1
|
Mulloy SM, Aback EM, Gao R, Engel S, Pawaskar K, Win C, Moua A, Hillukka L, Lee AM. Subregion and sex differences in ethanol activation of cholinergic and glutamatergic cells in the mesopontine tegmentum. Sci Rep 2024; 14:46. [PMID: 38168499 PMCID: PMC10762073 DOI: 10.1038/s41598-023-50526-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Ethanol engages cholinergic signaling and elicits endogenous acetylcholine release. Acetylcholine input to the midbrain originates from the mesopontine tegmentum (MPT), which is composed of the laterodorsal tegmentum (LDT) and the pedunculopontine tegmental nucleus (PPN). We investigated the effect of acute and chronic ethanol administration on cholinergic and glutamatergic neuron activation in the PPN and LDT in male and female mice. We show that ethanol activates neurons of the PPN and not the LDT in male mice. Chronic 15 daily injections of 2 g/kg ethanol induced Fos expression in cholinergic and glutamatergic PPN neurons in male mice, whereas ethanol did not increase cholinergic and glutamatergic neuronal activation in the LDT. A single acute 4 g/kg injection, but not a single 2 g/kg injection, induced cholinergic neuron activation in the male PPN but not the LDT. In contrast, acute or chronic ethanol at either dose or duration had no effect on the activation of cholinergic or glutamatergic neurons in the MPT of female mice. Female mice had higher baseline level of activation in cholinergic neurons compared with males. We also found a population of co-labeled cholinergic and glutamatergic neurons in the PPN and LDT which were highly active in the saline- and ethanol-treated groups in both sexes. These findings illustrate the complex differential effects of ethanol across dose, time point, MPT subregion and sex.
Collapse
Affiliation(s)
- S M Mulloy
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - E M Aback
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - R Gao
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - S Engel
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - K Pawaskar
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - C Win
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - A Moua
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - L Hillukka
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - A M Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Banna FKE, Otto JM, Mulloy SM, Tsai W, McElroy SM, Wong AL, Cutts G, Vrieze SI, Lee AM. Back-translating GWAS findings to animal models reveals a role for Hgfac and Slc39a8 in alcohol and nicotine consumption. Sci Rep 2022; 12:9336. [PMID: 35661789 PMCID: PMC9167284 DOI: 10.1038/s41598-022-13283-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
Alcohol and tobacco are the most commonly used addictive substances, with high comorbidity rates between alcohol use disorder and tobacco use disorder. Risk for alcohol and nicotine addiction is highly heritable, and they share common genetic factors. A GWAS in over 1 million individuals has revealed 566 genetic variants in 406 loci associated with multiple stages of alcohol and tobacco use. Three novel genes-SLC39A8, GRK4 and HGFAC-within loci associated with altered alcoholic drinks per week (ADW) or cigarettes per day (CPD) were selected to further study their role in alcohol and tobacco use disorder. The role of these genes was assessed using the two-bottle choice addiction paradigm in transgenic mice for each of the genes. We found significant decreases in chronic alcohol consumption and preference in female Hgfac knockout (KO) mice, and decreased nicotine preference in male Hgfac KO compared with wild-type (WT) mice. Additionally, male Slc39a8 hypomorph mice showed greater overall nicotine preference compared with WT mice, while no differences were detected for Grk4 KO mice in alcohol or nicotine consumption and preference in either sex. Thus, this study implicates Hgfac and Slc39a8 in alcohol and tobacco use in a sex-specific manner.
Collapse
Affiliation(s)
- F K El Banna
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA.,Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - J M Otto
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - S M Mulloy
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - W Tsai
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - S M McElroy
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - A L Wong
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - G Cutts
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - S I Vrieze
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - A M Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
3
|
Moen JK, Lee AM. Sex Differences in the Nicotinic Acetylcholine Receptor System of Rodents: Impacts on Nicotine and Alcohol Reward Behaviors. Front Neurosci 2021; 15:745783. [PMID: 34621155 PMCID: PMC8490611 DOI: 10.3389/fnins.2021.745783] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol and nicotine are the two most widely used and misused drugs around the world, and co-consumption of both substances is highly prevalent. Multiple lines of evidence show a profound effect of sex in many aspects of alcohol and nicotine reward, with women having more difficulty quitting smoking and showing a faster progression toward developing alcohol use disorder compared with men. Both alcohol and nicotine require neuronal nicotinic acetylcholine receptors (nAChRs) to elicit rewarding effects within the mesolimbic system, representing a shared molecular pathway that likely contributes to the frequent comorbidity of alcohol and nicotine dependence. However, the majority of preclinical studies on the mechanisms of alcohol and nicotine reward behaviors utilize only male rodents, and thus our understanding of alcohol and nicotine neuropharmacology relies heavily on male data. As preclinical research informs the development and refinement of therapies to help patients reduce drug consumption, it is critical to understand the way biological sex and sex hormones influence the rewarding properties of alcohol and nicotine. In this review, we summarize what is known about sex differences in rodent models of alcohol and nicotine reward behaviors with a focus on neuronal nAChRs, highlighting exciting areas for future research. Additionally, we discuss the way circulating sex hormones may interact with neuronal nAChRs to influence reward-related behavior.
Collapse
Affiliation(s)
- Janna K Moen
- Graduate Program in Neuroscience, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Anna M Lee
- Graduate Program in Neuroscience, University of Minnesota Twin Cities, Minneapolis, MN, United States.,Department of Pharmacology, University of Minnesota Twin Cities, Minneapolis, MN, United States
| |
Collapse
|
4
|
Wills L, Kenny PJ. Addiction-related neuroadaptations following chronic nicotine exposure. J Neurochem 2021; 157:1652-1673. [PMID: 33742685 DOI: 10.1111/jnc.15356] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
The addiction-relevant molecular, cellular, and behavioral actions of nicotine are derived from its stimulatory effects on neuronal nicotinic acetylcholine receptors (nAChRs) in the central nervous system. nAChRs expressed by dopamine-containing neurons in the ventral midbrain, most notably in the ventral tegmental area (VTA), contribute to the reward-enhancing properties of nicotine that motivate the use of tobacco products. nAChRs are also expressed by neurons in brain circuits that regulate aversion. In particular, nAChRs expressed by neurons in the medial habenula (mHb) and the interpeduncular nucleus (IPn) to which the mHb almost exclusively projects regulate the "set-point" for nicotine aversion and control nicotine intake. Different nAChR subtypes are expressed in brain reward and aversion circuits and nicotine intake is titrated to maximally engage reward-enhancing nAChRs while minimizing the recruitment of aversion-promoting nAChRs. With repeated exposure to nicotine, reward- and aversion-related nAChRs and the brain circuits in which they are expressed undergo adaptations that influence whether tobacco use will transition from occasional to habitual. Genetic variation that influences the sensitivity of addiction-relevant brain circuits to the actions of nicotine also influence the propensity to develop habitual tobacco use. Here, we review some of the key advances in our understanding of the mechanisms by which nicotine acts on brain reward and aversion circuits and the adaptations that occur in these circuits that may drive addiction to nicotine-containing tobacco products.
Collapse
Affiliation(s)
- Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| |
Collapse
|
5
|
Moen JK, DeBaker MC, Myjak JE, Wickman K, Lee AM. Bidirectional sex-dependent regulation of α6 and β3 nicotinic acetylcholine receptors by protein kinase Cε. Addict Biol 2021; 26:e12954. [PMID: 32776643 PMCID: PMC7873155 DOI: 10.1111/adb.12954] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/10/2020] [Accepted: 07/19/2020] [Indexed: 11/29/2022]
Abstract
Nicotine and alcohol are the most commonly abused substances worldwide and are frequently coabused. Nicotinic acetylcholine receptors (nAChRs) containing the α6 and β3 subunits are expressed in neural reward circuits and are critical for nicotine and alcohol reward. nAChRs are dynamically regulated by signaling molecules such as protein kinase C epsilon (PKCε), which impact transcription of α6 and β3 subunit mRNA (Chrna6 and Chrnb3, respectively). Previous work found decreased expression of Chrna6 and Chrnb3 transcripts in the ventral midbrain of male PKCε-/- mice, who also consume less nicotine and alcohol compared with wild-type (WT) littermates. Using RT-qPCR, we show that female PKCε-/- mice have higher expression of Chrna6 and Chrnb3 transcripts in the ventral midbrain, which functionally impacts nAChR-dependent behavior as female but not male PKCε-/- mice exhibit locomotor hypersensitivity to low-dose (0.25 mg/kg i.p.) nicotine. Female PKCε-/- mice show no differences in alcohol-induced sedation in the loss-of-righting reflex assay (4.0 g/kg i.p.) compared with WT littermates, whereas male PKCε-/- mice have enhanced sedation compared with WT mice. Female PKCε-/- mice also show reduced immobility time in response to varenicline (1.0 mg/kg i.p.) compared with WT littermates in the tail suspension test, and this effect was absent in male mice. Additionally, we found that female PKCε-/- mice show altered alcohol and nicotine consumption patterns in chronic voluntary two-bottle choice assays. Our data reveal a bidirectional effect of sex in the transcriptional regulation of nicotinic receptors by PKCε, highlighting the importance of studying both sexes in preclinical animal models.
Collapse
Affiliation(s)
- Janna K. Moen
- Graduate Program in Neuroscience, University of Minnesota, USA
| | | | - Julia E. Myjak
- Department of Pharmacology, University of Minnesota, USA
| | - Kevin Wickman
- Graduate Program in Neuroscience, University of Minnesota, USA
- Department of Pharmacology, University of Minnesota, USA
| | - Anna M. Lee
- Graduate Program in Neuroscience, University of Minnesota, USA
- Department of Pharmacology, University of Minnesota, USA
| |
Collapse
|
6
|
Wong AL, McElroy SM, Robinson JM, Mulloy SM, El Banna FK, Harris AC, LeSage MG, Lee AM. Flavor-specific enhancement of electronic cigarette liquid consumption and preference in mice. Drug Alcohol Depend 2020; 211:107995. [PMID: 32354580 PMCID: PMC7328293 DOI: 10.1016/j.drugalcdep.2020.107995] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The use of electronic cigarettes has increased over the past decade. To determine how the abuse liability of electronic cigarette liquids (e-liquids) differs from nicotine alone, and to determine the impact of flavor, we compared nicotine-containing fruit- and tobacco-flavored e-liquids, and their nicotine-free versions, to nicotine alone in mouse models of oral consumption, reward and aversion. METHODS Adult male C57BL/6 J mice voluntarily consumed oral nicotine, equivalent nicotine concentrations of fruit- and tobacco-flavored e-liquid, and equivalent dilutions of the nicotine-free versions in 2-bottle choice tests. Conditioned place preference and place aversion were assessed with peripherally administered e-liquids or nicotine. Serum nicotine and cotinine levels were measured after subcutaneous injections of e-liquid or nicotine. RESULTS Mice showed higher consumption and preference for the fruit-flavored e-liquid compared with nicotine alone. This increase was not due to the flavor itself as consumption of the nicotine-free fruit-flavored e-liquid was not elevated until the highest concentration tested. The increased consumption and preference were not observed with the tobacco-flavored e-liquid. The conditioned place preference, place aversion and nicotine pharmacokinetics of the fruit-flavored e-liquid were not significantly different from nicotine alone. CONCLUSIONS Our data suggest that fruit, but not tobacco flavor, increased the oral consumption of e-liquid compared with nicotine alone. Moreover, this enhancement was not due to increased consumption of the flavor itself, altered rewarding or aversive properties after peripheral administration, or altered pharmacokinetics. This flavor-specific enhancement suggests that some flavors may lead to higher nicotine intake and increased use of e-liquids compared with nicotine alone.
Collapse
Affiliation(s)
- A L Wong
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - S M McElroy
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - J M Robinson
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - S M Mulloy
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - F K El Banna
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - A C Harris
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, MN, USA; Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - M G LeSage
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, MN, USA; Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - A M Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA; Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
7
|
Unequal interactions between alcohol and nicotine co-consumption: suppression and enhancement of concurrent drug intake. Psychopharmacology (Berl) 2020; 237:967-978. [PMID: 31858160 PMCID: PMC7124972 DOI: 10.1007/s00213-019-05426-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/06/2019] [Indexed: 12/26/2022]
Abstract
RATIONALE Alcohol and nicotine addiction are prevalent conditions that co-occur. Despite the prevalence of co-use, factors that influence the suppression and enhancement of concurrent alcohol and nicotine intake are largely unknown. OBJECTIVES Our goals were to assess how nicotine abstinence and availability influenced concurrent alcohol consumption and to determine the impact of quinine adulteration of alcohol on aversion-resistant alcohol consumption and concurrent nicotine consumption. METHODS Male and female C57BL/6J mice voluntarily consumed unsweetened alcohol, nicotine, and water in a chronic 3-bottle choice procedure. In experiment 1, nicotine access was removed for 1 week and re-introduced the following week, while the alcohol and water bottles remained available at all times. In experiment 2, quinine (100-1000 μM) was added to the 20% alcohol bottle, while the nicotine and water bottles remained unaltered. RESULTS In experiment 1, we found that alcohol consumption and preference were unaffected by the presence or absence of nicotine access in both male and female mice. In experiment 2a, we found that quinine temporarily suppressed alcohol intake and enhanced concurrent nicotine, but not water, preference in both male and female mice. In experiment 2b, chronic quinine suppression of alcohol intake increased nicotine consumption and preference in female mice without affecting water preference, whereas it increased water and nicotine preference in male mice. CONCLUSIONS Quinine suppression of alcohol consumption enhanced the preference for concurrent nicotine preference in male and female mice, suggesting that mice compensate for the quinine adulteration of alcohol by increasing their nicotine preference.
Collapse
|
8
|
Lang M, Leménager T, Streit F, Fauth-Bühler M, Frank J, Juraeva D, Witt S, Degenhardt F, Hofmann A, Heilmann-Heimbach S, Kiefer F, Brors B, Grabe HJ, John U, Bischof A, Bischof G, Völker U, Homuth G, Beutel M, Lind P, Medland S, Slutske W, Martin N, Völzke H, Nöthen M, Meyer C, Rumpf HJ, Wurst F, Rietschel M, Mann K. Genome-wide association study of pathological gambling. Eur Psychiatry 2020; 36:38-46. [DOI: 10.1016/j.eurpsy.2016.04.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/09/2016] [Accepted: 04/01/2016] [Indexed: 12/18/2022] Open
Abstract
AbstractBackgroundPathological gambling is a behavioural addiction with negative economic, social, and psychological consequences. Identification of contributing genes and pathways may improve understanding of aetiology and facilitate therapy and prevention. Here, we report the first genome-wide association study of pathological gambling. Our aims were to identify pathways involved in pathological gambling, and examine whether there is a genetic overlap between pathological gambling and alcohol dependence.MethodsFour hundred and forty-five individuals with a diagnosis of pathological gambling according to the Diagnostic and Statistical Manual of Mental Disorders were recruited in Germany, and 986 controls were drawn from a German general population sample. A genome-wide association study of pathological gambling comprising single marker, gene-based, and pathway analyses, was performed. Polygenic risk scores were generated using data from a German genome-wide association study of alcohol dependence.ResultsNo genome-wide significant association with pathological gambling was found for single markers or genes. Pathways for Huntington's disease (P-value = 6.63 × 10−3); 5′-adenosine monophosphate-activated protein kinase signalling (P-value = 9.57 × 10−3); and apoptosis (P-value = 1.75 × 10−2) were significant. Polygenic risk score analysis of the alcohol dependence dataset yielded a one-sided nominal significant P-value in subjects with pathological gambling, irrespective of comorbid alcohol dependence status.ConclusionsThe present results accord with previous quantitative formal genetic studies which showed genetic overlap between non-substance- and substance-related addictions. Furthermore, pathway analysis suggests shared pathology between Huntington's disease and pathological gambling. This finding is consistent with previous imaging studies.
Collapse
|
9
|
D'Souza MS. Brain and Cognition for Addiction Medicine: From Prevention to Recovery Neural Substrates for Treatment of Psychostimulant-Induced Cognitive Deficits. Front Psychiatry 2019; 10:509. [PMID: 31396113 PMCID: PMC6667748 DOI: 10.3389/fpsyt.2019.00509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/28/2019] [Indexed: 01/10/2023] Open
Abstract
Addiction to psychostimulants like cocaine, methamphetamine, and nicotine poses a continuing medical and social challenge both in the United States and all over the world. Despite a desire to quit drug use, return to drug use after a period of abstinence is a common problem among individuals dependent on psychostimulants. Recovery for psychostimulant drug-dependent individuals is particularly challenging because psychostimulant drugs induce significant changes in brain regions associated with cognitive functions leading to cognitive deficits. These cognitive deficits include impairments in learning/memory, poor decision making, and impaired control of behavioral output. Importantly, these drug-induced cognitive deficits often impact adherence to addiction treatment programs and predispose abstinent addicts to drug use relapse. Additionally, these cognitive deficits impact effective social and professional rehabilitation of abstinent addicts. The goal of this paper is to review neural substrates based on animal studies that could be pharmacologically targeted to reverse psychostimulant-induced cognitive deficits such as impulsivity and impairment in learning and memory. Further, the review will discuss neural substrates that could be used to facilitate extinction learning and thus reduce emotional and behavioral responses to drug-associated cues. Moreover, the review will discuss some non-pharmacological approaches that could be used either alone or in combination with pharmacological compounds to treat the above-mentioned cognitive deficits. Psychostimulant addiction treatment, which includes treatment for cognitive deficits, will help promote abstinence and allow for better rehabilitation and integration of abstinent individuals into society.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, Ada, OH, United States
| |
Collapse
|
10
|
Guildford MJ, Sacino AV, Tapper AR. Modulation of ethanol reward sensitivity by nicotinic acetylcholine receptors containing the α6 subunit. Alcohol 2016; 57:65-70. [PMID: 27793544 DOI: 10.1016/j.alcohol.2016.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/03/2016] [Accepted: 08/03/2016] [Indexed: 12/21/2022]
Abstract
The prevalent co-abuse of nicotine and alcohol suggests a common neural mechanism underlying the actions of the two drugs. Nicotine, the addictive component of tobacco, activates nicotinic acetylcholine receptors (nAChRs) containing the α6 subunit (α6* nAChRs) in dopaminergic (DAergic) neurons of the ventral tegmental area (VTA), a region known to be crucial for drug reward. Recent evidence suggests that ethanol may potentiate ACh activation of these receptors as well, although whether α6* nAChR expression is necessary for behavioral effects of acute ethanol exposure is unknown. We compared binge-like ethanol consumption and ethanol reward sensitivity between knockout (KO) mice that do not express chrna6 (the gene encoding the α6 nAChR subunit, the α6 KO line) and wild-type (WT) littermates using the Drinking-in-the-Dark (DID) and Conditioned Place Preference (CPP) assay, respectively. In the DID assay, α6 KO female and male mice consumed ethanol similarly to WT mice at all concentrations tested. In the CPP assay, 2.0-g/kg and 3.0-g/kg, but not 0.5-mg/kg, ethanol conditioned a place preference in WT female and male mice, whereas only 2.0-g/kg ethanol conditioned a place preference in α6 KO mice. Acute challenge with ethanol reduced locomotor activity, an effect that developed tolerance with repeated injections, similarly between genotypes in both female and male mice. Together, these data indicate that expression of α6* nAChRs is not required for binge-like ethanol consumption and reward, but modulate sensitivity to the rewarding properties of the drug.
Collapse
|
11
|
Srisontiyakul J, Kastman HE, Krstew EV, Govitrapong P, Lawrence AJ. The Nicotinic α6-Subunit Selective Antagonist bPiDI Reduces Alcohol Self-Administration in Alcohol-Preferring Rats. Neurochem Res 2016; 41:3206-3214. [PMID: 27573375 DOI: 10.1007/s11064-016-2045-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 10/21/2022]
Abstract
Cigarettes and alcohol are the most abused substances in the world and are commonly co-abused. Nicotine primarily acts in the brain on nicotinic acetylcholine receptors (nAChR), which are also a target for alcohol. The alpha6 subunit of nAChR is expressed almost exclusively in the brain reward system and may modulate the rewarding properties of alcohol and nicotine. Recently, N,N-decane-1,10-diyl-bis-3-picolinium diiodide (bPiDI) was synthesized as a selective, brain penetrant α6 subunit antagonist that reduces nicotine self-administration. The current study aimed to examine the effects of bPiDI on alcohol self-administration in inbred alcohol-preferring (iP) rats. Adult, male iP rats were trained to self-administer alcohol or sucrose. Once stable responding was achieved, rats were injected with bPiDI (1, 3 mg/kg, i.p.) and tested for self-administration under fixed and progressive ratio schedules of reinforcement. They subsequently underwent extinction, in which no rewards or cues were presented in the operant chambers. Then, they were injected with bPiDI prior to testing for cue-induced reinstatement of reward seeking. bPiDI (3 mg/kg) significantly reduced alcohol self-administration in both fixed and progressive ratios without any effects on sucrose self-administration or locomotor activity. In contrast, bPiDI (3 mg/kg) did not inhibit cue-induced reinstatement of either alcohol or sucrose seeking. The results support the involvement of α6 containing nAChR in reinforcing effects of alcohol, but not relapse to alcohol-seeking, without any impact on responding for a natural reward or general activity. bPiDI may be a potential lead molecule for a therapeutic strategy to limit nicotine and alcohol consumption.
Collapse
Affiliation(s)
- Jirawoot Srisontiyakul
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Hanna E Kastman
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Royal Parade, Parkville, VIC, 3052, Australia
| | - Elena V Krstew
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Royal Parade, Parkville, VIC, 3052, Australia
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand.,Center for Neuroscience and Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Royal Parade, Parkville, VIC, 3052, Australia. .,Florey Department of Neuroscience, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
12
|
O'Rourke KY, Touchette JC, Hartell EC, Bade EJ, Lee AM. Voluntary co-consumption of alcohol and nicotine: Effects of abstinence, intermittency, and withdrawal in mice. Neuropharmacology 2016; 109:236-246. [PMID: 27342124 DOI: 10.1016/j.neuropharm.2016.06.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 11/17/2022]
Abstract
Alcohol and nicotine are often used together, and there is a high rate of co-occurrence between alcohol and nicotine addiction. Most animal models studying alcohol and nicotine interactions have utilized passive drug administration, which may not be relevant to human co-addiction. In addition, the interactions between alcohol and nicotine in female animals have been understudied, as most studies have used male animals. To address these issues, we developed models of alcohol and nicotine co-consumption in male and female mice that utilized voluntary, oral consumption of unsweetened alcohol, nicotine and water. We first examined drug consumption and preference in single-drug, sequential alcohol and nicotine consumption tests in male and female C57BL/6 and DBA/2J mice. We then tested chronic continuous and intermittent access alcohol and nicotine co-consumption procedures. We found that male and female C57BL/6 mice readily co-consumed unsweetened alcohol and nicotine. In our continuous co-consumption procedures, we found that varying the available nicotine concentration during an alcohol abstinence period affected compensatory nicotine consumption during alcohol abstinence, and affected rebound alcohol consumption when alcohol was re-introduced. Consumption of alcohol and nicotine in an intermittent co-consumption procedure produced higher alcohol consumption levels, but not nicotine consumption levels, compared with the continuous co-consumption procedures. Finally, we found that intermittent alcohol and nicotine co-consumption resulted in physical dependence. Our data show that these voluntary co-consumption procedures can be easily performed in mice and can be used to study behavioral interactions between alcohol and nicotine consumption, which may better model human alcohol and nicotine co-addiction.
Collapse
Affiliation(s)
- Kyu Y O'Rourke
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - Elizabeth C Hartell
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Elizabeth J Bade
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Anna M Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
13
|
Lee AM, Wu DF, Dadgar J, Wang D, McMahon T, Messing RO. PKCε phosphorylates α4β2 nicotinic ACh receptors and promotes recovery from desensitization. Br J Pharmacol 2015; 172:4430-41. [PMID: 26103136 DOI: 10.1111/bph.13228] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 06/10/2015] [Accepted: 06/13/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Nicotinic (ACh) receptor recovery from desensitization is modulated by PKC, but the PKC isozymes and the phosphorylation sites involved have not been identified. We investigated whether PKCε phosphorylation of α4β2 nAChRs regulates receptor recovery from desensitization. EXPERIMENTAL APPROACH Receptor recovery from desensitization was investigated by electrophysiological characterization of human α4β2 nAChRs. Phosphorylation of the α4 nAChR subunit was assessed by immunoblotting of mouse synaptosomes. Hypothermia induced by sazetidine-A and nicotine was measured in Prkce(-/-) and wild-type mice. KEY RESULTS Inhibiting PKCε impaired the magnitude of α4β2 nAChR recovery from desensitization. We identified five putative PKCε phosphorylation sites in the large intracellular loop of the α4 subunit, and mutating four sites to alanines also impaired recovery from desensitization. α4 nAChR subunit phosphorylation was reduced in synaptosomes from Prkce(-/-) mice. Sazetidine-A-induced hypothermia, which is mediated by α4β2 nAChR desensitization, was more severe and prolonged in Prkce(-/-) than in wild-type mice. CONCLUSIONS AND IMPLICATIONS PKCε phosphorylates the α4 nAChR subunit and regulates recovery from receptor desensitization. This study illustrates the importance of phosphorylation in regulating α4β2 receptor function, and suggests that reducing phosphorylation prolongs receptor desensitization and decreases the number of receptors available for activation.
Collapse
Affiliation(s)
- A M Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - D-F Wu
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
| | - J Dadgar
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
| | - D Wang
- Ernest Gallo Clinic and Research Center, University of California at San Francisco, Emeryville, CA, USA
| | - T McMahon
- Ernest Gallo Clinic and Research Center, University of California at San Francisco, Emeryville, CA, USA
| | - R O Messing
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
14
|
de Kloet SF, Mansvelder HD, De Vries TJ. Cholinergic modulation of dopamine pathways through nicotinic acetylcholine receptors. Biochem Pharmacol 2015. [PMID: 26208783 DOI: 10.1016/j.bcp.2015.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nicotine addiction is highly prevalent in current society and is often comorbid with other diseases. In the central nervous system, nicotine acts as an agonist for nicotinic acetylcholine receptors (nAChRs) and its effects depend on location and receptor composition. Although nicotinic receptors are found in most brain regions, many studies on addiction have focused on the mesolimbic system and its reported behavioral correlates such as reward processing and reinforcement learning. Profound modulatory cholinergic input from the pedunculopontine and laterodorsal tegmentum to dopaminergic midbrain nuclei as well as local cholinergic interneuron projections to dopamine neuron axons in the striatum may play a major role in the effects of nicotine. Moreover, an indirect mesocorticolimbic feedback loop involving the medial prefrontal cortex may be involved in behavioral characteristics of nicotine addiction. Therefore, this review will highlight current understanding of the effects of nicotine on the function of mesolimbic and mesocortical dopamine projections in the mesocorticolimbic circuit.
Collapse
Affiliation(s)
- Sybren F de Kloet
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cogntive Research (CNCR), Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cogntive Research (CNCR), Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands.
| | - Taco J De Vries
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cogntive Research (CNCR), Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands; Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Anderson SM, Brunzell DH. Anxiolytic-like and anxiogenic-like effects of nicotine are regulated via diverse action at β2*nicotinic acetylcholine receptors. Br J Pharmacol 2015; 172:2864-77. [PMID: 25625469 DOI: 10.1111/bph.13090] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 12/19/2014] [Accepted: 01/19/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Nicotine dose-dependently activates or preferentially desensitizes β2 subunit containing nicotinic ACh receptors (β2*nAChRs). Genetic and pharmacological manipulations assessed effects of stimulation versus inhibition of β2*nAChRs on nicotine-associated anxiety-like phenotype. EXPERIMENTAL APPROACH Using a range of doses of nicotine in β2*nAChR subunit null mutant mice (β2KO; backcrossed to C57BL/6J) and their wild-type (WT) littermates, administration of the selective β2*nAChR agonist, 5I-A85380, and the selective β2*nAChR antagonist dihydro-β-erythroidine (DHβE), we determined the behavioural effects of stimulation and inhibition of β2*nAChRs in the light-dark and elevated plus maze (EPM) assays. KEY RESULTS Low-dose i.p. nicotine (0.05 mg·kg(-) 1) supported anxiolysis-like behaviour independent of genotype whereas the highest dose (0.5 mg·kg(-1) ) promoted anxiogenic-like phenotype in WT mice, but was blunted in β2KO mice for the measure of latency. Administration of 5I-A85380 had similar dose-dependent effects in C57BL/6J WT mice; 0.001 mg·kg(-1) 5I-A85380 reduced anxiety on an EPM, whereas 0.032 mg·kg(-1) 5I-A85380 promoted anxiogenic-like behaviour in both the light-dark and EPM assays. DHβE pretreatment blocked anxiogenic-like effects of 0.5 mg·kg(-1) nicotine. Similarly to DHβE, pretreatment with low-dose 0.05 mg·kg(-1) nicotine did not accumulate with 0.5 mg·kg(-1) nicotine, but rather blocked anxiogenic-like effects of high-dose nicotine in the light-dark and EPM assays. CONCLUSIONS AND IMPLICATIONS These studies provide direct evidence that low-dose nicotine inhibits nAChRs and demonstrate that inhibition or stimulation of β2*nAChRs supports the corresponding anxiolytic-like or anxiogenic-like effects of nicotine. Inhibition of β2*nAChRs may relieve anxiety in smokers and non-smokers alike.
Collapse
Affiliation(s)
- S M Anderson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - D H Brunzell
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
16
|
Katner SN, Toalston JE, Smoker MP, Rodd ZA, McBride WJ, Engleman EA. Time-course of extracellular nicotine and cotinine levels in rat brain following administration of nicotine: effects of route and ethanol coadministration. Psychopharmacology (Berl) 2015; 232:551-60. [PMID: 25038869 PMCID: PMC4404024 DOI: 10.1007/s00213-014-3681-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 07/07/2014] [Indexed: 11/24/2022]
Abstract
RATIONALE Nicotine and ethanol are commonly coabused drugs, and nicotine-laced ethanol products are growing in popularity. However, little is known about time-course changes in extracellular nicotine and cotinine levels in rat models of ethanol and nicotine coabuse. OBJECTIVES The objective of the present study was to determine the time-course changes in brain levels of nicotine and cotinine following subcutaneous (SC) and intragastric (IG) nicotine administration in alcohol-preferring (P) and Wistar rats. METHODS In vivo microdialysis was used to collect dialysate samples from the nucleus accumbens shell (NACsh) for nicotine and cotinine determinations, following SC administration of (-)-nicotine (0.18, 0.35, and 0.70 mg/kg) in female P and Wistar rats or IG administration of (-)-nicotine (0.35 and 0.70 mg/kg) in 15 % (v/v) ethanol or water in female P rats. RESULTS SC nicotine produced nicotine and cotinine dialysate levels as high as 51 and 14 ng/ml, respectively. IG administration of 15 % EtOH + 0.70 mg/kg nicotine in P rats resulted in maximal nicotine and cotinine dialysate levels of 19 and 14 ng/ml, respectively, whereas administration of 0.70 mg/kg nicotine in water resulted in maximal nicotine and cotinine levels of 21 and 25 ng/ml, respectively. Nicotine and cotinine levels were detectable within the first 15 and 45 min, respectively, after IG administration. CONCLUSIONS Overall, the results of this study suggest that nicotine is rapidly adsorbed and produces relevant extracellular brain concentrations of nicotine and its pharmacologically active metabolite, cotinine. The persisting high brain concentrations of cotinine may contribute to nicotine addiction.
Collapse
|
17
|
Wang H, Gutierrez-Uzquiza A, Garg R, Barrio-Real L, Abera MB, Lopez-Haber C, Rosemblit C, Lu H, Abba M, Kazanietz MG. Transcriptional regulation of oncogenic protein kinase Cϵ (PKCϵ) by STAT1 and Sp1 proteins. J Biol Chem 2014; 289:19823-38. [PMID: 24825907 DOI: 10.1074/jbc.m114.548446] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Overexpression of PKCϵ, a kinase associated with tumor aggressiveness and widely implicated in malignant transformation and metastasis, is a hallmark of multiple cancers, including mammary, prostate, and lung cancer. To characterize the mechanisms that control PKCϵ expression and its up-regulation in cancer, we cloned an ∼ 1.6-kb promoter segment of the human PKCϵ gene (PRKCE) that displays elevated transcriptional activity in cancer cells. A comprehensive deletional analysis established two regions rich in Sp1 and STAT1 sites located between -777 and -105 bp (region A) and -921 and -796 bp (region B), respectively, as responsible for the high transcriptional activity observed in cancer cells. A more detailed mutagenesis analysis followed by EMSA and ChIP identified Sp1 sites in positions -668/-659 and -269/-247 as well as STAT1 sites in positions -880/-869 and -793/-782 as the elements responsible for elevated promoter activity in breast cancer cells relative to normal mammary epithelial cells. RNAi silencing of Sp1 and STAT1 in breast cancer cells reduced PKCϵ mRNA and protein expression, as well as PRKCE promoter activity. Moreover, a strong correlation was found between PKCϵ and phospho-Ser-727 (active) STAT1 levels in breast cancer cells. Our results may have significant implications for the development of approaches to target PKCϵ and its effectors in cancer therapeutics.
Collapse
Affiliation(s)
- HongBin Wang
- From the Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Alvaro Gutierrez-Uzquiza
- From the Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Rachana Garg
- From the Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Laura Barrio-Real
- From the Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Mahlet B Abera
- From the Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Cynthia Lopez-Haber
- From the Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Cinthia Rosemblit
- From the Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Huaisheng Lu
- From the Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Martin Abba
- the Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Universidad Nacional de La Plata, CP1900 La Plata, Argentina
| | - Marcelo G Kazanietz
- From the Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| |
Collapse
|
18
|
The "memory kinases": roles of PKC isoforms in signal processing and memory formation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:31-59. [PMID: 24484697 DOI: 10.1016/b978-0-12-420170-5.00002-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The protein kinase C (PKC) isoforms, which play an essential role in transmembrane signal conduction, can be viewed as a family of "memory kinases." Evidence is emerging that they are critically involved in memory acquisition and maintenance, in addition to their involvement in other functions of cells. Deficits in PKC signal cascades in neurons are one of the earliest abnormalities in the brains of patients suffering from Alzheimer's disease. Their dysfunction is also involved in several other types of memory impairments, including those related to emotion, mental retardation, brain injury, and vascular dementia/ischemic stroke. Inhibition of PKC activity leads to a reduced capacity of many types of learning and memory, but may have therapeutic values in treating substance abuse or aversive memories. PKC activators, on the other hand, have been shown to possess memory-enhancing and antidementia actions. PKC pharmacology may, therefore, represent an attractive area for developing effective cognitive drugs for the treatment of many types of memory disorders and dementias.
Collapse
|
19
|
Huse M, Le Floc'h A, Liu X. From lipid second messengers to molecular motors: microtubule-organizing center reorientation in T cells. Immunol Rev 2013; 256:95-106. [PMID: 24117815 PMCID: PMC4595039 DOI: 10.1111/imr.12116] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In T lymphocytes, polarization of the microtubule-organizing center (MTOC) to the immunological synapse enables the directional secretion of cytokines, cytolytic factors, and other soluble molecules toward the antigen-presenting cell. This is likely to be crucial for maintaining the specificity of T-cell effector responses. Here, we review recent advances in our understanding of MTOC reorientation in T cells, focusing first on the importance of diacylglycerol and protein kinase C isozymes and then on the molecular motor proteins that function downstream to drive MTOC movement.
Collapse
Affiliation(s)
- Morgan Huse
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Audrey Le Floc'h
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Xin Liu
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
20
|
PKC-epsilon activation is required for recognition memory in the rat. Behav Brain Res 2013; 253:280-9. [PMID: 23911427 DOI: 10.1016/j.bbr.2013.07.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 11/20/2022]
Abstract
Activation of PKCɛ, an abundant and developmentally regulated PKC isoform in the brain, has been implicated in memory throughout life and across species. Yet, direct evidence for a mechanistic role for PKCɛ in memory is still lacking. Hence, we sought to evaluate this in rats, using short-term treatments with two PKCɛ-selective peptides, the inhibitory ɛV1-2 and the activating ψɛRACK, and the novel object recognition task (NORT). Our results show that the PKCɛ-selective activator ψɛRACK, did not have a significant effect on recognition memory. In the short time frames used, however, inhibition of PKCɛ activation with the peptide inhibitor ɛV1-2 significantly impaired recognition memory. Moreover, when we addressed at the molecular level the immediate proximal signalling events of PKCɛ activation in acutely dissected rat hippocampi, we found that ψɛRACK increased in a time-dependent manner phosphorylation of MARCKS and activation of Src, Raf, and finally ERK1/2, whereas ɛV1-2 inhibited all basal activity of this pathway. Taken together, these findings present the first direct evidence that PKCɛ activation is an essential molecular component of recognition memory and point toward the use of systemically administered PKCɛ-regulating peptides as memory study tools and putative therapeutic agents.
Collapse
|
21
|
Marks MJ. Genetic matters: thirty years of progress using mouse models in nicotinic research. Biochem Pharmacol 2013; 86:1105-13. [PMID: 23747348 DOI: 10.1016/j.bcp.2013.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 05/30/2013] [Accepted: 05/30/2013] [Indexed: 02/06/2023]
Abstract
This research update summarizes thirty years of studies on genetic influences on responses to the acute or chronic administration of nicotine. Early studies established that various inbred mice are differentially sensitive to the effects of the drug. Classical genetic analyses confirmed that nicotine effects on locomotion, body temperature and seizures are heritable. A significant inverse correlation between the locomotor and hypothermic effects and the density of nicotine binding sites suggested that differential expression α4β2-neuronal nicotinic acetylcholine receptor (nAChR) mediated some of this genetic variability. Subsequent studies with α4 and β2 nAChR null (decreased sensitivity) and gain of function mutants (increased sensitivity) supports the role of the α4β2*nAChR subtype. However, null mutant mice still respond to nicotine, indicating that other nAChR subtypes also mediate these responses. Mice differing in initial sensitivity to nicotine also differ in tolerance development following chronic treatment: those mice that are initially more sensitive to nicotine develop tolerance at lower treatment doses than less sensitive mice, indicating that tolerance is an adaptive response to the effects of nicotine. In contrast, the sensitivity of mice to pre-pulse inhibition of acoustic startle response is correlated with the expression of α7-nAChR. While genetic variability in nAChR expression and function is an important factor contributing to differences in response to nicotine, the observations that altered activity of opioid, glutamate, and cannabinoid receptors among others also change nicotine sensitivity reinforces the proposal that the genetics of nicotine response is more complex than differences in nAChRs.
Collapse
Affiliation(s)
- Michael J Marks
- Institute for Behavioral Genetics and Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
22
|
Harmey D, Griffin PR, Kenny PJ. Development of novel pharmacotherapeutics for tobacco dependence: progress and future directions. Nicotine Tob Res 2012; 14:1300-18. [PMID: 23024249 PMCID: PMC3611986 DOI: 10.1093/ntr/nts201] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/25/2012] [Indexed: 11/12/2022]
Abstract
INTRODUCTION The vast majority of tobacco smokers seeking to quit will relapse within the first month of abstinence. Currently available smoking cessation agents have limited utility in increasing rates of smoking cessation and in some cases there are notable safety concerns related to their use. Hence, there is a pressing need to develop safer and more efficacious smoking cessation medications. METHODS Here, we provide an overview of current efforts to develop new pharmacotherapeutic agents to facilitate smoking cessation, identified from ongoing clinical trials and published reports. RESULTS Nicotine is considered the major addictive agent in tobacco smoke, and the vast majority of currently available smoking cessation agents act by modulating nicotinic acetylcholine receptor (nAChR) signaling. Accordingly, there is much effort directed toward developing novel small molecule therapeutics and biological agents such as nicotine vaccines for smoking cessation that act by modulating nAChR activity. Our increasing knowledge of the neurobiology of nicotine addiction has revealed new targets for novel smoking cessation therapeutics. Indeed, we highlight many examples of novel small molecule drug development around non-nAChR targets. Finally, there is a growing appreciation that medications already approved for other disease indications could show promise as smoking cessation agents, and we consider examples of such repurposing efforts. CONCLUSION Ongoing clinical assessment of potential smoking cessation agents offers the promise of new effective medications. Nevertheless, much of our current knowledge of molecular mechanisms of nicotine addiction derived from preclinical studies has not yet been leveraged for medications development.
Collapse
Affiliation(s)
- Dympna Harmey
- Department of Molecular Therapeutics, The Scripps Research Institute—Scripps Florida, Jupiter, FL
| | - Patrick R. Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute—Scripps Florida, Jupiter, FL
| | - Paul J. Kenny
- Department of Molecular Therapeutics, The Scripps Research Institute—Scripps Florida, Jupiter, FL
| |
Collapse
|
23
|
Sun MK, Alkon DL. Activation of protein kinase C isozymes for the treatment of dementias. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 64:273-302. [PMID: 22840750 DOI: 10.1016/b978-0-12-394816-8.00008-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Memories are much more easily impaired than improved. Dementias, a lasting impairment of memory function, occur in a variety of cognitive disorders and become more clinically dominant as the population ages. Protein kinase C is one of the "cognitive kinases," and plays an essential role in both memory acquisition and maintenance. Deficits in protein kinase C (PKC) signal cascades in neurons represent one of the earliest changes in the brains of patients with Alzheimer's disease (AD) and other types of memory impairment, including those related to cerebral ischemia and ischemic stroke. Inhibition or impairment of PKC activity results in compromised learning and memory, whereas an appropriate activation of certain PKC isozymes leads to an enhancement of learning and memory and/or antidementic effects. In preclinical studies, PKC activators have been shown to increase the expression and activity of PKC isozymes, thereby restoring PKC signaling and downstream activity, including stimulation of neurotrophic activity, synaptic/structural remodeling, and synaptogenesis in the hippocampus and related cortical areas. PKC activators also reduce the accumulation of neurotoxic amyloid and tau protein hyperphosphorylation and support anti-apoptotic processes in the brain. These observations strongly suggest that PKC pharmacology may represent an attractive area for the development of effective cognition-enhancing therapeutics for the treatment of dementias.
Collapse
Affiliation(s)
- Miao-Kun Sun
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA
| | | |
Collapse
|