1
|
Lin H, Yao T, Ding H, Chu J, Yuan D, Ping F, Chen F, Liu X. Identification and functional characterization of differentially expressed circRNAs in high glucose treated endothelial cells: Construction of circRNA-miRNA-mRNA network. Heliyon 2024; 10:e37028. [PMID: 39281534 PMCID: PMC11399645 DOI: 10.1016/j.heliyon.2024.e37028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/31/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
Background Endothelial dysfunction is a complication of diabetes mellitus (DM), characterized by impaired endothelial function in both microvessels and macrovessels, closely linked to atherosclerosis (AS). Endothelial dysfunction, characterized by impaired endothelial cell (EC) function, is a pivotal factor in AS and DM. Circular RNAs (circRNAs) are endogenous non-coding RNAs that can act as competing endogenous RNAs (ceRNAs) and regulate gene expression. However, the role of circRNAs in ECs dysfunction and AS under high glucose (HG) condition remains elusive. Methods We performed high-throughput sequencing to identify differentially expressed (DE) circRNAs in human umbilical vein endothelial cells (HUVEC) exposed to HG, one risk factors of endothelial dysfunction and AS. We then validated eight candidate circRNAs by qRT-PCR and functional analysis, directing our attention to hsa_circ_0122319. Moreover, microarray analysis identified the differential expression profiles of miRNAs and mRNAs regulated by hsa_circ_0122319. Subsequently, the construction of the ceRNAs network employed bioinformatic analysis and Cytoscape software. Furthermore, the role of the PI3K-Akt signaling pathway in regulating ceRNAs was evaluated. Results We detected 917 DE circRNAs in HG treated HUVEC. The parental genes of these circRNAs were enriched in cell cycle, cellular senescence and endocytosis related pathways. The differential expression of hsa_circ_0122319 was confirmed to be most obvious at the cellular level and in clinical samples by qPCR experiments. After overexpression of hsa_circ_0122319, 49 DE miRNAs and 459 DE mRNAs were identified using microarray analysis. Subsequently, a ceRNAs network was constructed, comprising hsa_circ_0122319, 8 miRNAs, and 41 mRNAs. Conclusion In summary, our study delves into the role of circRNAs in endothelial dysfunction associated with DM and AS. Through high-throughput sequencing and validation, we identified hsa_circ_0122319 as a pivotal regulator of ECs function under HG conditions. It also showed that hsa_circ_0123319 has the potential to serve as a biomarker for DM and its vascular complications, and provides new evidence for future exploration of the intricate molecular mechanisms of endothelial dysfunction in the progression of DM and AS.
Collapse
Affiliation(s)
- Hao Lin
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Tongqing Yao
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Haoran Ding
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Jiapeng Chu
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Deqiang Yuan
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Fan Ping
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Fei Chen
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Xuebo Liu
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, 200092, Shanghai, China
| |
Collapse
|
2
|
Cheng B, Li L, Wu Y, Luo T, Tang C, Wang Q, Zhou Q, Wu J, Lai Y, Zhu D, Du T, Huang H. The key cellular senescence related molecule RRM2 regulates prostate cancer progression and resistance to docetaxel treatment. Cell Biosci 2023; 13:211. [PMID: 37968699 PMCID: PMC10648385 DOI: 10.1186/s13578-023-01157-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/28/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Prostate cancer is a leading cause of cancer-related deaths among men worldwide. Docetaxel chemotherapy has proven effective in improving overall survival in patients with castration-resistant prostate cancer (CRPC), but drug resistance remains a considerable clinical challenge. METHODS We explored the role of Ribonucleotide reductase subunit M2 (RRM2), a gene associated with senescence, in the sensitivity of prostate cancer to docetaxel. We evaluated the RRM2 expression, docetaxel resistance, and ANXA1 expression in prostate cancer cell lines and tumour xenografts models. In addition, We assessed the impact of RRM2 knockdown, ANXA1 over-expression, and PI3K/AKT pathway inhibition on the sensitivity of prostate cancer cells to docetaxel. Furthermore, we assessed the sensitivity of prostate cancer cells to the combination treatment of COH29 and docetaxel. RESULTS Our results demonstrated a positive association between RRM2 expression and docetaxel resistance in prostate cancer cell lines and tumor xenograft models. Knockdown of RRM2 increased the sensitivity of prostate cancer cells to docetaxel, suggesting its role in mediating resistance. Furthermore, we observed that RRM2 stabilizes the expression of ANXA1, which in turn activates the PI3K/AKT pathway and contributes to docetaxel resistance. Importantly, we found that the combination treatment of COH29 and docetaxel resulted in a synergistic effect, further augmenting the sensitivity of prostate cancer cells to docetaxel. CONCLUSION Our findings suggest that RRM2 regulates docetaxel resistance in prostate cancer by stabilizing ANXA1-mediated activation of the PI3K/AKT pathway. Targeting RRM2 or ANXA1 may offer a promising therapeutic strategy to overcome docetaxel resistance in prostate cancer.
Collapse
Affiliation(s)
- Bisheng Cheng
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Lingfeng Li
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yongxin Wu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Tianlong Luo
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Chen Tang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qiong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 511430, China
| | - Qianghua Zhou
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jilin Wu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yiming Lai
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Dingjun Zhu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Tao Du
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China.
| | - Hai Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China.
| |
Collapse
|
3
|
Niu H, Li J, Liang H, Wu G, Chen M. Exogenous Hydrogen Sulfide Activates PI3K/Akt/eNOS Pathway to Improve Replicative Senescence in Human Umbilical Vein Endothelial Cells. Cardiol Res Pract 2023; 2023:7296874. [PMID: 37064727 PMCID: PMC10101749 DOI: 10.1155/2023/7296874] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 04/18/2023] Open
Abstract
Background Endothelial cell senescence is one of the key mechanistic factors in the pathogenesis of atherosclerosis. In terms of molecules, the phosphatidylinositol 3-kinase/protein kinase B/endothelial nitric oxide synthase (PI3K/Akt/eNOS) signaling plays an important role in the prevention and control of endothelial cell senescence, while hydrogen sulfide (H2S) improves the induced precocious senescence of endothelial cells through the PI3K/Akt/eNOS pathway. Comparatively, replicative senescence in endothelial cells is more in line with the actual physiological changes of human aging. This study aims to investigate the mechanism by which H2S improves endothelial cell replicative senescence and the involvement of the PI3K/Akt/eNOS pathway. Methods we established a model of replicative senescence in human umbilical vein endothelial cells (HUVECs) and explored the effect of 200 μmol/L sodium hydrosulfide (NaHS; a donor of H2S) on senescence, which was determined by cell morphology, the expression level of plasminogen activator inhibitor 1 (PAI-1), and the positive rate of senescence-associated β-galactosidase (SA-β-Gal) staining. Cell viability was detected by MTT assay to evaluate the effect of NaHS and the PI3K inhibitor, LY294002. Meanwhile, the protein expression of PI3K, Akt, p-Akt, and eNOS in endothelial cells of each group was detected by Western blot. Results the replicative senescence model was established in HUVECs at the passage of 16 cumulative cell population doubling values (CPDL). Treatment with NaHS not only significantly reduced the expression of PAI-1 and the positive rate of SA-β-Gal in HUVEC's replicative senescence model but also notably increased the expression of PI3K, p-Akt, p-eNOS, and the content of nitric oxide(NO). However, the effects of NaHS on the expression of the pathway and the content of NO in HUVECs were abolished when LY294002 specifically inhibited PI3K. Conclusion NaHS improves the replicative senescence of HUVECs with the contribution of the PI3K/Akt/eNOS pathway.
Collapse
Affiliation(s)
- Haiming Niu
- Department of Critical Care Medicine, Zhongshan People's Hospital, Zhongshan 528400, China
| | - Jianwei Li
- Department of Critical Care Medicine, Zhongshan People's Hospital, Zhongshan 528400, China
| | - Hongkai Liang
- Department of Critical Care Medicine, Zhongshan People's Hospital, Zhongshan 528400, China
| | - Guishen Wu
- Department of Critical Care Medicine, Zhongshan People's Hospital, Zhongshan 528400, China
| | - Miaolian Chen
- Department of Critical Care Medicine, Zhongshan People's Hospital, Zhongshan 528400, China
| |
Collapse
|
4
|
Zhang D, Jiang H, Ye J, Gao M, Wang X, Lu E, Yang H, Wang L, Zhao S. A novel lncRNA, RPL34-AS1, promotes proliferation and angiogenesis in glioma by regulating VEGFA. J Cancer 2021; 12:6189-6197. [PMID: 34539892 PMCID: PMC8425216 DOI: 10.7150/jca.59337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/09/2021] [Indexed: 11/05/2022] Open
Abstract
Purpose: Brain gliomas are the most common primary malignant tumors of the central nervous system and one of the leading causes of death in patients with intracranial tumors. The lncRNA RPL34-AS1 is significantly upregulated in glioma tissues. However, the biological function of RPL34-AS1, especially in proliferation in glioma, remains unclear. Methods: The role of RPL34-AS1 in proliferation and angiogenesis in glioma cells was investigated using the LN229, U87, and U251 glioma cell lines. The levels of RPL34-AS1 were detected using real-time quantitative reverse transcription polymerase chain reaction. CCK-8 and colony formation assays were performed to determine the role of RPL34-AS1 in proliferation and survival, and its role in angiogenesis was assessed by an endothelial tube formation assay. Changes in protein levels were assessed by western blotting. Results: RPL34-AS1 was upregulated in glioma tissues and was correlated with tumor grade. RPL34-AS1 expression was also higher in glioma cells than in normal astrocytes. Knockdown of RPL34-AS1 blocked glioma cell proliferation by inhibiting angiogenesis. This effect occurred through decreased ERK/AKT signaling. Conclusions: This study suggests that RPL34-AS1 affects cell proliferation and angiogenesis in glioma and therefore may potentially serve as a valuable diagnostic and prognostic biomarker and therapeutic target in patients with glioma.
Collapse
Affiliation(s)
- Dongzhi Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
- Department of Neurosurgery, The Affiliated Cancer Hospital of Harbin Medical University, Harbin, China
| | - Haiping Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Junyi Ye
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Ming Gao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Xinzhuang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Enzhou Lu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - He Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Lixiang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Shiguang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China
- Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
- Shenzhen University General Hospital, Xueyuan AVE 1098, Nanshan District, 11, Shenzhen, Guangdong, P. R. China
| |
Collapse
|
5
|
Huang Y, Qian JY, Cheng H, Li XM. Effects of shear stress on differentiation of stem cells into endothelial cells. World J Stem Cells 2021; 13:894-913. [PMID: 34367483 PMCID: PMC8316872 DOI: 10.4252/wjsc.v13.i7.894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/20/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cell transplantation is an appealing potential therapy for vascular diseases and an indispensable key step in vascular tissue engineering. Substantial effort has been made to differentiate stem cells toward vascular cell phenotypes, including endothelial cells (ECs) and smooth muscle cells. The microenvironment of vascular cells not only contains biochemical factors that influence differentiation but also exerts hemodynamic forces, such as shear stress and cyclic strain. More recently, studies have shown that shear stress can influence the differentiation of stem cells toward ECs. A deep understanding of the responses and underlying mechanisms involved in this process is essential for clinical translation. This review highlights current data supporting the role of shear stress in stem cell differentiation into ECs. Potential mechanisms and signaling cascades for transducing shear stress into a biological signal are proposed. Further study of stem cell responses to shear stress will be necessary to apply stem cells for pharmacological applications and cardiovascular implants in the realm of regenerative medicine.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jia-Yi Qian
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Hong Cheng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xiao-Ming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
6
|
Zhao H, Liang G, Liang W, Li Q, Huang B, Li A, Qiu D, Jin D. In vitro and in vivo evaluation of the pH-neutral bioactive glass as high performance bone grafts. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111249. [PMID: 32806287 DOI: 10.1016/j.msec.2020.111249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 11/18/2022]
Abstract
Osteogenic and angiogenic properties are two most valued factors for bone grafting materials. Biomedical materials with synergistic promotion effects on these two properties would be highly desirable. In this study, we showed that a recently developed pH-neutral bioactive glass (PSC) possessed such characteristics. Compared to two classical biomaterials, 45S5 bioactive glass and beta-tricalcium phosphate (β-TCP), PSC markedly improved BMSCs' proliferation, migration and mineralization as well as their osteogenic and angiogenic differentiation. In vivo, PSC showed better performance on inducing bone regeneration than both 45S5 and β-TCP, as featured by elevated bone mineral density (BMD) and new bone areas. PSC also significantly promoted new blood vessels formation compared with those in control groups. Furthermore, we revealed that PSC induced osteogenic and angiogenic differentiation of BMSCs through the PI3K/Akt/HIF-1α pathway, which had not been reported before. This synergistic effect of the PI3K/Akt/HIF-1α pathway on osteogenesis and angiogenic differentiation of BMSCs suggested that biomedical materials may promote new bone formation through multiple signal pathways, thus shedding light on the future development of materials with better performance.
Collapse
Affiliation(s)
- Huiyu Zhao
- Academy of Orthopedics, Guangdong Province, Orthopaedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, People's Republic of China
| | - Guojun Liang
- Academy of Orthopedics, Guangdong Province, Orthopaedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, People's Republic of China
| | - Wenquan Liang
- Academy of Orthopedics, Guangdong Province, Orthopaedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, People's Republic of China
| | - Qingchu Li
- Academy of Orthopedics, Guangdong Province, Orthopaedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, People's Republic of China
| | - Bin Huang
- Academy of Orthopedics, Guangdong Province, Orthopaedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, People's Republic of China
| | - Ailing Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| | - Dadi Jin
- Academy of Orthopedics, Guangdong Province, Orthopaedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, People's Republic of China.
| |
Collapse
|
7
|
Shear Stress Triggers Angiogenesis of Late Endothelial Progenitor Cells via the PTEN/Akt/GTPCH/BH4 Pathway. Stem Cells Int 2020; 2020:5939530. [PMID: 32399044 PMCID: PMC7210539 DOI: 10.1155/2020/5939530] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/03/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
Background Shear stress is an effective modulator of endothelial progenitor cells (EPCs) and has been suggested to play an important role in angiogenesis. The phosphatase and tensin homolog (PTEN)/Akt and guanosine triphosphate cyclohydrolase (GTPCH)/tetrahydrobiopterin (BH4) pathways regulate the function of early EPCs. However, the role of these pathways in the shear stress-induced angiogenesis of late EPCs remains poorly understood. Therefore, we aim to investigate whether shear stress could upregulate the angiogenesis capacity of late EPCs and to further explore the possible underlying mechanisms. Methods Late EPCs were subjected to laminar shear stress (LSS), and their in vitro migration, proliferation, and tube formation capacity were determined. In addition, the in vivo angiogenesis capacity was explored, along with the expression of molecules involved in the PTEN/Akt and GTPCH/BH4 pathways. Results LSS elevated the in vitro activities of late EPCs, which were accompanied by downregulated PTEN expression, accelerated Akt phosphorylation, and GTPCH/BH4 pathway activation (all P < 0.05). Following Akt inhibition, LSS-induced upregulated GTPCH expression, BH4, and NO level of EPCs were suppressed. LSS significantly improved the migration, proliferation, and tube formation ability (15 dyn/cm2 LSS vs. stationary: 72.2 ± 5.5 vs. 47.3 ± 7.3, 0.517 ± 0.05 vs. 0.367 ± 0.038, and 1.664 ± 0.315 vs. 1 ± 0, respectively; all P < 0.05) along with the in vivo angiogenesis capacity of late EPCs, contributing to the recovery of limb ischemia. These effects were also blocked by Akt inhibition or GTPCH knockdown (P < 0.05, respectively). Conclusions This study provides the first evidence that shear stress triggers angiogenesis in late EPCs via the PTEN/Akt/GTPCH/BH4 pathway, providing a potential nonpharmacologic therapeutic strategy for promoting angiogenesis in ischemia-related diseases.
Collapse
|
8
|
Zhang Y, Wang L, Xu J, Kong X, Zou L. Up-regulated miR-106b inhibits ox-LDL-induced endothelial cell apoptosis in atherosclerosis. ACTA ACUST UNITED AC 2020; 53:e8960. [PMID: 32130290 PMCID: PMC7057938 DOI: 10.1590/1414-431x20198960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
This research aimed to explore the molecular mechanism of microRNA (miR)-106b in cell apoptosis of atherosclerosis (AS). Human aortic endothelial cells (HAECs) were divided into control group, oxidized-low-density lipoproteins (ox-LDL) group, miR-106b NC+ox-LDL group, miR-106b mimics+ox-LDL group, miR-106b mimics+PTEN+ox-LDL group, and miR-106b mimics+empty+ox-LDL group. Real-time fluorescence quantitative polymerase chain reaction, cholecystokinin, TdT-mediated biotinylated nick end-labeling assay, luciferase reporter gene assay, and flow cytometry analysis were performed to determine the morphology, proliferation, and apoptosis in HSECs. Moreover, the levels of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), Bcl-2, p-P13K, and p-AKT in HAECs were detected by western blot. MiR-106b was down-regulated in ox-LDL-induced HAECs. PTEN was the target gene of miR-106b-5p. Overexpression of PTEN inhibited the anti-apoptotic effect of miR-106b. Compared with the control group, the proportion and number of HAECs apoptosis and Bax, caspase-3, and caspase-9 expression in ox-LDL and miR-106b mimics+PTEN+ox-LDL groups were significantly increased (all P<0.05). Moreover, the activity of HAECs and Bcl-2 were decreased significantly (all P<0.05). Overexpression of miR-106b in ox-LDL-induced AS inhibited endothelial cell apoptosis. Furthermore, miR-106b might activate the PI3K/AKT pathway by down-regulating the expression of PTEN in ox-LDL-induced HAECs.
Collapse
Affiliation(s)
- Yunqing Zhang
- Department of Cardiology, Zuanshiwan Branch of The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Li Wang
- Department III of Cardiology, The Central Hospital of Dalian, Dalian, Liaoning, China
| | - Jie Xu
- Department of Endocrinology, Zuanshiwan Branch of The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiaomei Kong
- Department of Endocrinology, Zuanshiwan Branch of The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Lin Zou
- Department of Cardiology, Zuanshiwan Branch of The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
9
|
Knapczyk-Stwora K, Costa MC, Gabriel A, Grzesiak M, Hubalewska-Mazgaj M, Witek P, Koziorowski M, Slomczynska M. A transcriptome approach evaluating effects of neonatal androgen and anti-androgen treatments on regulation of luteal function in sexually mature pigs. Anim Reprod Sci 2020; 212:106252. [DOI: 10.1016/j.anireprosci.2019.106252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/19/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
|
10
|
Lin JP, Wei Y, Fan XJ, Zhang MH, Wu MQ, Li W, Wang P, Xiong W. The mechanisms of pei-yuan-tong-nao capsule as a therapeutic agent against cerebrovascular disease. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2020. [DOI: 10.4103/wjtcm.wjtcm_45_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
Cul4 E3 ubiquitin ligase regulates ovarian cancer drug resistance by targeting the antiapoptotic protein BIRC3. Cell Death Dis 2019; 10:104. [PMID: 30718461 PMCID: PMC6362125 DOI: 10.1038/s41419-018-1200-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 02/05/2023]
Abstract
CRL4, a well-defined E3 ligase, has been reported to be upregulated and is proposed to be a potential drug target in ovarian cancers. However, the biological functions of CRL4 and the underlying mechanism regulating cancer chemoresistance are still largely elusive. Here, we show that CRL4 is considerably increased in cisplatin-resistant ovarian cancer cells, and CRL4 knockdown with shRNAs is able to reverse cisplatin-resistance of ovarian cancer cells. Moreover, CRL4 knockdown markedly inhibits the expression of BIRC3, one of the inhibitors of apoptosis proteins (IAPs). Besides, lower expression level of BIRC3 is associated with better prognosis of ovarian cancer patients, and BIRC3 knockdown in ovarian cancer cells can recover their sensitivity to cisplatin. More importantly, we demonstrate that CRL4 regulates BIRC3 expression by mediating the STAT3, but not the PI3K pathway. Therefore, our results identified CRL4 as an important factor in ovarian cancer chemoresistance, suggesting that CRL4 and BIRC3 may serve as novel therapeutic targets for relapsed patients after treatment with cisplatin and its derivative to overcome the bottle neck of ovarian cancer chemoresistance.
Collapse
|
12
|
Li Y, Wang Z, Mao M, Zhao M, Xiao X, Sun W, Guo J, Liu C, Yang D, Qiao J, Huang L, Li L. Velvet Antler Mobilizes Endothelial Progenitor Cells to Promote Angiogenesis and Repair Vascular Endothelial Injury in Rats Following Myocardial Infarction. Front Physiol 2019; 9:1940. [PMID: 30705637 PMCID: PMC6344410 DOI: 10.3389/fphys.2018.01940] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/22/2018] [Indexed: 01/01/2023] Open
Abstract
Objective: This investigation examined the effect of velvet antler (VA) on endothelial progenitor cells (EPCs) and the associated effects to promote angiogenesis and repair vascular endothelial injury in rats with myocardial infarction (MI). Methods: VA was analyzed by liquid chromatography-mass spectrometry. Male Sprague Dawley rats were randomly divided into four groups: sham, MI, VA, and VA + DAPT (gamma-secretase inhibitor IX, a specific blocker of the Notch signaling pathway) group. The rats underwent ligation of the left anterior descending coronary artery for the establishment of MI. Sham-operated rats were used as controls. Blood was taken from the orbital plexus on the first and third days after the operation, and all rats were euthanized on the 7th day after surgery. The blood samples were used to detect the contents of circulating endothelial progenitor cells (CEPCs) and vascular endothelial growth factor (VEGF). Echocardiography was used to test the cardiac function. Cardiac tissue was used for immunohistochemistry and electron microscope, and the marginal zone of the MI tissue was used for western blot and reverse transcription-quantitative polymerase chain reaction. Results: The number of basically qualitative metabolites is 445. Among them, there are 74 substances with relative content greater than 0.05%. VA increased the concentration of CEPCs and VEGF in serum, CD133 content and microvessel density (MVD), and protected the morphology of microvascular endothelial cells in the marginal area of MI at 7 days post-MI surgery. CEPCs and MVD in the VA +DAPT group were lower than those of VA group. VA increased the protein expressions of Jagged-1, Notch1, NICD and HES1, and the mRNA expressions of Hes1 and Hey2, while some of the effects could be suppressed by DAPT. Conclusion: These results suggest that VA promotes the mobilization of EPCs to promote angiogenesis and repair vascular endothelial cell damage in post-MI rats, and these effects may be due to activation of the Notch signal pathway.
Collapse
Affiliation(s)
- Yanjun Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Ziwei Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Min Mao
- China-Japan Friendship Hospital, Beijing, China
| | - Mingjing Zhao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang Xiao
- Department of Integrative Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Weiliang Sun
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jing Guo
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Chengxiang Liu
- Rizhao Hospital of Traditional Chinese Medicine, Rizhao, China
| | - Deshuang Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jiajun Qiao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Li Huang
- Department of Integrative Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Lin Li
- Department of Integrative Cardiology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
13
|
Uchino H, Ito M, Kazumata K, Hama Y, Hamauchi S, Terasaka S, Sasaki H, Houkin K. Circulating miRNome profiling in Moyamoya disease-discordant monozygotic twins and endothelial microRNA expression analysis using iPS cell line. BMC Med Genomics 2018; 11:72. [PMID: 30157848 PMCID: PMC6114494 DOI: 10.1186/s12920-018-0385-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/06/2018] [Indexed: 11/10/2022] Open
Abstract
Background Moyamoya disease (MMD) is characterized by progressive stenosis of intracranial arteries in the circle of Willis with unknown etiology even after the identification of a Moyamoya susceptible gene, RNF213. Recently, differences in epigenetic regulations have been investigated by a case-control study in MMD. Here, we employed a disease discordant monozygotic twin-based study design to unmask potential confounders. Methods Circulating genome-wide microRNA (miRNome) profiling was performed in MMD-discordant monozygotic twins, non-twin-MMD patients, and non-MMD healthy volunteers by microarray followed by qPCRvalidation, using blood samples. Differential plasma-microRNAs were further quantified in endothelial cells differentiated from iPS cell lines (iPSECs) derived from another independent non-twin cohort. Lastly, their target gene expression in the iPSECs was analyzed. Results Microarray detected 309 plasma-microRNAs in MMD-discordant monozygotic twins that were also detected in the non-twin cohort. Principal component analysis of the plasma-microRNA expression level demonstrated distinct 2 groups separated by MMD and healthy control in the twin- and non-twin cohorts. Of these, differential upregulations of hsa-miR-6722-3p/− 328-3p were validated in the plasma of MMD (absolute log2 expression fold change (logFC) > 0.26 for the twin cohort; absolute logFC > 0.26, p < 0.05, and q < 0.15 for the non-twin cohort). In MMD derived iPSECs, hsa-miR-6722-3p/− 328-3p showed a trend of up-regulation with a 3.0- or higher expression fold change. Bioinformatics analysis revealed that 41 target genes of miR-6722-3p/− 328-3p were significantly down-regulated in MMD derived iPSECs and were involved in STAT3, IGF-1-, and PTEN-signaling, suggesting a potential microRNA-gene expression interaction between circulating plasma and endothelial cells. Conclusions Our MMD-discordant monozygotic twin-based study confirmed a novel circulating microRNA signature in MMD as a potential diagnostic biomarker minimally confounded by genetic heterogeneity. The novel circulating microRNA signature can contribute for the future functional microRNA analysis to find new diagnostic and therapeutic target of MMD. Electronic supplementary material The online version of this article (10.1186/s12920-018-0385-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haruto Uchino
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Sapporo, 0608638, Japan
| | - Masaki Ito
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Sapporo, 0608638, Japan.
| | - Ken Kazumata
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Sapporo, 0608638, Japan
| | - Yuka Hama
- Department of Neurology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shuji Hamauchi
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Sapporo, 0608638, Japan
| | - Shunsuke Terasaka
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Sapporo, 0608638, Japan
| | - Hidenao Sasaki
- Department of Neurology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Sapporo, 0608638, Japan
| |
Collapse
|
14
|
Wardhana DA, Ikeda K, Barinda AJ, Nugroho DB, Qurania KR, Yagi K, Miyata K, Oike Y, Hirata KI, Emoto N. Family with sequence similarity 13, member A modulates adipocyte insulin signaling and preserves systemic metabolic homeostasis. Proc Natl Acad Sci U S A 2018; 115:1529-1534. [PMID: 29386390 PMCID: PMC5816206 DOI: 10.1073/pnas.1720475115] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Adipose tissue dysfunction is causally implicated in the impaired metabolic homeostasis associated with obesity; however, detailed mechanisms underlying dysregulated adipocyte functions in obesity remain to be elucidated. Here we searched for genes that provide a previously unknown mechanism in adipocyte metabolic functions and identified family with sequence similarity 13, member A (Fam13a) as a factor that modifies insulin signal cascade in adipocytes. Fam13a was highly expressed in adipose tissue, predominantly in mature adipocytes, and its expression was substantially reduced in adipose tissues of obese compared with lean mice. We revealed that Fam13a accentuated insulin signaling by recruiting protein phosphatase 2A with insulin receptor substrate 1 (IRS1), leading to protection of IRS1 from proteasomal degradation. We further demonstrated that genetic loss of Fam13a exacerbated obesity-related metabolic disorders, while targeted activation of Fam13a in adipocytes ameliorated it in association with altered adipose tissue insulin sensitivity in mice. Our data unveiled a previously unknown mechanism in the regulation of adipocyte insulin signaling by Fam13a and identified its significant role in systemic metabolic homeostasis, shedding light on Fam13a as a pharmacotherapeutic target to treat obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Donytra Arby Wardhana
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, Higashinada, 658-8558 Kobe, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Chuo, 6500017 Kobe, Japan
| | - Koji Ikeda
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, Higashinada, 658-8558 Kobe, Japan;
| | - Agian Jeffilano Barinda
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, Higashinada, 658-8558 Kobe, Japan
| | - Dhite Bayu Nugroho
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, Higashinada, 658-8558 Kobe, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Chuo, 6500017 Kobe, Japan
| | - Kikid Rucira Qurania
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, Higashinada, 658-8558 Kobe, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Chuo, 6500017 Kobe, Japan
| | - Keiko Yagi
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, Higashinada, 658-8558 Kobe, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, 860-8556 Kumamoto, Japan
- Department of Immunology, Allergy and Vascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, 860-8556 Kumamoto, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, 860-8556 Kumamoto, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Chuo, 6500017 Kobe, Japan
| | - Noriaki Emoto
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, Higashinada, 658-8558 Kobe, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Chuo, 6500017 Kobe, Japan
| |
Collapse
|
15
|
Inhibition of CYP4A by a novel flavonoid FLA-16 prolongs survival and normalizes tumor vasculature in glioma. Cancer Lett 2017; 402:131-141. [PMID: 28602979 DOI: 10.1016/j.canlet.2017.05.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/03/2017] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
Abstract
Glioblastomas rapidly become refractory to anti-VEGF therapies. We previously showed that cytochrome P450 (CYP) 4A-derived 20-hydroxyeicosatetraenoic acid (20-HETE) promotes angiogenesis. Here, we tested whether a novel flavonoid (FLA-16) prolongs survival and normalizes tumor vasculature in glioma through CYP4A inhibition. FLA-16 improved survival, reduced tumor burden, and normalized vasculature, accompanied with the decreased secretion of 20-HETE, VEGF and TGF-β in tumor-associated macrophages (TAMs) and endothelial progenitor cells (EPCs) in C6 and U87 gliomas. FLA-16 attenuated vascular abnormalization induced by co-implantation of GL261 glioma cells with CYP4A10high macrophages or EPCs. Mechanistically, the conditional medium from TAMs and EPCs treated with FLA-16 enhanced the migration of pericyte cells, and decreased the proliferation and migration of endothelial cells, which were reversed by CYP4A overexpression or exogenous addition of 20-HETE, VEGF and TGF-β. Furthermore, FLA-16 prevented crosstalk between TAMs and EPCs during angiogenesis. These results suggest that CYP4A inhibition by FLA-16 prolongs survival and normalizes vasculature in glioma through decreasing production of TAMs and EPCs-derived VEGF and TGF-β. This may represent a potential therapeutic strategy to overcome resistance to anti-VEGF treatment by effects on vessels and immune cells.
Collapse
|
16
|
Zhang J, Li SF, Chen H, Song JX. MiR-106b-5p Inhibits Tumor Necrosis Factor-α-induced Apoptosis by Targeting Phosphatase and Tensin Homolog Deleted on Chromosome 10 in Vascular Endothelial Cells. Chin Med J (Engl) 2017; 129:1406-12. [PMID: 27270534 PMCID: PMC4910362 DOI: 10.4103/0366-6999.183414] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Apoptosis of endothelial cells (ECs) plays a key role in the development of atherosclerosis and there are also evidence indicated that phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a viable target in therapeutic approaches to prevent vascular ECs apoptosis. Aberrant miR-106b-5p expression has been reported in the plasma of patients with unstable atherosclerotic plaques. However, the role and underlying mechanism of miR-106-5p in the genesis of atherosclerosis have not been addressed. In this study, we explored the anti-apoptotic role of miR-106-5p by regulating PTEN expression in vascular ECs. METHODS Real-time reverse transcription polymerase chain reaction (RT-PCR) was performed to detect the expression levels of miR-106b-5p in human atherosclerotic plaques and normal vascular tissues. Human umbilical vein endothelial cells (HUVEC) were transfected with miR-106b-5p mimic or negative control mimic, and apoptosis was induced by serum starvation and tumor necrosis factor-α (TNF-α) treat. Western blotting and real-time RT-PCR experiments were used to detect PTEN expression levels and TNF-α-induced apoptosis was evaluated by the activation of caspase-3 and cell DNA fragmentation levels in HUVEC. RESULTS The expression of miR-106b-5p was significantly downregulated in plaques than in normal vascular tissues. TNF-α significantly downregulated miR-106b-5p expression levels and upregulated activation of caspase-3 and cell DNA fragmentation levels in HUVEC. Overexpression of miR-106b-5p with miR-106b-5p mimic inhibited PTEN expression and TNF-α-induced apoptosis in HUVEC. Luciferase reporter assays confirmed that miR-106b-5p binds to PTEN mRNA 3' untranslated region site. CONCLUSION MiR-106b-5p could inhibit the expression of PTEN in vascular ECs, which could block TNF-α-induced activation of caspase-3, thus prevent ECs apoptosis in atherosclerosis diseases.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cardiology, Peking University People's Hospital, Beijing 100044; Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing 100044; Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing 100044, China
| | - Su-Fang Li
- Department of Cardiology, Peking University People's Hospital, Beijing 100044; Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing 100044; Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing 100044, China
| | - Hong Chen
- Department of Cardiology, Peking University People's Hospital, Beijing 100044; Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing 100044; Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing 100044, China
| | - Jun-Xian Song
- Department of Cardiology, Peking University People's Hospital, Beijing 100044; Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital, Beijing 100044; Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
17
|
Dixit P, Donnelly H, Edamatsu M, Galvin I, Bunton R, Katare R. Progenitor cells from atria, ventricle and peripheral blood of the same patients exhibit functional differences associated with cardiac repair. Int J Cardiol 2016; 228:412-421. [PMID: 27875722 DOI: 10.1016/j.ijcard.2016.11.178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/06/2016] [Indexed: 12/26/2022]
Abstract
AIM Deciding the best cell type for cardiac regeneration remains a big challenge. No studies have directly compared the functional efficacy of cardiac progenitor cells (CPCs) with extra-cardiac stem cells isolated from the same patient. METHODS AND RESULTS We compared the functional characteristics of endothelial progenitor cells (EPCs), right atrial (RAA) CPCs and left ventricular (LV) CPCs isolated from the same patients (n=14). Within the same heart, RAA and LV CPCs exhibited marked differences in surface marker expression, with RAA CPCs exhibiting better expansion potential and migration properties. When subjected to hypoxia and serum starvation to simulate in vivo ischemic environment, RAA and LV CPCs exhibited similar pattern of resistance to apoptotic cell death under ischemia. Interestingly, EPCs exhibited highest resistance to apoptotic cell death, however, they also showed the lowest proliferation under hypoxia. RT-profiler array showed comparable gene expression pattern in RAA and LV CPCs, while they were differentially expressed in EPCs. Further, treating human umbilical vein endothelial cells with conditioned medium (CM) from LV showed maximum angiogenic potential, while cardiomyocytes treated with CM from RAA showed greatest survival under hypoxic conditions. CONCLUSIONS Results from this study provide the first evidence that progenitor cells from different regions exhibit functional differences within the same patient.
Collapse
Affiliation(s)
- Parul Dixit
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
| | - Hayden Donnelly
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
| | - Midori Edamatsu
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
| | - Ivor Galvin
- Department of Cardiothoracic Surgery, University of Otago, Dunedin, New Zealand
| | - Richard Bunton
- Department of Cardiothoracic Surgery, University of Otago, Dunedin, New Zealand
| | - Rajesh Katare
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
18
|
MURC deficiency in smooth muscle attenuates pulmonary hypertension. Nat Commun 2016; 7:12417. [PMID: 27546070 PMCID: PMC4996946 DOI: 10.1038/ncomms12417] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 06/30/2016] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence suggests that caveolin-1 (Cav1) is associated with pulmonary arterial hypertension. MURC (also called Cavin-4) is a member of the cavin family, which regulates caveolar formation and functions together with caveolins. Here, we show that hypoxia increased Murc mRNA expression in the mouse lung, and that Murc-null mice exhibited attenuation of hypoxia-induced pulmonary hypertension (PH) accompanied by reduced ROCK activity in the lung. Conditional knockout mice lacking Murc in smooth muscle also resist hypoxia-induced PH. MURC regulates the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) through Rho/ROCK signalling. Cav1 suppresses RhoA activity in PASMCs, which is reversed by MURC. MURC binds to Cav1 and inhibits the association of Cav1 with the active form of Gα13, resulting in the facilitated association of the active form of Gα13 with p115RhoGEF. These results reveal that MURC has a function in the development of PH through modulating Rho/ROCK signalling. MURC protein regulates the function of caveolae, the small invaginations of the plasma membrane in muscle cells. Here the authors show that by interacting with caveolin proteins, MURC affects RhoA/ROCK signalling and regulates proliferation and migration of pulmonary artery smooth muscle cells, suggesting a new target in therapy of pulmonary hypertension.
Collapse
|
19
|
Zou S, Ren P, Zhang L, Azares AR, Zhang S, Coselli JS, Shen YH, LeMaire SA. AKT2 Promotes Bone Marrow Cell-Mediated Aortic Protection in Mice. Ann Thorac Surg 2016; 101:2085-96. [PMID: 27090732 DOI: 10.1016/j.athoracsur.2016.01.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 12/08/2015] [Accepted: 01/04/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Insufficient aortic protection and repair may contribute to the development of aortic aneurysms and dissections (AAD). However, mechanisms of aortic protection and repair are poorly understood. We have shown that the multifunctional kinase AKT2 plays an important role in protecting the aortic wall. Here, we examined whether AKT2 protects against AAD by promoting bone marrow cell (BMC)-mediated aortic protection. METHODS Irradiated wild-type mice received green fluorescent protein-expressing BMCs from wild-type mice or Akt2(-/-) mice, followed by challenge with angiotensin II (1000 ng/kg/min) infusion for 4 weeks. We compared BMC recruitment, aortic destruction, and AAD development between groups. The direct effects of wild-type and Akt2(-/-) BMCs on smooth muscle cell survival were examined in coculture experiments. RESULTS After angiotensin II infusion, no (0 of 14) wild-type BMC recipients had AAD; in contrast, 64% (9 of 14) of Akt2(-/-) BMC recipients had AAD (p = 0.002) with severe aortic destruction. Compared with aortas from challenged wild-type BMC recipients, aortas from challenged Akt2(-/-) BMC recipients showed significantly less BMC recruitment, NG2 (neuron-glial antigen 2) progenitor activation, and FSP1 (fibroblast-specific protein 1) fibroblast activation. In addition, aortas from challenged Akt2(-/-) BMC recipients showed increased apoptosis and inflammation. In coculture experiments, wild-type but not Akt2(-/-) BMCs prevented smooth muscle cells from undergoing oxidative stress-induced apoptosis. CONCLUSIONS After aortic challenge, BMCs are recruited to the aortic wall and provide protection by activating progenitors and fibroblasts and by promoting aortic cell survival. Our findings indicate that AKT2 is involved in these processes and that defects in this pathway may promote progressive degeneration during AAD development.
Collapse
Affiliation(s)
- Sili Zou
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas; Department of Vascular Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Pingping Ren
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas
| | - Lin Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas
| | - Alon R Azares
- Stem Cell Research, Texas Heart Institute, Houston, Texas
| | - Sui Zhang
- Stem Cell Research, Texas Heart Institute, Houston, Texas
| | - Joseph S Coselli
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas; Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas; Department of Cardiovascular Surgery, CHI St. Luke's Health-Baylor St. Luke's Medical Center, Houston, Texas
| | - Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas; Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas; Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas; Department of Cardiovascular Surgery, CHI St. Luke's Health-Baylor St. Luke's Medical Center, Houston, Texas.
| |
Collapse
|
20
|
Wang D, Berglund A, Kenchappa RS, Forsyth PA, Mulé JJ, Etame AB. BIRC3 is a novel driver of therapeutic resistance in Glioblastoma. Sci Rep 2016; 6:21710. [PMID: 26888114 PMCID: PMC4757860 DOI: 10.1038/srep21710] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/27/2016] [Indexed: 02/07/2023] Open
Abstract
Genome-wide analysis of glioblastoma (GBM) reveals pervasive aberrations in apoptotic signaling pathways that collectively contribute to therapeutic resistance. Inhibitors of apoptosis proteins (IAP) exert critical control on the terminal segment of apoptosis leading to apoptosis evasion. In this study, we uncover a unique role for BIRC3, as an IAP that is critical in GBM in response to therapy. Using the TCGA dataset of 524 unique samples, we identify BIRC3 is the only IAP whose differential expression is associated with long-term survival in GBM patients. Using patient tissue samples we further show that BIRC3 expression increases with recurrence. When extrapolated to a preclinical model of a human GBM cell line, we find an increase in BIRC3 expression in response to irradiation (RT) and temozolomide (TMZ) treatment. More importantly, we mechanistically implicate STAT3 and PI3K signaling pathways as drivers of RT-induced up-regulation of BIRC3 expression. Lastly, we demonstrate that both in-vivo and in-vitro BIRC3 up-regulation results in apoptosis evasion and therapeutic resistance in GBM. Collectively, our study identifies a novel translational and targetable role for BIRC3 expression as a predictor of aggressiveness and therapeutic resistance to TMZ and RT mediated by STAT3 and PI3K signaling in GBM.
Collapse
Affiliation(s)
- Dapeng Wang
- Department of Neuro-Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA.,Department of Tumor Biology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Anders Berglund
- Department of Medical Bioinformatics, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Rajappa S Kenchappa
- Department of Neuro-Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA.,Department of Tumor Biology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Peter A Forsyth
- Department of Neuro-Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA.,Department of Tumor Biology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - James J Mulé
- Department of Immunology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA.,Department of Cutaneous Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Arnold B Etame
- Department of Neuro-Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA.,Department of Tumor Biology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA
| |
Collapse
|
21
|
Kilari S, Cossette S, Pooya S, Bordas M, Huang YW, Ramchandran R, Wilkinson GA. Endothelial Cell Surface Expressed Chemotaxis and Apoptosis Regulator (ECSCR) Regulates Lipolysis in White Adipocytes via the PTEN/AKT Signaling Pathway. PLoS One 2015; 10:e0144185. [PMID: 26692198 PMCID: PMC4686900 DOI: 10.1371/journal.pone.0144185] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/13/2015] [Indexed: 11/19/2022] Open
Abstract
Elevated plasma triglycerides are associated with increased susceptibility to heart disease and stroke, but the mechanisms behind this relationship are unclear. A clearer understanding of gene products which influence plasma triglycerides might help identify new therapeutic targets for these diseases. The Endothelial Cell Surface expressed Chemotaxis and apoptosis Regulator (ECSCR) was initially studied as an endothelial cell marker, but has recently been identified in white adipocytes, the primary storage cell type for triglycerides. Here we confirm ECSCR expression in white adipocytes and show that Ecscr knockout mice show elevated fasting plasma triglycerides. At a cellular level, cultured 3T3-L1 adipocytes silenced for Ecscr show a blunted Akt phosphorylation response. Additionally we show that the phosphatase and tensin homology containing (PTEN) lipid phosphatase association with ECSCR is increased by insulin stimulation. These data suggest a scenario by which ECSCR contributes to control of white adipocyte lipolysis. In this scenario, white adipocytes lacking Ecscr display elevated PTEN activity, thereby reducing AKT activation and impairing insulin-mediated suppression of lipolysis. Collectively, these results suggest that ECSCR plays a critical function in regulating lipolysis in white adipose tissue.
Collapse
Affiliation(s)
- Sreenivasulu Kilari
- Department of Pediatrics and Developmental Vascular Biology Program, Medical College of Wisconsin and Children’s Research Institute, Milwaukee, Wisconsin, United States of America
| | - Stephanie Cossette
- Department of Pediatrics and Developmental Vascular Biology Program, Medical College of Wisconsin and Children’s Research Institute, Milwaukee, Wisconsin, United States of America
| | - Shabnam Pooya
- Department of Pediatrics and Developmental Vascular Biology Program, Medical College of Wisconsin and Children’s Research Institute, Milwaukee, Wisconsin, United States of America
| | - Michelle Bordas
- Department of Pediatrics and Developmental Vascular Biology Program, Medical College of Wisconsin and Children’s Research Institute, Milwaukee, Wisconsin, United States of America
| | - Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin and Children’s Research Institute, Milwaukee, Wisconsin, United States of America
| | - Ramani Ramchandran
- Department of Pediatrics and Developmental Vascular Biology Program, Medical College of Wisconsin and Children’s Research Institute, Milwaukee, Wisconsin, United States of America
- Department of Obstetrics and Gynecology, Medical College of Wisconsin and Children’s Research Institute, Milwaukee, Wisconsin, United States of America
- * E-mail: (GAW); (RR)
| | - George A. Wilkinson
- Department of Pediatrics and Developmental Vascular Biology Program, Medical College of Wisconsin and Children’s Research Institute, Milwaukee, Wisconsin, United States of America
- * E-mail: (GAW); (RR)
| |
Collapse
|
22
|
Naito D, Ogata T, Hamaoka T, Nakanishi N, Miyagawa K, Maruyama N, Kasahara T, Taniguchi T, Nishi M, Matoba S, Ueyama T. The coiled-coil domain of MURC/cavin-4 is involved in membrane trafficking of caveolin-3 in cardiomyocytes. Am J Physiol Heart Circ Physiol 2015; 309:H2127-36. [PMID: 26497963 DOI: 10.1152/ajpheart.00446.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/06/2015] [Indexed: 11/22/2022]
Abstract
Muscle-restricted coiled-coil protein (MURC), also referred to as cavin-4, is a member of the cavin family that works cooperatively with caveolins in caveola formation and function. Cavins are cytoplasmic proteins with coiled-coil domains and form heteromeric complexes, which are recruited to caveolae in cells expressing caveolins. Among caveolins, caveolin-3 (Cav3) is exclusively expressed in muscle cells, similar to MURC/cavin-4. In the heart, Cav3 overexpression contributes to cardiac protection, and its deficiency leads to progressive cardiomyopathy. Mutations in the MURC/cavin-4 gene have been identified in patients with dilated cardiomyopathy. In the present study, we show the role of MURC/cavin-4 as a caveolar component in the heart. In H9c2 cells, MURC/cavin-4 was localized at the plasma membrane, whereas a MURC/cavin-4 mutant lacking the coiled-coil domain (ΔCC) was primarily localized to the cytoplasm. ΔCC bound to Cav3 and impaired membrane localization of Cav3 in cardiomyocytes. Additionally, although ΔCC did not alter Cav3 mRNA expression, ΔCC decreased the Cav3 protein level. MURC/cavin-4 and ΔCC similarly induced cardiomyocyte hypertrophy; however, ΔCC showed higher hypertrophy-related fetal gene expression than MURC/cavin-4. ΔCC induced ERK activation in cardiomyocytes. Transgenic mice expressing ΔCC in the heart (ΔCC-Tg mice) showed impaired cardiac function accompanied by cardiomyocyte hypertrophy and marked interstitial fibrosis. Hearts from ΔCC-Tg mice showed a reduction of the Cav3 protein level and activation of ERK. These results suggest that MURC/cavin-4 requires its coiled-coil domain to target the plasma membrane and to stabilize Cav3 at the plasma membrane of cardiomyocytes and that MURC/cavin-4 functions as a crucial caveolar component to regulate cardiac function.
Collapse
Affiliation(s)
- Daisuke Naito
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takehiro Ogata
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuro Hamaoka
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naohiko Nakanishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kotaro Miyagawa
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoki Maruyama
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeru Kasahara
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takuya Taniguchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomomi Ueyama
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
23
|
Ji Y, Chen S, Li K, Xiao X, Xu T, Zheng S. Upregulated autocrine vascular endothelial growth factor (VEGF)/VEGF receptor-2 loop prevents apoptosis in haemangioma-derived endothelial cells. Br J Dermatol 2015; 170:78-86. [PMID: 24033364 DOI: 10.1111/bjd.12592] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND The autocrine vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR)-2 loop is required to maintain the transformed phenotype of many tumours, in part, by preventing apoptotic cell death in response to many different stimuli. However, it is unclear whether constitutive VEGF/VEGFR-2 activation in haemangioma-derived endothelial cells (HaemECs) can lead to a general suppression of apoptosis. OBJECTIVES The objective of this study was to investigate whether the autocrine VEGF loop promotes HaemEC survival via its receptor, VEGFR-2. METHODS HaemECs and human umbilical vein endothelial cells (HUVECs) were serum-starved for 12-48 h. Cell apoptosis was measured. The potential mechanisms of VEGF/VEGFR-2-induced HaemEC survival were investigated, and the role of the autocrine VEGF/VEGFR-2 loop in preventing propranolol-induced apoptotic HaemEC death was also analysed. RESULTS Compared with HUVECs, HaemECs showed increased resistance to apoptosis induced by serum starvation. Upregulated VEGF/VEGFR-2 signalling in HaemECs induced an autocrine signalling loop, which resulted in Akt activation. Furthermore, this activation of Akt was necessary for VEGF/VEGFR-2-induced protection against serum deprivation-induced HaemEC apoptosis. In addition, Bcl-2, which functions as an anti-apoptotic factor and direct downstream target of PI3K/Akt, was decreased by the inhibition of VEGF/VEGFR-2, which led to an increase in caspase-3 activity, caspase-9 activity and HaemEC apoptosis. Moreover, HaemECs acquired greater resistance to propranolol treatment than HUVECs, whereas inhibition of VEGF/VEGFR-2 signalling in HaemECs sensitized these cells to propranolol-induced apoptosis. CONCLUSIONS Our results demonstrate that upregulation of the autocrine VEGF/VEGFR-2 loop can induce general resistance to apoptotic stimuli in HaemECs.
Collapse
Affiliation(s)
- Y Ji
- Division of Oncology, Department of Pediatric Surgery, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | | | | | | | | | | |
Collapse
|
24
|
Matsuo K, Akakabe Y, Kitamura Y, Shimoda Y, Ono K, Ueyama T, Matoba S, Yamada H, Hatakeyama K, Asada Y, Emoto N, Ikeda K. Loss of apoptosis regulator through modulating IAP expression (ARIA) protects blood vessels from atherosclerosis. J Biol Chem 2014; 290:3784-92. [PMID: 25533470 DOI: 10.1074/jbc.m114.605287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Atherosclerosis is the primary cause for cardiovascular disease. Here we identified a novel mechanism underlying atherosclerosis, which is provided by ARIA (apoptosis regulator through modulating IAP expression), the transmembrane protein that we recently identified. ARIA is expressed in macrophages present in human atherosclerotic plaque as well as in mouse peritoneal macrophages. When challenged with acetylated LDL, peritoneal macrophages isolated from ARIA-deficient mice showed substantially reduced foam cell formation, whereas the uptake did not differ from that in wild-type macrophages. Mechanistically, loss of ARIA enhanced PI3K/Akt signaling and consequently reduced the expression of acyl coenzyme A:cholesterol acyltransferase-1 (ACAT-1), an enzyme that esterifies cholesterol and promotes its storage, in macrophages. Inhibition of PI3K abolished the reduction in ACAT-1 expression and foam cell formation in ARIA-deficient macrophages. In contrast, overexpression of ARIA reduced Akt activity and enhanced foam cell formation in RAW264.7 macrophages, which was abrogated by treatment with ACAT inhibitor. Of note, genetic deletion of ARIA significantly reduced the atherosclerosis in ApoE-deficient mice. Oil red-O-positive lipid-rich lesion was reduced, which was accompanied by an increase of collagen fiber and decrease of necrotic core lesion in atherosclerotic plaque in ARIA/ApoE double-deficient mice. Analysis of bone marrow chimeric mice revealed that loss of ARIA in bone marrow cells was sufficient to reduce the atherosclerogenesis in ApoE-deficient mice. Together, we identified a unique role of ARIA in the pathogenesis of atherosclerosis at least partly by modulating macrophage foam cell formation. Our results indicate that ARIA could serve as a novel pharmacotherapeutic target for the treatment of atherosclerotic diseases.
Collapse
Affiliation(s)
- Kiyonari Matsuo
- From the Department of Cardiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto 602-8566
| | - Yoshiki Akakabe
- From the Department of Cardiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto 602-8566
| | - Youhei Kitamura
- From the Department of Cardiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto 602-8566
| | - Yoshiaki Shimoda
- From the Department of Cardiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto 602-8566
| | - Kazunori Ono
- From the Department of Cardiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto 602-8566
| | - Tomomi Ueyama
- From the Department of Cardiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto 602-8566
| | - Satoaki Matoba
- From the Department of Cardiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto 602-8566
| | - Hiroyuki Yamada
- From the Department of Cardiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto 602-8566
| | - Kinta Hatakeyama
- the Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Yujiro Asada
- the Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Noriaki Emoto
- the Department of Clinical Pharmacy, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada, Kobe 6588558, and
| | - Koji Ikeda
- the Department of Clinical Pharmacy, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada, Kobe 6588558, and
| |
Collapse
|
25
|
Aging differentially alters the expression of angiogenic genes in a tissue-dependent manner. Biochem Biophys Res Commun 2014; 446:1243-9. [PMID: 24685483 DOI: 10.1016/j.bbrc.2014.03.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 11/21/2022]
Abstract
Organ functions are altered and impaired during aging, thereby resulting in increased morbidity of age-related diseases such as Alzheimer's disease, diabetes, and heart failure in the elderly. Angiogenesis plays a crucial role in the maintenance of tissue homeostasis, and aging is known to reduce the angiogenic capacity in many tissues. Here, we report the differential effects of aging on the expression of angiogenic factors in different tissues, representing a potentially causes for age-related metabolic disorders. PCR-array analysis revealed that many of angiogenic genes were down-regulated in the white adipose tissue (WAT) of aged mice, whereas they were largely up-regulated in the skeletal muscle (SM) of aged mice compared to that in young mice. Consistently, blood vessel density was substantially reduced and hypoxia was exacerbated in WAT of aged mice compared to that in young mice. In contrast, blood vessel density in SM of aged mice was well preserved and was not different from that in young mice. Moreover, we identified that endoplasmic reticulum (ER) stress was strongly induced in both WAT and SM during aging in vivo. We also found that ER stress significantly reduced the expression of angiogenic genes in 3T3-L1 adipocytes, whereas it increased their expression in C2C12 myotubes in vitro. These results collectively indicate that aging differentially affects the expression of angiogenic genes in different tissues, and that aging-associated down-regulation of angiogenic genes in WAT, at least in part through ER stress, is potentially involved in the age-related adipose tissue dysfunction.
Collapse
|
26
|
Kitamura Y, Koide M, Akakabe Y, Matsuo K, Shimoda Y, Soma Y, Ogata T, Ueyama T, Matoba S, Yamada H, Ikeda K. Manipulation of cardiac phosphatidylinositol 3-kinase (PI3K)/Akt signaling by apoptosis regulator through modulating IAP expression (ARIA) regulates cardiomyocyte death during doxorubicin-induced cardiomyopathy. J Biol Chem 2013; 289:2788-800. [PMID: 24338479 DOI: 10.1074/jbc.m113.508143] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PI3K/Akt signaling plays an important role in the regulation of cardiomyocyte death machinery, which can cause stress-induced cardiac dysfunction. Here, we report that apoptosis regulator through modulating IAP expression (ARIA), a recently identified transmembrane protein, regulates the cardiac PI3K/Akt signaling and thus modifies the progression of doxorubicin (DOX)-induced cardiomyopathy. ARIA is highly expressed in the mouse heart relative to other tissues, and it is also expressed in isolated rat cardiomyocytes. The stable expression of ARIA in H9c2 cardiac muscle cells increased the levels of membrane-associated PTEN and subsequently reduced the PI3K/Akt signaling and the downstream phosphorylation of Bad, a proapoptotic BH3-only protein. When challenged with DOX, ARIA-expressing H9c2 cells exhibited enhanced apoptosis, which was reversed by the siRNA-mediated silencing of Bad. ARIA-deficient mice exhibited normal heart morphology and function. However, DOX-induced cardiac dysfunction was significantly ameliorated in conjunction with reduced cardiomyocyte death and cardiac fibrosis in ARIA-deficient mice. Phosphorylation of Akt and Bad was substantially enhanced in the heart of ARIA-deficient mice even after treatment with DOX. Moreover, repressing the PI3K by cardiomyocyte-specific expression of dominant-negative PI3K (p110α) abolished the cardioprotective effects of ARIA deletion. Notably, targeted activation of ARIA in cardiomyocytes but not in endothelial cells reduced the cardiac PI3K/Akt signaling and exacerbated the DOX-induced cardiac dysfunction. These studies, therefore, revealed a previously undescribed mode of manipulating cardiac PI3K/Akt signaling by ARIA, thus identifying ARIA as an attractive new target for the prevention of stress-induced myocardial dysfunction.
Collapse
Affiliation(s)
- Youhei Kitamura
- From the Department of Cardiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ecscr regulates insulin sensitivity and predisposition to obesity by modulating endothelial cell functions. Nat Commun 2013; 4:2389. [DOI: 10.1038/ncomms3389] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/02/2013] [Indexed: 01/08/2023] Open
|
28
|
Kilari S, Remadevi I, Zhao B, Pan J, Miao R, Ramchandran R, North PE, You M, Rahimi N, Wilkinson GA. Endothelial cell-specific chemotaxis receptor (ECSCR) enhances vascular endothelial growth factor (VEGF) receptor-2/kinase insert domain receptor (KDR) activation and promotes proteolysis of internalized KDR. J Biol Chem 2013; 288:10265-74. [PMID: 23393131 DOI: 10.1074/jbc.m112.413542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The endothelial cell-specific chemotaxis receptor (ECSCR) is a cell-surface protein selectively expressed by endothelial cells (ECs), with roles in EC migration, apoptosis and proliferation. Our previous study (Verma, A., Bhattacharya, R., Remadevi, I., Li, K., Pramanik, K., Samant, G. V., Horswill, M., Chun, C. Z., Zhao, B., Wang, E., Miao, R. Q., Mukhopadhyay, D., Ramchandran, R., and Wilkinson, G. A. (2010) Blood 115, 4614-4622) showed that loss of ECSCR in primary ECs reduced tyrosine phosphorylation of vascular endothelial growth factor (VEGF) receptor 2/kinase insert domain receptor (KDR) but not VEGF receptor 1/FLT1. Here, we show that ECSCR biochemically associates with KDR but not FLT1 and that the predicted ECSCR cytoplasmic and transmembrane regions can each confer association with KDR. Stimulation with VEGF165 rapidly and transiently increases ECSCR-KDR complex formation, a process blocked by the KDR tyrosine kinase inhibitor compound SU5416 or inhibitors of endosomal acidification. Triple labeling experiments show VEGF-stimulated KDR(+)/ECSCR(+) intracellular co-localization. Silencing of ECSCR disrupts VEGF-induced KDR activation and AKT and ERK phosphorylation and impairs VEGF-stimulated KDR degradation. In zebrafish, ecscr interacts with kdrl during intersomitic vessel sprouting. Human placenta and infantile hemangioma samples highly express ECSCR protein, suggesting a role for ECSCR-KDR interaction in these tissues.
Collapse
Affiliation(s)
- Sreenivasulu Kilari
- Department of Pediatrics and Developmental Vascular Biology Program, Medical College of Wisconsin and Children's Research Institute, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Endothelial cell (EC) apoptosis and apoptosis resistant proliferation have been proposed to play crucial roles in the development of featured plexiform lesions in the pathogenesis of pulmonary hypertension (PH). Subsequently, EC injury associated smooth muscle cell (SMC) proliferation facilitates vascular remodeling and eventually leads to narrowed vascular lumen, increased pulmonary vascular resistance, increased pulmonary arterial pressure, and right heart failure. The imbalance between cell death and proliferation occurs in every stage of pulmonary vascular remodeling and pathogenesis of PH, and involves every cell type in the vasculature including, but not limited to ECs, SMCs, and fibroblasts. Despite extensive studies, the detailed cellular and molecular mechanisms on how the transition from initial apoptosis of ECs to apoptosis resistant proliferation on ECs and SMCs remains unclear. Recent knowledge on autophagy, a conservative and powerful regulatory machinery existing in almost all mammalian cells, has shed light on the complex and delicate control on cell fate in the development of vascular remodeling in PH. In this review, we will discuss the recent understandings on how the cross-talk between apoptosis and autophagy regulates cell death or proliferation in PH pathogenesis, particularly in pulmonary vascular remodeling involving ECs and SMCs.
Collapse
Affiliation(s)
- Yang Jin
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
30
|
Structural and functional characterization of two alternative splicing variants of mouse Endothelial Cell-Specific Chemotaxis Regulator (ECSCR). Int J Mol Sci 2012; 13:4920-4936. [PMID: 22606020 PMCID: PMC3344256 DOI: 10.3390/ijms13044920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 01/29/2023] Open
Abstract
Endothelial cells (ECs) that line the lumen of blood vessels are important players in blood vessel formation, and EC migration is a key component of the angiogenic process. Thus, identification of genes that are specifically or preferentially expressed in vascular ECs and in-depth understanding of their biological functions may lead to discovery of new therapeutic targets. We have previously reported molecular characterization of human endothelial cell-specific molecule 2 (ECSM2)/endothelial cell-specific chemotaxis regulator (ECSCR). In the present study, we cloned two mouse full-length cDNAs by RT-PCR, which encode two putative ECSCR isoform precursors with considerable homology to the human ECSCR. Nucleotide sequence and exon-intron junction analyses suggested that they are alternative splicing variants (ECSCR isoform-1 and -2), differing from each other in the first and second exons. Quantitative RT-PCR results revealed that isoform-2 is the predominant form, which was most abundant in heart, lung, and muscles, and moderately abundant in uterus and testis. In contrast, the expression of isoform-1 seemed to be more enriched in testis. To further explore their potential cellular functions, we expressed GFP- and FLAG-tagged ECSCR isoforms, respectively, in an ECSCR deficient cell line (HEK293). Interestingly, the actual sizes of either ECSCR-GFP or -FLAG fusion proteins detected by immunoblotting are much larger than their predicted sizes, suggesting that both isoforms are glycoproteins. Fluorescence microscopy revealed that both ECSCR isoforms are localized at the cell surface, which is consistent with the structural prediction. Finally, we performed cell migration assays using mouse endothelial MS1 cells overexpressing GFP alone, isoform-1-GFP, and isoform-2-GFP, respectively. Our results showed that both isoforms significantly inhibited vascular epidermal growth factor (VEGF)-induced cell migration. Taken together, we have provided several lines of experimental evidence that two mouse ECSCR splicing variants/isoform precursors exist. They are differentially expressed in a variety of tissue types and likely involved in modulation of vascular EC migration. We have also defined the gene structure of mouse ECSCR using bioinformatics tools, which provides new information towards a better understanding of alternative splicing of ECSCR.
Collapse
|
31
|
Abstract
We have in recent years described several endothelial-specific genes that mediate cell migration. These include Robo4 (roundabout 4), CLEC14A (C-type lectin 14A) and ECSCR (endothelial cell-specific chemotaxis regulator) [formerly known as ECSM2 (endothelial cell-specific molecule 2)]. Loss of laminar shear stress induces Robo4 and CLEC14A expression and an endothelial 'tip cell' phenotype. Low shear stress is found not only at sites of vascular occlusion such as thrombosis and embolism, but also in the poorly structured vessels that populate solid tumours. The latter probably accounts for strong expression of Robo4 and CLEC14A on tumour vessels. The function of Robo4 has, in the past, aroused controversy. However, the recent identification of Unc5B as a Robo4 ligand has increased our understanding and we hypothesize that Robo4 function is context-dependent. ECSCR is another endothelial-specific protein that promotes filopodia formation and migration, but, in this case, expression is independent of shear stress. We discuss recent papers describing ECSCR, including intracellular signalling pathways, and briefly contrast these with signalling by Robo4.
Collapse
|