1
|
Holmudden M, Gustafsson J, Bertrand YJK, Schliep A, Norberg P. Evolution shapes and conserves genomic signatures in viruses. Commun Biol 2024; 7:1412. [PMID: 39478059 PMCID: PMC11526014 DOI: 10.1038/s42003-024-07098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
The genomic signature of an organism captures the characteristics of repeated oligonucleotide patterns in its genome 1, such as oligomer frequencies, GC content, and differences in codon usage. Viruses, however, are obligate intracellular parasites that are dependent on their host cells for replication, and information about genomic signatures in viruses has hitherto been sparse.Here, we investigate the presence and specificity of genomic signatures in 2,768 eukaryotic viral species from 105 viral families, aiming to illuminate dependencies and selective pressures in viral genome evolution. We demonstrate that most viruses have highly specific genomic signatures that often also differ significantly between species within the same family. The species-specificity is most prominent among dsDNA viruses and viruses with large genomes. We also reveal consistent dissimilarities between viral genomic signatures and those of their host cells, although some viruses present slight similarities, which may be explained by genetic adaptation to their native hosts. Our results suggest that significant evolutionary selection pressures act upon viral genomes to shape and preserve their genomic signatures, which may have implications for the field of synthetic biology in the construction of live attenuated vaccines and viral vectors.
Collapse
Affiliation(s)
- Martin Holmudden
- Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Joel Gustafsson
- Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Yann J K Bertrand
- Laboratory of Molecular Biology and Bioinformatics, Institute of Botany, Czech Academy of Sciences, Prague, Czechia
| | - Alexander Schliep
- Department of Computer Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Peter Norberg
- Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
2
|
Bartosh UI, Dome AS, Zhukova NV, Karitskaya PE, Stepanov GA. CRISPR/Cas9 as a New Antiviral Strategy for Treating Hepatitis Viral Infections. Int J Mol Sci 2023; 25:334. [PMID: 38203503 PMCID: PMC10779197 DOI: 10.3390/ijms25010334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatitis is an inflammatory liver disease primarily caused by hepatitis A (HAV), B (HBV), C (HCV), D (HDV), and E (HEV) viruses. The chronic forms of hepatitis resulting from HBV and HCV infections can progress to cirrhosis or hepatocellular carcinoma (HCC), while acute hepatitis can lead to acute liver failure, sometimes resulting in fatality. Viral hepatitis was responsible for over 1 million reported deaths annually. The treatment of hepatitis caused by viral infections currently involves the use of interferon-α (IFN-α), nucleoside inhibitors, and reverse transcriptase inhibitors (for HBV). However, these methods do not always lead to a complete cure for viral infections, and chronic forms of the disease pose significant treatment challenges. These facts underscore the urgent need to explore novel drug developments for the treatment of viral hepatitis. The discovery of the CRISPR/Cas9 system and the subsequent development of various modifications of this system have represented a groundbreaking advance in the quest for innovative strategies in the treatment of viral infections. This technology enables the targeted disruption of specific regions of the genome of infectious agents or the direct manipulation of cellular factors involved in viral replication by introducing a double-strand DNA break, which is targeted by guide RNA (spacer). This review provides a comprehensive summary of our current knowledge regarding the application of the CRISPR/Cas system in the regulation of viral infections caused by HAV, HBV, and HCV. It also highlights new strategies for drug development aimed at addressing both acute and chronic forms of viral hepatitis.
Collapse
Affiliation(s)
| | | | | | | | - Grigory A. Stepanov
- The Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia; (U.I.B.); (A.S.D.); (N.V.Z.); (P.E.K.)
| |
Collapse
|
3
|
Mishchenko EL, Makarova AA, Antropova EA, Venzel AS, Ivanisenko TV, Demenkov PS, Ivanisenko VA. Molecular-genetic pathways of hepatitis C virus regulation of the expression of cellular factors PREB and PLA2G4C, which play an important role in virus replication. Vavilovskii Zhurnal Genet Selektsii 2023; 27:776-783. [PMID: 38213698 PMCID: PMC10777288 DOI: 10.18699/vjgb-23-90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 01/13/2024] Open
Abstract
The participants of Hepatitis C virus (HCV) replication are both viral and host proteins. Therapeutic approaches based on activity inhibition of viral non-structural proteins NS3, NS5A, and NS5B are undergoing clinical trials. However, rapid mutation processes in the viral genome and acquisition of drug resistance to the existing drugs remain the main obstacles to fighting HCV. Identifying the host factors, exploring their role in HCV RNA replication, and studying viral effects on their expression is essential for understanding the mechanisms of viral replication and developing novel, effective curative approaches. It is known that the host factors PREB (prolactin regulatory element binding) and PLA2G4C (cytosolic phospholipase A2 gamma) are important for the functioning of the viral replicase complex and the formation of the platforms of HCV genome replication. The expression of PREB and PLA2G4C was significantly elevated in the presence of the HCV genome. However, the mechanisms of its regulation by HCV remain unknown. In this paper, using a text-mining technology provided by ANDSystem, we reconstructed and analyzed gene networks describing regulatory effects on the expression of PREB and PLA2G4C by HCV proteins. On the basis of the gene network analysis performed, we put forward hypotheses about the modulation of the host factors functions resulting from protein-protein interaction with HCV proteins. Among the viral proteins, NS3 showed the greatest number of regulatory linkages. We assumed that NS3 could inhibit the function of host transcription factor (TF) NOTCH1 by protein-protein interaction, leading to upregulation of PREB and PLA2G4C. Analysis of the gene networks and data on differential gene expression in HCV-infected cells allowed us to hypothesize further how HCV could regulate the expression of TFs, the binding sites of which are localized within PREB and PLA2G4C gene regions. The results obtained can be used for planning studies of the molecular-genetic mechanisms of viral-host interaction and searching for potential targets for anti-HCV therapy.
Collapse
Affiliation(s)
- E L Mishchenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Kurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia
| | - A A Makarova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E A Antropova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A S Venzel
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Kurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia
| | - T V Ivanisenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Kurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia
| | - P S Demenkov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Kurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - V A Ivanisenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Kurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
4
|
von Delft A, Hall MD, Kwong AD, Purcell LA, Saikatendu KS, Schmitz U, Tallarico JA, Lee AA. Accelerating antiviral drug discovery: lessons from COVID-19. Nat Rev Drug Discov 2023; 22:585-603. [PMID: 37173515 PMCID: PMC10176316 DOI: 10.1038/s41573-023-00692-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, a wave of rapid and collaborative drug discovery efforts took place in academia and industry, culminating in several therapeutics being discovered, approved and deployed in a 2-year time frame. This article summarizes the collective experience of several pharmaceutical companies and academic collaborations that were active in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antiviral discovery. We outline our opinions and experiences on key stages in the small-molecule drug discovery process: target selection, medicinal chemistry, antiviral assays, animal efficacy and attempts to pre-empt resistance. We propose strategies that could accelerate future efforts and argue that a key bottleneck is the lack of quality chemical probes around understudied viral targets, which would serve as a starting point for drug discovery. Considering the small size of the viral proteome, comprehensively building an arsenal of probes for proteins in viruses of pandemic concern is a worthwhile and tractable challenge for the community.
Collapse
Affiliation(s)
- Annette von Delft
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Oxford Biomedical Research Centre, National Institute for Health Research, University of Oxford, Oxford, UK.
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | | | | | | | | | | | - Alpha A Lee
- PostEra, Inc., Cambridge, MA, USA.
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Khan T, Raza S. Exploration of Computational Aids for Effective Drug Designing and Management of Viral Diseases: A Comprehensive Review. Curr Top Med Chem 2023; 23:1640-1663. [PMID: 36725827 DOI: 10.2174/1568026623666230201144522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/14/2022] [Accepted: 12/19/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Microbial diseases, specifically originating from viruses are the major cause of human mortality all over the world. The current COVID-19 pandemic is a case in point, where the dynamics of the viral-human interactions are still not completely understood, making its treatment a case of trial and error. Scientists are struggling to devise a strategy to contain the pandemic for over a year and this brings to light the lack of understanding of how the virus grows and multiplies in the human body. METHODS This paper presents the perspective of the authors on the applicability of computational tools for deep learning and understanding of host-microbe interaction, disease progression and management, drug resistance and immune modulation through in silico methodologies which can aid in effective and selective drug development. The paper has summarized advances in the last five years. The studies published and indexed in leading databases have been included in the review. RESULTS Computational systems biology works on an interface of biology and mathematics and intends to unravel the complex mechanisms between the biological systems and the inter and intra species dynamics using computational tools, and high-throughput technologies developed on algorithms, networks and complex connections to simulate cellular biological processes. CONCLUSION Computational strategies and modelling integrate and prioritize microbial-host interactions and may predict the conditions in which the fine-tuning attenuates. These microbial-host interactions and working mechanisms are important from the aspect of effective drug designing and fine- tuning the therapeutic interventions.
Collapse
Affiliation(s)
- Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| | - Saman Raza
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| |
Collapse
|
6
|
Pfaff-Kilgore JM, Davidson E, Kadash-Edmondson K, Hernandez M, Rosenberg E, Chambers R, Castelli M, Clementi N, Mancini N, Bailey JR, Crowe JE, Law M, Doranz BJ. Sites of vulnerability in HCV E1E2 identified by comprehensive functional screening. Cell Rep 2022; 39:110859. [PMID: 35613596 PMCID: PMC9281441 DOI: 10.1016/j.celrep.2022.110859] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/08/2021] [Accepted: 05/01/2022] [Indexed: 12/15/2022] Open
Abstract
The E1 and E2 envelope proteins of hepatitis C virus (HCV) form a heterodimer that drives virus-host membrane fusion. Here, we analyze the role of each amino acid in E1E2 function, expressing 545 individual alanine mutants of E1E2 in human cells, incorporating them into infectious viral pseudoparticles, and testing them against 37 different monoclonal antibodies (MAbs) to ascertain full-length translation, folding, heterodimer assembly, CD81 binding, viral pseudoparticle incorporation, and infectivity. We propose a model describing the role of each critical residue in E1E2 functionality and use it to examine how MAbs neutralize infection by exploiting functionally critical sites of vulnerability on E1E2. Our results suggest that E1E2 is a surprisingly fragile protein complex where even a single alanine mutation at 92% of positions disrupts its function. The amino-acid-level targets identified are highly conserved and functionally critical and can be exploited for improved therapies and vaccines.
Collapse
Affiliation(s)
| | - Edgar Davidson
- Integral Molecular, Inc., 3711 Market St, Philadelphia, PA 19104, USA
| | | | - Mayda Hernandez
- Integral Molecular, Inc., 3711 Market St, Philadelphia, PA 19104, USA
| | - Erin Rosenberg
- Integral Molecular, Inc., 3711 Market St, Philadelphia, PA 19104, USA
| | - Ross Chambers
- Integral Molecular, Inc., 3711 Market St, Philadelphia, PA 19104, USA
| | - Matteo Castelli
- Laboratory of Medical Microbiology and Virology, University Vita-Salute San Raffaele, Milan, Italy
| | - Nicola Clementi
- Laboratory of Medical Microbiology and Virology, University Vita-Salute San Raffaele, Milan, Italy; IRCSS San Raffaele Hospital, Milan, Italy
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, University Vita-Salute San Raffaele, Milan, Italy; IRCSS San Raffaele Hospital, Milan, Italy
| | - Justin R Bailey
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Benjamin J Doranz
- Integral Molecular, Inc., 3711 Market St, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Mutational spectrum of hepatitis C virus in patients with chronic hepatitis C determined by single molecule real-time sequencing. Sci Rep 2022; 12:7083. [PMID: 35490163 PMCID: PMC9056513 DOI: 10.1038/s41598-022-11151-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/18/2022] [Indexed: 11/08/2022] Open
Abstract
The emergence of hepatitis C virus (HCV) with resistance-associated substitution (RAS), produced by mutations in the HCV genome, is a major problem in direct acting antivirals (DAA) treatment. This study aimed to clarify the mutational spectrum in HCV-RNA and the substitution pattern for the emergence of RASs in patients with chronic HCV infection. HCV-RNA from two HCV replicon cell lines and the serum HCV-RNA of four non-liver transplant and four post-liver transplant patients with unsuccessful DAA treatment were analyzed using high-accuracy single-molecule real-time long-read sequencing. Transition substitutions, especially A>G and U>C, occurred prominently under DAAs in both non-transplant and post-transplant patients, with a mutational bias identical to that occurring in HCV replicon cell lines during 10-year culturing. These mutational biases were reproduced in natural courses after DAA treatment. RASs emerged via both transition and transversion substitutions. NS3-D168 and NS5A-L31 RASs resulted from transversion mutations, while NS5A-Y93 RASs was caused by transition substitutions. The fidelity of the RNA-dependent RNA polymerase, HCV-NS5B, produces mutational bias in the HCV genome, characterized by dominant transition mutations, notably A>G and U>C substitutions. However, RASs are acquired by both transition and transversion substitutions, and the RASs-positive HCV clones are selected and proliferated under DAA treatment pressure.
Collapse
|
8
|
Saraceni C, Birk J. A Review of Hepatitis B Virus and Hepatitis C Virus Immunopathogenesis. J Clin Transl Hepatol 2021; 9:409-418. [PMID: 34221927 PMCID: PMC8237136 DOI: 10.14218/jcth.2020.00095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/21/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the advances in therapy, hepatitis B virus (HBV) and hepatitis C virus (HCV) still represent a significant global health burden, both as major causes of cirrhosis, hepatocellular carcinoma, and death worldwide. HBV is capable of incorporating its covalently closed circular DNA into the host cell's hepatocyte genome, making it rather difficult to eradicate its chronic stage. Successful viral clearance depends on the complex interactions between the virus and host's innate and adaptive immune response. One encouraging fact on hepatitis B is the development and effective distribution of the HBV vaccine. This has significantly reduced the spread of this virus. HCV is a RNA virus with high mutagenic capacity, thus enabling it to evade the immune system and have a high rate of chronic progression. High levels of HCV heterogeneity and its mutagenic capacity have made it difficult to create an effective vaccine. The recent advent of direct acting antivirals has ushered in a new era in hepatitis C therapy. Sustained virologic response is achieved with DAAs in 85-99% of cases. However, this still leads to a large population of treatment failures, so further advances in therapy are still needed. This article reviews the immunopathogenesis of HBV and HCV, their properties contributing to host immune system avoidance, chronic disease progression, vaccine efficacy and limitations, as well as treatment options and common pitfalls of said therapy.
Collapse
Affiliation(s)
- Corey Saraceni
- Correspondence to: Corey Saraceni, University of Connecticut School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, 263 Farmington Avenue, Farmington, CT 06030-8074, USA. Tel: +1-203-733-7408, Fax: +1-860-679-3159, E-mail:
| | | |
Collapse
|
9
|
Roger S, Ducancelle A, Le Guillou-Guillemette H, Gaudy C, Lunel F. HCV virology and diagnosis. Clin Res Hepatol Gastroenterol 2021; 45:101626. [PMID: 33636428 DOI: 10.1016/j.clinre.2021.101626] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infection is a major cause of severe liver disease including chronic hepatitis, cirrhosis and hepatocellular carcinoma. The HCV burden in public health is estimated at about 71 million people worldwide by World Health Organization (WHO) with at least 400,000 people that died every year from HCV disease [1]. New hepatitis C treatments with oral direct-acting antivirals (DAAs) showing high rates of response, with short treatment duration [2] have been available. HCV can now be eradicated with minimal side effects. Unfortunately, there is no vaccine yet available, but the development of a safe prophylactic vaccine remains a medical priority [3]. For this purpose, Hepatitis B-C subviral envelope particles can be produced by industrialized procedure. It seems to be very promising as this HBV-HCV vaccine candidate has been shown to elicit a broadly cross neutralizing activity against HCV [4]. Despite this revolution in the HCV-treatment, one of major challenge to achieve a global eradication of HCV remains to reduce the under diagnosis. The low rate of diagnosis is a major obstacle in resources limited countries and is mainly due to the cost of molecular tools, that are essential to diagnose and follow chronic HCV infection. In another hand, the mild clinical symptoms observed in HCV chronic disease, may explain that the majority of HCV infected individuals are unaware of their infection, because HCV testing is not generalized, like it is for HIV. HCV was discovered in 1989 after many years of work, by several researchers, who recently obtained the Nobel price [5-7]. This major discovery allowed the description of the HCV genome and later on of the virus replication and cell cycle, and also, importantly, the development of diagnostic tests for the detection of HCV antibodies (Ab) and RNA who were a priority in transfusion. In this review, we will try to get into the virology and cell biology of HCV. Thereafter, we will discuss the different categories of laboratory tests to diagnose/explore HCV infected subjects.
Collapse
Affiliation(s)
- Steven Roger
- Laboratoire de Virologie, CHU Angers et Université d'Angers, Laboratoire HIFIH UFR Santé Département Médecine, SFR 4208-UPRES EA3859, BAT IBS - 4 rue Larrey, 49000 Angers, France
| | - Alexandra Ducancelle
- Laboratoire de Virologie, CHU Angers et Université d'Angers, Laboratoire HIFIH UFR Santé Département Médecine, SFR 4208-UPRES EA3859, BAT IBS - 4 rue Larrey, 49000 Angers, France
| | - Hélène Le Guillou-Guillemette
- Laboratoire de Virologie, CHU Angers et Université d'Angers, Laboratoire HIFIH UFR Santé Département Médecine, SFR 4208-UPRES EA3859, BAT IBS - 4 rue Larrey, 49000 Angers, France
| | - Catherine Gaudy
- Service de Bactériologie-Virologie-Hygiène, CHRU de Tours, 37000 Tours, France; INSERM U1259, Université de Tours, 37000 Tours, France
| | - Françoise Lunel
- Laboratoire de Virologie, CHU Angers et Université d'Angers, Laboratoire HIFIH UFR Santé Département Médecine, SFR 4208-UPRES EA3859, BAT IBS - 4 rue Larrey, 49000 Angers, France.
| |
Collapse
|
10
|
Mikolasevic I, Kanizaj TF, Bozic D, Puz P, Shapeski SS, Puljiz Z, Radic-Kristo D, Lalovac M, Mijic M, Delija B, Juric T, Bogadi I, Virovic-Jukic L. Metabolism of Direct-acting Antiviral Agents (DAAs) in Hepatitis C Therapy: A Review of the Literature. Curr Drug Metab 2021; 22:89-98. [PMID: 33319667 DOI: 10.2174/1389200221999201214224126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/25/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) infection is still one of the leading causes of chronic liver disease, with chronically infected making up approximately 1% of the global population. Of those infected, 70% (55-85%) will develop chronic HCV infection. Chronic HCV infection causes substantial morbidity and mortality, with complications including cirrhosis, end-stage liver disease, hepatocellular carcinoma, and eventually death. OBJECTIVE Therapeutic options for chronic HCV infection have evolved dramatically since 2014, with a translation from pegylated interferon and ribavirin (associated with suboptimal cure and high treatment-related toxicity) to oral direct-acting antiviral treatment. There are four classes of direct-acting antivirals which differ by their mechanism of action and therapeutic target. They are all pointed to proteins that form the cytoplasmic viral replication complex. Multiple studies have demonstrated that direct-acting antiviral therapy is extremely well tolerated, highly efficacious, with few side effects. METHODS We performed an indexed MEDLINE search with keywords regarding specific direct-acting antiviral regimes and their pharmacokinetics, drug-drug interactions, and metabolism in specific settings of pregnancy, lactation, liver cirrhosis, liver transplantation and HCC risk, kidney failure and kidney transplantation. RESULTS We present a comprehensive overview of specific direct-acting antiviral metabolism and drug-drug interaction issues in different settings. CONCLUSION Despite its complex pharmacokinetics and the possibility of drug-drug interactions, direct-acting antivirals are highly efficacious in providing viral clearance, which is an obvious advantage compared to possible interactions or side effects. They should be administered cautiously in patients with other comorbidities, and with tight control of immunosuppressive therapy.
Collapse
Affiliation(s)
- Ivana Mikolasevic
- Department of Gastroenterology, University Hospital Merkur, Zagreb, Croatia
| | - Tajana F Kanizaj
- Department of Gastroenterology, University Hospital Merkur, Zagreb, Croatia
| | - Dorotea Bozic
- Department for Gastroenterology and Hepatology, University Hospital Center, Split, Croatia
| | - Petra Puz
- Division of Internal Medicine, General Hospital Koprivnica, Croatia
| | | | - Zeljko Puljiz
- Department for Gastroenterology and Hepatology, University Hospital Center, Split, Croatia
| | | | - Milos Lalovac
- Department of Gastroenterology, University Hospital Merkur, Zagreb, Croatia
| | - Maja Mijic
- Department of Gastroenterology, University Hospital Merkur, Zagreb, Croatia
| | - Bozena Delija
- School of Medicine, University Center Hospital Rijeka, Rijeka, Croatia
| | - Toni Juric
- School of Medicine, University Center Hospital Rijeka, Rijeka, Croatia
| | - Ivan Bogadi
- Department of Gastroenterology, University Hospital Merkur, Zagreb, Croatia
| | | |
Collapse
|
11
|
Li HC, Yang CH, Lo SY. Hepatitis C Viral Replication Complex. Viruses 2021; 13:v13030520. [PMID: 33809897 PMCID: PMC8004249 DOI: 10.3390/v13030520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
The life cycle of the hepatitis C virus (HCV) can be divided into several stages, including viral entry, protein translation, RNA replication, viral assembly, and release. HCV genomic RNA replication occurs in the replication organelles (RO) and is tightly linked to ER membrane alterations containing replication complexes (proteins NS3 to NS5B). The amplification of HCV genomic RNA could be regulated by the RO biogenesis, the viral RNA structure (i.e., cis-acting replication elements), and both viral and cellular proteins. Studies on HCV replication have led to the development of direct-acting antivirals (DAAs) targeting the replication complex. This review article summarizes the viral and cellular factors involved in regulating HCV genomic RNA replication and the DAAs that inhibit HCV replication.
Collapse
Affiliation(s)
- Hui-Chun Li
- Department of Biochemistry, Tzu Chi University, Hualien 97004, Taiwan;
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan;
| | - Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan;
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan
- Correspondence: ; Tel.: +886-3-8565301 (ext. 2322)
| |
Collapse
|
12
|
Ashraf MU, Salman HM, Khalid MF, Khan MHF, Anwar S, Afzal S, Idrees M, Chaudhary SU. CRISPR-Cas13a mediated targeting of hepatitis C virus internal-ribosomal entry site (IRES) as an effective antiviral strategy. Biomed Pharmacother 2021; 136:111239. [PMID: 33454599 DOI: 10.1016/j.biopha.2021.111239] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C is an inflammatory liver disease caused by the single-stranded RNA (ssRNA) hepatitis C virus (HCV). The genetic diversity of the virus and quasispecies produced during replication have resulted in viral resistance to direct-acting antivirals (DAAs) as well as impediments in vaccine development. The recent adaptation of CRISPR-Cas as an alternative antiviral approach has demonstrated degradation of viral nucleic acids in eukaryotes. In particular, the CRISPR-effector Cas13 enzyme has been shown to target ssRNA viruses effectively. In this work, we have employed Cas13a to knockdown HCV in mammalian cells. Using a computational screen, we identified several potential Cas13a target sites within highly conserved regions of the HCV internal ribosomal entry site (IRES). Our results demonstrate significant inhibition of HCV replication as well as translation in huh-7.5 cells with minimal effects on cell viability. These findings were validated using a multi-modality approach involving qRT-PCR, luciferase assay, and MTT cell viability assay. In conclusion, the CRISPR-Cas13a system efficiently targets HCV in vitro, suggesting its potential as a programmable therapeutic antiviral strategy.
Collapse
Affiliation(s)
- Muhammad Usman Ashraf
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan; Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Hafiz Muhammad Salman
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Farhan Khalid
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Haider Farooq Khan
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Saima Anwar
- Department of Biomedical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Samia Afzal
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Idrees
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Safee Ullah Chaudhary
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan.
| |
Collapse
|
13
|
Maheden K, Todd B, Gordon CJ, Tchesnokov EP, Götte M. Inhibition of viral RNA-dependent RNA polymerases with clinically relevant nucleotide analogs. Enzymes 2021; 49:315-354. [PMID: 34696837 PMCID: PMC8517576 DOI: 10.1016/bs.enz.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The treatment of viral infections remains challenging, in particular in the face of emerging pathogens. Broad-spectrum antiviral drugs could potentially be used as a first line of defense. The RNA-dependent RNA polymerase (RdRp) of RNA viruses serves as a logical target for drug discovery and development efforts. Herein we discuss compounds that target RdRp of poliovirus, hepatitis C virus, influenza viruses, respiratory syncytial virus, and the growing data on coronaviruses. We focus on nucleotide analogs and mechanisms of action and resistance.
Collapse
Affiliation(s)
- Kieran Maheden
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Brendan Todd
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology at University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
14
|
Icer Baykal PB, Lara J, Khudyakov Y, Zelikovsky A, Skums P. Quantitative differences between intra-host HCV populations from persons with recently established and persistent infections. Virus Evol 2020; 7:veaa103. [PMID: 33505710 PMCID: PMC7816669 DOI: 10.1093/ve/veaa103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Detection of incident hepatitis C virus (HCV) infections is crucial for identification of outbreaks and development of public health interventions. However, there is no single diagnostic assay for distinguishing recent and persistent HCV infections. HCV exists in each infected host as a heterogeneous population of genomic variants, whose evolutionary dynamics remain incompletely understood. Genetic analysis of such viral populations can be applied to the detection of incident HCV infections and used to understand intra-host viral evolution. We studied intra-host HCV populations sampled using next-generation sequencing from 98 recently and 256 persistently infected individuals. Genetic structure of the populations was evaluated using 245,878 viral sequences from these individuals and a set of selected features measuring their diversity, topological structure, complexity, strength of selection, epistasis, evolutionary dynamics, and physico-chemical properties. Distributions of the viral population features differ significantly between recent and persistent infections. A general increase in viral genetic diversity from recent to persistent infections is frequently accompanied by decline in genomic complexity and increase in structuredness of the HCV population, likely reflecting a high level of intra-host adaptation at later stages of infection. Using these findings, we developed a machine learning classifier for the infection staging, which yielded a detection accuracy of 95.22 per cent, thus providing a higher accuracy than other genomic-based models. The detection of a strong association between several HCV genetic factors and stages of infection suggests that intra-host HCV population develops in a complex but regular and predictable manner in the course of infection. The proposed models may serve as a foundation of cyber-molecular assays for staging infection, which could potentially complement and/or substitute standard laboratory assays.
Collapse
Affiliation(s)
- Pelin B Icer Baykal
- Department of Computer Science, Georgia State University, 25 Park Place, Atlanta, GA 30302, USA
| | - James Lara
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30329, USA
| | - Yury Khudyakov
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30329, USA
| | - Alex Zelikovsky
- Department of Computer Science, Georgia State University, 25 Park Place, Atlanta, GA 30302, USA
| | - Pavel Skums
- Department of Computer Science, Georgia State University, 25 Park Place, Atlanta, GA 30302, USA
| |
Collapse
|
15
|
Divergent Mutational Landscapes of Consensus and Minority Genotypes of West Nile Virus Demonstrate Host and Gene-Specific Evolutionary Pressures. Genes (Basel) 2020; 11:genes11111299. [PMID: 33143358 PMCID: PMC7692055 DOI: 10.3390/genes11111299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 01/12/2023] Open
Abstract
Our current understanding of the natural evolution of RNA viruses comes largely from consensus level genetic analyses which ignore the diverse mutant swarms that comprise within-host viral populations. The breadth and composition of viral mutant swarms impact viral fitness and adaptation, and the capacity for swarm plasticity is likely to be particularly important for arthropod-borne viruses (arboviruses) that cycle between taxonomically divergent hosts. Despite this, characterization of the relationship between the selective pressures and genetic signatures of the mutant swarm and consensus sequences is lacking. To clarify this, we analyzed previously generated whole genome, deep-sequencing data from 548 West Nile virus samples isolated from avian tissues or mosquitoes in New York State from 1999-2018. Both consensus level (interhost) and minority level (intrahost) nucleotide and amino acid sequences were analyzed, and diversity at each position was calculated across the genome in order to assess the relationship between minority and consensus sequences for individual genes and hosts. Our results indicate that consensus sequences are an inept representation of the overall genetic diversity. Unique host and gene-specific signatures and selective pressures were identified. These data demonstrate that an accurate and comprehensive understanding of arbovirus evolution and adaptation within and between hosts requires consideration of minority genotypes.
Collapse
|
16
|
Villalba B, Johnson KA. Rate-limiting pyrophosphate release by hepatitis C virus polymerase NS5B improves fidelity. J Biol Chem 2020; 295:16436-16444. [PMID: 32938715 DOI: 10.1074/jbc.ra120.015394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/04/2020] [Indexed: 01/02/2023] Open
Abstract
The hepatitis C virus RNA-dependent RNA polymerase NS5B is responsible for the replication of the viral genome. Previous studies have uncovered NTP-mediated excision mechanisms that may be responsible for aiding in maintaining fidelity (the frequency of incorrect incorporation events relative to correct), but little is known about the fidelity of NS5B. In this study, we used transient-state kinetics to examine the mechanistic basis for polymerase fidelity. We observe a wide range of efficiency for incorporation of various mismatched base pairs and have uncovered a mechanism in which the rate constant for pyrophosphate release is slowed for certain misincorporation events. This results in an increase in fidelity against these specific misincorporations. Furthermore, we discover that some mismatches are highly unfavorable and cannot be observed under the conditions used here. The calculated fidelity of NS5B ranges between 10-4-10-9 for different mismatches.
Collapse
Affiliation(s)
- Brian Villalba
- Institutes for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Kenneth A Johnson
- Institutes for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
17
|
Boehr AK, Arnold JJ, Oh HS, Cameron CE, Boehr DD. 2'-C-methylated nucleotides terminate virus RNA synthesis by preventing active site closure of the viral RNA-dependent RNA polymerase. J Biol Chem 2019; 294:16897-16907. [PMID: 31575662 PMCID: PMC6851289 DOI: 10.1074/jbc.ra119.010214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/28/2019] [Indexed: 01/25/2023] Open
Abstract
The 2'-C-methyl ribonucleosides are nucleoside analogs representing an important class of antiviral agents, especially against positive-strand RNA viruses. Their value is highlighted by the highly successful anti-hepatitis C drug sofosbuvir. When appropriately phosphorylated, these nucleotides are successfully incorporated into RNA by the virally encoded RNA-dependent RNA polymerase (RdRp). This activity prevents further RNA extension, but the mechanism is poorly characterized. Previously, we had identified NMR signatures characteristic of formation of RdRp-RNA binary and RdRp-RNA-NTP ternary complexes for the poliovirus RdRp, including an open-to-closed conformational change necessary to prepare the active site for catalysis of phosphoryl transfer. Here we used these observations as a framework for interpreting the effects of 2'-C-methyl adenosine analogs on RNA chain extension in solution-state NMR spectroscopy experiments, enabling us to gain additional mechanistic insights into 2'-C-methyl ribonucleoside-mediated RNA chain termination. Contrary to what has been proposed previously, poliovirus RdRp that was bound to RNA with an incorporated 2'-C-methyl nucleotide could still bind to the next incoming NTP. Our results also indicated that incorporation of the 2'-C-methyl nucleotide does not disrupt RdRp-RNA interactions and does not prevent translocation. Instead, incorporation of the 2'-C-methyl nucleotide blocked closure of the RdRp active site upon binding of the next correct incoming NTP, which prevented further nucleotide addition. We propose that other nucleotide analogs that act as nonobligate chain terminators may operate through a similar mechanism.
Collapse
Affiliation(s)
- Alyson K Boehr
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Jamie J Arnold
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Hyung S Oh
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - David D Boehr
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
18
|
Sofia MJ. The Discovery and Development of Daclatasvir: An Inhibitor of the Hepatitis C Virus NS5A Replication Complex. ACTA ACUST UNITED AC 2019. [PMCID: PMC7122418 DOI: 10.1007/7355_2018_47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Raja R, Pareek A, Newar K, Dixit NM. Mutational pathway maps and founder effects define the within-host spectrum of hepatitis C virus mutants resistant to drugs. PLoS Pathog 2019; 15:e1007701. [PMID: 30934020 PMCID: PMC6459561 DOI: 10.1371/journal.ppat.1007701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 04/11/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
Knowledge of the within-host frequencies of resistance-associated amino acid variants (RAVs) is important to the identification of optimal drug combinations for the treatment of hepatitis C virus (HCV) infection. Multiple RAVs may exist in infected individuals, often below detection limits, at any resistance locus, defining the diversity of accessible resistance pathways. We developed a multiscale mathematical model to estimate the pre-treatment frequencies of the entire spectrum of mutants at chosen loci. Using a codon-level description of amino acids, we performed stochastic simulations of intracellular dynamics with every possible nucleotide variant as the infecting strain and estimated the relative infectivity of each variant and the resulting distribution of variants produced. We employed these quantities in a deterministic multi-strain model of extracellular dynamics and estimated mutant frequencies. Our predictions captured database frequencies of the RAV R155K, resistant to NS3/4A protease inhibitors, presenting a successful test of our formalism. We found that mutational pathway maps, interconnecting all viable mutants, and strong founder effects determined the mutant spectrum. The spectra were vastly different for HCV genotypes 1a and 1b, underlying their differential responses to drugs. Using a fitness landscape determined recently, we estimated that 13 amino acid variants, encoded by 44 codons, exist at the residue 93 of the NS5A protein, illustrating the massive diversity of accessible resistance pathways at specific loci. Accounting for this diversity, which our model enables, would help optimize drug combinations. Our model may be applied to describe the within-host evolution of other flaviviruses and inform vaccine design strategies.
Collapse
Affiliation(s)
- Rubesh Raja
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Aditya Pareek
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Kapil Newar
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Narendra M. Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
20
|
Abstract
The advent of direct-acting antivirals (DAAs) has brought about a sudden renaissance in the treatment of chronic hepatitis C virus (HCV) infection with SVR rates now routinely >90%. However, due to the error-prone nature of the HCV RNA polymerase, resistance-associated substitutions (RASs) to DAAs may be present at baseline and can result in a significant effect on treatment outcomes and hamper the achievement of sustained virologic response. By further understanding the patterns and nature of these RASs, it is anticipated that the incidence of treatment failure will continue to decrease in frequency with the development of drug regimens with increasing potency, barrier to resistance, and genotypic efficacy. This review summarizes our current knowledge of RASs associated with HCV infection as well as the clinical effect of RASs on treatment with currently available DAA regimens.
Collapse
Affiliation(s)
- Darrick K Li
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Raymond T Chung
- Liver Center and Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
21
|
Mori H, Fukuhara T, Ono C, Tamura T, Sato A, Fauzyah Y, Wada M, Okamoto T, Noda T, Yoshimori T, Matsuura Y. Induction of selective autophagy in cells replicating hepatitis C virus genome. J Gen Virol 2018; 99:1643-1657. [DOI: 10.1099/jgv.0.001161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Hiroyuki Mori
- 1Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Takasuke Fukuhara
- 1Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Chikako Ono
- 1Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Tomokazu Tamura
- 1Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Asuka Sato
- 1Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Yuzy Fauzyah
- 1Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Masami Wada
- 1Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
- †Present address: Division of Virology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Toru Okamoto
- 1Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Takeshi Noda
- 2Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Tamotsu Yoshimori
- 3Department of Genetics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Yoshiharu Matsuura
- 1Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Hepatitis C virus cell culture models: an encomium on basic research paving the road to therapy development. Med Microbiol Immunol 2018; 208:3-24. [PMID: 30298360 DOI: 10.1007/s00430-018-0566-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022]
Abstract
Chronic hepatitis C virus (HCV) infections affect 71 million people worldwide, often resulting in severe liver damage. Since 2014 highly efficient therapies based on directly acting antivirals (DAAs) are available, offering cure rates of almost 100%, if the infection is diagnosed in time. It took more than a decade to discover HCV in 1989 and another decade to establish a cell culture model. This review provides a personal view on the importance of HCV cell culture models, particularly the replicon system, in the process of therapy development, from drug screening to understanding of mode of action and resistance, with a special emphasis on the contributions of Ralf Bartenschlager's group. It summarizes the tremendous efforts of scientists in academia and industry required to achieve efficient DAAs, focusing on the main targets, protease, polymerase and NS5A. It furthermore underpins the importance of strong basic research laying the ground for translational medicine.
Collapse
|
23
|
Akaberi D, Bergfors A, Kjellin M, Kameli N, Lidemalm L, Kolli B, Shafer RW, Palanisamy N, Lennerstrand J. Baseline dasabuvir resistance in Hepatitis C virus from the genotypes 1, 2 and 3 and modeling of the NS5B-dasabuvir complex by the in silico approach. Infect Ecol Epidemiol 2018; 8:1528117. [PMID: 30319736 PMCID: PMC6179053 DOI: 10.1080/20008686.2018.1528117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/13/2018] [Indexed: 02/08/2023] Open
Abstract
Background: Current combination treatments with direct-acting antiviral agents (DAAs) can cure more than 95% of hepatitis C virus (HCV) infections. However, resistance-associated substitutions (RASs) may emerge and can also be present in treatment-naïve patients. Methods, results and discussion: In this study, a semi-pan-genotypic population sequencing method was developed and used to assess all NS5B amino acid variants between residue positions 310 and 564. Our method successfully sequenced more than 90% of genotype (GT) 1a, 1b, 2b and 3a samples. By using the population sequencing method with a cut-off of 20%, we found the dasabuvir RASs A553V and C445F to be a baseline polymorphism of GT 2b (8 out of 8) and GT 3a (18 out of 18) sequences, respectively. In GT 1a and 1b treatment-naïve subjects (n=25), no high-fold resistance polymorphism/RASs were identified. We further predicted dasabuvir’s binding pose with the NS5B polymerase using the in silico methods to elucidate the reasons associated with the resistance of clinically relevant RASs. Dasabuvir was docked at the palm-I site and was found to form hydrogen bonds with the residues S288, I447, Y448, N291 and D318. The RAS positions 316, 414, 448, 553 and 556 were found to constitute the dasabuvir binding pocket.
Collapse
Affiliation(s)
- Dario Akaberi
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Assar Bergfors
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Midori Kjellin
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Nader Kameli
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Department of Medical Microbiology, NUTRIM school of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Louise Lidemalm
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Bhavya Kolli
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Robert W Shafer
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA
| | - Navaneethan Palanisamy
- HBIGS, University of Heidelberg, Heidelberg, Germany.,Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Johan Lennerstrand
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Bagaglio S, Uberti-Foppa C, Olgiati A, Messina E, Hasson H, Ferri C, Morsica G. Natural polymorphisms in the resistance associated sites of HCV-G1 NS5B domain and correlation with geographic origin of HCV isolates. Virol J 2018; 15:144. [PMID: 30227876 PMCID: PMC6145338 DOI: 10.1186/s12985-018-1054-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 09/10/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND We evaluated the frequency of naturally occurring resistance associated substitutions (RASs) and their characteristic of polymorphic or non-polymorphic amino acid change to direct acting antivirals (DAAs) in NS5b HCV subtypes 1a and 1b according to different geographic origin of isolates. METHODS Using a public database we retrieved 738 worldwide NS5b sequences (for which was available the geographic origin) from HCV genotype (G)1 infected patients naive to DAAs. NS5b sequences clustering with G1a were more conserved in regard of RASs than G1b isolates, (14% vs 57% RASs, P < 0.0001). RESULTS In G1a, RASs were differently distributed between isolates from Europe (24%) and USA, (12%) P = 0.0186. In particular, 421 V associated with resistance to non-nucleoside inhibitor beclabuvir was polymorphic in Europe and USA, being detected in 24% and 11% of sequences, respectively, P = 0.0140. In G1b, RASs were found in 45% of sequences from Europe, in 54% of isolates from USA and in 70% of sequences from Asia (P = 0.0051). The 316 N polymorphism was detected in 54% of Asian isolates and at lower frequency, in 28% of isolates from USA and in 20% of European sequences (P < 0.0001). CONCLUSIONS In conclusion, a higher prevalence of RASs in G1b respect to G1a was found and a geographical distribution of RASs and polymorphic aa changes was observed in G1a as well in G1b. The clinical and therapeutic impact of the geographic distribution of RASs to polymerase inhibitors remains to be established, particularly in patients with virologic failure to DAAs and/or advanced liver disease.
Collapse
Affiliation(s)
- Sabrina Bagaglio
- Division of Infectious Diseases, Ospedale San Raffaele, Via Stamira d'Ancona 20, 20127, Milan, Italy.
| | | | - Alessandro Olgiati
- Division of Infectious Diseases, Ospedale San Raffaele, Via Stamira d'Ancona 20, 20127, Milan, Italy
| | - Emanuela Messina
- Division of Infectious Diseases, Ospedale San Raffaele, Via Stamira d'Ancona 20, 20127, Milan, Italy
| | - Hamid Hasson
- Division of Infectious Diseases, Ospedale San Raffaele, Via Stamira d'Ancona 20, 20127, Milan, Italy
| | | | - Giulia Morsica
- Division of Infectious Diseases, Ospedale San Raffaele, Via Stamira d'Ancona 20, 20127, Milan, Italy
| |
Collapse
|
25
|
Mason S, Devincenzo JP, Toovey S, Wu JZ, Whitley RJ. Comparison of antiviral resistance across acute and chronic viral infections. Antiviral Res 2018; 158:103-112. [PMID: 30086337 DOI: 10.1016/j.antiviral.2018.07.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/26/2022]
Abstract
Antiviral therapy can lead to drug resistance, but multiple factors determine the frequency of drug resistance mutations and the clinical consequences. When chronic infections caused by Human Immunodeficiency Virus (HIV), Hepatitis C Virus (HCV) and Hepatitis B Virus (HBV) are compared with acute infections such as influenza virus, respiratory syncytial virus (RSV), and other respiratory viruses, there are similarities in how and why antiviral resistance substitutions occur, but the clinical significance can be quite different. Emergence of resistant variants has implications for design of new therapeutics, treatment guidelines, clinical trial design, resistance monitoring, reporting, and interpretation. In this discussion paper, we consider the molecular factors contributing to antiviral drug resistance substitutions, and a comparison is made between chronic and acute infections. The implications of resistance are considered for clinical trial endpoints and public health, as well as the requirements for therapeutic monitoring in clinical practice with acute viral infections.
Collapse
Affiliation(s)
- Stephen Mason
- SWM Consulting, 9 Clearview Dr, Wallingford, CT 06492, USA
| | - John P Devincenzo
- Dpt of Pediatrics, College of Medicine, University of Tennessee Center for Health Sciences, Memphis, TN, USA; Dpt of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Center for Health Sciences, Memphis, TN, USA; Children's Foundation Research Institute at Le Bonheur Children's Hospital, Memphis, TN, USA
| | | | - Jim Z Wu
- Ark Biosciences Inc, Shanghai, PR China
| | - Richard J Whitley
- Department of Pediatrics, Microbiology, Medicine and Neurosurgery, The University of Alabama at Birmingham, USA
| |
Collapse
|
26
|
Venugopal V, Padmanabhan P, Raja R, Dixit NM. Modelling how responsiveness to interferon improves interferon-free treatment of hepatitis C virus infection. PLoS Comput Biol 2018; 14:e1006335. [PMID: 30001324 PMCID: PMC6057683 DOI: 10.1371/journal.pcbi.1006335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 07/24/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022] Open
Abstract
Direct-acting antiviral agents (DAAs) for hepatitis C treatment tend to fare better in individuals who are also likely to respond well to interferon-alpha (IFN), a surprising correlation given that DAAs target specific viral proteins whereas IFN triggers a generic antiviral immune response. Here, we posit a causal relationship between IFN-responsiveness and DAA treatment outcome. IFN-responsiveness restricts viral replication, which would prevent the growth of viral variants resistant to DAAs and improve treatment outcome. To test this hypothesis, we developed a multiscale mathematical model integrating IFN-responsiveness at the cellular level, viral kinetics and evolution leading to drug resistance at the individual level, and treatment outcome at the population level. Model predictions quantitatively captured data from over 50 clinical trials demonstrating poorer response to DAAs in previous non-responders to IFN than treatment-naïve individuals, presenting strong evidence supporting the hypothesis. Model predictions additionally described several unexplained clinical observations, viz., the percentages of infected individuals who 1) spontaneously clear HCV, 2) get chronically infected but respond to IFN-based therapy, and 3) fail IFN-based therapy but respond to DAA-based therapy, resulting in a comprehensive understanding of HCV infection and treatment. An implication of the causal relationship is that failure of DAA-based treatments may be averted by adding IFN, a strategy of potential use in settings with limited access to DAAs. A second, wider implication is that individuals with greater IFN-responsiveness would require shorter DAA-based treatment durations, presenting a basis and a promising population for response-guided therapy.
Collapse
Affiliation(s)
- Vishnu Venugopal
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Pranesh Padmanabhan
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Rubesh Raja
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Narendra M. Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
27
|
Selisko B, Papageorgiou N, Ferron F, Canard B. Structural and Functional Basis of the Fidelity of Nucleotide Selection by Flavivirus RNA-Dependent RNA Polymerases. Viruses 2018; 10:v10020059. [PMID: 29385764 PMCID: PMC5850366 DOI: 10.3390/v10020059] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 12/22/2022] Open
Abstract
Viral RNA-dependent RNA polymerases (RdRps) play a central role not only in viral replication, but also in the genetic evolution of viral RNAs. After binding to an RNA template and selecting 5'-triphosphate ribonucleosides, viral RdRps synthesize an RNA copy according to Watson-Crick base-pairing rules. The copy process sometimes deviates from both the base-pairing rules specified by the template and the natural ribose selectivity and, thus, the process is error-prone due to the intrinsic (in)fidelity of viral RdRps. These enzymes share a number of conserved amino-acid sequence strings, called motifs A-G, which can be defined from a structural and functional point-of-view. A co-relation is gradually emerging between mutations in these motifs and viral genome evolution or observed mutation rates. Here, we review our current knowledge on these motifs and their role on the structural and mechanistic basis of the fidelity of nucleotide selection and RNA synthesis by Flavivirus RdRps.
Collapse
Affiliation(s)
- Barbara Selisko
- CNRS, Aix-Marseille Université, AFMB, UMR 7257, 163 Avenue de Luminy, 13288 Marseille, France.
| | - Nicolas Papageorgiou
- CNRS, Aix-Marseille Université, AFMB, UMR 7257, 163 Avenue de Luminy, 13288 Marseille, France.
| | - François Ferron
- CNRS, Aix-Marseille Université, AFMB, UMR 7257, 163 Avenue de Luminy, 13288 Marseille, France.
| | - Bruno Canard
- CNRS, Aix-Marseille Université, AFMB, UMR 7257, 163 Avenue de Luminy, 13288 Marseille, France.
| |
Collapse
|
28
|
Tsukiyama-Kohara K, Kohara M. Hepatitis C Virus: Viral Quasispecies and Genotypes. Int J Mol Sci 2017; 19:ijms19010023. [PMID: 29271914 PMCID: PMC5795974 DOI: 10.3390/ijms19010023] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) mainly replicates in the cytoplasm, where it easily establishes persistent infection, resulting in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Due to its high rate of mutation, HCV forms viral quasispecies, categorized based on the highly variable regions in the envelope protein and nonstructural 5A protein. HCV possesses seven major genotypes, among which genotype 1 is the most prevalent globally. The distribution of HCV genotypes varies based on geography, and each genotype has a different sensitivity to interferon treatment. Recently-developed direct-acting antivirals (DAAs), which target viral proteases or polymerases, mediate drastically better antiviral effects than previous therapeutics. Although treatment with DAAs has led to the development of drug-resistant HCV mutants, the most recently approved DAAs show improved pan-genomic activity, with a higher barrier to viral resistance.
Collapse
Affiliation(s)
- Kyoko Tsukiyama-Kohara
- Joint Faculty of Veterinary Meedicine, Kagoshima University, 1-21-24 Korimoto Kagoshima-city, Kgoshima 890-0065, Japan.
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute, 2-1-6 Kamikitazawa, Setagaya-Ku 156-8506, Japan.
| |
Collapse
|
29
|
Pattern of hepatitis C virus genotypes and subtypes circulating in war-stricken Khyber Pakhtunkhwa, Pakistan: Review of published literature. ASIAN PAC J TROP MED 2017; 10:1037-1042. [DOI: 10.1016/j.apjtm.2017.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/28/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023] Open
|
30
|
Russelli G, Pizzillo P, Iannolo G, Barbera F, Tuzzolino F, Liotta R, Traina M, Vizzini G, Gridelli B, Badami E, Conaldi PG. HCV replication in gastrointestinal mucosa: Potential extra-hepatic viral reservoir and possible role in HCV infection recurrence after liver transplantation. PLoS One 2017; 12:e0181683. [PMID: 28750044 PMCID: PMC5531480 DOI: 10.1371/journal.pone.0181683] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/04/2017] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Hepatitis C virus (HCV) predominantly infects hepatocytes, although it is known that receptors for viral entry are distributed on a wide array of target cells. Chronic HCV infection is indeed characterized by multiple non-liver manifestations, suggesting a more complex HCV tropism extended to extrahepatic tissues and remains to be fully elucidated. In this study, we investigated the gastrointestinal mucosa (GIM) as a potential extrahepatic viral replication site and its contribution to HCV recurrence. METHODS We analyzed GIM biopsies from a cohort of 76 patients, 11 of which were HCV-negative and 65 HCV-positive. Of these, 54 biopsies were from liver-transplanted patients. In 29 cases, we were able to investigate gastrointestinal biopsies from the same patient before and after transplant. To evaluate the presence of HCV, we looked for viral antigens and genome RNA, whilst to assess viral replicative activity, we searched for the replicative intermediate minus-strand RNA. We studied the genetic diversity and the phylogenetic relationship of HCV quasispecies from plasma, liver and gastrointestinal mucosa of HCV-liver-transplanted patients in order to assess HCV compartmentalization and possible contribution of gastrointestinal variants to liver re-infection after transplantation. RESULTS Here we show that HCV infects and replicates in the cells of the GIM and that the favorite hosts were mostly enteroendocrine cells. Interestingly, we observed compartmentalization of the HCV quasispecies present in the gastrointestinal mucosa compared to other tissues of the same patient. Moreover, the phylogenetic analysis revealed a high similarity between HCV variants detected in gastrointestinal mucosa and those present in the re-infected graft. CONCLUSIONS Our results demonstrated that the gastrointestinal mucosa might be considered as an extrahepatic reservoir of HCV and that could contribute to viral recurrence. Moreover, the finding that HCV infects and replicates in neuroendocrine cells opens new perspectives on the role of these cells in the natural history of HCV infection.
Collapse
Affiliation(s)
- Giovanna Russelli
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Pizzillo
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Gioacchin Iannolo
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Floriana Barbera
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | | | - Rosa Liotta
- Pathology Service, Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT, Palermo, Italy
| | - Mario Traina
- Endoscopy Service, Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT, Palermo, Italy
| | - Giovanni Vizzini
- Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, IRCCS-ISMETT, Palermo, Italy
| | - Bruno Gridelli
- Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, IRCCS-ISMETT, Palermo, Italy
| | | | - Pier Giulio Conaldi
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
- Fondazione Ri.MED, Palermo, Italy
| |
Collapse
|
31
|
Abstract
Multiple direct-acting antiviral (DAA)-based regimens are currently approved that provide one or more interferon-free treatment options for hepatitis C virus (HCV) genotypes (G) 1-6. The choice of a DAA regimen, duration of therapy, and use of ribavirin depends on multiple viral and host factors, including HCV genotype, the detection of resistance-associated amino acid (aa) substitutions (RASs), prior treatment experience, and presence of cirrhosis. In regard to viral factors that may guide the treatment choice, the most important is the infecting genotype because a number of DAAs are genotype-designed. The potency and the genetic barrier may also impact the choice of treatment. One important and debated possible virologic factor that may negatively influence the response to DAAs is the presence of baseline RASs. Baseline resistance testing is currently not routinely considered or recommended for initiating HCV treatment, due to the overall high response rates (sustained virological response >90%) obtained. Exceptions are patients infected by HCV G1a when initiating treatment with simeprevir and elbasvir/grazoprevir or in those with cirrhosis prior to daclatasvir/sofosbuvir treatment because of natural polymorphisms demonstrated in sites of resistance. On the basis of these observations, first-line strategies should be optimized to overcome treatment failure due to HCV resistance.
Collapse
|
32
|
Ono C, Fukuhara T, Motooka D, Nakamura S, Okuzaki D, Yamamoto S, Tamura T, Mori H, Sato A, Uemura K, Fauzyah Y, Kurihara T, Suda T, Nishio A, Hmwe SS, Okamoto T, Tatsumi T, Takehara T, Chayama K, Wakita T, Koike K, Matsuura Y. Characterization of miR-122-independent propagation of HCV. PLoS Pathog 2017; 13:e1006374. [PMID: 28494029 PMCID: PMC5441651 DOI: 10.1371/journal.ppat.1006374] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/23/2017] [Accepted: 04/24/2017] [Indexed: 12/12/2022] Open
Abstract
miR-122, a liver-specific microRNA, is one of the determinants for liver tropism of hepatitis C virus (HCV) infection. Although miR-122 is required for efficient propagation of HCV, we have previously shown that HCV replicates at a low rate in miR-122-deficient cells, suggesting that HCV-RNA is capable of propagating in an miR-122-independent manner. We herein investigated the roles of miR-122 in both the replication of HCV-RNA and the production of infectious particles by using miR-122-knockout Huh7 (Huh7-122KO) cells. A slight increase of intracellular HCV-RNA levels and infectious titers in the culture supernatants was observed in Huh7-122KO cells upon infection with HCV. Moreover, after serial passages of HCV in miR-122-knockout Huh7.5.1 cells, we obtained an adaptive mutant, HCV122KO, possessing G28A substitution in the 5’UTR of the HCV genotype 2a JFH1 genome, and this mutant may help to enhance replication complex formation, a possibility supported by polysome analysis. We also found the introduction of adaptive mutation around miR-122 binding site in the genotype 1b/2a chimeric virus, which originally had an adenine at the nucleotide position 29. HCV122KO exhibited efficient RNA replication in miR-122-knockout cells and non-hepatic cells without exogenous expression of miR-122. Competition assay revealed that the G28A mutant was dominant in the absence of miR-122, but its effects were equivalent to those of the wild type in the presence of miR-122, suggesting that the G28A mutation does not confer an advantage for propagation in miR-122-rich hepatocytes. These observations may explain the clinical finding that the positive rate of G28A mutation was higher in miR-122-deficient PBMCs than in the patient serum, which mainly included the hepatocyte-derived virus from HCV-genotype-2a patients. These results suggest that the emergence of HCV mutants that can propagate in non-hepatic cells in an miR-122-independent manner may participate in the induction of extrahepatic manifestations in chronic hepatitis C patients. A liver-specific microRNA, miR-122, is one of the key determinants of hepatitis C virus (HCV) hepatotropism and is required for efficient propagation of HCV. On the other hand, chronic infection with HCV is often associated with extrahepatic manifestations (EHMs), and a low level of HCV-RNA replication has been detected in some non-hepatic cells. Nonetheless, the detailed mechanisms underlying these phenomena remain unknown. Here, we show that miR-122 is dispensable for low-level replication or infectious particle formation, and a mutant virus adapted to miR-122-knockout cells exhibited efficient but miR-122-independent propagation. The adaptive virus of HCV genotype 2a possessed a G28A substitution in the 5’UTR and facilitated efficient replication complex formation under an miR-122-deficient condition, while it propagated at a level comparable to the wild type HCV in the presence of miR-122. Moreover, various adaptive mutations including C30U were introduced into genotype 1b, which originally had an adenine at the nucleotide position 29. These observations suggest that substitutions that yield miR-122-independent propagation are not induced during propagation in hepatocytes; however, treatment with an miR-122 inhibitor or persistent infection of HCV in non-hepatic cells may induce the emergence of mutant viruses, as evidenced by clinical samples.
Collapse
Affiliation(s)
- Chikako Ono
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- DNA-Chip Developmental Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Satomi Yamamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tomokazu Tamura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hiroyuki Mori
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Asuka Sato
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kentaro Uemura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yuzy Fauzyah
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takeshi Kurihara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takahiro Suda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Akira Nishio
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Su Su Hmwe
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Toru Okamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuaki Chayama
- Department of Medicine and Molecular Science, Hiroshima University School of Medicine, Hiroshima, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- * E-mail:
| |
Collapse
|
33
|
Eltahla AA, Leung P, Pirozyan MR, Rodrigo C, Grebely J, Applegate T, Maher L, Luciani F, Lloyd AR, Bull RA. Dynamic evolution of hepatitis C virus resistance-associated substitutions in the absence of antiviral treatment. Sci Rep 2017; 7:41719. [PMID: 28139734 PMCID: PMC5282498 DOI: 10.1038/srep41719] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/28/2016] [Indexed: 01/01/2023] Open
Abstract
Resistance against new hepatitis C virus (HCV) antivirals is an area of increasing interest. Resistance-associated substitutions (RASs) have been identified in treatment-naïve individuals, but pressures driving treatment-independent RAS emergence are poorly understood. We analysed the longitudinal evolution of RASs in twelve participants with early acute HCV infections. Full-genome deep sequences were analysed for changes in RAS frequency within NS3, NS5A and NS5B-coding regions over the course of the infection. Emergence of RASs relevant only to the polymerase non-nucleoside inhibitors (NNI) was detected, and these lay within CD8+ T-cell epitopes. Conversely, the loss of NNI RASs over time appeared likely to be driven by viral fitness constraints. These results highlight the importance of monitoring CD8+ T cell epitope-associated RASs in populations with dominant HLA types.
Collapse
Affiliation(s)
- Auda A. Eltahla
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, NSW 2052, Australia
| | - Preston Leung
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, NSW 2052, Australia
| | - Mehdi R. Pirozyan
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, NSW 2052, Australia
| | - Chaturaka Rodrigo
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, NSW 2052, Australia
| | - Jason Grebely
- The Kirby Institute, UNSW Australia, Sydney, NSW 2052, Australia
| | - Tanya Applegate
- The Kirby Institute, UNSW Australia, Sydney, NSW 2052, Australia
| | - Lisa Maher
- The Kirby Institute, UNSW Australia, Sydney, NSW 2052, Australia
| | - Fabio Luciani
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, NSW 2052, Australia
| | - Andrew R. Lloyd
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, NSW 2052, Australia
| | - Rowena A. Bull
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
34
|
Khan AW, Nasim Z, Zahir F, Ali S, Ali A, Iqbal A, Munir I. Untypeable hepatitis C virus subtypes in Pakistan: A neglected section. Acta Microbiol Immunol Hung 2016; 63:427-431. [PMID: 28033725 DOI: 10.1556/030.63.2016.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Diagnostically untypeable subtypes contribute a considerable percent of hepatitis C virus (HCV) subtypes in Pakistan. In the present study, chronically infected HCV patients with known viremia were subjected to HCV genotyping. Among the total retrieved samples, 92.7% (64/69) were found typeable while 7.24% (5/69) were diagnostically untypeable. In conclusion, the presence of large number of untypeable HCV subtypes emphasizes the need of an updated type-specific genotyping assay and consideration of primers for proportionally rare subtypes to minimize the number of untypeable HCV subtypes.
Collapse
Affiliation(s)
- Abdul Waheed Khan
- 1 Institute of Biotechnology and Genetic Engineering, The University of Agriculture , Peshawar, Pakistan
- 2 Center for Biotechnology and Microbiology, University of Swat , Odigram, Pakistan
| | - Zeeshan Nasim
- 1 Institute of Biotechnology and Genetic Engineering, The University of Agriculture , Peshawar, Pakistan
| | - Fazli Zahir
- 1 Institute of Biotechnology and Genetic Engineering, The University of Agriculture , Peshawar, Pakistan
| | - Shahid Ali
- 2 Center for Biotechnology and Microbiology, University of Swat , Odigram, Pakistan
| | - Abid Ali
- 1 Institute of Biotechnology and Genetic Engineering, The University of Agriculture , Peshawar, Pakistan
| | - Aqib Iqbal
- 1 Institute of Biotechnology and Genetic Engineering, The University of Agriculture , Peshawar, Pakistan
| | - Iqbal Munir
- 1 Institute of Biotechnology and Genetic Engineering, The University of Agriculture , Peshawar, Pakistan
| |
Collapse
|
35
|
Vidal LL, Soares MA, Santos AF. NS3 protease polymorphisms and genetic barrier to drug resistance of distinct hepatitis C virus genotypes from worldwide treatment-naïve subjects. J Viral Hepat 2016; 23:840-849. [PMID: 26775769 DOI: 10.1111/jvh.12503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/02/2015] [Indexed: 12/26/2022]
Abstract
Hepatitis C virus (HCV) NS3 protease inhibitors have been primarily designed against genotype 1, the one with the lowest response to dual therapy. However, less evidence of their efficacy on non-1 genotypes is available, and any such information is mostly concentrated on genotypes 2-4. This study evaluated HCV protease resistance profiles in the major six HCV genotypes and identified genetic barrier (GB) profiles to each available protease inhibitor across HCV strains from different locations worldwide. We obtained 15 099 HCV sequences from treatment-naïve subjects retrieved at the Los Alamos HCV Sequence Database. The wild-type codons of different HCV genotypes were used to analyse the smallest number of nucleotide substitution steps required for changing that codon to the closest one associated with drug resistance. The 36L and 175L RAVs were found as genetic signatures of genotypes 2-5, while the 80K RAV was found in all genotype 5 sequences. Genotypes 4 and 6 showed a higher GB to RAV mutations conferring resistance to telaprevir, while genotypes 2-5 presented baseline resistance to that drug, carrying the 36L mutation. Genotype 4 had a higher GB to simeprevir resistance, requiring three substitutions to acquire the 155K mutation. Subtype 1b showed a higher GB than subtype 1a to resistance for most PIs, with RAVs at codons 36 and 155. Geographic disparities were also found in frequencies of certain RAVs in genotypes 2 and 3. Under a scenario of unprecedented evolution of anti-HCV direct-acting agents, the genetic composition of the circulating HCV sequences should be evaluated worldwide to choose the most appropriate/feasible therapeutic schemes with the highest genetic barriers to resistance.
Collapse
Affiliation(s)
- L L Vidal
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M A Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Genética, Instituto Nacional do Câncer, Rio de Janeiro, Brazil
| | - A F Santos
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
36
|
Miyamura T, Lemon SM, Walker CM, Wakita T. The HCV Replicase Complex and Viral RNA Synthesis. HEPATITIS C VIRUS I 2016. [PMCID: PMC7122888 DOI: 10.1007/978-4-431-56098-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Replication of hepatitis C virus (HCV) is tightly linked to membrane alterations designated the membranous web, harboring the viral replicase complex. In this chapter we describe the morphology and 3D architecture of the HCV-induced replication organelles, mainly consisting of double membrane vesicles, which are generated by a concerted action of the nonstructural proteins NS3 to NS5B. Recent studies have furthermore identified a number of host cell proteins and lipids contributing to the biogenesis of the membranous web, which are discussed in this chapter. Viral RNA synthesis is tightly associated with these membrane alterations and mainly driven by the viral RNA dependent RNA polymerase NS5B. We summarize our current knowledge of the structure and function of NS5B, the role of cis-acting replication elements at the termini of the genome in regulating RNA synthesis and the contribution of additional viral and host factors to viral RNA synthesis, which is still ill defined.
Collapse
Affiliation(s)
- Tatsuo Miyamura
- National Institute of Infectious Diseases, Tokyo, Tokyo Japan
| | - Stanley M. Lemon
- Departments of Medicine and Microbiology & Immunology , The University of North Carolina, Chapel Hill, North Carolina USA
| | - Christopher M. Walker
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio USA
| | - Takaji Wakita
- National Institute of Infectious Diseases, Tokyo, Tokyo Japan
| |
Collapse
|
37
|
Budzko L, Marcinkowska-Swojak M, Jackowiak P, Kozlowski P, Figlerowicz M. Copy number variation of genes involved in the hepatitis C virus-human interactome. Sci Rep 2016; 6:31340. [PMID: 27510840 PMCID: PMC4980658 DOI: 10.1038/srep31340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/18/2016] [Indexed: 02/06/2023] Open
Abstract
Copy number variation (CNV) is a newly discovered form of intra-species genetic polymorphism that is defined as deletions or duplications of genome segments ranging from 1 kbp to several Mbp. CNV accounts for the majority of the genetic variation observed in humans (CNV regions cover more than 10% of the human genome); therefore, it may significantly influence both the phenotype and susceptibility to various diseases. Unfortunately, the impact of CNV on a number of diseases, including hepatitis C virus (HCV) infection, remains largely unexplored. Here, we analyzed 421 human genes encoding proteins that have been shown to interact with HCV proteins or genomic RNA (proteins from the HCV-human interactome). We found that 19 of the 421 candidate genes are located in putative CNV regions. For all of these genes, copy numbers were determined for European, Asiatic and African populations using the multiplex ligation-dependent amplification (MLPA) method. As a result, we identified 4 genes, IGLL1, MLLT4, PDPK1, PPP1R13L, for which the CN-genotype ranged from 1 to 6. All of these genes are involved in host-virus interaction; thus, their polymorphism has a potential impact on the development of HCV infection and/or therapy outcome.
Collapse
Affiliation(s)
- Lucyna Budzko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | - Paulina Jackowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Poznan, Poland
| | - Piotr Kozlowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| |
Collapse
|
38
|
Genetic Barrier to Direct Acting Antivirals in HCV Sequences Deposited in the European Databank. PLoS One 2016; 11:e0159924. [PMID: 27504952 PMCID: PMC4978475 DOI: 10.1371/journal.pone.0159924] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022] Open
Abstract
Background & Aims Development of resistance results from mutations in the viral genome, and the presence of selective drug pressure leads to the emergence of a resistant virus population. The aim of this study was to analyze the impact of genetic variability on the genetic barrier to drug resistance to DAAs. Methods The genetic barrier was quantified based on the number and type of nucleotide mutations required to impart resistance, considering full-length HCV NS3, NS5A and NS5B regions segregated by genotype into subtypes 1a, 1b, 2a, 2b and 3a. This study analyzeds 789 NS3 sequences, 708 sequences and 536 NS5B sequences deposited in the European Hepatitis C Virus Database, in the following resistance-associated positions: NS3: F43/I/L/S/V, Q80K/R, R155K/G, A156G/S/T and D168A/C/E/G/H/N/T/V/Y; NS5A: L/M28A/T/V, Q30E/H/R, L31F/I/M/V, H58D or P58S and Y93C/F/H/N/S; NS5B: S282P/R/T, C316H/N/Y, S368T, Y448C/H, S556G/R, D559R. Results Variants that require only one transversion in NS3 were found in 4 positions and include F43S, R80K, R155K/G and A156T. The genetic barrier to resistance shows subtypic differences at position 155 of the NS3 gene where a single transition is necessary in subtype 1a. In the NS5A gene, 5 positions where only one nucleotide change can confer resistance were found, such as L31M which requires one transversion in all subtypes, except in 0.28% of 1b sequences; and R30H, generated by a single transition, which was found in 10.25% of the sequences of genotype 1b. Other subtypic differences were observed at position 58, where resistance is less likely in genotype 1a because a transversion is required to create the variant 58S. For the NS5B inhibitors, the genetic barrier at positions conferring resistance was nearly identical in subtypes 1a and 1b, and single transitions or transversions were necessary in 5 positions to generate a drug-resistant variant of HCV. The positions C316Y and S556D required only one transition in all genotypes, Y448H and S556 G/N/R positions required only one transition for up to 98.8% of the sequences analyzed. A single variant in position 448 in genotype 1a is less likely to become the resistance variant 448H because it requires two transversions. Also, in the position 559D a transversion and a transition were necessary to generate the resistance mutant D559H. Conclusion Results revealed that in 14 out of 16 positions, conversion to a drug-resistant variant of HCV required only one single nucleotide substitutions threatening direct acting antivirals from all three classes.
Collapse
|
39
|
Meanwell NA. 2015 Philip S. Portoghese Medicinal Chemistry Lectureship. Curing Hepatitis C Virus Infection with Direct-Acting Antiviral Agents: The Arc of a Medicinal Chemistry Triumph. J Med Chem 2016; 59:7311-51. [PMID: 27501244 DOI: 10.1021/acs.jmedchem.6b00915] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of direct-acting antiviral agents that can cure a chronic hepatitis C virus (HCV) infection after 8-12 weeks of daily, well-tolerated therapy has revolutionized the treatment of this insidious disease. In this article, three of Bristol-Myers Squibb's HCV programs are summarized, each of which produced a clinical candidate: the NS3 protease inhibitor asunaprevir (64), marketed as Sunvepra, the NS5A replication complex inhibitor daclatasvir (117), marketed as Daklinza, and the allosteric NS5B polymerase inhibitor beclabuvir (142), which is in late stage clinical studies. A clinical study with 64 and 117 established for the first time that a chronic HCV infection could be cured by treatment with direct-acting antiviral agents alone in the absence of interferon. The development of small molecule HCV therapeutics, designed by medicinal chemists, has been hailed as "the arc of a medical triumph" but may equally well be described as "the arc of a medicinal chemistry triumph".
Collapse
Affiliation(s)
- Nicholas A Meanwell
- Department of Discovery Chemistry, Bristol-Myers Squibb Research & Development , Wallingford, Connecticut 06492, United States
| |
Collapse
|
40
|
Jiménez-Pérez M, González-Grande R, España Contreras P, Pinazo Martínez I, de la Cruz Lombardo J, Olmedo Martín R. Treatment of chronic hepatitis C with direct-acting antivirals: The role of resistance. World J Gastroenterol 2016; 22:6573-81. [PMID: 27547001 PMCID: PMC4970473 DOI: 10.3748/wjg.v22.i29.6573] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/25/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
The use of direct-acting antivirals (DAAs) to treat chronic hepatitis C has resulted in a significant increase in rates of sustained viral response (around 90%-95%) as compared with the standard treatment of peginterferon/ribavirin. Despite this, however, the rates of therapeutic failure in daily clinical practice range from 10%-15%. Most of these cases are due to the presence of resistant viral variants, resulting from mutations produced by substitutions of amino acids in the viral target protein that reduce viral sensitivity to DAAs, thus limiting the efficacy of these drugs. The high genetic diversity of hepatitis C virus has resulted in the existence of resistance-associated variants (RAVs), sometimes even before starting treatment with DAAs, though generally at low levels. These pre-existing RAVs do not appear to impact on the sustained viral response, whereas those that appear after DAA therapy could well be determinant in virological failure with future treatments. As well as the presence of RAVs, virological failure to treatment with DAAs is generally associated with other factors related with a poor response, such as the degree of fibrosis, the response to previous therapy, the viral load or the viral genotype. Nonetheless, viral breakthrough and relapse can still occur in the absence of detectable RAVs and after the use of highly effective DAAs, so that the true clinical impact of the presence of RAVs in therapeutic failure remains to be determined.
Collapse
|
41
|
Biochemical Characterization of the Active Anti-Hepatitis C Virus Metabolites of 2,6-Diaminopurine Ribonucleoside Prodrug Compared to Sofosbuvir and BMS-986094. Antimicrob Agents Chemother 2016; 60:4659-69. [PMID: 27216050 DOI: 10.1128/aac.00318-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/12/2016] [Indexed: 12/20/2022] Open
Abstract
Ribonucleoside analog inhibitors (rNAI) target the hepatitis C virus (HCV) RNA-dependent RNA polymerase nonstructural protein 5B (NS5B) and cause RNA chain termination. Here, we expand our studies on β-d-2'-C-methyl-2,6-diaminopurine-ribonucleotide (DAPN) phosphoramidate prodrug 1 (PD1) as a novel investigational inhibitor of HCV. DAPN-PD1 is metabolized intracellularly into two distinct bioactive nucleoside triphosphate (TP) analogs. The first metabolite, 2'-C-methyl-GTP, is a well-characterized inhibitor of NS5B polymerase, whereas the second metabolite, 2'-C-methyl-DAPN-TP, behaves as an adenosine base analog. In vitro assays suggest that both metabolites are inhibitors of NS5B-mediated RNA polymerization. Additional factors, such as rNAI-TP incorporation efficiencies, intracellular rNAI-TP levels, and competition with natural ribonucleotides, were examined in order to further characterize the potential role of each nucleotide metabolite in vivo Finally, we found that although both 2'-C-methyl-GTP and 2'-C-methyl-DAPN-TP were weak substrates for human mitochondrial RNA (mtRNA) polymerase (POLRMT) in vitro, DAPN-PD1 did not cause off-target inhibition of mtRNA transcription in Huh-7 cells. In contrast, administration of BMS-986094, which also generates 2'-C-methyl-GTP and previously has been associated with toxicity in humans, caused detectable inhibition of mtRNA transcription. Metabolism of BMS-986094 in Huh-7 cells leads to 87-fold higher levels of intracellular 2'-C-methyl-GTP than DAPN-PD1. Collectively, our data characterize DAPN-PD1 as a novel and potent antiviral agent that combines the delivery of two active metabolites.
Collapse
|
42
|
Abstract
Antiviral drug resistance is a matter of great clinical importance that, historically, has been investigated mostly from a virological perspective. Although the proximate mechanisms of resistance can be readily uncovered using these methods, larger evolutionary trends often remain elusive. Recent interest by population geneticists in studies of antiviral resistance has spurred new metrics for evaluating mutation and recombination rates, demographic histories of transmission and compartmentalization, and selective forces incurred during viral adaptation to antiviral drug treatment. We present up-to-date summaries on antiviral resistance for a range of drugs and viral types, and review recent advances for studying their evolutionary histories. We conclude that information imparted by demographic and selective histories, as revealed through population genomic inference, is integral to assessing the evolution of antiviral resistance as it pertains to human health.
Collapse
Affiliation(s)
- Kristen K Irwin
- School of Life Sciences, École Polytechnique Fédéral de Lausanne (EPFL), Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Nicholas Renzette
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Timothy F Kowalik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jeffrey D Jensen
- School of Life Sciences, École Polytechnique Fédéral de Lausanne (EPFL), Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| |
Collapse
|
43
|
Abstract
The treatment of HCV infection has evolved at an extremely rapid pace over the past few years. The development of direct-acting antiviral agents, which potently inhibit different stages in the viral life cycle, has led to the replacement of interferon with well-tolerated oral therapies with cure rates of >90% in most patient populations. Understanding the mechanisms of action of the various agents as well as related issues, including the molecular basis for resistance, helps to guide drug development and clinical use. In this Review, we provide a mechanistic description of NS3/4A protease inhibitors, nucleotide and non-nucleotide inhibitors of the NS5B viral polymerase and inhibitors of the NS5A protein, followed by a summary of clinical data from studies of each drug class alone and in combination. Remaining challenges in drug development efforts are also discussed.
Collapse
|
44
|
Geller R, Estada Ú, Peris JB, Andreu I, Bou JV, Garijo R, Cuevas JM, Sabariegos R, Mas A, Sanjuán R. Highly heterogeneous mutation rates in the hepatitis C virus genome. Nat Microbiol 2016; 1:16045. [PMID: 27572964 DOI: 10.1038/nmicrobiol.2016.45] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/09/2016] [Indexed: 01/10/2023]
Abstract
Spontaneous mutations are the ultimate source of genetic variation and have a prominent role in evolution. RNA viruses such as hepatitis C virus (HCV) have extremely high mutation rates, but these rates have been inferred from a minute fraction of genome sites, limiting our view of how RNA viruses create diversity. Here, by applying high-fidelity ultradeep sequencing to a modified replicon system, we scored >15,000 spontaneous mutations, encompassing more than 90% of the HCV genome. This revealed >1,000-fold differences in mutability across genome sites, with extreme variations even between adjacent nucleotides. We identify base composition, the presence of high- and low-mutation clusters and transition/transversion biases as the main factors driving this heterogeneity. Furthermore, we find that mutability correlates with the ability of HCV to diversify in patients. These data provide a site-wise baseline for interrogating natural selection, genetic load and evolvability in HCV, as well as for evaluating drug resistance and immune evasion risks.
Collapse
Affiliation(s)
- Ron Geller
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva and Institute for Integrative Systems Biology (I2SysBio), Universitat de València, 46980 Paterna, València, Spain
| | - Úrsula Estada
- Unitat de Genómica, Servei Central de Suport a la Investigació Experimental, Universitat de València, 46100 Burjassot, València, Spain
| | - Joan B Peris
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva and Institute for Integrative Systems Biology (I2SysBio), Universitat de València, 46980 Paterna, València, Spain
| | - Iván Andreu
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva and Institute for Integrative Systems Biology (I2SysBio), Universitat de València, 46980 Paterna, València, Spain
| | - Juan-Vicente Bou
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva and Institute for Integrative Systems Biology (I2SysBio), Universitat de València, 46980 Paterna, València, Spain
| | - Raquel Garijo
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva and Institute for Integrative Systems Biology (I2SysBio), Universitat de València, 46980 Paterna, València, Spain
| | - José M Cuevas
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva and Institute for Integrative Systems Biology (I2SysBio), Universitat de València, 46980 Paterna, València, Spain
| | - Rosario Sabariegos
- Regional Center for Biomedical Research, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | - Antonio Mas
- Regional Center for Biomedical Research, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | - Rafael Sanjuán
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva and Institute for Integrative Systems Biology (I2SysBio), Universitat de València, 46980 Paterna, València, Spain.,Departament de Genètica, Universitat de València, 46100 Burjassot, València, Spain
| |
Collapse
|
45
|
Brenner BG, Thomas R, Blanco JL, Ibanescu RI, Oliveira M, Mesplède T, Golubkov O, Roger M, Garcia F, Martinez E, Wainberg MA. Development of a G118R mutation in HIV-1 integrase following a switch to dolutegravir monotherapy leading to cross-resistance to integrase inhibitors. J Antimicrob Chemother 2016; 71:1948-53. [PMID: 27029845 DOI: 10.1093/jac/dkw071] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/17/2016] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Dolutegravir shows a high barrier to resistance with no previously reported cases of acquired integrase mutations during first-line therapy. In this study, rapid development of the G118R mutation arose following a switch from first-line elvitegravir/cobicistat/tenofovir disoproxil fumarate/emtricitabine to dolutegravir monotherapy. The G118R mutation also arose in a treatment-experienced patient switched to dolutegravir monotherapy. The genetic basis for G118R selection and potential phenotypic outcome was ascertained. PATIENT AND METHODS Genotypic analysis was performed on patients with virological failure (<1000 copies/mL) on dolutegravir-containing regimens. The Los Alamos database was queried for glycine codon 118 polymorphisms. Cell culture selections and phenotypic drug susceptibility assays assessed resistance via the G118R pathway. RESULTS We report on two patients who developed viral failure while on dolutegravir monotherapy. Both patients had been on a current or previous regimen containing integrase inhibitors. Virological failure (<1000 copies/mL) emerged early within 2 months following the dolutegravir switch. The appearance of G118R in these two cases and subtype C and CRF02_AG in vitro selections were related to a rare GGA natural polymorphism at codon 118 (1.5% prevalence), facilitating a GGA to AGA transition. Cell culture selections were used to assess the in vitro progression of the G118R pathway leading to cross-resistance to all integrase inhibitors. CONCLUSIONS Although resistance to dolutegravir is typically rare, genetic polymorphisms and monotherapy can facilitate the acquisition of G118R.
Collapse
Affiliation(s)
- Bluma G Brenner
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Réjean Thomas
- Clinique Médicale l'Actuel, Montreal, Quebec, Canada
| | - José Luis Blanco
- Infectious Disease and AIDS Unit, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Ruxandra-Ilinca Ibanescu
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Maureen Oliveira
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Thibault Mesplède
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Olga Golubkov
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Michel Roger
- Département de Microbiologie et d'Immunologie et Centre de Recherche du Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Federico Garcia
- Microbiology Department, Complejo Hospitalario Universitario Granada, Granada, Spain Hospital Universitario San Cecilio, Instituto de Investigación Ibs, Granada, Spain
| | - Esteban Martinez
- Infectious Disease and AIDS Unit, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
46
|
A Complex Network of Interactions between S282 and G283 of Hepatitis C Virus Nonstructural Protein 5B and the Template Strand Affects Susceptibility to Sofosbuvir and Ribavirin. Antimicrob Agents Chemother 2016; 60:2018-27. [PMID: 26824949 DOI: 10.1128/aac.02436-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/05/2016] [Indexed: 01/17/2023] Open
Abstract
The hepatitis C virus (HCV) RNA-dependent RNA-polymerase NS5B is essentially required for viral replication and serves as a prominent drug target. Sofosbuvir is a prodrug of a nucleotide analog that interacts selectively with NS5B and has been approved for HCV treatment in combination with ribavirin. Although the emergence of resistance to sofosbuvir is rarely seen in the clinic, the S282T mutation was shown to decrease susceptibility to this drug. S282T was also shown to confer hypersusceptibility to ribavirin, which is of potential clinical benefit. Here we devised a biochemical approach to elucidate the underlying mechanisms. Recent crystallographic data revealed a hydrogen bond between S282 and the 2'-hydroxyl of the bound nucleotide, while the adjacent G283 forms a hydrogen bond with the 2'-hydroxyl of the residue of the template that base pairs with the nucleotide substrate. We show that DNA-like modifications of the template that disrupt hydrogen bonding with G283 cause enzyme pausing with natural nucleotides. However, the specifically introduced DNA residue of the template reestablishes binding and incorporation of sofosbuvir in the context of S282T. Moreover, the DNA-like modifications of the template prevent the incorporation of ribavirin in the context of the wild-type enzyme, whereas the S282T mutant enables the binding and incorporation of ribavirin under the same conditions. Together, these findings provide strong evidence to show that susceptibility to sofosbuvir and ribavirin depends crucially on a network of interdependent hydrogen bonds that involve the adjacent residues S282 and G283 and their interactions with the incoming nucleotide and complementary template residue, respectively.
Collapse
|
47
|
Sarrazin C. The importance of resistance to direct antiviral drugs in HCV infection in clinical practice. J Hepatol 2016; 64:486-504. [PMID: 26409317 DOI: 10.1016/j.jhep.2015.09.011] [Citation(s) in RCA: 348] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 02/08/2023]
Abstract
Treatment of chronic hepatitis C virus (HCV) infection with direct-acting antiviral agents (DAA) is associated with high rates of sustained virologic response. Remaining factors associated with treatment failure include advanced stages of liver fibrosis, response to previous antiviral therapy and viral factors such as baseline viral load and suboptimal interaction of the DAA with the target based on viral variants. Heterogeneity within NS3, NS5A, and NS5B areas interacting with DAAs exist between HCV geno- and subtypes as well as HCV isolates of the same geno- and subtype and amino acid polymorphisms associated with suboptimal efficacy of DAAs are termed resistance-associated variants (RAVs). RAVs may be associated with virologic treatment failure. However, virologic treatment failure typically occurs only if other negative predictive host or viral factors are present at the same time, susceptibility to additional antiviral agents is reduced or duration of treatment is suboptimal. In this review geno- and phenotypic resistance testing as well as clinical data on the importance of RAVs for conventional triple therapies with sofosbuvir, simeprevir, and daclatasvir and available interferon-free DAA combinations are discussed.
Collapse
Affiliation(s)
- Christoph Sarrazin
- J. W. Goethe-University Hospital, Medizinische Klinik 1, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
48
|
Highlights of the Fourth Canadian Symposium on Hepatitis C: Moving towards a National Action Plan. Can J Gastroenterol Hepatol 2016; 2016:5743521. [PMID: 27446849 PMCID: PMC4904693 DOI: 10.1155/2016/5743521] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/01/2015] [Indexed: 12/21/2022] Open
Abstract
Hepatitis C virus (HCV) affects at least 268,000 Canadians and causes greater disease burden than any other infectious disease in the country. The Canadian Institutes of Health Research (CIHR) and the Public Health Agency of Canada (PHAC) have identified HCV-related liver disease as a priority. In 2015, the release of well-tolerated, short course treatments (~12 weeks) able to cure the majority of treated HCV patients revolutionized HCV therapy. However, treatment is extremely costly and puts a significant burden on the Canadian healthcare system. Thus, managing treatment costs and improving treatment engagement in those most in need will be a key challenge. Diagnosis and treatment uptake are currently poor in Canada due to financial, geographical, cultural, and social barriers. The United States, Australia, and Scotland all have National Action Plans to prevent, diagnose, and treat HCV in order to efficiently reduce the burden and costs associated with HCV-related liver disease. The theme of the 4th annual symposium held on Feb 27, 2015, "Strategies to Manage HCV Infection in Canada: Moving towards a National Action Plan," was aimed at identifying strategies to maximize the impact of highly effective therapies to reduce HCV disease burden and ultimately eliminate HCV in Canada.
Collapse
|
49
|
Analysis of hepatitis C NS5A resistance associated polymorphisms using ultra deep single molecule real time (SMRT) sequencing. Antiviral Res 2015; 126:81-9. [PMID: 26707078 DOI: 10.1016/j.antiviral.2015.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 11/05/2015] [Accepted: 12/15/2015] [Indexed: 01/03/2023]
Abstract
Development of Hepatitis C virus (HCV) resistance against direct-acting antivirals (DAAs), including NS5A inhibitors, is an obstacle to successful treatment of HCV when DAAs are used in sub-optimal combinations. Furthermore, it has been shown that baseline (pre-existing) resistance against DAAs is present in treatment naïve-patients and this will potentially complicate future treatment strategies in different HCV genotypes (GTs). Thus the aim was to detect low levels of NS5A resistant associated variants (RAVs) in a limited sample set of treatment-naïve patients of HCV GT1a and 3a, since such polymorphisms can display in vitro resistance as high as 60000 fold. Ultra-deep single molecule real time (SMRT) sequencing with the Pacific Biosciences (PacBio) RSII instrument was used to detect these RAVs. The SMRT sequencing was conducted on ten samples; three of them positive with Sanger sequencing (GT1a Q30H and Y93N, and GT3a Y93H), five GT1a samples, and two GT3a non-positive samples. The same methods were applied to the HCV GT1a H77-plasmid in a dilution series, in order to determine the error rates of replication, which in turn was used to determine the limit of detection (LOD), as defined by mean + 3SD, of minority variants down to 0.24%. We found important baseline NS5A RAVs at levels between 0.24 and 0.5%, which could potentially have clinical relevance. This new method with low level detection of baseline RAVs could be useful in predicting the most cost-efficient combination of DAA treatment, and reduce the treatment duration for an HCV infected individual.
Collapse
|
50
|
Hedskog C, Dvory-Sobol H, Gontcharova V, Martin R, Ouyang W, Han B, Gane EJ, Brainard D, Hyland RH, Miller MD, Mo H, Svarovskaia E. Evolution of the HCV viral population from a patient with S282T detected at relapse after sofosbuvir monotherapy. J Viral Hepat 2015; 22:871-81. [PMID: 25784085 DOI: 10.1111/jvh.12405] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 02/06/2015] [Indexed: 12/12/2022]
Abstract
Clinical phase II/III studies of the nucleotide analogue HCV NS5B inhibitor sofosbuvir (SOF) have demonstrated high efficacy in HCV-infected patients in combination therapy. To date, resistance to SOF (S282T in NS5B) has rarely been detected in patients. In this study, we investigated the evolution of S282T viral variants detected in one HCV genotype 2b-infected patient who relapsed following 12 weeks of SOF monotherapy. Deep sequencing of the NS5B gene was performed on longitudinal plasma samples at baseline, days 2 and 3 on SOF, and longitudinal samples post-SOF treatment through week 48. Intrapatient HCV evolution was analysed by maximum-likelihood phylogenetic analysis. Deep sequencing analysis revealed a low level pre-existence of S282T at 0.05% of viral sequences (4/7755 reads) at baseline and 0.03% (6/23 415 reads) at day 2 on SOF. Viral relapse was detected at week 4 post-treatment where 99.8% of the viral population harboured S282T. Follow-up analysis determined that S282T levels diminished post-treatment reaching undetectable levels 24-48 weeks post-SOF. Phylogenetic analysis together with the persistence of unique post-treatment mutations in all post-SOF samples suggested that growth of wild type resulted from reversion of the S282T mutant to a wild type and not outgrowth of the baseline wild-type population. Our data suggest that a very low level of pre-existing S282T at baseline in this patient was enriched and transiently detected following SOF monotherapy. Despite relapse with drug resistance to SOF, this patient was successfully retreated with SOF plus ribavirin for 12 weeks and is now cured from HCV infection.
Collapse
Affiliation(s)
- C Hedskog
- Gilead Sciences Inc., Foster City, CA, USA
| | | | | | - R Martin
- Gilead Sciences Inc., Foster City, CA, USA
| | - W Ouyang
- Gilead Sciences Inc., Foster City, CA, USA
| | - B Han
- Gilead Sciences Inc., Foster City, CA, USA
| | - E J Gane
- New Zealand Liver Transplant Unit, Auckland City Hospital, Auckland, New Zealand
| | - D Brainard
- Gilead Sciences Inc., Foster City, CA, USA
| | - R H Hyland
- Gilead Sciences Inc., Foster City, CA, USA
| | - M D Miller
- Gilead Sciences Inc., Foster City, CA, USA
| | - H Mo
- Gilead Sciences Inc., Foster City, CA, USA
| | | |
Collapse
|