1
|
Wang Z, Chu Y, Li Q, Han X, Zhao L, Zhang H, Cai K, Zhang X, Wang X, Qin Y, Fan E. A minimum functional form of the Escherichia coli BAM complex constituted by BamADE assembles outer membrane proteins in vitro. J Biol Chem 2024; 300:107324. [PMID: 38677515 PMCID: PMC11130730 DOI: 10.1016/j.jbc.2024.107324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
The biogenesis of outer membrane proteins is mediated by the β-barrel assembly machinery (BAM), which is a heteropentomeric complex composed of five proteins named BamA-E in Escherichia coli. Despite great progress in the BAM structural analysis, the molecular details of BAM-mediated processes as well as the exact function of each BAM component during OMP assembly are still not fully understood. To enable a distinguishment of the function of each BAM component, it is the aim of the present work to examine and identify the effective minimum form of the E. coli BAM complex by use of a well-defined reconstitution strategy based on a previously developed versatile assay. Our data demonstrate that BamADE is the core BAM component and constitutes a minimum functional form for OMP assembly in E. coli, which can be stimulated by BamB and BamC. While BamB and BamC have a redundant function based on the minimum form, both together seem to cooperate with each other to substitute for the function of the missing BamD or BamE. Moreover, the BamAE470K mutant also requires the function of BamD and BamE to assemble OMPs in vitro, which vice verse suggests that BamADE are the effective minimum functional form of the E. coli BAM complex.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yindi Chu
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Qingrong Li
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiaochen Han
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Leyi Zhao
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Hanqing Zhang
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Kun Cai
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xuyan Zhang
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xingyuan Wang
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Youcai Qin
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Enguo Fan
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; School of Medicine, Linyi University, Linyi, China.
| |
Collapse
|
2
|
Caspari OD, Garrido C, Law CO, Choquet Y, Wollman FA, Lafontaine I. Converting antimicrobial into targeting peptides reveals key features governing protein import into mitochondria and chloroplasts. PLANT COMMUNICATIONS 2023:100555. [PMID: 36733255 PMCID: PMC10363480 DOI: 10.1016/j.xplc.2023.100555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
We asked what peptide features govern targeting to the mitochondria versus the chloroplast, using antimicrobial peptides as a starting point. This approach was inspired by the endosymbiotic hypothesis that organelle-targeting peptides derive from antimicrobial amphipathic peptides delivered by the host cell, to which organelle progenitors became resistant. To explore the molecular changes required to convert antimicrobial into targeting peptides, we expressed a set of 13 antimicrobial peptides in Chlamydomonas reinhardtii. Peptides were systematically modified to test distinctive features of mitochondrion- and chloroplast-targeting peptides, and we assessed their targeting potential by following the intracellular localization and maturation of a Venus fluorescent reporter used as a cargo protein. Mitochondrial targeting can be achieved by some unmodified antimicrobial peptide sequences. Targeting to both organelles is improved by replacing lysines with arginines. Chloroplast targeting is enabled by the presence of flanking unstructured sequences, additional constraints consistent with chloroplast endosymbiosis having occurred in a cell that already contained mitochondria. If indeed targeting peptides evolved from antimicrobial peptides, then required modifications imply a temporal evolutionary scenario with an early exchange of cationic residues and a late acquisition of chloroplast-specific motifs.
Collapse
Affiliation(s)
- Oliver D Caspari
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France.
| | - Clotilde Garrido
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Chris O Law
- Centre for Microscopy and Cellular Imaging, Biology Department Loyola Campus of Concordia University, 7141 Sherbrooke W., Montréal, QC H4B 1R6, Canada
| | - Yves Choquet
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Francis-André Wollman
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Ingrid Lafontaine
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
3
|
Doyle MT, Bernstein HD. Function of the Omp85 Superfamily of Outer Membrane Protein Assembly Factors and Polypeptide Transporters. Annu Rev Microbiol 2022; 76:259-279. [PMID: 35650668 DOI: 10.1146/annurev-micro-033021-023719] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Omp85 protein superfamily is found in the outer membrane (OM) of all gram-negative bacteria and eukaryotic organelles of bacterial origin. Members of the family catalyze both the membrane insertion of β-barrel proteins and the translocation of proteins across the OM. Although the mechanism(s) by which these proteins function is unclear, striking new insights have emerged from recent biochemical and structural studies. In this review we discuss the entire Omp85 superfamily but focus on the function of the best-studied member, BamA, which is an essential and highly conserved component of the bacterial barrel assembly machinery (BAM). Because BamA has multiple functions that overlap with those of other Omp85 proteins, it is likely the prototypical member of the Omp85 superfamily. Furthermore, BamA has become a protein of great interest because of the recent discovery of small-molecule inhibitors that potentially represent an important new class of antibiotics. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Matthew Thomas Doyle
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; ,
| |
Collapse
|
4
|
Gross LE, Klinger A, Spies N, Ernst T, Flinner N, Simm S, Ladig R, Bodensohn U, Schleiff E. Insertion of plastidic β-barrel proteins into the outer envelopes of plastids involves an intermembrane space intermediate formed with Toc75-V/OEP80. THE PLANT CELL 2021; 33:1657-1681. [PMID: 33624803 PMCID: PMC8254496 DOI: 10.1093/plcell/koab052] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The insertion of organellar membrane proteins with the correct topology requires the following: First, the proteins must contain topogenic signals for translocation across and insertion into the membrane. Second, proteinaceous complexes in the cytoplasm, membrane, and lumen of organelles are required to drive this process. Many complexes required for the intracellular distribution of membrane proteins have been described, but the signals and components required for the insertion of plastidic β-barrel-type proteins into the outer membrane are largely unknown. The discovery of common principles is difficult, as only a few plastidic β-barrel proteins exist. Here, we provide evidence that the plastidic outer envelope β-barrel proteins OEP21, OEP24, and OEP37 from pea (Pisum sativum) and Arabidopsis thaliana contain information defining the topology of the protein. The information required for the translocation of pea proteins across the outer envelope membrane is present within the six N-terminal β-strands. This process requires the action of translocon of the outer chloroplast (TOC) membrane. After translocation into the intermembrane space, β-barrel proteins interact with TOC75-V, as exemplified by OEP37 and P39, and are integrated into the membrane. The membrane insertion of plastidic β-barrel proteins is affected by mutation of the last β-strand, suggesting that this strand contributes to the insertion signal. These findings shed light on the elements and complexes involved in plastidic β-barrel protein import.
Collapse
Affiliation(s)
- Lucia E Gross
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Anna Klinger
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Nicole Spies
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Theresa Ernst
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Nadine Flinner
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Stefan Simm
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
- Frankfurt Institute for Advanced Studies, D-60438 Frankfurt, Germany
| | - Roman Ladig
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Uwe Bodensohn
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Enrico Schleiff
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
- Frankfurt Institute for Advanced Studies, D-60438 Frankfurt, Germany
| |
Collapse
|
5
|
Caspari OD, Lafontaine I. The role of antimicrobial peptides in the evolution of endosymbiotic protein import. PLoS Pathog 2021; 17:e1009466. [PMID: 33857255 PMCID: PMC8049325 DOI: 10.1371/journal.ppat.1009466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Oliver D. Caspari
- UMR7141, Institut de Biologie Physico-Chimique (CNRS/Sorbonne Université), Paris, France
- * E-mail: (ODC); (IL)
| | - Ingrid Lafontaine
- UMR7141, Institut de Biologie Physico-Chimique (CNRS/Sorbonne Université), Paris, France
- * E-mail: (ODC); (IL)
| |
Collapse
|
6
|
Functions of the BamBCDE Lipoproteins Revealed by Bypass Mutations in BamA. J Bacteriol 2020; 202:JB.00401-20. [PMID: 32817097 DOI: 10.1128/jb.00401-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/13/2020] [Indexed: 12/27/2022] Open
Abstract
The heteropentomeric β-barrel assembly machine (BAM complex) is responsible for folding and inserting a diverse array of β-barrel outer membrane proteins (OMPs) into the outer membrane (OM) of Gram-negative bacteria. The BAM complex contains two essential proteins, the β-barrel OMP BamA and a lipoprotein BamD, whereas the auxiliary lipoproteins BamBCE are individually nonessential. Here, we identify and characterize three bamA mutations, the E-to-K change at position 470 (bamAE470K ), the A-to-P change at position 496 (bamAA496P ), and the A-to-S change at position 499 (bamAA499S ), that suppress the otherwise lethal ΔbamD, ΔbamB ΔbamC ΔbamE, and ΔbamC ΔbamD ΔbamE mutations. The viability of cells lacking different combinations of BAM complex lipoproteins provides the opportunity to examine the role of the individual proteins in OMP assembly. Results show that, in wild-type cells, BamBCE share a redundant function; at least one of these lipoproteins must be present to allow BamD to coordinate productively with BamA. Besides BamA regulation, BamD shares an additional essential function that is redundant with a second function of BamB. Remarkably, bamAE470K suppresses both, allowing the construction of a BAM complex composed solely of BamAE470K that is able to assemble OMPs in the absence of BamBCDE. This work demonstrates that the BAM complex lipoproteins do not participate in the catalytic folding of OMP substrates but rather function to increase the efficiency of the assembly process by coordinating and regulating the assembly of diverse OMP substrates.IMPORTANCE The folding and insertion of β-barrel outer membrane proteins (OMPs) are conserved processes in mitochondria, chloroplasts, and Gram-negative bacteria. In Gram-negative bacteria, OMPs are assembled into the outer membrane (OM) by the heteropentomeric β-barrel assembly machine (BAM complex). In this study, we probe the function of the individual BAM proteins and how they coordinate assembly of a diverse family of OMPs. Furthermore, we identify a gain-of-function bamA mutant capable of assembling OMPs independently of all four other BAM proteins. This work advances our understanding of OMP assembly and sheds light on how this process is distinct in Gram-negative bacteria.
Collapse
|
7
|
Evidence Supporting an Antimicrobial Origin of Targeting Peptides to Endosymbiotic Organelles. Cells 2020; 9:cells9081795. [PMID: 32731621 PMCID: PMC7463930 DOI: 10.3390/cells9081795] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondria and chloroplasts emerged from primary endosymbiosis. Most proteins of the endosymbiont were subsequently expressed in the nucleo-cytosol of the host and organelle-targeted via the acquisition of N-terminal presequences, whose evolutionary origin remains enigmatic. Using a quantitative assessment of their physico-chemical properties, we show that organelle targeting peptides, which are distinct from signal peptides targeting other subcellular compartments, group with a subset of antimicrobial peptides. We demonstrate that extant antimicrobial peptides target a fluorescent reporter to either the mitochondria or the chloroplast in the green alga Chlamydomonas reinhardtii and, conversely, that extant targeting peptides still display antimicrobial activity. Thus, we provide strong computational and functional evidence for an evolutionary link between organelle-targeting and antimicrobial peptides. Our results support the view that resistance of bacterial progenitors of organelles to the attack of host antimicrobial peptides has been instrumental in eukaryogenesis and in the emergence of photosynthetic eukaryotes.
Collapse
|
8
|
The gain-of-function allele bamA E470K bypasses the essential requirement for BamD in β-barrel outer membrane protein assembly. Proc Natl Acad Sci U S A 2020; 117:18737-18743. [PMID: 32675245 DOI: 10.1073/pnas.2007696117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The outer membrane (OM) of gram-negative bacteria confers innate resistance to toxins and antibiotics. Integral β-barrel outer membrane proteins (OMPs) function to establish and maintain the selective permeability of the OM. OMPs are assembled into the OM by the β-barrel assembly machine (BAM), which is composed of one OMP-BamA-and four lipoproteins-BamB, C, D, and E. BamB, C, and E can be removed individually with only minor effects on barrier function; however, depletion of either BamA or BamD causes a global defect in OMP assembly and results in cell death. We have identified a gain-of-function mutation, bamA E470K , that bypasses the requirement for BamD. Although bamD::kan bamA E470K cells exhibit growth and OM barrier defects, they assemble OMPs with surprising robustness. Our results demonstrate that BamD does not play a catalytic role in OMP assembly, but rather functions to regulate the activity of BamA.
Collapse
|
9
|
Gross LE, Spies N, Simm S, Schleiff E. Toc75-V/OEP80 is processed during translocation into chloroplasts, and the membrane-embedded form exposes its POTRA domain to the intermembrane space. FEBS Open Bio 2020; 10:444-454. [PMID: 31953987 PMCID: PMC7050246 DOI: 10.1002/2211-5463.12791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/11/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
The insertion of membrane proteins requires proteinaceous complexes in the cytoplasm, the membrane, and the lumen of organelles. Most of the required complexes have been described, while the components for insertion of β-barrel-type proteins into the outer membrane of chloroplasts remain unknown. The same holds true for the signals required for the insertion of β-barrel-type proteins. At present, only the processing of Toc75-III, the β-barrel-type protein of the central chloroplast translocon with an atypical signal, has been explored in detail. However, it has been debated whether Toc75-V/ outer envelope protein 80 (OEP80), a second protein of the same family, contains a signal and undergoes processing. To substantiate the hypothesis that Toc75-V/OEP80 is processed as well, we reinvestigated the processing in a protoplast-based assay as well as in native membranes. Our results confirm the existence of a cleavable segment. By protease protection and pegylation, we observed intermembrane space localization of the soluble N-terminal domain. Thus, Toc75-V contains a cleavable N-terminal signal and exposes its polypeptide transport-associated domains to the intermembrane space of plastids, where it likely interacts with its substrates.
Collapse
Affiliation(s)
- Lucia E. Gross
- Department of Molecular Cell Biology of PlantsGoethe UniversityFrankfurtGermany
| | - Nicole Spies
- Department of Molecular Cell Biology of PlantsGoethe UniversityFrankfurtGermany
| | - Stefan Simm
- Department of Molecular Cell Biology of PlantsGoethe UniversityFrankfurtGermany
- Frankfurt Institute for Advanced StudiesGermany
| | - Enrico Schleiff
- Department of Molecular Cell Biology of PlantsGoethe UniversityFrankfurtGermany
- Frankfurt Institute for Advanced StudiesGermany
- Buchmann Institute for Molecular Life SciencesGoethe UniversityFrankfurtGermany
| |
Collapse
|
10
|
Knopp M, Garg SG, Handrich M, Gould SB. Major Changes in Plastid Protein Import and the Origin of the Chloroplastida. iScience 2020; 23:100896. [PMID: 32088393 PMCID: PMC7038456 DOI: 10.1016/j.isci.2020.100896] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 12/26/2022] Open
Abstract
Core components of plastid protein import and the principle of using N-terminal targeting sequences are conserved across the Archaeplastida, but lineage-specific differences exist. Here we compare, in light of plastid protein import, the response to high-light stress from representatives of the three archaeplastidal groups. Similar to land plants, Chlamydomonas reinhardtii displays a broad response to high-light stress, not observed to the same degree in the glaucophyte Cyanophora paradoxa or the rhodophyte Porphyridium purpureum. We find that only the Chloroplastida encode both Toc75 and Oep80 in parallel and suggest that elaborate high-light stress response is supported by changes in plastid protein import. We propose the origin of a phenylalanine-independent import pathway via Toc75 allowed higher import rates to rapidly service high-light stress, but with the cost of reduced specificity. Changes in plastid protein import define the origin of the green lineage, whose greatest evolutionary success was arguably the colonization of land. Chloroplastida evolved a dual system, Toc75/Oep80, for high throughput protein import Loss of F-based targeting led to dual organelle targeting using a single ambiguous NTS Relaxation of functional constraints allowed a wider Toc/Tic modification A broad response to high-light stress appears unique to Chloroplastida
Collapse
Affiliation(s)
- Michael Knopp
- Institute for Molecular Evolution, HH-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sriram G Garg
- Institute for Molecular Evolution, HH-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Maria Handrich
- Institute for Molecular Evolution, HH-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, HH-University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
11
|
Palm D, Streit D, Shanmugam T, Weis BL, Ruprecht M, Simm S, Schleiff E. Plant-specific ribosome biogenesis factors in Arabidopsis thaliana with essential function in rRNA processing. Nucleic Acids Res 2019; 47:1880-1895. [PMID: 30576513 PMCID: PMC6393314 DOI: 10.1093/nar/gky1261] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/04/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022] Open
Abstract
rRNA processing and assembly of ribosomal proteins during maturation of ribosomes involve many ribosome biogenesis factors (RBFs). Recent studies identified differences in the set of RBFs in humans and yeast, and the existence of plant-specific RBFs has been proposed as well. To identify such plant-specific RBFs, we characterized T-DNA insertion mutants of 15 Arabidopsis thaliana genes encoding nuclear proteins with nucleotide binding properties that are not orthologues to yeast or human RBFs. Mutants of nine genes show an altered rRNA processing ranging from inhibition of initial 35S pre-rRNA cleavage to final maturation events like the 6S pre-rRNA processing. These phenotypes led to their annotation as 'involved in rRNA processing' - IRP. The irp mutants are either lethal or show developmental and stress related phenotypes. We identified IRPs for maturation of the plant-specific precursor 5'-5.8S and one affecting the pathway with ITS2 first cleavage of the 35S pre-rRNA transcript. Moreover, we realized that 5'-5.8S processing is essential, while a mutant causing 6S accumulation shows only a weak phenotype. Thus, we demonstrate the importance of the maturation of the plant-specific precursor 5'-5.8S for plant development as well as the occurrence of an ITS2 first cleavage pathway in fast dividing tissues.
Collapse
Affiliation(s)
- Denise Palm
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, D-60438 Frankfurt, Germany
| | - Deniz Streit
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, D-60438 Frankfurt, Germany
| | - Thiruvenkadam Shanmugam
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, D-60438 Frankfurt, Germany
| | - Benjamin L Weis
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, D-60438 Frankfurt, Germany
| | - Maike Ruprecht
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, D-60438 Frankfurt, Germany
| | - Stefan Simm
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, D-60438 Frankfurt, Germany
- Frankfurt Institute for Advanced Studies, D-60438 Frankfurt, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, D-60438 Frankfurt, Germany
- Frankfurt Institute for Advanced Studies, D-60438 Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, D-60438 Frankfurt, Germany
- To whom correspondence should be addressed. Tel: +49 69 798 29285; Fax: +49 69 798 29286;
| |
Collapse
|
12
|
Day PM, Inoue K, Theg SM. Chloroplast Outer Membrane β-Barrel Proteins Use Components of the General Import Apparatus. THE PLANT CELL 2019; 31:1845-1855. [PMID: 31217220 PMCID: PMC6713306 DOI: 10.1105/tpc.19.00001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/20/2019] [Accepted: 06/15/2019] [Indexed: 05/12/2023]
Abstract
Chloroplasts evolved from a cyanobacterial endosymbiont that resided within a eukaryotic cell. Due to their prokaryotic heritage, chloroplast outer membranes contain transmembrane β-barrel proteins. While most chloroplast proteins use N-terminal transit peptides to enter the chloroplasts through the translocons at the outer and inner chloroplast envelope membranes (TOC/TIC), only one β-barrel protein, Toc75, has been shown to use this pathway. The route other β-barrel proteins use has remained unresolved. Here we use in vitro pea (Pisum sativum) chloroplast import assays and transient expression in Nicotiana benthamiana to address this. We show that a paralog of Toc75, outer envelope protein 80 kD (OEP80), also uses a transit peptide but has a distinct envelope sorting signal. Our results additionally indicate that β-barrels that do not use transit peptides also enter the chloroplast using components of the general import pathway.
Collapse
Affiliation(s)
- Philip M Day
- Department of Plant Biology, University of California-Davis, Davis, California 95616
| | - Kentaro Inoue
- Department of Plant Sciences, University of California-Davis, Davis, California 95616
| | - Steven M Theg
- Department of Plant Biology, University of California-Davis, Davis, California 95616
| |
Collapse
|
13
|
Kovacevic J, Palm D, Jooss D, Bublak D, Simm S, Schleiff E. Co-orthologues of ribosome biogenesis factors in A. thaliana are differentially regulated by transcription factors. PLANT CELL REPORTS 2019; 38:937-949. [PMID: 31087154 DOI: 10.1007/s00299-019-02416-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Different genes coding for one ribosome biogenesis factor are differentially expressed and are likely under the control of distinct transcription factors, which contributes to the regulatory space for ribosome maturation. Maturation of ribosomes including rRNA processing and modification, rRNA folding and ribosome protein association requires the function of many ribosome biogenesis factors (RBFs). Recent studies document plant-specific variations of the generally conserved process of ribosome biogenesis. For instance, distinct rRNA maturation pathways and intermediates have been identified, the existence of plant specific RBFs has been proposed and several RBFs are encoded by multiple genes. The latter in combination with the discussed ribosome heterogeneity points to a possible function of the different proteins representing one RBF in diversification of ribosomal compositions. Such factor-based regulation would require a differential regulation of their expression, may be even controlled by different transcription factors. We analyzed the expression profiles of genes coding for putative RBFs and transcription factors. Most of the genes coding for RBFs are expressed in a comparable manner, while different genes coding for a single RBF are often differentially expressed. Based on a selected set of genes we document a function of the transcription factors AtMYC1, AtMYC2, AtbHLH105 and AtMYB26 on the regulation of different RBFs. Moreover, on the example of the RBFs LSG1 and BRX1, both encoded by two genes, we give a first hint on a differential transcription factor dependence of expression. Consistent with this observation, the phenotypic analysis of RBF mutants suggests a relation between LSG1-1 and BRX1-1 expression and the transcription factor MYC1. In summary, we propose that the multiple genes coding for one RBF are required to enlarge the regulatory space for ribosome biogenesis.
Collapse
Affiliation(s)
- Jelena Kovacevic
- Institute for Molecular Biosciences, Goethe University, Biocenter/Max von Laue Straße 9/N200/R3.02, 60438, Frankfurt am Main, Germany
| | - Denise Palm
- Institute for Molecular Biosciences, Goethe University, Biocenter/Max von Laue Straße 9/N200/R3.02, 60438, Frankfurt am Main, Germany
| | - Domink Jooss
- Institute for Molecular Biosciences, Goethe University, Biocenter/Max von Laue Straße 9/N200/R3.02, 60438, Frankfurt am Main, Germany
| | - Daniela Bublak
- Institute for Molecular Biosciences, Goethe University, Biocenter/Max von Laue Straße 9/N200/R3.02, 60438, Frankfurt am Main, Germany
| | - Stefan Simm
- Institute for Molecular Biosciences, Goethe University, Biocenter/Max von Laue Straße 9/N200/R3.02, 60438, Frankfurt am Main, Germany
- Frankfurt Institute of Advanced Studies, Frankfurt am Main, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University, Biocenter/Max von Laue Straße 9/N200/R3.02, 60438, Frankfurt am Main, Germany.
- Frankfurt Institute of Advanced Studies, Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
14
|
Bodensohn US, Simm S, Fischer K, Jäschke M, Groß LE, Kramer K, Ehmann C, Rensing SA, Ladig R, Schleiff E. The intracellular distribution of the components of the GET system in vascular plants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1650-1662. [PMID: 31233800 DOI: 10.1016/j.bbamcr.2019.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/16/2022]
Abstract
The guided entry of tail-anchored proteins (GET) pathway facilitates targeting and insertion of tail-anchored proteins into membranes. In plants, such a protein insertion machinery for the endoplasmic reticulum as well as constituents within mitochondrial and chloroplasts were discovered. Previous phylogenetic analysis revealed that Get3 sequences of Embryophyta form two clades representing cytosolic ("a") and organellar ("bc") GET3 homologs, respectively. Cellular fractionation of Arabidopsis thaliana seedlings and usage of the self-assembly GFP system in protoplasts verified the cytosolic (ATGet3a), plastidic (ATGet3b) and mitochondrial (ATGet3c) localization of the different homologs. The identified plant homologs of Get1 and Get4 in A. thaliana are localized in ER and cytosol, respectively, implicating a degree of conservation of the GET pathway in A. thaliana. Transient expression of Get3 homologs of Solanum lycopersicum, Medicago × varia or Physcomitrella patens with the self-assembly GFP technique in homologous and heterologous systems verified that multiple Get3 homologs with differing subcellular localizations are common in plants. Chloroplast localized Get3 homologs were detected in all tested plant systems. In contrast, mitochondrial localized Get3 homologs were not identified in S. lycopersicum, or P. patens, while we confirmed on the example of A. thaliana proteins that mitochondrial localized Get3 proteins are properly targeted in S. lycopersicum as well.
Collapse
Affiliation(s)
- Uwe S Bodensohn
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Stefan Simm
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany; Frankfurt Institute of Advanced Studies, Ruth-Moufang-Straße 1, D-60438 Frankfurt, Germany
| | - Ken Fischer
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Michelle Jäschke
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Lucia E Groß
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Katharina Kramer
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Christian Ehmann
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Stefan A Rensing
- Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany
| | - Roman Ladig
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany; Buchman Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 15, D-60438 Frankfurt, Germany; Frankfurt Institute of Advanced Studies, Ruth-Moufang-Straße 1, D-60438 Frankfurt, Germany.
| |
Collapse
|
15
|
Brouwer E, Ngo G, Yadav S, Ladig R, Schleiff E. Tic22 from
Anabaena
sp. PCC 7120 with holdase function involved in outer membrane protein biogenesis shuttles between plasma membrane and Omp85. Mol Microbiol 2019; 111:1302-1316. [DOI: 10.1111/mmi.14222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Eva‐Maria Brouwer
- Institute for Molecular Biosciences Goethe University Frankfurt am Main Frankfurt am Main Germany
| | - Giang Ngo
- Institute for Molecular Biosciences Goethe University Frankfurt am Main Frankfurt am Main Germany
| | - Shivam Yadav
- Institute for Molecular Biosciences Goethe University Frankfurt am Main Frankfurt am Main Germany
- Centre of Advanced Studies in Botany, Institute of Science Banaras Hindu University Varanasi India
| | - Roman Ladig
- Institute for Molecular Biosciences Goethe University Frankfurt am Main Frankfurt am Main Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences Goethe University Frankfurt am Main Frankfurt am Main Germany
- Buchman Institute for Molecular Life Sciences Goethe University Frankfurt am Main Frankfurt am Main Germany
- Frankfurt Institute of Advanced Studies Frankfurt am Main Germany
| |
Collapse
|
16
|
Klinger A, Gosch V, Bodensohn U, Ladig R, Schleiff E. The signal distinguishing between targeting of outer membrane β-barrel protein to plastids and mitochondria in plants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:663-672. [PMID: 30633951 DOI: 10.1016/j.bbamcr.2019.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/03/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022]
Abstract
The proteome of the outer membrane of mitochondria and chloroplasts consists of membrane proteins anchored by α-helical or β-sheet elements. While proteins with α-helical transmembrane domains are present in all cellular membranes, proteins with β-barrel structure are specific for these two membranes. The organellar β-barrel proteins are encoded in the nuclear genome and thus, have to be targeted to the outer organellar membrane where they are recognized by surface exposed translocation complexes. In the last years, the signals that ensure proper targeting of these proteins have been investigated as essential base for an understanding of the regulation of cellular protein distribution. However, the organellar β-barrel proteins are unique as most of them do not contain a typical targeting information in form of an N-terminal cleavable targeting signal. Recently, it was discovered that targeting and surface recognition of mitochondrial β-barrel proteins in yeast, humans and plants depends on the hydrophobicity of the last β-hairpin of the β-barrel. However, we demonstrate that the hydrophobicity is not sufficient for the discrimination of targeting to chloroplasts or mitochondria. By domain swapping between mitochondrial and chloroplast targeted β-barrel proteins atVDAC1 and psOEP24 we demonstrate that the presence of a hydrophilic amino acid at the C-terminus of the penultimate β-strand is required for mitochondrial targeting. A mutation of the chloroplast β-barrel protein psOEP24 which mimics such profile is efficiently targeted to mitochondria. Thus, we present the properties of the signal for mitochondrial targeting of β-barrel proteins in plants.
Collapse
Affiliation(s)
- Anna Klinger
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Victoria Gosch
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Uwe Bodensohn
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Roman Ladig
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany; Buchman Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 15, D-60438 Frankfurt, Germany; Frankfurt Institute of Advanced Studies, Ruth-Moufang-Straße 1, D-60438 Frankfurt, Germany.
| |
Collapse
|
17
|
Day PM, Theg SM. Evolution of protein transport to the chloroplast envelope membranes. PHOTOSYNTHESIS RESEARCH 2018; 138:315-326. [PMID: 30291507 DOI: 10.1007/s11120-018-0540-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/20/2018] [Indexed: 05/11/2023]
Abstract
Chloroplasts are descendants of an ancient endosymbiotic cyanobacterium that lived inside a eukaryotic cell. They inherited the prokaryotic double membrane envelope from cyanobacteria. This envelope contains prokaryotic protein sorting machineries including a Sec translocase and relatives of the central component of the bacterial outer membrane β-barrel assembly module. As the endosymbiont was integrated with the rest of the cell, the synthesis of most of its proteins shifted from the stroma to the host cytosol. This included nearly all the envelope proteins identified so far. Consequently, the overall biogenesis of the chloroplast envelope must be distinct from cyanobacteria. Envelope proteins initially approach their functional locations from the exterior rather than the interior. In many cases, they have been shown to use components of the general import pathway that also serves the stroma and thylakoids. If the ancient prokaryotic protein sorting machineries are still used for chloroplast envelope proteins, their activities must have been modified or combined with the general import pathway. In this review, we analyze the current knowledge pertaining to chloroplast envelope biogenesis and compare this to bacteria.
Collapse
Affiliation(s)
- Philip M Day
- Department of Plant Biology, University of California at Davis, 1 Shields Avenue, Davis, CA, USA
| | - Steven M Theg
- Department of Plant Biology, University of California at Davis, 1 Shields Avenue, Davis, CA, USA.
| |
Collapse
|
18
|
Palm D, Streit D, Ruprecht M, Simm S, Scharf C, Schleiff E. Late ribosomal protein localization in Arabidopsis thaliana differs to that in Saccharomyces cerevisiae. FEBS Open Bio 2018; 8:1437-1444. [PMID: 30186745 PMCID: PMC6120241 DOI: 10.1002/2211-5463.12487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 11/07/2022] Open
Abstract
Ribosome biogenesis is essential for cellular function and involves rRNA synthesis, rRNA processing and modification, and ribosomal protein assembly. Ribosome biogenesis factors and small nucleolar RNA assist these events. Ribosomal maturation takes place in the nucleolus, the nucleoplasm, and the cytosol in a coordinated and controlled manner. For example, some ribosomal proteins are thought to be assembled in the cytoplasm based on the observations in Saccharomyces cerevisiae. Here, we used cellular fractionation to demonstrate that cleavage of the 20S intermediate, the precursor to mature 18S rRNA, does not occur in the nucleoplasm of Arabidopsis thaliana. It most likely occurs in the cytoplasm. Further, we verified the proposed localization of RPS10e, RPS26e, and RPL24a/b in the nucleus and RPP1 in the nucleolus of A. thaliana by ribosome profiling, immunofluorescence, and analysis of the localization of GFP fusion proteins. Our results suggest that the order of events during ribosomal protein assembly in the ribosome biogenesis pathway differs between plants and yeast.
Collapse
Affiliation(s)
- Denise Palm
- Institute for Molecular BiosciencesGoethe University Frankfurt am MainGermany
- Buchman Institute for Molecular Life SciencesGoethe University Frankfurt am MainGermany
| | - Deniz Streit
- Institute for Molecular BiosciencesGoethe University Frankfurt am MainGermany
| | - Maike Ruprecht
- Institute for Molecular BiosciencesGoethe University Frankfurt am MainGermany
| | - Stefan Simm
- Institute for Molecular BiosciencesGoethe University Frankfurt am MainGermany
- Frankfurt Institute of Advanced StudiesFrankfurt am MainGermany
| | - Christian Scharf
- Department of Otorhinolaryngology, Head and Neck SurgeryUniversity of GreifswaldGermany
| | - Enrico Schleiff
- Institute for Molecular BiosciencesGoethe University Frankfurt am MainGermany
- Buchman Institute for Molecular Life SciencesGoethe University Frankfurt am MainGermany
- Frankfurt Institute of Advanced StudiesFrankfurt am MainGermany
| |
Collapse
|
19
|
Hsueh YC, Nicolaisen K, Gross LE, Nöthen J, Schauer N, Vojta L, Ertel F, Koch I, Ladig R, Fulgosi H, Fernie AR, Schleiff E. The outer membrane Omp85-like protein P39 influences metabolic homeostasis in mature Arabidopsis thaliana. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:825-833. [PMID: 29758131 DOI: 10.1111/plb.12839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
The Omp85 proteins form a large membrane protein family in bacteria and eukaryotes. Omp85 proteins are composed of a C-terminal β-barrel-shaped membrane domain and one or more N-terminal polypeptide transport-associated (POTRA) domains. However, Arabidopsis thaliana contains two genes coding for Omp85 proteins without a POTRA domain. One gene is designated P39, according to the molecular weight of the encoded protein. The protein is targeted to plastids and it was established that p39 has electrophysiological properties similar to other Omp85 family members, particularly to that designated as Toc75V/Oep80. We analysed expression of the gene and characterised two T-DNA insertion mutants, focusing on alterations in photosynthetic activity, plastid ultrastructure, global expression profile and metabolome. We observed pronounced expression of P39, especially in veins. Mutants of P39 show growth aberrations, reduced photosynthetic activity and changes in plastid ultrastructure, particularly in the leaf tip. Further, they display global alteration of gene expression and metabolite content in leaves of mature plants. We conclude that the function of the plastid-localised and vein-specific Omp85 family protein p39 is important, but not essential, for maintenance of metabolic homeostasis of full-grown A. thaliana plants. Further, the function of p39 in veins influences the functionality of other plant tissues. The link connecting p39 function with metabolic regulation in mature A. thaliana is discussed.
Collapse
Affiliation(s)
- Y-C Hsueh
- Department of Molecular Cell Biology of Plants, Goethe University, Frankfurt, Germany
| | - K Nicolaisen
- Department of Molecular Cell Biology of Plants, Goethe University, Frankfurt, Germany
| | - L E Gross
- Department of Molecular Cell Biology of Plants, Goethe University, Frankfurt, Germany
| | - J Nöthen
- Department of Molecular Cell Biology of Plants, Goethe University, Frankfurt, Germany
- Department of Mathematics and Informatics, Goethe University, Frankfurt, Germany
| | - N Schauer
- MPI für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - L Vojta
- Division of Molecular Biology, Institute Ruđer Bošković, Zagreb, Croatia
| | - F Ertel
- Department of Molecular Cell Biology of Plants, Goethe University, Frankfurt, Germany
| | - I Koch
- Department of Mathematics and Informatics, Goethe University, Frankfurt, Germany
| | - R Ladig
- Department of Molecular Cell Biology of Plants, Goethe University, Frankfurt, Germany
| | - H Fulgosi
- Division of Molecular Biology, Institute Ruđer Bošković, Zagreb, Croatia
| | - A R Fernie
- MPI für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - E Schleiff
- Department of Molecular Cell Biology of Plants, Goethe University, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Frankfurt, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt, Germany
| |
Collapse
|
20
|
A comprehensive review of signal peptides: Structure, roles, and applications. Eur J Cell Biol 2018; 97:422-441. [DOI: 10.1016/j.ejcb.2018.06.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 01/06/2023] Open
|
21
|
Nowack ECM, Weber APM. Genomics-Informed Insights into Endosymbiotic Organelle Evolution in Photosynthetic Eukaryotes. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:51-84. [PMID: 29489396 DOI: 10.1146/annurev-arplant-042817-040209] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The conversion of free-living cyanobacteria to photosynthetic organelles of eukaryotic cells through endosymbiosis transformed the biosphere and eventually provided the basis for life on land. Despite the presumable advantage conferred by the acquisition of photoautotrophy through endosymbiosis, only two independent cases of primary endosymbiosis have been documented: one that gave rise to the Archaeplastida, and the other to photosynthetic species of the thecate, filose amoeba Paulinella. Here, we review recent genomics-informed insights into the primary endosymbiotic origins of cyanobacteria-derived organelles. Furthermore, we discuss the preconditions for the evolution of nitrogen-fixing organelles. Recent genomic data on previously undersampled cyanobacterial and protist taxa provide new clues to the origins of the host cell and endosymbiont, and proteomic approaches allow insights into the rearrangement of the endosymbiont proteome during organellogenesis. We conclude that in addition to endosymbiotic gene transfers, horizontal gene acquisitions from a broad variety of prokaryotic taxa were crucial to organelle evolution.
Collapse
Affiliation(s)
- Eva C M Nowack
- Microbial Symbiosis and Organelle Evolution Group, Biology Department, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany;
| |
Collapse
|
22
|
Structural components involved in plastid protein import. Essays Biochem 2018; 62:65-75. [DOI: 10.1042/ebc20170093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 02/04/2023]
Abstract
Import of preproteins into chloroplasts is an essential process, requiring two major multisubunit protein complexes that are embedded in the outer and inner chloroplast envelope membrane. Both the translocon of the outer chloroplast membrane (Toc), as well as the translocon of the inner chloroplast membrane (Tic) have been studied intensively with respect to their individual subunit compositions, functions and regulations. Recent advances in crystallography have increased our understanding of the operation of these proteins in terms of their interactions and regulation by conformational switching. Several subdomains of components of the Toc translocon have been studied at the structural level, among them the polypeptide transport-associated (POTRA) domain of the channel protein Toc75 and the GTPase domain of Toc34. In this review, we summarize and discuss the insight that has been gained from these structural analyses. In addition, we present the crystal structure of the Toc64 tetratrico-peptide repeat (TPR) domain in complex with the C-terminal domains of the heat-shock proteins (Hsp) Hsp90 and Hsp70.
Collapse
|
23
|
Montacié C, Durut N, Opsomer A, Palm D, Comella P, Picart C, Carpentier MC, Pontvianne F, Carapito C, Schleiff E, Sáez-Vásquez J. Nucleolar Proteome Analysis and Proteasomal Activity Assays Reveal a Link between Nucleolus and 26S Proteasome in A. thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:1815. [PMID: 29104584 PMCID: PMC5655116 DOI: 10.3389/fpls.2017.01815] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/06/2017] [Indexed: 05/23/2023]
Abstract
In all eukaryotic cells, the nucleolus is functionally and structurally linked to rRNA synthesis and ribosome biogenesis. This compartment contains as well factors involved in other cellular activities, but the functional interconnection between non-ribosomal activities and the nucleolus (structure and function) still remains an open question. Here, we report a novel mass spectrometry analysis of isolated nucleoli from Arabidopsis thaliana plants using the FANoS (Fluorescence Assisted Nucleolus Sorting) strategy. We identified many ribosome biogenesis factors (RBF) and proteins non-related with ribosome biogenesis, in agreement with the recognized multi-functionality of the nucleolus. Interestingly, we found that 26S proteasome subunits localize in the nucleolus and demonstrated that proteasome activity and nucleolus organization are intimately linked to each other. Proteasome subunits form discrete foci in the disorganized nucleolus of nuc1.2 plants. Nuc1.2 protein extracts display reduced proteasome activity in vitro compared to WT protein extracts. Remarkably, proteasome activity in nuc1.2 is similar to proteasome activity in WT plants treated with proteasome inhibitors (MG132 or ALLN). Finally, we show that MG132 treatment induces disruption of nucleolar structures in WT but not in nuc1.2 plants. Altogether, our data suggest a functional interconnection between nucleolus structure and proteasome activity.
Collapse
Affiliation(s)
- Charlotte Montacié
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, UMR 5096, Perpignan, France
- Laboratoire Génome et Développement des Plantes, University of Perpignan Via Domitia, UMR 5096, Perpignan, France
| | - Nathalie Durut
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, UMR 5096, Perpignan, France
- Laboratoire Génome et Développement des Plantes, University of Perpignan Via Domitia, UMR 5096, Perpignan, France
| | - Alison Opsomer
- Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, UMR7178 Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Denise Palm
- Institute for Molecular Biosciences, Cluster of Excellence Macromolecular Complexes, Buchman Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Pascale Comella
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, UMR 5096, Perpignan, France
- Laboratoire Génome et Développement des Plantes, University of Perpignan Via Domitia, UMR 5096, Perpignan, France
| | - Claire Picart
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, UMR 5096, Perpignan, France
- Laboratoire Génome et Développement des Plantes, University of Perpignan Via Domitia, UMR 5096, Perpignan, France
| | - Marie-Christine Carpentier
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, UMR 5096, Perpignan, France
- Laboratoire Génome et Développement des Plantes, University of Perpignan Via Domitia, UMR 5096, Perpignan, France
| | - Frederic Pontvianne
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, UMR 5096, Perpignan, France
- Laboratoire Génome et Développement des Plantes, University of Perpignan Via Domitia, UMR 5096, Perpignan, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, UMR7178 Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Cluster of Excellence Macromolecular Complexes, Buchman Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Julio Sáez-Vásquez
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, UMR 5096, Perpignan, France
- Laboratoire Génome et Développement des Plantes, University of Perpignan Via Domitia, UMR 5096, Perpignan, France
| |
Collapse
|
24
|
Chaturvedi D, Mahalakshmi R. Transmembrane β-barrels: Evolution, folding and energetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2467-2482. [PMID: 28943271 DOI: 10.1016/j.bbamem.2017.09.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/23/2022]
Abstract
The biogenesis of transmembrane β-barrels (outer membrane proteins, or OMPs) is an elaborate multistep orchestration of the nascent polypeptide with translocases, barrel assembly machinery, and helper chaperone proteins. Several theories exist that describe the mechanism of chaperone-assisted OMP assembly in vivo and unassisted (spontaneous) folding in vitro. Structurally, OMPs of bacterial origin possess even-numbered strands, while mitochondrial β-barrels are even- and odd-stranded. Several underlying similarities between prokaryotic and eukaryotic β-barrels and their folding machinery are known; yet, the link in their evolutionary origin is unclear. While OMPs exhibit diversity in sequence and function, they share similar biophysical attributes and structure. Similarly, it is important to understand the intricate OMP assembly mechanism, particularly in eukaryotic β-barrels that have evolved to perform more complex functions. Here, we deliberate known facets of β-barrel evolution, folding, and stability, and attempt to highlight outstanding questions in β-barrel biogenesis and proteostasis.
Collapse
Affiliation(s)
- Deepti Chaturvedi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| |
Collapse
|
25
|
Hsueh YC, Ehmann C, Flinner N, Ladig R, Schleiff E. The plastid outer membrane localized LPTD1 is important for glycerolipid remodelling under phosphate starvation. PLANT, CELL & ENVIRONMENT 2017; 40:1643-1657. [PMID: 28433003 DOI: 10.1111/pce.12973] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
Glycerolipid synthesis in plants is coordinated between plastids and the endoplasmic reticulum (ER). A central step within the glycerolipid synthesis is the transport of phosphatidic acid from ER to chloroplasts. The chloroplast outer envelope protein TGD4 belongs to the LptD family conserved in bacteria and plants and selectively binds and may transport phosphatidic acid. We describe a second LptD-family protein in A. thaliana (atLPTD1; At2g44640) characterized by a barrel domain with an amino-acid signature typical for cyanobacterial LptDs. It forms a cation selective channel in vitro with a diameter of about 9 Å. atLPTD1 levels are induced under phosphate starvation. Plants expressing an RNAi construct against atLPTD1 show a growth phenotype under normal conditions. Expressing the RNAi against atLPTD1 in the tgd4-1 background renders the plants more sensitive to light stress or phosphate limitation than the individual mutants. Moreover, lipid analysis revealed that digalactosyldiacylglycerol and sulfoquinovosyldiacylglycerol levels remain constant in the RNAi mutants under phosphate starvation, while these two lipids are enhanced in wild-type. Based on our results, we propose a function of atLPTD1 in the transport of lipids from ER to chloroplast under phosphate starvation, which is combinatory with the function of TGD4.
Collapse
Affiliation(s)
- Yi-Ching Hsueh
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt am Main, Germany
- Department of Physics, Syracuse University, 201 Physics Bldg., Syracuse, New York, NY, 13244-1130, USA
| | - Christian Ehmann
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Nadine Flinner
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies (FIAS), Ruth-Moufang-Straße 1, 60438, Frankfurt am Main, Germany
| | - Roman Ladig
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt am Main, Germany
- Cluster of Excellence Frankfurt, Goethe University, Max von Laue Str. 9, 60438, Frankfurt am Main, Germany
- Buchman Institute of Molecular Life Sciences, Goethe University, Max von Laue Str. 15, 60438, Frankfurt am Main, Germany
| |
Collapse
|
26
|
Giessen TW, Silver PA. Engineering carbon fixation with artificial protein organelles. Curr Opin Biotechnol 2017; 46:42-50. [DOI: 10.1016/j.copbio.2017.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/05/2017] [Indexed: 10/20/2022]
|
27
|
Hsueh YC, Flinner N, Gross LE, Haarmann R, Mirus O, Sommer MS, Schleiff E. Chloroplast outer envelope protein P39 in Arabidopsis thaliana belongs to the Omp85 protein family. Proteins 2017; 85:1391-1401. [PMID: 25401771 DOI: 10.1002/prot.24725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/14/2014] [Accepted: 11/03/2014] [Indexed: 01/08/2023]
Abstract
Proteins of the Omp85 family chaperone the membrane insertion of β-barrel-shaped outer membrane proteins in bacteria, mitochondria, and probably chloroplasts and facilitate the transfer of nuclear-encoded cytosolically synthesized preproteins across the outer envelope of chloroplasts. This protein family is characterized by N-terminal polypeptide transport-associated (POTRA) domains and a C-terminal membrane-embedded β-barrel. We have investigated a recently identified Omp85 family member of Arabidopsis thaliana annotated as P39. We show by in vitro and in vivo experiments that P39 is localized in chloroplasts. The electrophysiological properties of P39 are consistent with those of other Omp85 family members confirming the sequence based assignment of P39 to this family. Bioinformatic analysis showed that P39 lacks any POTRA domain, while a complete 16 stranded β-barrel including the highly conserved L6 loop is proposed. The electrophysiological properties are most comparable to Toc75-V, which is consistent with the phylogenetic clustering of P39 in the Toc75-V rather than the Toc75-III branch of the Omp85 family tree. Taken together P39 forms a pore with Omp85 family protein characteristics. The bioinformatic comparison of the pore region of Toc75-III, Toc75-V, and P39 shows distinctions of the barrel region most likely related to function. Proteins 2017; 85:1391-1401. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yi-Ching Hsueh
- Department of Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt, Germany
| | - Nadine Flinner
- Department of Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt, Germany.,Center of Membrane Proteomics, Goethe University, D-60438, Frankfurt, Germany
| | - Lucia E Gross
- Department of Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt, Germany
| | - Raimund Haarmann
- Department of Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt, Germany
| | - Oliver Mirus
- Department of Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt, Germany
| | - Maik S Sommer
- Department of Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt, Germany
| | - Enrico Schleiff
- Department of Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt, Germany.,Center of Membrane Proteomics, Goethe University, D-60438, Frankfurt, Germany.,Cluster of Excellence Frankfurt, Goethe University, D-60438, Frankfurt, Germany.,Buchman Institute of Molecular Life Sciences, Goethe University, D-60438, Frankfurt, Germany
| |
Collapse
|
28
|
Sjuts I, Soll J, Bölter B. Import of Soluble Proteins into Chloroplasts and Potential Regulatory Mechanisms. FRONTIERS IN PLANT SCIENCE 2017; 8:168. [PMID: 28228773 PMCID: PMC5296341 DOI: 10.3389/fpls.2017.00168] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/26/2017] [Indexed: 05/20/2023]
Abstract
Chloroplasts originated from an endosymbiotic event in which a free-living cyanobacterium was engulfed by an ancestral eukaryotic host. During evolution the majority of the chloroplast genetic information was transferred to the host cell nucleus. As a consequence, proteins formerly encoded by the chloroplast genome are now translated in the cytosol and must be subsequently imported into the chloroplast. This process involves three steps: (i) cytosolic sorting procedures, (ii) binding to the designated receptor-equipped target organelle and (iii) the consecutive translocation process. During import, proteins have to overcome the two barriers of the chloroplast envelope, namely the outer envelope membrane (OEM) and the inner envelope membrane (IEM). In the majority of cases, this is facilitated by two distinct multiprotein complexes, located in the OEM and IEM, respectively, designated TOC and TIC. Plants are constantly exposed to fluctuating environmental conditions such as temperature and light and must therefore regulate protein composition within the chloroplast to ensure optimal functioning of elementary processes such as photosynthesis. In this review we will discuss the recent models of each individual import stage with regard to short-term strategies that plants might use to potentially acclimate to changes in their environmental conditions and preserve the chloroplast protein homeostasis.
Collapse
Affiliation(s)
- Inga Sjuts
- Department Biologie I-Botanik, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
| | - Jürgen Soll
- Department Biologie I-Botanik, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-UniversitätMunich, Germany
| | - Bettina Bölter
- Department Biologie I-Botanik, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-UniversitätMunich, Germany
- *Correspondence: Bettina Bölter,
| |
Collapse
|
29
|
|
30
|
Röth S, Mirus O, Bublak D, Scharf KD, Schleiff E. DNA-binding and repressor function are prerequisites for the turnover of the tomato heat stress transcription factor HsfB1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:31-44. [PMID: 27560701 DOI: 10.1111/tpj.13317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 05/15/2023]
Abstract
HsfB1 is a central regulator of heat stress (HS) response and functions dually as a transcriptional co-activator of HsfA1a and a general repressor in tomato. HsfB1 is efficiently synthesized during the onset of HS and rapidly removed in the course of attenuation during the recovery phase. Initial results point to a complex regime modulating HsfB1 abundance involving the molecular chaperone Hsp90. However, the molecular determinants affecting HsfB1 stability needed to be established. We provide experimental evidence that DNA-bound HsfB1 is efficiently targeted for degradation when active as a transcriptional repressor. Manipulation of the DNA-binding affinity by mutating the HsfB1 DNA-binding domain directly influences the stability of the transcription factor. During HS, HsfB1 is stabilized, probably due to co-activator complex formation with HsfA1a. The process of HsfB1 degradation involves nuclear localized Hsp90. The molecular determinants of HsfB1 turnover identified in here are so far seemingly unique. A mutational switch of the R/KLFGV repressor motif's arginine and lysine implies that the abundance of other R/KLFGV type Hsfs, if not other transcription factors as well, might be modulated by a comparable mechanism. Thus, we propose a versatile mechanism for strict abundance control of the stress-induced transcription factor HsfB1 for the recovery phase, and this mechanism constitutes a form of transcription factor removal from promoters by degradation inside the nucleus.
Collapse
Affiliation(s)
- Sascha Röth
- Molecular Cell Biology of Plants, Goethe University Frankfurt/Main, Max-von-Laue Str. 9, Frankfurt/Main, Germany
| | - Oliver Mirus
- Molecular Cell Biology of Plants, Goethe University Frankfurt/Main, Max-von-Laue Str. 9, Frankfurt/Main, Germany
| | - Daniela Bublak
- Molecular Cell Biology of Plants, Goethe University Frankfurt/Main, Max-von-Laue Str. 9, Frankfurt/Main, Germany
| | - Klaus-Dieter Scharf
- Molecular Cell Biology of Plants, Goethe University Frankfurt/Main, Max-von-Laue Str. 9, Frankfurt/Main, Germany
| | - Enrico Schleiff
- Molecular Cell Biology of Plants, Goethe University Frankfurt/Main, Max-von-Laue Str. 9, Frankfurt/Main, Germany
- Cluster of Excellence 'Macromolecular Complexes', Goethe University Frankfurt/Main, Max-von-Laue Str. 9, Frankfurt/Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt/Main, Max-von-Laue Str. 9, Frankfurt/Main, Germany
| |
Collapse
|
31
|
Chen YL, Chen LJ, Li HM. Polypeptide Transport-Associated Domains of the Toc75 Channel Protein Are Located in the Intermembrane Space of Chloroplasts. PLANT PHYSIOLOGY 2016; 172:235-43. [PMID: 27388682 PMCID: PMC5074630 DOI: 10.1104/pp.16.00919] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/05/2016] [Indexed: 05/20/2023]
Abstract
Toc75 is the channel for protein translocation across the chloroplast outer envelope membrane. Toc75 belongs to the Omp85 protein family and consists of three N-terminal polypeptide transport-associated (POTRA) domains that are essential for the functions of Toc75, followed by a membrane-spanning β-barrel domain. In bacteria, POTRA domains of Omp85 family members are located in the periplasm, where they interact with other partner proteins to accomplish protein secretion and outer membrane protein assembly. However, the orientation and therefore the molecular function of chloroplast Toc75 POTRA domains remain a matter of debate. We investigated the topology of Toc75 using bimolecular fluorescence complementation and immunogold electron microscopy. Bimolecular fluorescence complementation analyses showed that in stably transformed plants, Toc75 N terminus is located on the intermembrane space side, not the cytosolic side, of the outer membrane. Immunogold labeling of endogenous Toc75 POTRA domains in pea (Pisum sativum) and Arabidopsis (Arabidopsis thaliana) confirmed that POTRA domains are located in the intermembrane space of the chloroplast envelope.
Collapse
Affiliation(s)
- Yih-Lin Chen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Lih-Jen Chen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Hsou-Min Li
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
32
|
Garg SG, Gould SB. The Role of Charge in Protein Targeting Evolution. Trends Cell Biol 2016; 26:894-905. [PMID: 27524662 DOI: 10.1016/j.tcb.2016.07.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/28/2016] [Accepted: 07/11/2016] [Indexed: 12/31/2022]
Abstract
Two eukaryotic compartments are of endosymbiotic origin, the mitochondrion and plastid. These organelles need to import hundreds of proteins from the cytosol. The import machineries of both are of independent origin, but function in a similar fashion and recognize N-terminal targeting sequences that also share similarities. Targeting, however, is generally specific, even though plastid targeting evolved in the presence of established mitochondrial targeting. Here we review current advances on protein import into mitochondria and plastids from diverse eukaryotic lineages and highlight the impact of charged amino acids in targeting. Their presence or absence alone can determine localization, and comparisons across diverse eukaryotes, and their different types of mitochondria and plastids, uncover unexplored avenues of protein import research.
Collapse
Affiliation(s)
- Sriram G Garg
- Institute for Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
33
|
Jores T, Klinger A, Groß LE, Kawano S, Flinner N, Duchardt-Ferner E, Wöhnert J, Kalbacher H, Endo T, Schleiff E, Rapaport D. Characterization of the targeting signal in mitochondrial β-barrel proteins. Nat Commun 2016; 7:12036. [PMID: 27345737 PMCID: PMC4931251 DOI: 10.1038/ncomms12036] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/24/2016] [Indexed: 01/15/2023] Open
Abstract
Mitochondrial β-barrel proteins are synthesized on cytosolic ribosomes and must be specifically targeted to the organelle before their integration into the mitochondrial outer membrane. The signal that assures such precise targeting and its recognition by the organelle remained obscure. In the present study we show that a specialized β-hairpin motif is this long searched for signal. We demonstrate that a synthetic β-hairpin peptide competes with the import of mitochondrial β-barrel proteins and that proteins harbouring a β-hairpin peptide fused to passenger domains are targeted to mitochondria. Furthermore, a β-hairpin motif from mitochondrial proteins targets chloroplast β-barrel proteins to mitochondria. The mitochondrial targeting depends on the hydrophobicity of the β-hairpin motif. Finally, this motif interacts with the mitochondrial import receptor Tom20. Collectively, we reveal that β-barrel proteins are targeted to mitochondria by a dedicated β-hairpin element, and this motif is recognized at the organelle surface by the outer membrane translocase. Mitochondrial β-barrel proteins are synthesized in the cytosol before being targeted to the organelle. Here, Jores et al. show that a specialized hydrophobic β-hairpin motif is the previously undefined targeting sequence and is recognized by the mitochondrial outer membrane translocase.
Collapse
Affiliation(s)
- Tobias Jores
- Interfaculty Institute of Biochemistry, University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany
| | - Anna Klinger
- Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Lucia E Groß
- Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Shin Kawano
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Nadine Flinner
- Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Elke Duchardt-Ferner
- Institute for Molecular Biosciences, Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Enrico Schleiff
- Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.,Cluster of Excellence Frankfurt, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany
| |
Collapse
|
34
|
Bölter B, Soll J. Once upon a Time - Chloroplast Protein Import Research from Infancy to Future Challenges. MOLECULAR PLANT 2016; 9:798-812. [PMID: 27142186 DOI: 10.1016/j.molp.2016.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 05/08/2023]
Abstract
Protein import into chloroplasts has been a focus of research for several decades. The first publications dealing with this fascinating topic appeared in the 1970s. From the initial realization that many plastid proteins are being encoded for in the nucleus and require transport into their target organelle to the identification of import components in the cytosol, chloroplast envelopes, and stroma, as well as elucidation of some mechanistic details, more fascinating aspects are still being unraveled. With this overview, we present a survey of the beginnings of chloroplast protein import research, the first steps on this winding road, and end with a glimpse into the future.
Collapse
Affiliation(s)
- Bettina Bölter
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhaderner Straße 2-4, 82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.
| | - Jürgen Soll
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhaderner Straße 2-4, 82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| |
Collapse
|
35
|
Flori S, Jouneau PH, Finazzi G, Maréchal E, Falconet D. Ultrastructure of the Periplastidial Compartment of the Diatom Phaeodactylum tricornutum. Protist 2016; 167:254-67. [DOI: 10.1016/j.protis.2016.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/04/2016] [Accepted: 04/16/2016] [Indexed: 11/16/2022]
|
36
|
Long BM, Rae BD, Rolland V, Förster B, Price GD. Cyanobacterial CO2-concentrating mechanism components: function and prospects for plant metabolic engineering. CURRENT OPINION IN PLANT BIOLOGY 2016; 31:1-8. [PMID: 26999306 DOI: 10.1016/j.pbi.2016.03.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/25/2016] [Accepted: 03/02/2016] [Indexed: 05/21/2023]
Abstract
Global population growth is projected to outpace plant-breeding improvements in major crop yields within decades. To ensure future food security, multiple creative efforts seek to overcome limitations to crop yield. Perhaps the greatest limitation to increased crop yield is photosynthetic inefficiency, particularly in C3 crop plants. Recently, great strides have been made toward crop improvement by researchers seeking to introduce the cyanobacterial CO2-concentrating mechanism (CCM) into plant chloroplasts. This strategy recognises the C3 chloroplast as lacking a CCM, and being a primordial cyanobacterium at its essence. Hence the collection of solute transporters, enzymes, and physical structures that make cyanobacterial CO2-fixation so efficient are viewed as a natural source of genetic material for C3 chloroplast improvement. Also we highlight recent outstanding research aimed toward the goal of introducing a cyanobacterial CCM into C3 chloroplasts and consider future research directions.
Collapse
Affiliation(s)
- Benedict M Long
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia.
| | - Benjamin D Rae
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Vivien Rolland
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Britta Förster
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - G Dean Price
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
37
|
Reumann S, Chowdhary G, Lingner T. Characterization, prediction and evolution of plant peroxisomal targeting signals type 1 (PTS1s). BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:790-803. [PMID: 26772785 DOI: 10.1016/j.bbamcr.2016.01.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/01/2016] [Accepted: 01/04/2016] [Indexed: 12/22/2022]
Abstract
Our knowledge of the proteome of plant peroxisomes and their functional plasticity is far from being complete, primarily due to major technical challenges in experimental proteome research of the fragile cell organelle. Several unexpected novel plant peroxisome functions, for instance in biotin and phylloquinone biosynthesis, have been uncovered recently. Nevertheless, very few regulatory and membrane proteins of plant peroxisomes have been identified and functionally described up to now. To define the matrix proteome of plant peroxisomes, computational methods have emerged as important powerful tools. Novel prediction approaches of high sensitivity and specificity have been developed for peroxisome targeting signals type 1 (PTS1) and have been validated by in vivo subcellular targeting analyses and thermodynamic binding studies with the cytosolic receptor, PEX5. Accordingly, the algorithms allow the correct prediction of many novel peroxisome-targeted proteins from plant genome sequences and the discovery of additional organelle functions. In this review, we provide an overview of methodologies, capabilities and accuracies of available prediction algorithms for PTS1 carrying proteins. We also summarize and discuss recent quantitative, structural and mechanistic information of the interaction of PEX5 with PTS1 carrying proteins in relation to in vivo import efficiency. With this knowledge, we develop a model of how proteins likely evolved peroxisomal targeting signals in the past and still nowadays, in which order the two import pathways might have evolved in the ancient eukaryotic cell, and how the secondary loss of the PTS2 pathway probably happened in specific organismal groups.
Collapse
Affiliation(s)
- S Reumann
- Department of Plant Biochemistry and Infection Biology, Biocentre Klein Flottbek, University of Hamburg, D-22609 Hamburg, Germany; Centre for Organelle Research, University of Stavanger, N-4036 Stavanger, Norway.
| | - G Chowdhary
- Centre for Organelle Research, University of Stavanger, N-4036 Stavanger, Norway; KIIT School of Biotechnology, Campus XI, KIIT University, I-751024 Bhubaneswar, India.
| | - T Lingner
- Department of Bioinformatics, Institute for Microbiology and Genetics, D-37077 Goettingen, Germany.
| |
Collapse
|
38
|
Broad W, Ling Q, Jarvis P. New Insights Into Roles of Ubiquitin Modification in Regulating Plastids and Other Endosymbiotic Organelles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 325:1-33. [PMID: 27241217 DOI: 10.1016/bs.ircmb.2016.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent findings have revealed important and diverse roles for the ubiquitin modification of proteins in the regulation of endosymbiotic organelles, which include the primary plastids of plants as well as complex plastids: the secondary endosymbiotic organelles of cryptophytes, alveolates, stramenopiles, and haptophytes. Ubiquitin modifications have a variety of potential consequences, both to the modified protein itself and to cellular regulation. The ubiquitin-proteasome system (UPS) can target individual proteins for selective degradation by the cytosolic 26S proteasome. Ubiquitin modifications can also signal the removal of whole endosymbiotic organelles, for example, via autophagy as has been well characterized in mitochondria. As plastids must import over 90% of their proteins from the cytosol, the observation that the UPS selectively targets the plastid protein import machinery is particularly significant. In this way, the UPS may influence the development and interconversions of different plastid types, as well as plastid responses to stress, by reconfiguring the organellar proteome. In complex plastids, the Symbiont-derived ERAD-Like Machinery (SELMA) has coopted the protein transport capabilities of the ER-Associated Degradation (ERAD) system, whereby misfolded proteins are retrotranslocated from ER for proteasomal degradation, uncoupling them from proteolysis: SELMA components have been retargeted to the second outermost plastid membrane to mediate protein import. In spite of this wealth of new information, there still remain a large number of unanswered questions and a need to define the roles of ubiquitin modification further in the regulation of plastids.
Collapse
Affiliation(s)
- W Broad
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Q Ling
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - P Jarvis
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
39
|
Paila YD, Richardson LG, Inoue H, Parks ES, McMahon J, Inoue K, Schnell DJ. Multi-functional roles for the polypeptide transport associated domains of Toc75 in chloroplast protein import. eLife 2016; 5. [PMID: 26999824 PMCID: PMC4811774 DOI: 10.7554/elife.12631] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/04/2016] [Indexed: 01/20/2023] Open
Abstract
Toc75 plays a central role in chloroplast biogenesis in plants as the membrane channel of the protein import translocon at the outer envelope of chloroplasts (TOC). Toc75 is a member of the Omp85 family of bacterial and organellar membrane insertases, characterized by N-terminal POTRA (polypeptide-transport associated) domains and C-terminal membrane-integrated β-barrels. We demonstrate that the Toc75 POTRA domains are essential for protein import and contribute to interactions with TOC receptors, thereby coupling preprotein recognition at the chloroplast surface with membrane translocation. The POTRA domains also interact with preproteins and mediate the recruitment of molecular chaperones in the intermembrane space to facilitate membrane transport. Our studies are consistent with the multi-functional roles of POTRA domains observed in other Omp85 family members and demonstrate that the domains of Toc75 have evolved unique properties specific to the acquisition of protein import during endosymbiotic evolution of the TOC system in plastids. DOI:http://dx.doi.org/10.7554/eLife.12631.001 Chloroplasts are a hallmark feature of plant cells and the sites of photosynthesis – the process in which plants harness the energy in sunlight for their own needs. The first chloroplasts arose when a photosynthetic bacterium was engulfed by another host cell, and most of the original bacterial genes have been transferred to the host cell’s nucleus during the evolution of land plants. As a result, modern chloroplasts need to import the thousands of proteins encoded by these genes from the rest of the cell. The chloroplast protein import system relies on a protein transporter in the chloroplast membrane that evolved from a family of bacterial transporters. However, the bacterial transporters were initially involved in protein export, and it was not known how the activity of these transporters adapted to move proteins in the opposite direction. Paila et al. set out to better understand the chloroplast protein import system and produced mutated forms of the transporter in the model plant Arabidopsis thaliana. These experiments revealed that a part of the transporter that is conserved in many other organisms, the “protein transport associated domains”, has been adapted for three key roles in protein import. First, this part of the transporter interacts with the other components of the import system that make the transporter more selective and control which direction the proteins are transported. Second, the domains interact with proteins during transport to help move them across the chloroplast membrane. Finally, the domains recruit other molecules called chaperones, which stop the protein from aggregating or misfolding during the transport process. These activities are similar to those for the bacterial export transporters, but clearly evolved to allow transport in the opposite direction – that is, to import proteins into chloroplasts. The next challenges are to explain how proteins destined for chloroplasts are recognized and transported through the chloroplast’s membrane. DOI:http://dx.doi.org/10.7554/eLife.12631.002
Collapse
Affiliation(s)
- Yamuna D Paila
- Department of Plant Biology, Michigan State University, East Lansing, United States
| | - Lynn Gl Richardson
- Department of Plant Biology, Michigan State University, East Lansing, United States
| | - Hitoshi Inoue
- Department of Plant Biology, Michigan State University, East Lansing, United States
| | - Elizabeth S Parks
- Department of Plant Biology, Michigan State University, East Lansing, United States
| | - James McMahon
- Department of Plant Biology, Michigan State University, East Lansing, United States
| | - Kentaro Inoue
- Department of Plant Sciences, University of California, Davis, United States
| | - Danny J Schnell
- Department of Plant Biology, Michigan State University, East Lansing, United States
| |
Collapse
|
40
|
Palm D, Simm S, Darm K, Weis BL, Ruprecht M, Schleiff E, Scharf C. Proteome distribution between nucleoplasm and nucleolus and its relation to ribosome biogenesis in Arabidopsis thaliana. RNA Biol 2016; 13:441-54. [PMID: 26980300 DOI: 10.1080/15476286.2016.1154252] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ribosome biogenesis is an essential process initiated in the nucleolus. In eukaryotes, multiple ribosome biogenesis factors (RBFs) can be found in the nucleolus, the nucleus and in the cytoplasm. They act in processing, folding and modification of the pre-ribosomal (r)RNAs, incorporation of ribosomal proteins (RPs), export of pre-ribosomal particles to the cytoplasm, and quality control mechanisms. Ribosome biogenesis is best established for Saccharomyces cerevisiae. Plant ortholog assignment to yeast RBFs revealed the absence of about 30% of the yeast RBFs in plants. In turn, few plant specific proteins have been identified by biochemical experiments to act in plant ribosome biogenesis. Nevertheless, a complete inventory of plant RBFs has not been established yet. We analyzed the proteome of the nucleus and nucleolus of Arabidopsis thaliana and the post-translational modifications of these proteins. We identified 1602 proteins in the nucleolar and 2544 proteins in the nuclear fraction with an overlap of 1429 proteins. For a randomly selected set of proteins identified by the proteomic approach we confirmed the localization inferred from the proteomics data by the localization of GFP fusion proteins. We assigned the identified proteins to various complexes and functions and found about 519 plant proteins that have a potential to act as a RBFs, but which have not been experimentally characterized yet. Last, we compared the distribution of RBFs and RPs in the various fractions with the distribution established for yeast.
Collapse
Affiliation(s)
| | - Stefan Simm
- a Institute for Molecular Biosciences.,b Cluster of Excellence Macromolecular Complexes
| | - Katrin Darm
- d Department of Otorhinolaryngology , Head and Neck Surgery
| | | | | | - Enrico Schleiff
- a Institute for Molecular Biosciences.,b Cluster of Excellence Macromolecular Complexes.,c Buchman Institute for Molecular Life Sciences, Goethe University Frankfurt , Max von Laue Str. Nine, Frankfurt , Germany
| | - Christian Scharf
- d Department of Otorhinolaryngology , Head and Neck Surgery.,e Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald , Ferdinand-Sauerbruch-Straße DZ7 J.05.06, Greifswald , Germany
| |
Collapse
|
41
|
Eilers U, Dietzel L, Breitenbach J, Büchel C, Sandmann G. Identification of genes coding for functional zeaxanthin epoxidases in the diatom Phaeodactylum tricornutum. JOURNAL OF PLANT PHYSIOLOGY 2016; 192:64-70. [PMID: 26851888 DOI: 10.1016/j.jplph.2016.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 05/21/2023]
Abstract
Phaeodactylum tricornutum like other diatoms synthesizes fucoxanthin and diadinoxanthin as major carotenoid end products. The genes involved have recently been assigned for early pathway steps. Beyond β-carotene, only gene candidates for β-carotene hydroxylase, zeaxanthin epoxidase and zeaxanthin de-epoxidase have been proposed from the available genome sequence. The two latter enzymes may be involved in the two different xanthophyll cycles which operate in P. tricornutum. The function of three putative zeaxanthin epoxidase genes (zep) was addressed by pathway complementation in the Arabidopsis thaliana Zep mutant npq2. Genes zep2 and zep3 were able to restore zeaxanthin epoxidation and a functional xanthophyll cycle but the corresponding enzymes exhibited different catalytic activities. Zep3 functioned as a zeaxanthin epoxidase whereas Zep2 exhibited a broader substrate specificity additionally converting lutein to lutein-5,6-epoxide. Although zep1 was transcribed and the protein could be identified after import into the chloroplast in A. thaliana, Zep1 was found not to be functional in zeaxanthin epoxidation. The non-photochemical quenching kinetics of wild type A. thaliana was only restored in transformant npq2-zep3.
Collapse
Affiliation(s)
- Ulrike Eilers
- Department of Molecular Bioscience, J.W. Goethe University, Max-v-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Lars Dietzel
- Department of Molecular Bioscience, J.W. Goethe University, Max-v-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Jürgen Breitenbach
- Department of Molecular Bioscience, J.W. Goethe University, Max-v-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Claudia Büchel
- Department of Molecular Bioscience, J.W. Goethe University, Max-v-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Gerhard Sandmann
- Department of Molecular Bioscience, J.W. Goethe University, Max-v-Laue Str. 9, D-60438 Frankfurt, Germany.
| |
Collapse
|
42
|
Bionda T, Gross LE, Becker T, Papasotiriou DG, Leisegang MS, Karas M, Schleiff E. Eukaryotic Hsp70 chaperones in the intermembrane space of chloroplasts. PLANTA 2016; 243:733-47. [PMID: 26669598 DOI: 10.1007/s00425-015-2440-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
MAIN CONCLUSION Multiple eukaryotic Hsp70 typically localized in the cytoplasm are also distributed to the intermembrane space of chloroplasts and might thereby represent the missing link in energizing protein translocation. Protein translocation into organelles is a central cellular process that is tightly regulated. It depends on signals within the preprotein and on molecular machines catalyzing the process. Molecular chaperones participate in transport and translocation of preproteins into organelles to control folding and to provide energy for the individual steps. While most of the processes are explored and the components are identified, the transfer of preproteins into and across the intermembrane space of chloroplasts is not yet understood. The existence of an energy source in this compartment is discussed, because the required transit peptide length for successful translocation into chloroplasts is shorter than that found for mitochondria where energy is provided exclusively by matrix chaperones. Furthermore, a cytosolic-type Hsp70 homologue was proposed as component of the chloroplast translocon in the intermembrane space energizing the initial translocation. The molecular identity of such intermembrane space localized Hsp70 remained unknown, which led to a controversy concerning its existence. We identified multiple cytosolic Hsp70s by mass spectrometry on isolated, thermolysin-treated Medicago sativa chloroplasts. The localization of these Hsp70s of M. sativa or Arabidopsis thaliana in the intermembrane space was confirmed by a self-assembly GFP-based in vivo system. The localization of cytosolic Hsp70s in the stroma of chloroplasts or different mitochondrial compartments could not be observed. Similarly, we could not identify any cytosolic Hsp90 in the intermembrane space of chloroplast. With respect to our results we discuss the possible targeting and function of the Hsp70 found in the intermembrane space.
Collapse
Affiliation(s)
- Tihana Bionda
- Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany
- Institute of Biochemistry II, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Lucia E Gross
- Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Thomas Becker
- Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany
- Biochemistry and Molecular Biology, ZBMZ, and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany
| | - Dimitrios G Papasotiriou
- Pharmaceutical Chemistry, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany
- Syngenta Ltd., Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Matthias S Leisegang
- Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Michael Karas
- Pharmaceutical Chemistry, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Enrico Schleiff
- Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany.
- Molecular Cell Biology of Plants, Cluster of Excellence Frankfurt, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany.
- Buchmann Institut for Molecular Life Sciences, Max von Laue Str. 9, 60438, Frankfurt, Germany.
| |
Collapse
|
43
|
Reyes-Prieto A. The basic genetic toolkit to move in with your photosynthetic partner. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
44
|
Hyun SI, Maruri-Avidal L, Moss B. Topology of Endoplasmic Reticulum-Associated Cellular and Viral Proteins Determined with Split-GFP. Traffic 2015; 16:787-95. [PMID: 25761760 DOI: 10.1111/tra.12281] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/04/2015] [Accepted: 03/09/2015] [Indexed: 12/01/2022]
Abstract
The split green fluorescent protein (GFP) system was adapted for investigation of the topology of ER-associated proteins. A 215-amino acid fragment of GFP (S1-10) was expressed in the cytoplasm as a free protein or fused to the N-terminus of calnexin and in the ER as an intraluminal protein or fused to the C-terminus of calnexin. A 16-amino acid fragment of GFP (S11) was fused to the N- or C-terminus of the target protein. Fluorescence occurred when both GFP fragments were in the same intracellular compartment. After validation with the cellular proteins PDI and tapasin, we investigated two vaccinia virus proteins (L2 and A30.5) of unknown topology that localize to the ER and are required for assembly of the viral membrane. Our results indicated that the N- and C-termini of L2 faced the cytoplasmic and luminal sides of the ER, respectively. In contrast both the N- and C-termini of A30.5 faced the cytoplasm. The system offers advantages for quickly determining the topology of intracellular proteins: the S11 tag is similar in length to commonly used epitope tags; multiple options are available for detecting fluorescence in live or fixed cells; transfection protocols are adaptable to numerous expression systems and can enable high throughput applications.
Collapse
Affiliation(s)
- Seong-In Hyun
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Liliana Maruri-Avidal
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
45
|
Simm S, Keller M, Selymesi M, Schleiff E. The composition of the global and feature specific cyanobacterial core-genomes. Front Microbiol 2015; 6:219. [PMID: 25852675 PMCID: PMC4365693 DOI: 10.3389/fmicb.2015.00219] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/04/2015] [Indexed: 12/21/2022] Open
Abstract
Cyanobacteria are photosynthetic prokaryotes important for many ecosystems with a high potential for biotechnological usage e.g., in the production of bioactive molecules. Either asks for a deep understanding of the functionality of cyanobacteria and their interaction with the environment. This in part can be inferred from the analysis of their genomes or proteomes. Today, many cyanobacterial genomes have been sequenced and annotated. This information can be used to identify biological pathways present in all cyanobacteria as proteins involved in such processes are encoded by a so called core-genome. However, beside identification of fundamental processes, genes specific for certain cyanobacterial features can be identified by a holistic genome analysis as well. We identified 559 genes that define the core-genome of 58 analyzed cyanobacteria, as well as three genes likely to be signature genes for thermophilic and 57 genes likely to be signature genes for heterocyst-forming cyanobacteria. To get insights into cyanobacterial systems for the interaction with the environment we also inspected the diversity of the outer membrane proteome with focus on β-barrel proteins. We observed that most of the transporting outer membrane β-barrel proteins are not globally conserved in the cyanobacterial phylum. In turn, the occurrence of β-barrel proteins shows high strain specificity. The core set of outer membrane proteins globally conserved in cyanobacteria comprises three proteins only, namely the outer membrane β-barrel assembly protein Omp85, the lipid A transfer protein LptD, and an OprB-type porin. Thus, we conclude that cyanobacteria have developed individual strategies for the interaction with the environment, while other intracellular processes like the regulation of the protein homeostasis are globally conserved.
Collapse
Affiliation(s)
- Stefan Simm
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University Frankfurt am Main, Germany
| | - Mario Keller
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University Frankfurt am Main, Germany
| | - Mario Selymesi
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University Frankfurt am Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University Frankfurt am Main, Germany ; Cluster of Excellence Frankfurt, Goethe University Frankfurt am Main, Germany ; Center of Membrane Proteomics, Goethe University Frankfurt am Main, Germany ; Buchmann Institute of Molecular Life Sciences, Goethe University Frankfurt am Main, Germany
| |
Collapse
|
46
|
Weis BL, Palm D, Missbach S, Bohnsack MT, Schleiff E. atBRX1-1 and atBRX1-2 are involved in an alternative rRNA processing pathway in Arabidopsis thaliana. RNA (NEW YORK, N.Y.) 2015; 21:415-25. [PMID: 25605960 PMCID: PMC4338337 DOI: 10.1261/rna.047563.114] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/08/2014] [Indexed: 05/19/2023]
Abstract
Ribosome biogenesis is an essential process in all organisms. In eukaryotes, multiple ribosome biogenesis factors (RBFs) act in the processing of ribosomal (r)RNAs, assembly of ribosomal subunits and their export to the cytoplasm. We characterized two genes in Arabidopsis thaliana coding for orthologs of yeast BRX1, a protein involved in maturation of the large ribosomal subunit. Both atBRX1 proteins, encoded by AT3G15460 and AT1G52930, respectively, are mainly localized in the nucleolus and are ubiquitously expressed throughout plant development and in various tissues. Mutant plant lines for both factors show a delay in development and pointed leaves can be observed in the brx1-2 mutant, implying a link between ribosome biogenesis and plant development. In addition, the pre-rRNA processing is affected in both mutants. Analysis of the pre-rRNA intermediates revealed that early processing steps can occur either in the 5' external transcribed spacer (ETS) or internal transcribed spacer 1 (ITS1). Interestingly, we also find that in xrn2 mutants, early processing events can be bypassed and removal of the 5' ETS is initiated by cleavage at the P' processing site. While the pathways of pre-rRNA processing are comparable to those of yeast and mammalian cells, the balance between the two processing pathways is different in plants. Furthermore, plant-specific steps such as an additional processing site in the 5' ETS, likely post-transcriptional processing of the early cleavage sites and accumulation of a 5' extended 5.8S rRNA not observed in other eukaryotes can be detected.
Collapse
Affiliation(s)
- Benjamin L Weis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438 Frankfurt/Main, Germany
| | - Denise Palm
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438 Frankfurt/Main, Germany
| | - Sandra Missbach
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438 Frankfurt/Main, Germany
| | - Markus T Bohnsack
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438 Frankfurt/Main, Germany Institute for Molecular Biology, Georg-August University, 37073 Göttingen, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438 Frankfurt/Main, Germany Cluster of Excellence Frankfurt, Goethe University, 60438 Frankfurt/Main, Germany Center of Membrane Proteomics, Goethe University, 60438 Frankfurt/Main, Germany
| |
Collapse
|
47
|
Abstract
The vast majority of outer membrane (OM) proteins in Gram-negative bacteria belongs to the class of membrane-embedded β-barrel proteins. Besides Gram-negative bacteria, the presence of β-barrel proteins is restricted to the OM of the eukaryotic organelles mitochondria and chloroplasts that were derived from prokaryotic ancestors. The assembly of these proteins into the corresponding OM is in each case facilitated by a dedicated protein complex that contains a highly conserved central β-barrel protein termed BamA/YaeT/Omp85 in Gram-negative bacteria and Tob55/Sam50 in mitochondria. However, little is known about the exact mechanism by which these complexes mediate the integration of β-barrel precursors into the lipid bilayer. Interestingly, previous studies showed that during evolution, these complexes retained the ability to functionally assemble β-barrel proteins from different origins. In this review we summarize the current knowledge on the biogenesis pathway of β-barrel proteins in Gram-negative bacteria, mitochondria and chloroplasts and focus on the commonalities and divergences that evolved between the different β-barrel assembly machineries.
Collapse
Affiliation(s)
- Thomas Ulrich
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
48
|
Weis BL, Missbach S, Marzi J, Bohnsack MT, Schleiff E. The 60S associated ribosome biogenesis factor LSG1-2 is required for 40S maturation in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:1043-1056. [PMID: 25319368 DOI: 10.1111/tpj.12703] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/01/2014] [Accepted: 10/06/2014] [Indexed: 06/04/2023]
Abstract
Ribosome biogenesis involves a large ensemble of trans-acting factors, which catalyse rRNA processing, ribosomal protein association and ribosomal subunit assembly. The circularly permuted GTPase Lsg1 is such a ribosome biogenesis factor, which is involved in maturation of the pre-60S ribosomal subunit in yeast. We identified two orthologues of Lsg1 in Arabidopsis thaliana. Both proteins differ in their C-terminus, which is highly charged in atLSG1-2 but missing in atLSG1-1. This C-terminus of atLSG1-2 contains a functional nuclear localization signal in a part of the protein that also targets atLSG1-2 to the nucleolus. Furthermore, only atLSG1-2 is physically associated with ribosomes suggesting its function in ribosome biogenesis. Homozygous T-DNA insertion lines are viable for both LSG1 orthologues. In plants lacking atLSG1-2 18S rRNA precursors accumulate and a 20S pre-rRNA is detected, while the amount of pre-rRNAs that lead to the 25S and 5.8S rRNA is not changed. Thus, our results suggest that pre-60S subunit maturation is important for the final steps of pre-40S maturation in plants. In addition, the lsg1-2 mutants show severe developmental defects, including triple cotyledons and upward curled leaves, which link ribosome biogenesis to early plant and leaf development.
Collapse
Affiliation(s)
- Benjamin L Weis
- Department of Biosciences, Goethe University, Molecular Cell Biology of Plants and Cluster of Excellence, Max von Laue Str. 9, 60438 Frankfurt/Main, Frankfurt, Germany
| | | | | | | | | |
Collapse
|
49
|
Höhr AIC, Straub SP, Warscheid B, Becker T, Wiedemann N. Assembly of β-barrel proteins in the mitochondrial outer membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:74-88. [PMID: 25305573 DOI: 10.1016/j.bbamcr.2014.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/25/2014] [Accepted: 10/01/2014] [Indexed: 12/15/2022]
Abstract
Mitochondria evolved through endosymbiosis of a Gram-negative progenitor with a host cell to generate eukaryotes. Therefore, the outer membrane of mitochondria and Gram-negative bacteria contain pore proteins with β-barrel topology. After synthesis in the cytosol, β-barrel precursor proteins are first transported into the mitochondrial intermembrane space. Folding and membrane integration of β-barrel proteins depend on the mitochondrial sorting and assembly machinery (SAM) located in the outer membrane, which is related to the β-barrel assembly machinery (BAM) in bacteria. The SAM complex recognizes β-barrel proteins by a β-signal in the C-terminal β-strand that is required to initiate β-barrel protein insertion into the outer membrane. In addition, the SAM complex is crucial to form membrane contacts with the inner mitochondrial membrane by interacting with the mitochondrial contact site and cristae organizing system (MICOS) and shares a subunit with the endoplasmic reticulum-mitochondria encounter structure (ERMES) that links the outer mitochondrial membrane to the endoplasmic reticulum (ER).
Collapse
Affiliation(s)
- Alexandra I C Höhr
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Sebastian P Straub
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany; Abteilung Biochemie und Funktionelle Proteomik, Institut für Biologie II, Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany
| | - Nils Wiedemann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
50
|
Paila YD, Richardson LGL, Schnell DJ. New insights into the mechanism of chloroplast protein import and its integration with protein quality control, organelle biogenesis and development. J Mol Biol 2014; 427:1038-1060. [PMID: 25174336 DOI: 10.1016/j.jmb.2014.08.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/20/2014] [Accepted: 08/23/2014] [Indexed: 01/04/2023]
Abstract
The translocons at the outer (TOC) and the inner (TIC) envelope membranes of chloroplasts mediate the targeting and import of several thousand nucleus-encoded preproteins that are required for organelle biogenesis and homeostasis. The cytosolic events in preprotein targeting remain largely unknown, although cytoplasmic chaperones have been proposed to facilitate delivery to the TOC complex. Preprotein recognition is mediated by the TOC GTPase receptors Toc159 and Toc34. The receptors constitute a GTP-regulated switch, which initiates membrane translocation via Toc75, a member of the Omp85 (outer membrane protein 85)/TpsB (two-partner secretion system B) family of bacterial, plastid and mitochondrial β-barrel outer membrane proteins. The TOC receptor systems have diversified to recognize distinct sets of preproteins, thereby maximizing the efficiency of targeting in response to changes in gene expression during developmental and physiological events that impact organelle function. The TOC complex interacts with the TIC translocon to allow simultaneous translocation of preproteins across the envelope. Both the two inner membrane complexes, the Tic110 and 1 MDa complexes, have been implicated as constituents of the TIC translocon, and it remains to be determined how they interact to form the TIC channel and assemble the import-associated chaperone network in the stroma that drives import across the envelope membranes. This review will focus on recent developments in our understanding of the mechanisms and diversity of the TOC-TIC systems. Our goal is to incorporate these recent studies with previous work and present updated or revised models for the function of TOC-TIC in protein import.
Collapse
Affiliation(s)
- Yamuna D Paila
- Department of Biochemistry and Molecular Biology, Life Sciences Laboratories Room N431, 240 Thatcher Rd, University of Massachusetts, Amherst MA 01003-9364, USA
| | - Lynn G L Richardson
- Department of Biochemistry and Molecular Biology, Life Sciences Laboratories Room N431, 240 Thatcher Rd, University of Massachusetts, Amherst MA 01003-9364, USA
| | - Danny J Schnell
- Department of Biochemistry and Molecular Biology, Life Sciences Laboratories Room N431, 240 Thatcher Rd, University of Massachusetts, Amherst MA 01003-9364, USA
| |
Collapse
|