 heterodimer arises from the ability to recruit both Acvr1 and Bmpr1 into the same signaling complex.
Collapse
|
12
|
Papadopoulos A, Chalmantzi V, Mikhaylichenko O, Hyvönen M, Stellas D, Kanhere A, Heath J, Cunningham DL, Fotsis T, Murphy C. Combined transcriptomic and phosphoproteomic analysis of BMP4 signaling in human embryonic stem cells. Stem Cell Res 2020; 50:102133. [PMID: 33383406 DOI: 10.1016/j.scr.2020.102133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/08/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
Human embryonic stem cells (hESCs) are an invaluable tool in the fields of embryology and regenerative medicine. Activin A and BMP4 are well-characterised growth factors implicated in pluripotency and differentiation. In the current study, hESCs are cultured in a modified version of mTeSR1, where low concentrations of ActivinA substitute for TGFβ. This culture system is further used to investigate the changes induced by BMP4 on hESCs by employing a combination of transcriptomic and phosphoproteomic approaches. Results indicate that in a pluripotent state, hESCs maintain WNT signaling under negative regulation by expressing pathway inhibitors. Initial stages of differentiation are characterized by upregulation of WNT pathway ligands, TGFβ pathway inhibitors which have been shown in Xenopus to expand the BMP signaling range essential for embryonic patterning, and mesendodermal transcripts. Moreover, BMP4 enhances the phosphorylation of proteins associated with migration and transcriptional regulation. Results further indicate the vital regulatory role of Activin A and BMP4 in crucial fate decisions in hESCs.
Collapse
Affiliation(s)
- Angelos Papadopoulos
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London SE5 9NU, United Kingdom
| | - Varvara Chalmantzi
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Olga Mikhaylichenko
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London SE5 9NU, United Kingdom
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, United Kingdom
| | - Dimitris Stellas
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Aditi Kanhere
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - John Heath
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Debbie L Cunningham
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Theodore Fotsis
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, University Campus of Ioannina, 45110 Ioannina, Greece; Laboratory of Biology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Carol Murphy
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, University Campus of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
13
|
Lee H, Seidl C, Sun R, Glinka A, Niehrs C. R-spondins are BMP receptor antagonists in Xenopus early embryonic development. Nat Commun 2020; 11:5570. [PMID: 33149137 PMCID: PMC7642414 DOI: 10.1038/s41467-020-19373-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
BMP signaling plays key roles in development, stem cells, adult tissue homeostasis, and disease. How BMP receptors are extracellularly modulated and in which physiological context, is therefore of prime importance. R-spondins (RSPOs) are a small family of secreted proteins that co-activate WNT signaling and function as potent stem cell effectors and oncogenes. Evidence is mounting that RSPOs act WNT-independently but how and in which physiological processes remains enigmatic. Here we show that RSPO2 and RSPO3 also act as BMP antagonists. RSPO2 is a high affinity ligand for the type I BMP receptor BMPR1A/ALK3, and it engages ZNRF3 to trigger internalization and degradation of BMPR1A. In early Xenopus embryos, Rspo2 is a negative feedback inhibitor in the BMP4 synexpression group and regulates dorsoventral axis formation. We conclude that R-spondins are bifunctional ligands, which activate WNT- and inhibit BMP signaling via ZNRF3, with implications for development and cancer.
Collapse
Affiliation(s)
- Hyeyoon Lee
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany
| | - Carina Seidl
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany
| | - Rui Sun
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany
| | - Andrey Glinka
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany.
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany.
| |
Collapse
|
14
|
Biniazan F, Manzari-Tavakoli A, Safaeinejad F, Moghimi A, Rajaei F, Niknejad H. The differentiation effect of bone morphogenetic protein (BMP) on human amniotic epithelial stem cells to express ectodermal lineage markers. Cell Tissue Res 2020; 383:751-763. [PMID: 32960356 DOI: 10.1007/s00441-020-03280-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/12/2020] [Indexed: 11/28/2022]
Abstract
Stem cells are a promising tool for treatment of a variety of degenerative diseases. Human amniotic epithelial stem cells (hAECs) have desirable and unique characteristics that make them a proper candidate for cell therapy. In this study, we have investigated the effects of BMP-4 (bone morphogenetic protein-4) and its inhibition on differentiation of AECs into ectodermal lineages. Analysis of AEC-derived ectodermal lineages (neurons and keratinocytes) was performed by using flow cytometry technique for Map2 and β-tubulin (as neuron markers), Olig2 and MBP (as oligodendrocyte markers), and K14 and K10 (as keratinocyte markers). The results of this study illustrated that noggin (as BMP antagonist), BMP4, and both BMP4 and heparin (together or separately) increased neural and keratinocyte marker expression, respectively. The expression of markers MAP2, olig2, and K14 in hAECs has been significantly decreased 21 days after exposure to differentiation medium (without growth factors) compared with isolation day, which supports the hypothesis that AECs can be dedifferentiated into pluripotent cells. Moreover, activation and inhibition of BMP signaling have no effects on viability of hAECs. The results of this study showed that BMP signaling and its inhibition are the key factors for ectodermal lineage differentiation of amnion-derived stem cells.
Collapse
Affiliation(s)
- Felor Biniazan
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Asma Manzari-Tavakoli
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fahimeh Safaeinejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Moghimi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Farzad Rajaei
- Cellular and Molecular Research Center, Qazvin University of Medical Science, Qazvin, Iran.
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Dries R, Stryjewska A, Coddens K, Okawa S, Notelaers T, Birkhoff J, Dekker M, Verfaillie CM, Del Sol A, Mulugeta E, Conidi A, Grosveld FG, Huylebroeck D. Integrative and perturbation-based analysis of the transcriptional dynamics of TGFβ/BMP system components in transition from embryonic stem cells to neural progenitors. Stem Cells 2019; 38:202-217. [PMID: 31675135 PMCID: PMC7027912 DOI: 10.1002/stem.3111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/09/2019] [Indexed: 01/05/2023]
Abstract
Cooperative actions of extrinsic signals and cell‐intrinsic transcription factors alter gene regulatory networks enabling cells to respond appropriately to environmental cues. Signaling by transforming growth factor type β (TGFβ) family ligands (eg, bone morphogenetic proteins [BMPs] and Activin/Nodal) exerts cell‐type specific and context‐dependent transcriptional changes, thereby steering cellular transitions throughout embryogenesis. Little is known about coordinated regulation and transcriptional interplay of the TGFβ system. To understand intrafamily transcriptional regulation as part of this system's actions during development, we selected 95 of its components and investigated their mRNA‐expression dynamics, gene‐gene interactions, and single‐cell expression heterogeneity in mouse embryonic stem cells transiting to neural progenitors. Interrogation at 24 hour intervals identified four types of temporal gene transcription profiles that capture all stages, that is, pluripotency, epiblast formation, and neural commitment. Then, between each stage we performed esiRNA‐based perturbation of each individual component and documented the effect on steady‐state mRNA levels of the remaining 94 components. This exposed an intricate system of multilevel regulation whereby the majority of gene‐gene interactions display a marked cell‐stage specific behavior. Furthermore, single‐cell RNA‐profiling at individual stages demonstrated the presence of detailed co‐expression modules and subpopulations showing stable co‐expression modules such as that of the core pluripotency genes at all stages. Our combinatorial experimental approach demonstrates how intrinsically complex transcriptional regulation within a given pathway is during cell fate/state transitions.
Collapse
Affiliation(s)
- Ruben Dries
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Agata Stryjewska
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Kathleen Coddens
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Satoshi Okawa
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg.,Integrated BioBank of Luxembourg, Dudelange, Luxembourg
| | - Tineke Notelaers
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Judith Birkhoff
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mike Dekker
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg.,CIC bioGUNE, Bizkaia Technology Park, Derio, Spain.,IKERBASQUE, Basque, Foundation for Science, Bilbao, Spain
| | - Eskeatnaf Mulugeta
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Andrea Conidi
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Frank G Grosveld
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Wu Z, Jung HS. How the diversity of the faces arises. J Oral Biosci 2019; 61:195-200. [PMID: 31751682 DOI: 10.1016/j.job.2019.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/05/2019] [Accepted: 08/10/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND The evolution of the face is crucial for each species to adapt to different diets, environments, and in some species, to promote social interaction. The diversity in the shapes of the face results from divergence in the process of facial development that begins during early embryonic development. HIGHLIGHTS Here we review the recent advancements in the understanding of the genetic, epigenetic, molecular, and cellular basis of facial diversity. We also review the robustness of facial development and how it relates to the evolution of the face. Finally, we discuss the current challenges in achieving a deeper understanding of facial diversity. CONCLUSION We have gained much knowledge with respect to cis-regulatory elements, gene expression, cellular behavior, and the physical forces in facial development in the past two decades. Significant interdisciplinary work is needed to integrate these varied pieces of information into a complete picture of how the diversity of faces arises.
Collapse
Affiliation(s)
- Zhaoming Wu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea.
| |
Collapse
|
17
|
Abstract
Being concerned by the understanding of the mechanism underlying chronic degenerative diseases , we presented in the previous chapter the medical systems biology conceptual framework that we present for that purpose in this volume. More specifically, we argued there the clear advantages offered by a state-space perspective when applied to the systems-level description of the biomolecular machinery that regulates complex degenerative diseases. We also discussed the importance of the dynamical interplay between the risk factors and the network of interdependencies that characterizes the biochemical, cellular, and tissue-level biomolecular reactions that underlie the physiological processes in health and disease. As we pointed out in the previous chapter, the understanding of this interplay (articulated around cellular phenotypic plasticity properties, regulated by specific kinds of gene regulatory networks) is necessary if prevention is chosen as the human-health improvement strategy (potentially involving the modulation of the patient's lifestyle). In this chapter we provide the medical systems biology mathematical and computational modeling tools required for this task.
Collapse
|
18
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
19
|
Hallgrimsson B, Green RM, Katz DC, Fish JL, Bernier FP, Roseman CC, Young NM, Cheverud JM, Marcucio RS. The developmental-genetics of canalization. Semin Cell Dev Biol 2018; 88:67-79. [PMID: 29782925 DOI: 10.1016/j.semcdb.2018.05.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 10/16/2022]
Abstract
Canalization, or robustness to genetic or environmental perturbations, is fundamental to complex organisms. While there is strong evidence for canalization as an evolved property that varies among genotypes, the developmental and genetic mechanisms that produce this phenomenon are very poorly understood. For evolutionary biology, understanding how canalization arises is important because, by modulating the phenotypic variation that arises in response to genetic differences, canalization is a determinant of evolvability. For genetics of disease in humans and for economically important traits in agriculture, this subject is important because canalization is a potentially significant cause of missing heritability that confounds genomic prediction of phenotypes. We review the major lines of thought on the developmental-genetic basis for canalization. These fall into two groups. One proposes specific evolved molecular mechanisms while the other deals with robustness or canalization as a more general feature of development. These explanations for canalization are not mutually exclusive and they overlap in several ways. General explanations for canalization are more likely to involve emergent features of development than specific molecular mechanisms. Disentangling these explanations is also complicated by differences in perspectives between genetics and developmental biology. Understanding canalization at a mechanistic level will require conceptual and methodological approaches that integrate quantitative genetics and developmental biology.
Collapse
Affiliation(s)
- Benedikt Hallgrimsson
- Dept. of Cell Biology & Anatomy, Alberta Children's Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Rebecca M Green
- Dept. of Cell Biology & Anatomy, Alberta Children's Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - David C Katz
- Dept. of Cell Biology & Anatomy, Alberta Children's Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jennifer L Fish
- Dept. of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Francois P Bernier
- Dept of Medical Genetics, Alberta Children's Hospital Research Institute Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Charles C Roseman
- Dept. of Animal Biology, University of Illinois Urbana Champaign, Urbana, IL, 61801, USA
| | - Nathan M Young
- Dept. of Orthopaedic Surgery, School of Medicine, University of California San Francisco, San Francisco, CA, 94110, USA
| | - James M Cheverud
- Dept. of Biology, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Ralph S Marcucio
- Dept. of Orthopaedic Surgery, School of Medicine, University of California San Francisco, San Francisco, CA, 94110, USA.
| |
Collapse
|
20
|
Strasen J, Sarma U, Jentsch M, Bohn S, Sheng C, Horbelt D, Knaus P, Legewie S, Loewer A. Cell-specific responses to the cytokine TGFβ are determined by variability in protein levels. Mol Syst Biol 2018; 14:e7733. [PMID: 29371237 PMCID: PMC5787704 DOI: 10.15252/msb.20177733] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The cytokine TGFβ provides important information during embryonic development, adult tissue homeostasis, and regeneration. Alterations in the cellular response to TGFβ are involved in severe human diseases. To understand how cells encode the extracellular input and transmit its information to elicit appropriate responses, we acquired quantitative time-resolved measurements of pathway activation at the single-cell level. We established dynamic time warping to quantitatively compare signaling dynamics of thousands of individual cells and described heterogeneous single-cell responses by mathematical modeling. Our combined experimental and theoretical study revealed that the response to a given dose of TGFβ is determined cell specifically by the levels of defined signaling proteins. This heterogeneity in signaling protein expression leads to decomposition of cells into classes with qualitatively distinct signaling dynamics and phenotypic outcome. Negative feedback regulators promote heterogeneous signaling, as a SMAD7 knock-out specifically affected the signal duration in a subpopulation of cells. Taken together, we propose a quantitative framework that allows predicting and testing sources of cellular signaling heterogeneity.
Collapse
Affiliation(s)
- Jette Strasen
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Uddipan Sarma
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Marcel Jentsch
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany.,Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stefan Bohn
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Caibin Sheng
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany.,Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Daniel Horbelt
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Alexander Loewer
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany .,Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
21
|
Hegarty SV, Wyatt SL, Howard L, Stappers E, Huylebroeck D, Sullivan AM, O'Keeffe GW. Zeb2 is a negative regulator of midbrain dopaminergic axon growth and target innervation. Sci Rep 2017; 7:8568. [PMID: 28819210 PMCID: PMC5561083 DOI: 10.1038/s41598-017-08900-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/14/2017] [Indexed: 11/09/2022] Open
Abstract
Neural connectivity requires neuronal differentiation, axon growth, and precise target innervation. Midbrain dopaminergic neurons project via the nigrostriatal pathway to the striatum to regulate voluntary movement. While the specification and differentiation of these neurons have been extensively studied, the molecular mechanisms that regulate midbrain dopaminergic axon growth and target innervation are less clear. Here we show that the transcription factor Zeb2 cell-autonomously represses Smad signalling to limit midbrain dopaminergic axon growth and target innervation. Zeb2 levels are downregulated in the embryonic rodent midbrain during the period of dopaminergic axon growth, when BMP pathway components are upregulated. Experimental knockdown of Zeb2 leads to an increase in BMP-Smad-dependent axon growth. Consequently there is dopaminergic hyperinnervation of the striatum, without an increase in the numbers of midbrain dopaminergic neurons, in conditional Zeb2 (Nestin-Cre based) knockout mice. Therefore, these findings reveal a new mechanism for the regulation of midbrain dopaminergic axon growth during central nervous system development.
Collapse
Affiliation(s)
- Shane V Hegarty
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Sean L Wyatt
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Laura Howard
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Elke Stappers
- Department of Development and Regeneration, Laboratory of Molecular Biology (Celgen), KU Leuven, 3000, Leuven, Belgium.,Department of Cell Biology, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Danny Huylebroeck
- Department of Development and Regeneration, Laboratory of Molecular Biology (Celgen), KU Leuven, 3000, Leuven, Belgium.,Department of Cell Biology, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Aideen M Sullivan
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland. .,APC Microbiome Institute, UCC, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland. .,APC Microbiome Institute, UCC, Cork, Ireland. .,The INFANT Centre, CUMH and UCC, Cork, Ireland.
| |
Collapse
|
22
|
Suzuki A, Yoshida H, van Heeringen SJ, Takebayashi-Suzuki K, Veenstra GJC, Taira M. Genomic organization and modulation of gene expression of the TGF-β and FGF pathways in the allotetraploid frog Xenopus laevis. Dev Biol 2017; 426:336-359. [DOI: 10.1016/j.ydbio.2016.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/10/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022]
|
23
|
Charney RM, Paraiso KD, Blitz IL, Cho KWY. A gene regulatory program controlling early Xenopus mesendoderm formation: Network conservation and motifs. Semin Cell Dev Biol 2017; 66:12-24. [PMID: 28341363 DOI: 10.1016/j.semcdb.2017.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/12/2017] [Accepted: 03/20/2017] [Indexed: 02/08/2023]
Abstract
Germ layer formation is among the earliest differentiation events in metazoan embryos. In triploblasts, three germ layers are formed, among which the endoderm gives rise to the epithelial lining of the gut tube and associated organs including the liver, pancreas and lungs. In frogs (Xenopus), where early germ layer formation has been studied extensively, the process of endoderm specification involves the interplay of dozens of transcription factors. Here, we review the interactions between these factors, summarized in a transcriptional gene regulatory network (GRN). We highlight regulatory connections conserved between frog, fish, mouse, and human endodermal lineages. Especially prominent is the conserved role and regulatory targets of the Nodal signaling pathway and the T-box transcription factors, Vegt and Eomes. Additionally, we highlight network topologies and motifs, and speculate on their possible roles in development.
Collapse
Affiliation(s)
- Rebekah M Charney
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Ira L Blitz
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
24
|
Meinhardt H. Dorsoventral patterning by the Chordin-BMP pathway: a unified model from a pattern-formation perspective for drosophila, vertebrates, sea urchins and nematostella. Dev Biol 2015; 405:137-48. [DOI: 10.1016/j.ydbio.2015.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/14/2015] [Indexed: 01/15/2023]
|
25
|
Genikhovich G, Fried P, Prünster MM, Schinko JB, Gilles AF, Fredman D, Meier K, Iber D, Technau U. Axis Patterning by BMPs: Cnidarian Network Reveals Evolutionary Constraints. Cell Rep 2015; 10:1646-1654. [PMID: 25772352 PMCID: PMC4460265 DOI: 10.1016/j.celrep.2015.02.035] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 12/17/2014] [Accepted: 02/13/2015] [Indexed: 12/11/2022] Open
Abstract
BMP signaling plays a crucial role in the establishment of the dorso-ventral body axis in bilaterally symmetric animals. However, the topologies of the bone morphogenetic protein (BMP) signaling networks vary drastically in different animal groups, raising questions about the evolutionary constraints and evolvability of BMP signaling systems. Using loss-of-function analysis and mathematical modeling, we show that two signaling centers expressing different BMPs and BMP antagonists maintain the secondary axis of the sea anemone Nematostella. We demonstrate that BMP signaling is required for asymmetric Hox gene expression and mesentery formation. Computational analysis reveals that network parameters related to BMP4 and Chordin are constrained both in Nematostella and Xenopus, while those describing the BMP signaling modulators can vary significantly. Notably, only chordin, but not bmp4 expression needs to be spatially restricted for robust signaling gradient formation. Our data provide an explanation of the evolvability of BMP signaling systems in axis formation throughout Eumetazoa.
Collapse
Affiliation(s)
- Grigory Genikhovich
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Patrick Fried
- Department for Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - M Mandela Prünster
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Johannes B Schinko
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Anna F Gilles
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - David Fredman
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; Computational Biology Unit, University of Bergen, Thormøhlensgt. 55, 5008 Bergen, Norway
| | - Karin Meier
- Department for Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Dagmar Iber
- Department for Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Ulrich Technau
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria.
| |
Collapse
|
26
|
Siegal ML, Leu JY. On the Nature and Evolutionary Impact of Phenotypic Robustness Mechanisms. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2014; 45:496-517. [PMID: 26034410 PMCID: PMC4448758 DOI: 10.1146/annurev-ecolsys-120213-091705] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Biologists have long observed that physiological and developmental processes are insensitive, or robust, to many genetic and environmental perturbations. A complete understanding of the evolutionary causes and consequences of this robustness is lacking. Recent progress has been made in uncovering the regulatory mechanisms that underlie environmental robustness in particular. Less is known about robustness to the effects of mutations, and indeed the evolution of mutational robustness remains a controversial topic. The controversy has spread to related topics, in particular the evolutionary relevance of cryptic genetic variation. This review aims to synthesize current understanding of robustness mechanisms and to cut through the controversy by shedding light on what is and is not known about mutational robustness. Some studies have confused mutational robustness with non-additive interactions between mutations (epistasis). We conclude that a profitable way forward is to focus investigations (and rhetoric) less on mutational robustness and more on epistasis.
Collapse
Affiliation(s)
- Mark L Siegal
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003;
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan 11529;
| |
Collapse
|
27
|
Marciano DC, Lua RC, Katsonis P, Amin SR, Herman C, Lichtarge O. Negative feedback in genetic circuits confers evolutionary resilience and capacitance. Cell Rep 2014; 7:1789-95. [PMID: 24910431 DOI: 10.1016/j.celrep.2014.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/04/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022] Open
Abstract
Natural selection for specific functions places limits upon the amino acid substitutions a protein can accept. Mechanisms that expand the range of tolerable amino acid substitutions include chaperones that can rescue destabilized proteins and additional stability-enhancing substitutions. Here, we present an alternative mechanism that is simple and uses a frequently encountered network motif. Computational and experimental evidence shows that the self-correcting, negative-feedback gene regulation motif increases repressor expression in response to deleterious mutations and thereby precisely restores repression of a target gene. Furthermore, this ability to rescue repressor function is observable across the Eubacteria kingdom through the greater accumulation of amino acid substitutions in negative-feedback transcription factors compared to genes they control. We propose that negative feedback represents a self-contained genetic canalization mechanism that preserves phenotype while permitting access to a wider range of functional genotypes.
Collapse
Affiliation(s)
- David C Marciano
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Rhonald C Lua
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shivas R Amin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Biology Department, University of St. Thomas, Houston, TX 77006, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
28
|
A gradient of Bmp7 specifies the tonotopic axis in the developing inner ear. Nat Commun 2014; 5:3839. [PMID: 24845721 PMCID: PMC4264580 DOI: 10.1038/ncomms4839] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 04/08/2014] [Indexed: 11/09/2022] Open
Abstract
The auditory systems of animals that perceive sounds in air are organized to separate sound stimuli into their component frequencies. Individual tones then stimulate mechanosensory hair cells located at different positions on an elongated frequency (tonotopic) axis. During development, immature hair cells located along the axis must determine their tonotopic position in order to generate frequency-specific characteristics. Expression profiling along the developing tonotopic axis of the chick basilar papilla (BP) identified a gradient of Bmp7. Disruption of that gradient in vitro or in ovo induces changes in hair cell morphologies consistent with a loss of tonotopic organization and the formation of an organ with uniform frequency characteristics. Further, the effects of Bmp7 in determination of positional identity are shown to be mediated through activation of the Mapk, Tak1. These results indicate that graded, Bmp7-dependent, activation of Tak1 signalling controls the determination of frequency-specific hair cell characteristics along the tonotopic axis.
Collapse
|
29
|
Zhang Y, Yu Z, Xiao Q, Sun X, Zhu Z, Zhang J, Xu H, Wei M, Sun M. Expression of BAMBI and its combination with Smad7 correlates with tumor invasion and poor prognosis in gastric cancer. Tumour Biol 2014; 35:7047-56. [PMID: 24752577 DOI: 10.1007/s13277-014-1962-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 04/10/2014] [Indexed: 12/20/2022] Open
Abstract
Bone morphogenetic proteins and activin membrane-bound inhibitor (BAMBI) and drosophila mothers against decapentaplegic protein 7 (Smad7) are known to negatively regulate the transforming growth factor-β (TGF-β) signaling and play an important role in the progression of many malignant tumors. However, it remains unclear whether expression of BAMBI alone or in combination with Smad7 is associated with the progression of gastric cancer. In the present study, we investigated the expression of BAMBI and Smad7 in 276 cancer tissues and 263 tumor-adjacent tissues from gastric cancer patients, using tissue-microarray-based immunohistochemistry. The expression of BAMBI and Smad7 was significantly higher in cancer tissues than in tumor-adjacent tissues. The expression of BAMBI was significantly correlated with increased depth of invasion (P = 0.010), lymphatic invasion (P < 0.001), lymph node metastasis (P = 0.001), TNM stage (P = 0.008), and decreased differentiation (P = 0.046). The expression of BAMBI was associated with a significantly shorter overall survival (OS) (P = 0.006) and disease-free survival (DFS) (P = 0.011). The combined expression of BAMBI and Smad7 was associated with more invasion and metastasis as well as less survival time in gastric cancer patients. The univariate analysis showed that the expression of BAMBI alone or in combination with Smad7 was significantly associated with the OS and DFS. These findings suggest that BAMBI and Smad7 may cooperatively inhibit the TGF-β signaling, and thus promote the progression of gastric cancer.
Collapse
Affiliation(s)
- Yining Zhang
- Department of Gastrointestinal Endoscopy, The First Affiliated Hospital of China Medical University, No. 155, Nanjing north street, Heping District, Shenyang City, Liaoning Province, 110001, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bozorgmehr JEH. The role of self-organization in developmental evolution. Theory Biosci 2014; 133:145-63. [PMID: 24737046 DOI: 10.1007/s12064-014-0200-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 03/06/2014] [Indexed: 01/09/2023]
Abstract
In developmental and evolutionary biology, particular emphasis has been given to the relationship between transcription factors and the cognate cis-regulatory elements of their target genes. These constitute the gene regulatory networks that control expression and are assumed to causally determine the formation of structures and body plans. Comparative analysis has, however, established a broad sequence homology among species that nonetheless display quite different anatomies. Transgenic experiments have also confirmed that many developmentally important elements are, in fact, functionally interchangeable. Although dependent upon the appropriate degree of gene expression, the actual construction of specific structures appears not directly linked to the functions of gene products alone. Instead, the self-formation of complex patterns, due in large part to epigenetic and non-genetic determinants, remains a persisting theme in the study of ontogeny and regenerative medicine. Recent evidence indeed points to the existence of a self-organizing process, operating through a set of intrinsic rules and forces, which imposes coordination and a holistic order upon cells and tissue. This has been repeatedly demonstrated in experiments on regeneration as well as in the autonomous formation of structures in vitro. The process cannot be wholly attributed to the functional outcome of protein-protein interactions or to concentration gradients of diffusible chemicals. This phenomenon is examined here along with some of the methodological and theoretical approaches that are now used in understanding the causal basis for self-organization in development and its evolution.
Collapse
|
31
|
Mei Q, Saiz L. Literature-based automated reconstruction, expansion, and refinement of the TGF-β superfamily ligand-receptor network. J Membr Biol 2014; 247:381-6. [PMID: 24585074 DOI: 10.1007/s00232-014-9643-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 01/28/2014] [Indexed: 12/20/2022]
Abstract
The TGF-β pathway transduces a variety of extracellular signals into intracellular responses that control multiple cellular processes, including cell growth, apoptosis, and differentiation. It encompasses 33 ligands that interact with 7 type II receptors and 5 type I receptors at the plasma membrane to potentially form 1,155 ligand-receptor complexes in mammalian cells. Retrieving the information of the complexes that are actually formed from reading the literature might be tedious and prone to missing links. Here, we have developed an automated literature-mining procedure to obtain the interactions of the TGF-β ligand-receptor network. By querying the Information Hyperlinked over Proteins (iHOP) online service and processing the results, we were able to find pairwise interactions between ligands and receptors that allowed us to build the network automatically from the literature. Comparison with available published review papers indicates that this method is able to automatically reconstruct and expand the TGF-β superfamily ligand-receptor network. Retrieving and parsing the full text of the manuscripts containing the interactions allowed us to refine the network interactions for specific cell lines.
Collapse
Affiliation(s)
- Qian Mei
- Modeling of Biological Networks Laboratory, Department of Biomedical Engineering, University of California, 451 E. Health Sciences Drive, Davis, CA, 95616, USA
| | | |
Collapse
|
32
|
Nicklas D, Saiz L. In silico identification of potential therapeutic targets in the TGF-β signal transduction pathway. MOLECULAR BIOSYSTEMS 2014; 10:537-48. [PMID: 24394954 DOI: 10.1039/c3mb70259f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The transforming growth factor-β (TGF-β) superfamily of cytokines controls fundamental cellular processes, such as proliferation, motility, differentiation, and apoptosis. This fundamental role is emphasized by the widespread presence of mutations of the core components of the TGF-β signal transduction pathway in a number of human diseases. Therefore, there is an increasing interest in the development of therapies to specifically target this pathway. Here we develop a computational approach to identify potential intervention points that are capable of restoring the normal signaling dynamics to the mutated system while maintaining the behavior of normal cells substantially unperturbed. We apply this approach explicitly to the TGF-β pathway to study the signaling dynamics of mutated and normal cells treated with inhibitory drugs and identify the processes in the pathway that are most susceptible to therapeutic intervention.
Collapse
Affiliation(s)
- Daniel Nicklas
- Modeling of Biological Networks Laboratory, Department of Biomedical Engineering, University of California, 451 East Health Sciences Drive, Davis, CA 95616, USA.
| | | |
Collapse
|
33
|
A multi-scale model of hepcidin promoter regulation reveals factors controlling systemic iron homeostasis. PLoS Comput Biol 2014; 10:e1003421. [PMID: 24391488 PMCID: PMC3879105 DOI: 10.1371/journal.pcbi.1003421] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 11/08/2013] [Indexed: 01/24/2023] Open
Abstract
Systemic iron homeostasis involves a negative feedback circuit in which the expression level of the peptide hormone hepcidin depends on and controls the iron blood levels. Hepcidin expression is regulated by the BMP6/SMAD and IL6/STAT signaling cascades. Deregulation of either pathway causes iron-related diseases such as hemochromatosis or anemia of inflammation. We quantitatively analyzed how BMP6 and IL6 control hepcidin expression. Transcription factor (TF) phosphorylation and reporter gene expression were measured under co-stimulation conditions, and the promoter was perturbed by mutagenesis. Using mathematical modeling, we systematically analyzed potential mechanisms of cooperative and competitive promoter regulation by the transcription factors, and experimentally validated the model predictions. Our results reveal that hepcidin cross-regulation primarily occurs by combinatorial transcription factor binding to the promoter, whereas signaling crosstalk is insignificant. We find that the presence of two BMP-responsive elements enhances the steepness of the promoter response towards the iron-sensing BMP signaling axis, which promotes iron homeostasis in vivo. IL6 co-stimulation reduces the promoter sensitivity towards the BMP signal, because the SMAD and STAT transcription factors compete for recruiting RNA polymerase to the transcription start site. This may explain why inflammatory signals disturb iron homeostasis in anemia of inflammation. Taken together, our results reveal why the iron homeostasis circuit is sensitive to perturbations implicated in disease. The nutritional iron uptake is tightly regulated because the body has limited capacity of iron excretion. Mammals maintain iron homeostasis by a negative feedback loop, in which the peptide hepcidin senses the iron blood level and controls iron resorption. Molecular perturbations in the homeostasis loop lead to iron-related diseases such as hemochromatosis or anemia of inflammation. Quantitative studies are required to understand the dynamics of the iron homeostasis circuitry in health and disease. We investigated how the biological activity of hepcidin is regulated by combining experiments with mathematical modeling. We present a multi-scale model that describes the signaling network and the gene promoter controlling hepcidin expression. Possible scenarios of hepcidin regulation were systematically tested against experimental data, and interpreted using a network model of iron metabolism in vivo. The analysis showed that the presence of multiple redundant regulatory elements in the hepcidin gene promoter facilitates homeostasis, because changes in iron blood levels are sensed with high sensitivity. We further suggest that inflammatory signals establish molecular competition at the hepcidin promoter, thereby reducing its iron sensitivity and leading to a loss of homeostasis in anemia of inflammation. We conclude that quantitative insights into hepcidin expression regulation explain features of systemic iron homeostasis.
Collapse
|
34
|
Characterization of negative feedback network motifs in the TGF-β signaling pathway. PLoS One 2013; 8:e83531. [PMID: 24386222 PMCID: PMC3875243 DOI: 10.1371/journal.pone.0083531] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 11/06/2013] [Indexed: 12/18/2022] Open
Abstract
{Chung, 2009 #1}The transforming growth factor-β (TGF-β) superfamily of cytokines plays a fundamental role in a wide variety of cellular processes, including growth, differentiation, apoptosis, and tissue homeostasis. Its relevance is emphasized by the mutations of its core components that are associated with diverse human diseases, such as cancer and cardiovascular pathologies. A prominent regulator of the pathway is Smad7, which attenuates the signal and controls its duration in a cell-type-dependent manner through a negative feedback loop. Here, we characterize all the potential Smad7-mediated negative feedback network motifs and investigate their effects on the signaling dynamics upon stimulation with TGF-β and bone morphogenetic protein (BMP) ligands. The results show that the specific negative feedback implementation is a key determinant of both the response of the system to single and multiple ligands of the TGF-β superfamily and its robustness and sensitivity to parameter perturbations.
Collapse
|
35
|
Jeschke M, Baumgärtner S, Legewie S. Determinants of cell-to-cell variability in protein kinase signaling. PLoS Comput Biol 2013; 9:e1003357. [PMID: 24339758 PMCID: PMC3854479 DOI: 10.1371/journal.pcbi.1003357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/06/2013] [Indexed: 12/28/2022] Open
Abstract
Cells reliably sense environmental changes despite internal and external fluctuations, but the mechanisms underlying robustness remain unclear. We analyzed how fluctuations in signaling protein concentrations give rise to cell-to-cell variability in protein kinase signaling using analytical theory and numerical simulations. We characterized the dose-response behavior of signaling cascades by calculating the stimulus level at which a pathway responds (‘pathway sensitivity’) and the maximal activation level upon strong stimulation. Minimal kinase cascades with gradual dose-response behavior show strong variability, because the pathway sensitivity and the maximal activation level cannot be simultaneously invariant. Negative feedback regulation resolves this trade-off and coordinately reduces fluctuations in the pathway sensitivity and maximal activation. Feedbacks acting at different levels in the cascade control different aspects of the dose-response curve, thereby synergistically reducing the variability. We also investigated more complex, ultrasensitive signaling cascades capable of switch-like decision making, and found that these can be inherently robust to protein concentration fluctuations. We describe how the cell-to-cell variability of ultrasensitive signaling systems can be actively regulated, e.g., by altering the expression of phosphatase(s) or by feedback/feedforward loops. Our calculations reveal that slow transcriptional negative feedback loops allow for variability suppression while maintaining switch-like decision making. Taken together, we describe design principles of signaling cascades that promote robustness. Our results may explain why certain signaling cascades like the yeast pheromone pathway show switch-like decision making with little cell-to-cell variability. Cells sense their surroundings and respond to soluble factors in the extracellular space. Extracellular factors frequently induce heterogeneous responses, thereby restricting the biological outcome to a fraction of the cell population. However, the question arises how such cell-to-cell variability can be controlled, because some cellular systems show a very homogenous response at a defined level of an extracellular stimulus. We derived an analytical framework to systematically characterize the cell-to-cell variability of intracellular signaling pathways which transduce external signals. We analyzed how heterogeneity arises from fluctuations in the total concentrations of signaling proteins because this is the main source of variability in eukaryotic systems. We find that signaling pathways can be highly variable or inherently invariant, depending on the kinetic parameters and the structural features of the cascade. Our results indicate that the cell-to-cell variability can be reduced by negative feedback in the cascade or by signaling crosstalk between parallel pathways. We precisely define the role of negative feedback loops in variability suppression, and show that different aspects of the dose-response curve can be controlled, depending on the feedback kinetics and site of action in the cascade. This work constitutes a first step towards a systematic understanding of cell-to-cell variability in signal transduction.
Collapse
Affiliation(s)
| | | | - Stefan Legewie
- Institute of Molecular Biology (IMB), Mainz, Germany
- * E-mail:
| |
Collapse
|
36
|
Hether TD, Hohenlohe PA. Genetic regulatory network motifs constrain adaptation through curvature in the landscape of mutational (co)variance. Evolution 2013; 68:950-64. [PMID: 24219635 DOI: 10.1111/evo.12313] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 10/29/2013] [Indexed: 01/02/2023]
Abstract
Systems biology is accumulating a wealth of understanding about the structure of genetic regulatory networks, leading to a more complete picture of the complex genotype-phenotype relationship. However, models of multivariate phenotypic evolution based on quantitative genetics have largely not incorporated a network-based view of genetic variation. Here we model a set of two-node, two-phenotype genetic network motifs, covering a full range of regulatory interactions. We find that network interactions result in different patterns of mutational (co)variance at the phenotypic level (the M-matrix), not only across network motifs but also across phenotypic space within single motifs. This effect is due almost entirely to mutational input of additive genetic (co)variance. Variation in M has the effect of stretching and bending phenotypic space with respect to evolvability, analogous to the curvature of space-time under general relativity, and similar mathematical tools may apply in each case. We explored the consequences of curvature in mutational variation by simulating adaptation under divergent selection with gene flow. Both standing genetic variation (the G-matrix) and rate of adaptation are constrained by M, so that G and adaptive trajectories are curved across phenotypic space. Under weak selection the phenotypic mean at migration-selection balance also depends on M.
Collapse
Affiliation(s)
- Tyler D Hether
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, 83844-3051
| | | |
Collapse
|
37
|
San Segundo L, Martini F, Pablos MV. Gene expression responses for detecting sublethal effects of xenobiotics and whole effluents on a Xenopus laevis embryo assay. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:2018-2025. [PMID: 23637088 DOI: 10.1002/etc.2267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 12/10/2012] [Accepted: 04/26/2013] [Indexed: 06/02/2023]
Abstract
In the present study, the authors investigated the effects of bisphenol A, chlorpyrifos, methylparaben, and 2 effluent samples from wastewater treatment plants located in the province of Madrid, Spain, on the messenger RNA expression of specific genes involved in early development (ESR1, pax6, bmp4, and myf5) and a gene involved in the general stress response (hsp70) during Xenopus laevis embryo development. Gene expression was analyzed after 4 h, 24 h, and 96 h of exposure by semiquantitative reverse-transcriptase-polymerase chain reaction. Concentration ranges of the compounds and dilutions for the samples were selected to cause morphological alterations in embryos after 96 h of exposure. Transcript levels of ESR1, pax6, and hsp70 were differentially altered at early developmental stages with patterns specific to the contaminant and the exposure time. However, further studies are needed to establish transcript levels of specific genes as biomarkers of sublethal effects in an environmental risk-assessment framework. Besides, studies including more generic responses, such as genes encoding antioxidant enzymes, together with genes related to embryonic development have to be developed to look for a battery of mechanistic endpoints for the evaluation of chemical exposure at the molecular level in a first-tier assessment.
Collapse
Affiliation(s)
- Laura San Segundo
- Department of the Environment, National Institute for Agricultural and Food Research and Technology, Madrid, Spain.
| | | | | |
Collapse
|
38
|
Blüthgen N, Legewie S. Robustness of signal transduction pathways. Cell Mol Life Sci 2013; 70:2259-69. [PMID: 23007845 PMCID: PMC11113274 DOI: 10.1007/s00018-012-1162-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/05/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
Abstract
Signal transduction pathways transduce information about the outside of the cell to the nucleus, regulating gene expression and cell fate. To reliably inform the cell about its surroundings, information transfer has to be robust against typical perturbation that a cell experiences. Robustness of several mammalian signaling pathways has been studied recently by quantitative experimentation and using mathematical modeling. Here, we review these studies, and describe the emerging concepts of robustness and the underlying mechanisms.
Collapse
Affiliation(s)
- Nils Blüthgen
- Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | | |
Collapse
|
39
|
Nicklas D, Saiz L. Computational modelling of Smad-mediated negative feedback and crosstalk in the TGF-β superfamily network. J R Soc Interface 2013; 10:20130363. [PMID: 23804438 DOI: 10.1098/rsif.2013.0363] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The transforming growth factor-β (TGF-β) signal transduction pathway controls many cellular processes, including differentiation, proliferation and apoptosis. It plays a fundamental role during development and it is dysregulated in many diseases. The factors that control the dynamics of the pathway, however, are not fully elucidated yet and so far computational approaches have been very limited in capturing the distinct types of behaviour observed under different cellular backgrounds and conditions into a single-model description. Here, we develop a detailed computational model for TGF-β signalling that incorporates elements of previous models together with crosstalking between Smad1/5/8 and Smad2/3 channels through a negative feedback loop dependent on Smad7. The resulting model accurately reproduces the diverse behaviour of experimental datasets for human keratinocytes, bovine aortic endothelial cells and mouse mesenchymal cells, capturing the dynamics of activation and nucleocytoplasmic shuttling of both R-Smad channels. The analysis of the model dynamics and its system properties revealed Smad7-mediated crosstalking between Smad1/5/8 and Smad2/3 channels as a major determinant in shaping the distinct responses to single and multiple ligand stimulation for different cell types.
Collapse
Affiliation(s)
- Daniel Nicklas
- Modeling of Biological Networks Laboratory, Department of Biomedical Engineering, University of California, 451 East Health Sciences Drive, Davis, CA 95616, USA
| | | |
Collapse
|
40
|
Narula J, Williams CJ, Tiwari A, Marks-Bluth J, Pimanda JE, Igoshin OA. Mathematical model of a gene regulatory network reconciles effects of genetic perturbations on hematopoietic stem cell emergence. Dev Biol 2013; 379:258-69. [PMID: 23623899 DOI: 10.1016/j.ydbio.2013.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/06/2013] [Accepted: 04/17/2013] [Indexed: 12/01/2022]
Abstract
Interlinked gene regulatory networks (GRNs) are vital for the spatial and temporal control of gene expression during development. The hematopoietic transcription factors (TFs) Scl, Gata2 and Fli1 form one such densely connected GRN which acts as a master regulator of embryonic hematopoiesis. This triad has been shown to direct the specification of the hemogenic endothelium and emergence of hematopoietic stem cells (HSCs) in response to Notch1 and Bmp4-Smad signaling. Here we employ previously published data to construct a mathematical model of this GRN network and use this model to systematically investigate the network dynamical properties. Our model uses a statistical-thermodynamic framework to describe the combinatorial regulation of gene expression and reconciles, mechanistically, several previously published but unexplained results from different genetic perturbation experiments. In particular, our results demonstrate how the interactions of Runx1, an essential hematopoietic TF, with components of the Bmp4 signaling pathway allow it to affect triad activation and acts as a key regulator of HSC emergence. We also explain why heterozygous deletion of this essential TF, Runx1, speeds up the network dynamics leading to accelerated HSC emergence. Taken together our results demonstrate that the triad, a master-level controller of definitive hematopoiesis, is an irreversible bistable switch whose dynamical properties are modulated by Runx1 and components of the Bmp4 signaling pathway.
Collapse
Affiliation(s)
- Jatin Narula
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
41
|
Guillot N, Kollins D, Badimon JJ, Schlondorff D, Hutter R. Accelerated reendothelialization, increased neovascularization and erythrocyte extravasation after arterial injury in BAMBI-/- mice. PLoS One 2013; 8:e58550. [PMID: 23469285 PMCID: PMC3585719 DOI: 10.1371/journal.pone.0058550] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 02/06/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Intimal injury rapidly activates TGFβ and enhances vascular repair by the growth of endothelial (EC) and vascular smooth muscle cells (VSMC). The response to the TGFβ family of growth factors can be modified by BAMBI (BMP, Activin, Membrane Bound Inhibitor) acting as a non-signaling, competitive antagonist of TGFβ type I receptors such as ALK 1 and 5. In vivo the effect of BAMBI will depend on its cell-specific expression and of that of the ALK type receptors. We recently reported EC restricted BAMBI expression and genetic elimination of BAMBI resulting in an in vitro and in vivo phenotype characterized by endothelial activation and proliferation involving alternative pathway activation by TGFβ through ALK 1. METHODOLOGY/PRINCIPAL FINDINGS To test the hypothesis that BAMBI modulates arterial response to injury via its effects on endothelial repair and arterial wall neovascularization we used a model of femoral arterial denudation injury in wild type (WT) and BAMBI(-/-) mice. Arterial response was evaluated at 2 and 4 weeks after luminal endothelial denudation of femoral arteries. The BAMBI(-/-) genotype mice showed accelerated luminal endothelial repair at 2 weeks and a highly unusual increase in arterial wall neovascularization compared to WT mice. The exuberant intimal and medial neovessel formation with BAMBI(-/-) genotype was also associated with significant red blood cell extravasation. The bleeding into the neointima at 2 weeks transiently increased it's area in the BAMBI(-/-)genotype despite the faster luminal endothelial repair in this group. Vascular smooth muscle cells were decreased at 2 weeks in BAMBI(-/-) mice, but comparable to wild type at 4 weeks. CONCLUSIONS/SIGNIFICANCE The absence of BAMBI results in a highly unusual surge in arterial wall neovascularization that surprisingly mimiks features of intra-plaque hemorrhage of advanced atheroma in a mechanical injury model. This suggests important effects of BAMBI on arterial EC homeostasis that need to be further studied in a model of inflammatory atherosclerosis.
Collapse
Affiliation(s)
- Nicolas Guillot
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Dmitrij Kollins
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Juan J. Badimon
- Cardiovascular Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Detlef Schlondorff
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Randolph Hutter
- Cardiovascular Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| |
Collapse
|
42
|
Richards JL, Zacharias AL, Walton T, Burdick JT, Murray JI. A quantitative model of normal Caenorhabditis elegans embryogenesis and its disruption after stress. Dev Biol 2012; 374:12-23. [PMID: 23220655 DOI: 10.1016/j.ydbio.2012.11.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/12/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022]
Abstract
The invariant lineage of Caenorhabditis elegans has powerful potential for quantifying developmental variability in normal and stressed embryos. Previous studies of division timing by automated lineage tracing suggested that variability in cell cycle timing is low in younger embryos, but manual lineage tracing of specific lineages suggested that variability may increase for later divisions. We developed improved automated lineage tracing methods that allowroutine lineage tracing through the last round of embryonic cell divisions and we applied these methods to trace the lineage of 18 wild-type embryos. Cell cycle lengths, division axes and cell positions are remarkably consistent among these embryos at all stages, with only slight increase in variability later in development. The resulting quantitative 4-dimensional model of embryogenesis provides a powerful reference dataset to identify defects in mutants or in embryos that have experienced environmental perturbations. We also traced the lineages of embryos imaged at higher temperatures to quantify the decay in developmental robustness under temperature stress. Developmental variability increases modestly at 25°C compared with 22°C and dramatically at 26°C, and we identify homeotic transformations in a subset of embryos grown at 26°C. The deep lineage tracing methods provide a powerful tool for analysis of normal development, gene expression and mutants and we provide a graphical user interface to allow other researchers to explore the average behavior of arbitrary cells in a reference embryo.
Collapse
Affiliation(s)
- Julia L Richards
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
43
|
BAMBI (BMP and activin membrane-bound inhibitor) protects the murine heart from pressure-overload biomechanical stress by restraining TGF-β signaling. Biochim Biophys Acta Mol Basis Dis 2012; 1832:323-35. [PMID: 23168040 DOI: 10.1016/j.bbadis.2012.11.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/23/2012] [Accepted: 11/13/2012] [Indexed: 12/22/2022]
Abstract
Left ventricular (LV) pressure overload is a major cause of heart failure. Transforming growth factors-β (TGF-βs) promote LV remodeling under biomechanical stress. BAMBI (BMP and activin membrane-bound inhibitor) is a pseudoreceptor that negatively modulates TGF-β signaling. The present study tests the hypothesis that BAMBI plays a protective role during the adverse LV remodeling under pressure overload. The subjects of the study were BAMBI knockout mice (BAMBI(-/-)) undergoing transverse aortic constriction (TAC) and patients with severe aortic stenosis (AS). We examined LV gene and protein expression of remodeling-related elements, histological fibrosis, and heart morphology and function. LV expression of BAMBI was increased in AS patients and TAC-mice and correlated directly with TGF-β. BAMBI deletion led to a gain of myocardial TGF-β signaling through canonical (Smads) and non-canonical (TAK1-p38 and TAK1-JNK) pathways. As a consequence, the remodeling response to pressure overload in BAMBI(-/-) mice was exacerbated in terms of hypertrophy, chamber dilation, deterioration of long-axis LV systolic function and diastolic dysfunction. Functional remodeling associated transcriptional activation of fibrosis-related TGF-β targets, up-regulation of the profibrotic micro-RNA-21, histological fibrosis and increased metalloproteinase-2 activity. Histological remodeling in BAMBI(-/-) mice involved TGF-βs. BAMBI deletion in primary cardiac fibroblasts exacerbated TGF-β-induced profibrotic responses while BAMBI overexpression in NIH-3T3 fibroblasts attenuated them. Our findings identify BAMBI as a critical negative modulator of myocardial remodeling under pressure overload. We suggest that BAMBI is involved in negative feedback loops that restrain the TGF-β remodeling signals to protect the pressure-overloaded myocardium from uncontrolled extracellular matrix deposition in humans and mice.
Collapse
|
44
|
Haskel-Ittah M, Ben-Zvi D, Branski-Arieli M, Schejter ED, Shilo BZ, Barkai N. Self-organized shuttling: generating sharp dorsoventral polarity in the early Drosophila embryo. Cell 2012; 150:1016-28. [PMID: 22939625 DOI: 10.1016/j.cell.2012.06.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 02/28/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
Abstract
Morphogen gradients pattern tissues and organs during development. When morphogen production is spatially restricted, diffusion and degradation are sufficient to generate sharp concentration gradients. It is less clear how sharp gradients can arise within the source of a broadly expressed morphogen. A recent solution relies on localized production of an inhibitor outside the domain of morphogen production, which effectively redistributes (shuttles) and concentrates the morphogen within its expression domain. Here, we study how a sharp gradient is established without a localized inhibitor, focusing on early dorsoventral patterning of the Drosophila embryo, where an active ligand and its inhibitor are concomitantly generated in a broad ventral domain. Using theory and experiments, we show that a sharp Toll activation gradient is produced through "self-organized shuttling," which dynamically relocalizes inhibitor production to lateral regions, followed by inhibitor-dependent ventral shuttling of the activating ligand Spätzle. Shuttling may represent a general paradigm for patterning early embryos.
Collapse
Affiliation(s)
- Michal Haskel-Ittah
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
45
|
Kicheva A, Cohen M, Briscoe J. Developmental pattern formation: insights from physics and biology. Science 2012; 338:210-2. [PMID: 23066071 DOI: 10.1126/science.1225182] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The spatial organization of cell fates during development involves the interpretation of morphogen gradients by cellular signaling cascades and transcriptional networks. Recent studies use biophysical models, genetics, and quantitative imaging to unravel how tissue-level morphogen behavior arises from subcellular events. Moreover, data from several systems show that morphogen gradients, downstream signaling, and the activity of cell-intrinsic transcriptional networks change dynamically during pattern formation. Studies from Drosophila and now also vertebrates suggest that transcriptional network dynamics are central to the generation of gene expression patterns. Together, this leads to the view that pattern formation is an emergent behavior that results from the coordination of events occurring across molecular, cellular, and tissue scales. The development of novel approaches to study this complex process remains a challenge.
Collapse
Affiliation(s)
- Anna Kicheva
- Medical Research Council-National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | |
Collapse
|
46
|
Abstract
The basic elements of the transforming growth factor-β (TGFβ) pathway were revealed more than a decade ago. Since then, the concept of how the TGFβ signal travels from the membrane to the nucleus has been enriched with additional findings, and its multifunctional nature and medical relevance have relentlessly come to light. However, an old mystery has endured: how does the context determine the cellular response to TGFβ? Solving this question is key to understanding TGFβ biology and its many malfunctions. Recent progress is pointing at answers.
Collapse
Affiliation(s)
- Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
| |
Collapse
|
47
|
Schmiedel JM, Axmann IM, Legewie S. Multi-target regulation by small RNAs synchronizes gene expression thresholds and may enhance ultrasensitive behavior. PLoS One 2012; 7:e42296. [PMID: 22927924 PMCID: PMC3424230 DOI: 10.1371/journal.pone.0042296] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/02/2012] [Indexed: 01/05/2023] Open
Abstract
Cells respond to external cues by precisely coordinating multiple molecular events. Co-regulation may be established by the so-called single-input module (SIM), where a common regulator controls multiple targets. Using mathematical modeling, we compared the ability of SIM architectures to precisely coordinate protein levels despite environmental fluctuations and uncertainties in parameter values. We find that post-transcriptional co-regulation as exemplified by bacterial small RNAs (sRNAs) is particularly robust: sRNA-mediated regulation establishes highly synchronous gene expression thresholds for all mRNA targets without a need for fine-tuning of kinetic parameters. Our analyses reveal that the non-catalytic nature of sRNA action is essential for robust gene expression synchronization, and that sRNA sequestration effects underlie coupling of multiple mRNA pools. This principle also operates in the temporal regime, implying that sRNAs could robustly coordinate the kinetics of mRNA induction as well. Moreover, we observe that multi-target regulation by a small RNA can strongly enhance ultrasensitivity in mRNA expression when compared to the single-target case. Our findings may explain why bacterial small RNAs frequently coordinate all-or-none responses to cellular stress.
Collapse
Affiliation(s)
| | - Ilka Maria Axmann
- Institute for Theoretical Biology, Charité-Universitätsmedizin, Berlin, Berlin, Germany
| | - Stefan Legewie
- Institute of Molecular Biology, Mainz, Rheinland-Pfalz, Germany
- * E-mail:
| |
Collapse
|
48
|
Denby CM, Im JH, Yu RC, Pesce CG, Brem RB. Negative feedback confers mutational robustness in yeast transcription factor regulation. Proc Natl Acad Sci U S A 2012; 109:3874-8. [PMID: 22355134 PMCID: PMC3309721 DOI: 10.1073/pnas.1116360109] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organismal fitness depends on the ability of gene networks to function robustly in the face of environmental and genetic perturbations. Understanding the mechanisms of this stability is one of the key aims of modern systems biology. Dissecting the basis of robustness to mutation has proven a particular challenge, with most experimental models relying on artificial DNA sequence variants engineered in the laboratory. In this work, we hypothesized that negative regulatory feedback could stabilize gene expression against the disruptions that arise from natural genetic variation. We screened yeast transcription factors for feedback and used the results to establish ROX1 (Repressor of hypOXia) as a model system for the study of feedback in circuit behaviors and its impact across genetically heterogeneous populations. Mutagenesis experiments revealed the mechanism of Rox1 as a direct transcriptional repressor at its own gene, enabling a regulatory program of rapid induction during environmental change that reached a plateau of moderate steady-state expression. Additionally, in a given environmental condition, Rox1 levels varied widely across genetically distinct strains; the ROX1 feedback loop regulated this variation, in that the range of expression levels across genetic backgrounds showed greater spread in ROX1 feedback mutants than among strains with the ROX1 feedback loop intact. Our findings indicate that the ROX1 feedback circuit is tuned to respond to perturbations arising from natural genetic variation in addition to its role in induction behavior. We suggest that regulatory feedback may be an important element of the network architectures that confer mutational robustness across biology.
Collapse
Affiliation(s)
- Charles M. Denby
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3220; and
| | - Joo Hyun Im
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3220; and
| | | | | | - Rachel B. Brem
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3220; and
| |
Collapse
|
49
|
Fukuda T, Uchida R, Inoue H, Ohte S, Yamazaki H, Matsuda D, Katagiri T, Tomoda H. Fungal pyrrolidine-containing metabolites inhibit alkaline phosphatase activity in bone morphogenetic protein-stimulated myoblastoma cells. Acta Pharm Sin B 2012. [DOI: 10.1016/j.apsb.2011.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
50
|
Bonilla-Claudio M, Wang J, Bai Y, Klysik E, Selever J, Martin JF. Bmp signaling regulates a dose-dependent transcriptional program to control facial skeletal development. Development 2012; 139:709-19. [PMID: 22219353 DOI: 10.1242/dev.073197] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We performed an in depth analysis of Bmp4, a critical regulator of development, disease, and evolution, in cranial neural crest (CNC). Conditional Bmp4 overexpression, using a tetracycline-regulated Bmp4 gain-of-function allele, resulted in facial skeletal changes that were most dramatic after an E10.5 Bmp4 induction. Expression profiling uncovered a signature of Bmp4-induced genes (BIG) composed predominantly of transcriptional regulators that control self-renewal, osteoblast differentiation and negative Bmp autoregulation. The complimentary experiment, CNC inactivation of Bmp2, Bmp4 and Bmp7, resulted in complete or partial loss of multiple CNC-derived skeletal elements, revealing a crucial requirement for Bmp signaling in membranous bone and cartilage development. Importantly, the BIG signature was reduced in Bmp loss-of-function mutants, indicating Bmp-regulated target genes are modulated by Bmp dose. Chromatin immunoprecipitation (ChIP) revealed a subset of the BIG signature, including Satb2, Smad6, Hand1, Gadd45γ and Gata3, that was bound by Smad1/5 in the developing mandible, revealing direct Smad-mediated regulation. These data support the hypothesis that Bmp signaling regulates craniofacial skeletal development by balancing self-renewal and differentiation pathways in CNC progenitors.
Collapse
Affiliation(s)
- Margarita Bonilla-Claudio
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|