1
|
Ugolini G, Graf W. Pathways from the superior colliculus and the nucleus of the optic tract to the posterior parietal cortex in macaque monkeys: Functional frameworks for representation updating and online movement guidance. Eur J Neurosci 2024; 59:2792-2825. [PMID: 38544445 DOI: 10.1111/ejn.16314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 05/22/2024]
Abstract
The posterior parietal cortex (PPC) integrates multisensory and motor-related information for generating and updating body representations and movement plans. We used retrograde transneuronal transfer of rabies virus combined with a conventional tracer in macaque monkeys to identify direct and disynaptic pathways to the arm-related rostral medial intraparietal area (MIP), the ventral lateral intraparietal area (LIPv), belonging to the parietal eye field, and the pursuit-related lateral subdivision of the medial superior temporal area (MSTl). We found that these areas receive major disynaptic pathways via the thalamus from the nucleus of the optic tract (NOT) and the superior colliculus (SC), mainly ipsilaterally. NOT pathways, targeting MSTl most prominently, serve to process the sensory consequences of slow eye movements for which the NOT is the key sensorimotor interface. They potentially contribute to the directional asymmetry of the pursuit and optokinetic systems. MSTl and LIPv receive feedforward inputs from SC visual layers, which are potential correlates for fast detection of motion, perceptual saccadic suppression and visual spatial attention. MSTl is the target of efference copy pathways from saccade- and head-related compartments of SC motor layers and head-related reticulospinal neurons. They are potential sources of extraretinal signals related to eye and head movement in MSTl visual-tracking neurons. LIPv and rostral MIP receive efference copy pathways from all SC motor layers, providing online estimates of eye, head and arm movements. Our findings have important implications for understanding the role of the PPC in representation updating, internal models for online movement guidance, eye-hand coordination and optic ataxia.
Collapse
Affiliation(s)
- Gabriella Ugolini
- Paris-Saclay Institute of Neuroscience (NeuroPSI), UMR9197 CNRS - Université Paris-Saclay, Campus CEA Saclay, Saclay, France
| | - Werner Graf
- Department of Physiology and Biophysics, Howard University, Washington, DC, USA
| |
Collapse
|
2
|
O’Bryan SR, Moher J, McCarthy JD, Song JH. Effector-independent Representations Guide Sequential Target Selection Biases in Action. J Cogn Neurosci 2024; 36:492-507. [PMID: 38165741 PMCID: PMC10923104 DOI: 10.1162/jocn_a_02102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Previous work shows that automatic attention biases toward recently selected target features transfer across action and perception and even across different effectors such as the eyes and hands on a trial-by-trial basis. Although these findings suggest a common neural representation of selection history across effectors, the extent to which information about recently selected target features is encoded in overlapping versus distinct brain regions is unknown. Using fMRI and a priming of pop-out task where participants selected unpredictable, uniquely colored targets among homogeneous distractors via reach or saccade, we show that color priming is driven by shared, effector-independent underlying representations of recent selection history. Consistent with previous work, we found that the intraparietal sulcus (IPS) was commonly activated on trials where target colors were switched relative to those where the colors were repeated; however, the dorsal anterior insula exhibited effector-specific activation related to color priming. Via multivoxel cross-classification analyses, we further demonstrate that fine-grained patterns of activity in both IPS and the medial temporal lobe encode information about selection history in an effector-independent manner, such that ROI-specific models trained on activity patterns during reach selection could predict whether a color was repeated or switched on the current trial during saccade selection and vice versa. Remarkably, model generalization performance in IPS and medial temporal lobe also tracked individual differences in behavioral priming sensitivity across both types of action. These results represent a first step to clarify the neural substrates of experience-driven selection biases in contexts that require the coordination of multiple actions.
Collapse
Affiliation(s)
- Sean R. O’Bryan
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912
| | - Jeff Moher
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912
- Department of Psychology, Connecticut College, New London, CT 06320
| | - J. Daniel McCarthy
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912
| | - Joo-Hyun Song
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912
| |
Collapse
|
3
|
Thomas A, Yang W, Wang C, Tipparaju SL, Chen G, Sullivan B, Swiekatowski K, Tatam M, Gerfen C, Li N. Superior colliculus bidirectionally modulates choice activity in frontal cortex. Nat Commun 2023; 14:7358. [PMID: 37963894 PMCID: PMC10645979 DOI: 10.1038/s41467-023-43252-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023] Open
Abstract
Action selection occurs through competition between potential choice options. Neural correlates of choice competition are observed across frontal cortex and downstream superior colliculus (SC) during decision-making, yet how these regions interact to mediate choice competition remains unresolved. Here we report that SC can bidirectionally modulate choice competition and drive choice activity in frontal cortex. In the mouse, topographically matched regions of frontal cortex and SC formed a descending motor pathway for directional licking and a re-entrant loop via the thalamus. During decision-making, distinct neuronal populations in both frontal cortex and SC encoded opposing lick directions and exhibited competitive interactions. SC GABAergic neurons encoded ipsilateral choice and locally inhibited glutamatergic neurons that encoded contralateral choice. Activating or suppressing these cell types could bidirectionally drive choice activity in frontal cortex. These results thus identify SC as a major locus to modulate choice competition within the broader action selection network.
Collapse
Affiliation(s)
- Alyse Thomas
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Weiguo Yang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Catherine Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Guang Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Brennan Sullivan
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kylie Swiekatowski
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Mahima Tatam
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Charles Gerfen
- Section on Neuroanatomy, National Institute of Mental Health, Bethesda, MD, USA
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Cecala AL, Kozak RA, Pruszynski JA, Corneil BD. Done in 65 ms: Express Visuomotor Responses in Upper Limb Muscles in Rhesus Macaques. eNeuro 2023; 10:ENEURO.0078-23.2023. [PMID: 37507227 PMCID: PMC10449271 DOI: 10.1523/eneuro.0078-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
How rapidly can the brain transform vision into action? Work in humans has established that the transformation for visually-guided reaching can be remarkably rapid, with the first phase of upper limb muscle recruitment, the express visuomotor response, beginning within less than 100 ms of visual target presentation. Such short-latency responses limit the opportunities for extensive cortical processing, leading to the hypothesis that they are generated via the subcortical tecto-reticulo-spinal pathway. Here, we examine whether nonhuman primates (NHPs) exhibit express visuomotor responses. Two male macaques made visually-guided reaches in a behavioral paradigm known to elicit express visuomotor responses in humans, while we acquired intramuscular recordings from the deltoid muscle. Across several variants of this paradigm, express visuomotor responses began within 65 ms (range: 48-91 ms) of target presentation. Although the timing of the express visuomotor response did not co-vary with reaction time, larger express visuomotor responses tended to precede shorter latency reaches. Further, we observed that the magnitude of the express visuomotor response could be muted by contextual context, although this effect was quite variable. Overall, the response properties in NHPs resemble those in humans. Our results establish a new benchmark for visuomotor transformations underlying visually-guided reaches, setting the stage for experiments that can directly compare the role of cortical and subcortical areas in reaching when time is of the essence.
Collapse
Affiliation(s)
- Aaron L Cecala
- Department of Physiology and Pharmacology, Western University, London, Ontario N6A 5B7, Canada
- Robarts Research Institute, London, Ontario N6A 5B7, Canada
| | - Rebecca A Kozak
- Graduate Program in Neuroscience, Western University, London, Ontario N6A 5B7, Canada
| | - J Andrew Pruszynski
- Department of Physiology and Pharmacology, Western University, London, Ontario N6A 5B7, Canada
- Robarts Research Institute, London, Ontario N6A 5B7, Canada
| | - Brian D Corneil
- Department of Physiology and Pharmacology, Western University, London, Ontario N6A 5B7, Canada
- Robarts Research Institute, London, Ontario N6A 5B7, Canada
- Department of Psychology, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
5
|
Thomas A, Yang W, Wang C, Tipparaju SL, Chen G, Sullivan B, Swiekatowski K, Tatam M, Gerfen C, Li N. Superior colliculus cell types bidirectionally modulate choice activity in frontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.22.537884. [PMID: 37162880 PMCID: PMC10168218 DOI: 10.1101/2023.04.22.537884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Action selection occurs through competition between potential choice options. Neural correlates of choice competition are observed across frontal cortex and downstream superior colliculus (SC) during decision-making, yet how these regions interact to mediate choice competition remains unresolved. Here we report that cell types within SC can bidirectionally modulate choice competition and drive choice activity in frontal cortex. In the mouse, topographically matched regions of frontal cortex and SC formed a descending motor pathway for directional licking and a re-entrant loop via the thalamus. During decision-making, distinct neuronal populations in both frontal cortex and SC encoded opposing lick directions and exhibited push-pull dynamics. SC GABAergic neurons encoded ipsilateral choice and glutamatergic neurons encoded contralateral choice, and activating or suppressing these cell types could bidirectionally drive push-pull choice activity in frontal cortex. These results thus identify SC as a major locus to modulate choice competition within the broader action selection network.
Collapse
Affiliation(s)
- Alyse Thomas
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Weiguo Yang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Catherine Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | | | - Guang Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Brennan Sullivan
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | | | - Mahima Tatam
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Charles Gerfen
- Section on Neuroanatomy, National Institute of Mental Health, Bethesda, MD
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| |
Collapse
|
6
|
Guo J, Song JH. Reciprocal facilitation between mental and visuomotor rotations. Sci Rep 2023; 13:825. [PMID: 36646722 PMCID: PMC9842739 DOI: 10.1038/s41598-022-26397-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 12/14/2022] [Indexed: 01/18/2023] Open
Abstract
Humans exhibit remarkably complex cognitive abilities and adaptive behavior in daily life. Cognitive operation in the "mental workspace," such as mentally rotating a piece of luggage to fit into fixed trunk space, helps us maintain and manipulate information on a moment-to-moment basis. Skill acquisition in the "sensorimotor workspace," such as learning a new mapping between the magnitude of new vehicle movement and wheel turn, allows us to adjust our behavior to changing environmental or internal demands to maintain appropriate motor performance. While this cognitive and sensorimotor synergy is at the root of adaptive behavior in the real world, their interplay has been understudied due to a divide-and-conquer approach. We evaluated whether a separate domain-specific or common domain-general operation drives mental and sensorimotor rotational transformations. We observed that participants improved the efficiency of mental rotation speed after the visuomotor rotation training, and their learning rate for visuomotor adaptation also improved after their mental rotation training. Such bidirectional transfer between two widely different tasks highlights the remarkable reciprocal plasticity and demonstrates a common transformation mechanism between two intertwined workspaces. Our findings urge the necessity of an explicitly integrated approach to enhance our understanding of the dynamic interdependence between cognitive and sensorimotor mechanisms.
Collapse
Affiliation(s)
- Jianfei Guo
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Box 1821, Providence, RI, 02912, USA.
| | - Joo-Hyun Song
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Box 1821, Providence, RI, 02912, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
7
|
Liu X, Huang H, Snutch TP, Cao P, Wang L, Wang F. The Superior Colliculus: Cell Types, Connectivity, and Behavior. Neurosci Bull 2022; 38:1519-1540. [PMID: 35484472 DOI: 10.1007/s12264-022-00858-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/16/2022] [Indexed: 10/18/2022] Open
Abstract
The superior colliculus (SC), one of the most well-characterized midbrain sensorimotor structures where visual, auditory, and somatosensory information are integrated to initiate motor commands, is highly conserved across vertebrate evolution. Moreover, cell-type-specific SC neurons integrate afferent signals within local networks to generate defined output related to innate and cognitive behaviors. This review focuses on the recent progress in understanding of phenotypic diversity amongst SC neurons and their intrinsic circuits and long-projection targets. We further describe relevant neural circuits and specific cell types in relation to behavioral outputs and cognitive functions. The systematic delineation of SC organization, cell types, and neural connections is further put into context across species as these depend upon laminar architecture. Moreover, we focus on SC neural circuitry involving saccadic eye movement, and cognitive and innate behaviors. Overall, the review provides insight into SC functioning and represents a basis for further understanding of the pathology associated with SC dysfunction.
Collapse
Affiliation(s)
- Xue Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongren Huang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Peng Cao
- National Institute of Biological Sciences, Beijing, 100049, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Feng Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
8
|
Jha A, Diehl B, Strange B, Miserocchi A, Chowdhury F, McEvoy AW, Nachev P. Orienting to fear under transient focal disruption of the human amygdala. Brain 2022; 146:135-148. [PMID: 35104842 PMCID: PMC9825557 DOI: 10.1093/brain/awac032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/28/2021] [Accepted: 01/08/2022] [Indexed: 01/13/2023] Open
Abstract
Responding to threat is under strong survival pressure, promoting the evolution of systems highly optimized for the task. Though the amygdala is implicated in 'detecting' threat, its role in the action that immediately follows-'orienting'-remains unclear. Critical to mounting a targeted response, such early action requires speed, accuracy, and resilience optimally achieved through conserved, parsimonious, dedicated systems, insured against neural loss by a parallelized functional organization. These characteristics tend to conceal the underlying substrate not only from correlative methods but also from focal disruption over time scales long enough for compensatory adaptation to take place. In a study of six patients with intracranial electrodes temporarily implanted for the clinical evaluation of focal epilepsy, we investigated gaze orienting to fear during focal, transient, unilateral direct electrical disruption of the amygdala. We showed that the amygdala is necessary for rapid gaze shifts towards faces presented in the contralateral hemifield regardless of their emotional expression, establishing its functional lateralization. Behaviourally dissociating the location of presented fear from the direction of the response, we implicated the amygdala not only in detecting contralateral faces, but also in automatically orienting specifically towards fearful ones. This salience-specific role was demonstrated within a drift-diffusion model of action to manifest as an orientation bias towards the location of potential threat. Pixel-wise analysis of target facial morphology revealed scleral exposure as its primary driver, and induced gamma oscillations-obtained from intracranial local field potentials-as its time-locked electrophysiological correlate. The amygdala is here reconceptualized as a functionally lateralized instrument of early action, reconciling previous conflicting accounts confined to detection, and revealing a neural organisation analogous to the superior colliculus, with which it is phylogenetically kin. Greater clarity on its role has the potential to guide therapeutic resection, still frequently complicated by impairments of cognition and behaviour related to threat, and inform novel focal stimulation techniques for the management of neuropsychiatric conditions.
Collapse
Affiliation(s)
- Ashwani Jha
- Correspondence to: Ashwani Jha UCL Queen Square Institute of Neurology, London, UK E-mail:
| | - Beate Diehl
- UCL Queen Square Institute of Neurology, London, UK
| | - Bryan Strange
- CTB-UPM and Department of Neuroimaging, Reina Sofia Centre for Alzheimer's Research, Madrid, Spain
| | | | | | | | - Parashkev Nachev
- Correspondence may also be addressed to: Parashkev Nachev E-mail:
| |
Collapse
|
9
|
Lee J, Sabatini BL. Striatal indirect pathway mediates exploration via collicular competition. Nature 2021; 599:645-649. [PMID: 34732888 DOI: 10.1038/s41586-021-04055-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 09/27/2021] [Indexed: 11/09/2022]
Abstract
The ability to suppress actions that lead to a negative outcome and explore alternative actions is necessary for optimal decision making. Although the basal ganglia have been implicated in these processes1-5, the circuit mechanisms underlying action selection and exploration remain unclear. Here, using a simple lateralized licking task, we show that indirect striatal projection neurons (iSPN) in the basal ganglia contribute to these processes through modulation of the superior colliculus (SC). Optogenetic activation of iSPNs suppresses contraversive licking and promotes ipsiversive licking. Activity in lateral superior colliculus (lSC), a region downstream of the basal ganglia, is necessary for task performance and predicts lick direction. Furthermore, iSPN activation suppresses ipsilateral lSC, but surprisingly excites contralateral lSC, explaining the emergence of ipsiversive licking. Optogenetic inactivation reveals inter-collicular competition whereby each hemisphere of the superior colliculus inhibits the other, thus allowing the indirect pathway to disinhibit the contralateral lSC and trigger licking. Finally, inactivating iSPNs impairs suppression of devalued but previously rewarded licking and reduces exploratory licking. Our results reveal that iSPNs engage the competitive interaction between lSC hemispheres to trigger a motor action and suggest a general circuit mechanism for exploration during action selection.
Collapse
Affiliation(s)
- Jaeeon Lee
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
A nearby distractor does not influence hand movements. Cortex 2021; 142:204-212. [PMID: 34273799 DOI: 10.1016/j.cortex.2021.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 01/28/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022]
Abstract
When interacting with the environment, our manual actions are often preceded by an eye movement. This suggests that the processes underlying target selection in hand and eye movements may be coupled. It is known that when a distractor is presented close to a target, the endpoint of an eye movement will be biased towards the distractor. The size of this so-called global effect decreases when more viewing time is available. Here we investigate whether a similar effect is also present in hand movements. If the processes underlying target selection for hand and eye movements are indeed coupled, a similar bias should be present in hand movements as well. To test this, we adopted a classic global effect paradigm but applied it to goal-directed hand movements. We show that the endpoints of hand movements are unbiased for all but one participant, irrespective of the viewing time. These results suggest that the processes underlying target selection for hand movements operate independently from those for eye movements.
Collapse
|
11
|
Cooper B, McPeek RM. Role of the Superior Colliculus in Guiding Movements Not Made by the Eyes. Annu Rev Vis Sci 2021; 7:279-300. [PMID: 34102067 DOI: 10.1146/annurev-vision-012521-102314] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The superior colliculus (SC) has long been associated with the neural control of eye movements. Over seventy years ago, the orderly topography of saccade vectors and corresponding visual field locations was discovered in the cat SC. Since then, numerous high-impact studies have investigated and manipulated the relationship between visuotopic space and saccade vector across this topography to better understand the physiological underpinnings of the sensorimotor signal transformation. However, less attention has been paid to the other motor responses that may be associated with SC activity, ranging in complexity from concerted movements of skeletomotor muscle groups, such as arm-reaching movements, to behaviors that involve whole-body movement sequences, such as fight-or-flight responses in murine models. This review surveys these more complex movements associated with SC (optic tectum in nonmammalian species) activity and, where possible, provides phylogenetic and ethological perspective. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Bonnie Cooper
- Graduate Center for Vision Research, SUNY College of Optometry, New York, New York 10036, USA; ,
| | - Robert M McPeek
- Graduate Center for Vision Research, SUNY College of Optometry, New York, New York 10036, USA; ,
| |
Collapse
|
12
|
Kozak RA, Corneil BD. High-contrast, moving targets in an emerging target paradigm promote fast visuomotor responses during visually guided reaching. J Neurophysiol 2021; 126:68-81. [PMID: 34077283 DOI: 10.1152/jn.00057.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Humans have a remarkable capacity to rapidly interact with the surrounding environment, often by transforming visual input into motor output on a moment-to-moment basis. But what visual features promote rapid reaching? High-contrast, fast-moving targets elicit strong responses in the superior colliculus (SC), a structure associated with express saccades and implicated in rapid electromyographic (EMG) responses on upper limb muscles. To test the influence of stimulus properties on rapid reaches, we had human subjects perform visually guided reaches to moving targets varied by speed (experiment 1) or speed and contrast (experiment 2) in an emerging target paradigm that has recently been shown to robustly elicit fast visuomotor responses. Our analysis focused on stimulus-locked responses (SLRs) on upper limb muscles. SLRs appear within <100 ms of target presentation, and as the first wave of muscle recruitment they have been hypothesized to arise from the SC. Across 32 subjects studied in both experiments, 97% expressed SLRs in the emerging target paradigm, whereas only 69% expressed SLRs in an immediate response paradigm toward static targets. Faster-moving targets (experiment 1) evoked large-magnitude SLRs, whereas high-contrast fast-moving targets (experiment 2) evoked short-latency, large-magnitude SLRs. In some instances, SLR magnitude exceeded the magnitude of movement-aligned activity. Both large-magnitude and short-latency SLRs were correlated with short-latency reach reaction times. Our results support the hypothesis that, in scenarios requiring expedited responses, a subcortical pathway originating in the SC elicits the earliest wave of muscle recruitment, expediting reaction times.NEW & NOTEWORTHY How does the brain rapidly transform vision into action? Here, by recording upper limb muscle activity, we find that high-contrast and fast-moving targets are highly effective at evoking rapid visually guided reaches. We surmise that a brain stem circuit originating in the superior colliculus contributes to the most rapid reaching responses. When time is of the essence, cortical areas may serve to prime this circuit and elaborate subsequent phases of recruitment.
Collapse
Affiliation(s)
- Rebecca A Kozak
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada.,Robarts Research Institute, London, Ontario, Canada
| | - Brian D Corneil
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada.,Department of Psychology, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
13
|
Duan CA, Pan Y, Ma G, Zhou T, Zhang S, Xu NL. A cortico-collicular pathway for motor planning in a memory-dependent perceptual decision task. Nat Commun 2021; 12:2727. [PMID: 33976124 PMCID: PMC8113349 DOI: 10.1038/s41467-021-22547-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/19/2021] [Indexed: 11/09/2022] Open
Abstract
Survival in a dynamic environment requires animals to plan future actions based on past sensory evidence, known as motor planning. However, the neuronal circuits underlying this crucial brain function remain elusive. Here, we employ projection-specific imaging and perturbation methods to investigate the direct pathway linking two key nodes in the motor planning network, the secondary motor cortex (M2) and the midbrain superior colliculus (SC), in mice performing a memory-dependent perceptual decision task. We find dynamic coding of choice information in SC-projecting M2 neurons during motor planning and execution, and disruption of this information by inhibiting M2 terminals in SC selectively impaired decision maintenance. Furthermore, we show that while both excitatory and inhibitory SC neurons receive synaptic inputs from M2, these SC subpopulations display differential temporal patterns in choice coding during behavior. Our results reveal the dynamic recruitment of the premotor-collicular pathway as a circuit mechanism for motor planning. Duan, Pan et al. find that the premotor cortex cooperates with the midbrain superior colliculus via direct projections to implement decision maintenance. These results reveal mechanisms of cortico-collicular interaction during cognition and action in a pathway- and cell-type-specific manner.
Collapse
Affiliation(s)
- Chunyu A Duan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Yuxin Pan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guofen Ma
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Taotao Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Siyu Zhang
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning-Long Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| |
Collapse
|
14
|
Souto D, Kerzel D. Visual selective attention and the control of tracking eye movements: a critical review. J Neurophysiol 2021; 125:1552-1576. [DOI: 10.1152/jn.00145.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
People’s eyes are directed at objects of interest with the aim of acquiring visual information. However, processing this information is constrained in capacity, requiring task-driven and salience-driven attentional mechanisms to select few among the many available objects. A wealth of behavioral and neurophysiological evidence has demonstrated that visual selection and the motor selection of saccade targets rely on shared mechanisms. This coupling supports the premotor theory of visual attention put forth more than 30 years ago, postulating visual selection as a necessary stage in motor selection. In this review, we examine to which extent the coupling of visual and motor selection observed with saccades is replicated during ocular tracking. Ocular tracking combines catch-up saccades and smooth pursuit to foveate a moving object. We find evidence that ocular tracking requires visual selection of the speed and direction of the moving target, but the position of the motion signal may not coincide with the position of the pursuit target. Further, visual and motor selection can be spatially decoupled when pursuit is initiated (open-loop pursuit). We propose that a main function of coupled visual and motor selection is to serve the coordination of catch-up saccades and pursuit eye movements. A simple race-to-threshold model is proposed to explain the variable coupling of visual selection during pursuit, catch-up and regular saccades, while generating testable predictions. We discuss pending issues, such as disentangling visual selection from preattentive visual processing and response selection, and the pinpointing of visual selection mechanisms, which have begun to be addressed in the neurophysiological literature.
Collapse
Affiliation(s)
- David Souto
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Dirk Kerzel
- Faculté de Psychologie et des Sciences de l’Education, University of Geneva, Geneva, Switzerland
| |
Collapse
|
15
|
Basso MA, Bickford ME, Cang J. Unraveling circuits of visual perception and cognition through the superior colliculus. Neuron 2021; 109:918-937. [PMID: 33548173 PMCID: PMC7979487 DOI: 10.1016/j.neuron.2021.01.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
The superior colliculus is a conserved sensorimotor structure that integrates visual and other sensory information to drive reflexive behaviors. Although the evidence for this is strong and compelling, a number of experiments reveal a role for the superior colliculus in behaviors usually associated with the cerebral cortex, such as attention and decision-making. Indeed, in addition to collicular outputs targeting brainstem regions controlling movements, the superior colliculus also has ascending projections linking it to forebrain structures including the basal ganglia and amygdala, highlighting the fact that the superior colliculus, with its vast inputs and outputs, can influence processing throughout the neuraxis. Today, modern molecular and genetic methods combined with sophisticated behavioral assessments have the potential to make significant breakthroughs in our understanding of the evolution and conservation of neuronal cell types and circuits in the superior colliculus that give rise to simple and complex behaviors.
Collapse
Affiliation(s)
- Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | | | - Jianhua Cang
- University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
16
|
de Brouwer AJ, Flanagan JR, Spering M. Functional Use of Eye Movements for an Acting System. Trends Cogn Sci 2021; 25:252-263. [PMID: 33436307 DOI: 10.1016/j.tics.2020.12.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Movements of the eyes assist vision and support hand and body movements in a cooperative way. Despite their strong functional coupling, different types of movements are usually studied independently. We integrate knowledge from behavioral, neurophysiological, and clinical studies on how eye movements are coordinated with goal-directed hand movements and how they facilitate motor learning. Understanding the coordinated control of eye and hand movements can provide important insights into brain functions that are essential for performing or learning daily tasks in health and disease. This knowledge can also inform applications such as robotic manipulation and clinical rehabilitation.
Collapse
Affiliation(s)
- Anouk J de Brouwer
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada.
| | - J Randall Flanagan
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada; Department of Psychology, Queen's University, Kingston, Canada
| | - Miriam Spering
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
17
|
Usseglio G, Gatier E, Heuzé A, Hérent C, Bouvier J. Control of Orienting Movements and Locomotion by Projection-Defined Subsets of Brainstem V2a Neurons. Curr Biol 2020; 30:4665-4681.e6. [PMID: 33007251 DOI: 10.1016/j.cub.2020.09.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/03/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022]
Abstract
Spatial orientation requires the execution of lateralized movements and a change in the animal's heading in response to multiple sensory modalities. While much research has focused on the circuits for sensory integration, chiefly to the midbrain superior colliculus (SC), the downstream cells and circuits that engage adequate motor actions have remained elusive. Furthermore, the mechanisms supporting trajectory changes are still speculative. Here, using transneuronal viral tracings in mice, we show that brainstem V2a neurons, a genetically defined subtype of glutamatergic neurons of the reticular formation, receive putative synaptic inputs from the contralateral SC. This makes them a candidate relay of lateralized orienting commands. We next show that unilateral optogenetic activations of brainstem V2a neurons in vivo evoked ipsilateral orienting-like responses of the head and the nose tip on stationary mice. When animals are walking, similar stimulations impose a transient locomotor arrest followed by a change of trajectory. Third, we reveal that these distinct motor actions are controlled by dedicated V2a subsets each projecting to a specific spinal cord segment, with at least (1) a lumbar-projecting subset whose unilateral activation specifically controls locomotor speed but neither impacts trajectory nor evokes orienting movements, and (2) a cervical-projecting subset dedicated to head orientation, but not to locomotor speed. Activating the latter subset suffices to steer the animals' directional heading, placing the head orientation as the prime driver of locomotor trajectory. V2a neurons and their modular organization may therefore underlie the orchestration of multiple motor actions during multi-faceted orienting behaviors.
Collapse
Affiliation(s)
- Giovanni Usseglio
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190 Gif-Sur-Yvette, France
| | - Edwin Gatier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190 Gif-Sur-Yvette, France
| | - Aurélie Heuzé
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190 Gif-Sur-Yvette, France
| | - Coralie Hérent
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190 Gif-Sur-Yvette, France
| | - Julien Bouvier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190 Gif-Sur-Yvette, France.
| |
Collapse
|
18
|
Kurtzer IL, Muraoka T, Singh T, Prasad M, Chauhan R, Adhami E. Reaching movements are automatically redirected to nearby options during target split. J Neurophysiol 2020; 124:1013-1028. [PMID: 32783570 DOI: 10.1152/jn.00336.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motor behavior often occurs in environments with multiple goal options that can vary during the ongoing action. We explored this situation by requiring subjects to select between different target options during an ongoing reach. During split trials the original target was replaced with a left and a right flanking target, and participants had to select between them. This contrasted with the standard jump trials, where the original target would be replaced with a single flanking target, left or right. When participants were instructed to follow their natural tendency, they all tended to select the split target nearest the original. The near-target preference was more prominent with increased spatial disparity between the options and when participants could preview the potential options. Moreover, explicit instruction to obtain the "far" target during split trials resulted many errors compared with a "near" instruction, ~50% vs. ~15%. Online reaction times to target change were delayed in split trials compared with jump trials, ~200 ms vs. ~150 ms, but also highly automatic. Trials in which the instructed far target was correctly obtained were delayed by a further ~50 ms, unlike those in which the near target was incorrectly obtained. We also observed nonspecific responses from arm muscles at the jump trial latency during split trials. Taken together, our results indicate that online selection of reach targets is automatically linked to the spatial distribution of the options, though at greater delays than redirecting to a single target.NEW & NOTEWORTHY This work demonstrates that target selection during an ongoing reach is automatically linked to the option nearest a voided target. Online reaction times for two options are longer than redirection to a single option. Attempts to override the near-target tendency result in a high number of errors at the normal delay and further delays when the attempt is successful.
Collapse
Affiliation(s)
- Isaac L Kurtzer
- Department of Biomedical Science, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| | - Tetsuro Muraoka
- College of Economics, Nihon University, Chiyoda City, Tokyo, Japan
| | - Tarkeshwar Singh
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Mark Prasad
- Department of Biomedical Science, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| | - Riddhi Chauhan
- Department of Biomedical Science, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| | - Elan Adhami
- Department of Biomedical Science, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| |
Collapse
|
19
|
Abstract
Reaching trajectories have provided a unique tool to observe changes in internal cognitive decisions. Furthermore, technological advances have made devices for measuring reach movements more accessible and researchers have recognized that various populations including children, elderly populations, and non-human primates can easily execute simple movements as responses. As a result, devices such as a three-dimensional (3D) reach tracker, a stylus, or a computer-mouse have been increasingly utilized to study cognitive processes. However, although the specific type of tracking device that a researcher uses may impact behavior due to the constraints it places on movements, most researchers in these fields are unaware of this potential issue. Here, we examined the potential behavioral impact of using each of these three devices. To induce re-directed movements that mimic the movements that often occur following changes in cognitive states, we used a double-step task in which displacement of an initial target location requires participants to quickly re-direct their movement. We found that reach movement parameters were largely comparable across the three devices. However, hand movements measured by a 3D reach tracker showed earlier reach initiation latencies (relative to stylus movements) and more curved movement trajectories (relative to both mouse and stylus movements). Reach movements were also re-directed following target displacement more rapidly. Thus, 3D reach trackers may be ideal for observing fast, subtle changes in internal decision-making processes compared to other devices. Taken together, this study provides a useful reference for comparing and implementing reaching studies to examine human cognition.
Collapse
|
20
|
Abstract
In this article, we challenge the usefulness of "attention" as a unitary construct and/or neural system. We point out that the concept has too many meanings to justify a single term, and that "attention" is used to refer to both the explanandum (the set of phenomena in need of explanation) and the explanans (the set of processes doing the explaining). To illustrate these points, we focus our discussion on visual selective attention. It is argued that selectivity in processing has emerged through evolution as a design feature of a complex multi-channel sensorimotor system, which generates selective phenomena of "attention" as one of many by-products. Instead of the traditional analytic approach to attention, we suggest a synthetic approach that starts with well-understood mechanisms that do not need to be dedicated to attention, and yet account for the selectivity phenomena under investigation. We conclude that what would serve scientific progress best would be to drop the term "attention" as a label for a specific functional or neural system and instead focus on behaviorally relevant selection processes and the many systems that implement them.
Collapse
Affiliation(s)
- Bernhard Hommel
- Institute of Psychology, Cognitive Psychology Unit and Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
| | - Craig S Chapman
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Paul Cisek
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada
| | - Heather F Neyedli
- School of Health and Human Performance, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Joo-Hyun Song
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI, USA
| | - Timothy N Welsh
- Centre for Motor Control, Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord Street, Toronto, ON, M5S 2W6, Canada.
| |
Collapse
|
21
|
Malienko A, Harrar V, Khan AZ. Contrasting effects of exogenous cueing on saccades and reaches. J Vis 2018; 18:4. [DOI: 10.1167/18.9.4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Anton Malienko
- Vision, Attention and Action Laboratory (VISATTAC), School of Optometry, University of Montreal, Montreal, Quebec, Canada
| | - Vanessa Harrar
- Vision, Attention and Action Laboratory (VISATTAC), School of Optometry, University of Montreal, Montreal, Quebec, Canada
| | - Aarlenne Z. Khan
- Vision, Attention and Action Laboratory (VISATTAC), School of Optometry, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Independent selection of eye and hand targets suggests effector-specific attentional mechanisms. Sci Rep 2018; 8:9434. [PMID: 29930389 PMCID: PMC6013452 DOI: 10.1038/s41598-018-27723-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/04/2018] [Indexed: 11/23/2022] Open
Abstract
Both eye and hand movements bind visual attention to their target locations during movement preparation. However, it remains contentious whether eye and hand targets are selected jointly by a single selection system, or individually by independent systems. To unravel the controversy, we investigated the deployment of visual attention – a proxy of motor target selection – in coordinated eye-hand movements. Results show that attention builds up in parallel both at the eye and the hand target. Importantly, the allocation of attention to one effector’s motor target was not affected by the concurrent preparation of the other effector’s movement at any time during movement preparation. This demonstrates that eye and hand targets are represented in separate, effector-specific maps of action-relevant locations. The eye-hand synchronisation that is frequently observed on the behavioral level must emerge from mutual influences of the two effector systems at later, post-attentional processing stages.
Collapse
|
23
|
Extinction as a deficit of the decision-making circuitry in the posterior parietal cortex. HANDBOOK OF CLINICAL NEUROLOGY 2018. [PMID: 29519457 DOI: 10.1016/b978-0-444-63622-5.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Extinction is a common neurologic deficit that often occurs as one of a constellation of symptoms seen with lesions of the posterior parietal cortex (PPC). Although extinction has typically been considered a deficit in the allocation of attention, new findings, particularly from nonhuman primate studies, point to one potential and important source of extinction as damage to decision-making circuits for actions within the PPC. This new understanding provides clues to potential therapies for extinction. Also the finding that the PPC is important for action decisions and action planning has led to new neuroprosthetic applications using PPC recordings as control signals to assist paralyzed patients.
Collapse
|
24
|
Gu C, Pruszynski JA, Gribble PL, Corneil BD. Done in 100 ms: path-dependent visuomotor transformation in the human upper limb. J Neurophysiol 2017; 119:1319-1328. [PMID: 29212925 DOI: 10.1152/jn.00839.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A core assumption underlying mental chronometry is that more complex tasks increase cortical processing, prolonging reaction times. In this study we show that increases in task complexity alter the magnitude, rather than the latency, of the output for a circuit that rapidly transforms visual information into motor actions. We quantified visual stimulus-locked responses (SLRs), which are changes in upper limb muscle recruitment that evolve at a fixed latency ~100 ms after novel visual stimulus onset. First, we studied the underlying reference frame of the SLR by dissociating the initial eye and hand position. Despite its quick latency, we found that the SLR was expressed in a hand-centric reference frame, suggesting that the circuit mediating the SLR integrated retinotopic visual information with body configuration. Next, we studied the influence of planned movement trajectory, requiring participants to prepare and generate either curved or straight reaches in the presence of obstacles to attain the same visual stimulus location. We found that SLR magnitude was influenced by the planned movement trajectory to the same visual stimulus. On the basis of these results, we suggest that the circuit mediating the SLR lies in parallel to other well-studied corticospinal pathways. Although the fixed latency of the SLR precludes extensive cortical processing, inputs conveying information relating to task complexity, such as body configuration and planned movement trajectory, can preset nodes within the circuit underlying the SLR to modulate its magnitude. NEW & NOTEWORTHY We studied stimulus-locked responses (SLRs), which are changes in human upper limb muscle recruitment that evolve at a fixed latency ~100 ms after novel visual stimulus onset. We showed that despite its quick latency, the circuitry mediating the SLR transformed a retinotopic visual signal into a hand-centric motor command that is modulated by the planned movement trajectory. We suggest that the circuit generating the SLR is mediated through a tectoreticulospinal, rather than a corticospinal, pathway.
Collapse
Affiliation(s)
- Chao Gu
- Department of Psychology, University of Western Ontario , London, Ontario , Canada.,The Brain and Mind Institute, University of Western Ontario , London, Ontario , Canada
| | - J Andrew Pruszynski
- Department of Psychology, University of Western Ontario , London, Ontario , Canada.,Department of Physiology and Pharmacology, University of Western Ontario , London, Ontario , Canada.,The Brain and Mind Institute, University of Western Ontario , London, Ontario , Canada.,Robarts Research Institute, University of Western Ontario , London, Ontario , Canada
| | - Paul L Gribble
- Department of Psychology, University of Western Ontario , London, Ontario , Canada.,Department of Physiology and Pharmacology, University of Western Ontario , London, Ontario , Canada.,The Brain and Mind Institute, University of Western Ontario , London, Ontario , Canada
| | - Brian D Corneil
- Department of Psychology, University of Western Ontario , London, Ontario , Canada.,Department of Physiology and Pharmacology, University of Western Ontario , London, Ontario , Canada.,The Brain and Mind Institute, University of Western Ontario , London, Ontario , Canada.,Robarts Research Institute, University of Western Ontario , London, Ontario , Canada
| |
Collapse
|
25
|
Song JH. Abandoning and modifying one action plan for alternatives. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0195. [PMID: 28242729 DOI: 10.1098/rstb.2016.0195] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2016] [Indexed: 11/12/2022] Open
Abstract
Visual scenes are often complex and crowded with many different objects. To interact effectively, we must choose one object at a time as a goal for action. Certain external cues can act as a stop signal, quickly cancelling an ongoing action. Less recognized are internal signals. These can come from recent experience, anticipated action outcomes, cognitive states, and when attention is captured by a salient object. These signals elevate one action plan over alternatives and can quickly modify an initial choice. Here, we focus on these internal processes responsible for selecting, abandoning and modifying action plans. We first highlight how the brain resolves competition among multiple action plans. Critical is the existence of parallel motor planning processes, which allow efficient and timely changes. Then, we discuss how the action system interplays with perception, attention and memory processes to bias action selection and suppress or modify erroneous selections. Subsequently, we show how tracking the continuous modification of action trajectories can provide a tool to read out changes in internal cognitive states. Taken together, we shed light on a broader view that sensorimotor networks can continuously modify actions through simultaneous evaluation of alternative activities in concert with widely distributed perceptual and cognitive networks.This article is part of the themed issue 'Movement suppression: brain mechanisms for stopping and stillness'.
Collapse
Affiliation(s)
- Joo-Hyun Song
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, PO Box 1821, Providence, RI 02912, USA
| |
Collapse
|
26
|
|
27
|
Gamble CM, Song JH. Dynamic modulation of illusory and physical target size on separate and coordinated eye and hand movements. J Vis 2017; 17:23. [PMID: 28362898 PMCID: PMC5381334 DOI: 10.1167/17.3.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In everyday behavior, two of the most common visually guided actions-eye and hand movements-can be performed independently, but are often synergistically coupled. In this study, we examine whether the same visual representation is used for different stages of saccades and pointing, namely movement preparation and execution, and whether this usage is consistent between independent and naturalistic coordinated eye and hand movements. To address these questions, we used the Ponzo illusion to dissociate the perceived and physical sizes of visual targets and measured the effects on movement preparation and execution for independent and coordinated saccades and pointing. During independent movements, we demonstrated that both physically and perceptually larger targets produced faster preparation for both effectors. Furthermore, participants who showed a greater influence of the illusion on saccade preparation also showed a greater influence on pointing preparation, suggesting that a shared mechanism involved in preparation across effectors is influenced by illusions. However, only physical but not perceptual target sizes influenced saccade and pointing execution. When pointing was coordinated with saccades, we observed different dynamics: pointing no longer showed modulation from illusory size, while saccades showed illusion modulation for both preparation and execution. Interestingly, in independent and coordinated movements, the illusion modulated saccade preparation more than pointing preparation, with this effect more pronounced during coordination. These results suggest a shared mechanism, dominated by the eyes, may underlie visually guided action preparation across effectors. Furthermore, the influence of illusions on action may operate within such a mechanism, leading to dynamic interactions between action modalities based on task demands.
Collapse
Affiliation(s)
- Christine M Gamble
- Department of Cognitive, Linguistic, & Psychological Sciences, Brown University, Providence, RI,
| | - Joo-Hyun Song
- Department of Cognitive, Linguistic, & Psychological Sciences, Brown University, Providence, RI, USABrown Institute for Brain Science, Brown University, Providence, RI, ://research.clps.brown.edu/songlab/
| |
Collapse
|
28
|
Gopal A, Jana S, Murthy A. Contrasting speed-accuracy tradeoffs for eye and hand movements reveal the optimal nature of saccade kinematics. J Neurophysiol 2017; 118:1664-1676. [PMID: 28679840 DOI: 10.1152/jn.00329.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 11/22/2022] Open
Abstract
In contrast to hand movements, the existence of a neural representation of saccade kinematics is unclear. Saccade kinematics is typically thought to be specified by motor error/desired displacement and generated by brain stem circuits that are not penetrable to voluntary control. We studied the influence of instructed hand movement velocity on the kinematics of saccades executed without explicit instructions. When the hand movement was slow the saccade velocity decreased, independent of saccade amplitude. We leveraged this modulation of saccade velocity to study the optimality of saccades (in terms of velocity and endpoint accuracy) in relation to the well-known speed-accuracy tradeoff that governs voluntary movements (Fitts' law). In contrast to hand movements that obeyed Fitts' law, normometric saccades exhibited the greatest endpoint accuracy and lower reaction times, relative to saccades accompanying slow and fast hand movements. In the slow condition, where saccade endpoint accuracy suffered, we observed that targets were more likely to be foveated by two saccades resulting in step-saccades. Interestingly, the endpoint accuracy was higher in two-saccade trials, compared with one-saccade trials in both the slow and fast conditions. This indicates that step-saccades are a part of the kinematic plan for optimal control of endpoint accuracy. Taken together, these findings suggest normometric saccades are already optimized to maximize endpoint accuracy and the modulation of saccade velocity by hand velocity is likely to reflect the sharing of kinematic plans between the two effectors.NEW & NOTEWORTHY The optimality of saccade kinematics has been suggested by modeling studies but experimental evidence is lacking. However, we observed that, when subjects voluntarily modulated their hand velocity, the velocity of saccades accompanying these hand movements was also modulated, suggesting a shared kinematic plan for eye and hand movements. We leveraged this modulation to show that saccades had less endpoint accuracy when their velocity decreased, illustrating that normometric saccades have optimal speed and accuracy.
Collapse
Affiliation(s)
- Atul Gopal
- National Brain Research Centre, Nainwal More, Manesar, Haryana, India; and
| | - Sumitash Jana
- Centre for Neuroscience, Indian Institute of Science, Bangalore, Karnataka, India
| | - Aditya Murthy
- Centre for Neuroscience, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
29
|
Schepers IM, Beck AK, Bräuer S, Schwabe K, Abdallat M, Sandmann P, Dengler R, Rieger JW, Krauss JK. Human centromedian-parafascicular complex signals sensory cues for goal-oriented behavior selection. Neuroimage 2017; 152:390-399. [PMID: 28288908 DOI: 10.1016/j.neuroimage.2017.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/28/2017] [Accepted: 03/09/2017] [Indexed: 01/21/2023] Open
Abstract
Experimental research has shown that the centromedian-parafascicular complex (CM-Pf) of the intralaminar thalamus is activated in attentional orienting and processing of behaviorally relevant stimuli. These observations resulted in the hypothesis that the CM-Pf plays a pivotal role in goal-oriented behavior selection. We here set out to test this hypothesis with electrophysiological recordings from patients with electrodes implanted in CM-Pf for deep brain stimulation (DBS) treatment of chronic neuropathic pain. Six patients participated in (1) an auditory three-class oddball experiment, which required a button press to target tones, but not to standard and deviant tones and in (2) a multi-speaker experiment with a target word that required attention selection and a target image that required response selection. Subjects showed transient neural responses (8-15Hz) to the target tone and the target word. Two subjects additionally showed transient neural responses (15-25Hz) to the target image. All sensory target stimuli were related to an internal goal and required a behavior selection (attention selection, response selection). In group analyses, neural responses were greater to target tones than deviant and standard tones and to target words than other task-relevant words that did not require attention selection. The transient neural responses occurred after the target stimuli but prior to the overt behavioral response. Our results demonstrate that in human subjects the CM-Pf is involved in signaling sensory inputs related to goal-oriented selection of behavior.
Collapse
Affiliation(s)
- Inga M Schepers
- Department of Psychology, Oldenburg University, Germany; Cluster of Excellence Hearing4All, Germany.
| | - Anne-Kathrin Beck
- Department of Neurosurgery, Hannover Medical School, Germany; Cluster of Excellence Hearing4All, Germany
| | - Susann Bräuer
- Department of Psychology, Oldenburg University, Germany; Cluster of Excellence Hearing4All, Germany
| | - Kerstin Schwabe
- Department of Neurosurgery, Hannover Medical School, Germany; Cluster of Excellence Hearing4All, Germany
| | | | - Pascale Sandmann
- Department of Otorhinolaryngology, University of Cologne, Cologne, Germany
| | - Reinhard Dengler
- Department of Neurology, Hannover Medical School, Hanover, Germany; Cluster of Excellence Hearing4All, Germany
| | - Jochem W Rieger
- Department of Psychology, Oldenburg University, Germany; Cluster of Excellence Hearing4All, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Germany; Cluster of Excellence Hearing4All, Germany
| |
Collapse
|
30
|
van Koningsbruggen M, Koller K, Rafal RD. Deafferentation of the Superior Colliculus Abolishes Spatial Summation of Redundant Visual Signals. Front Syst Neurosci 2017; 11:9. [PMID: 28286472 PMCID: PMC5323397 DOI: 10.3389/fnsys.2017.00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/13/2017] [Indexed: 12/02/2022] Open
Abstract
Two visual signals appearing simultaneously are detected more rapidly than either signal appearing alone. Part of this redundant target effect (RTE) can be attributed to neural summation that has been proposed to occur in the superior colliculus (SC). We report direct evidence in two neurological patients for neural summation in the SC, and that it is mediated by afferent visual information transmitted through its brachium. The RTE was abolished in one patient with a hemorrhage involving the right posterior thalamus that damaged part of the SC and that disrupted its brachium; and in another patient in whom the SC appeared intact but deafferented due to traumatic avulsion of its brachium. In addition reaction time for unilateral targets in the contralesional field was slowed in both patients, providing the first evidence that visual afferents to the SC contribute to the efficiency of target detection.
Collapse
Affiliation(s)
- Martijn van Koningsbruggen
- Wolfson Centre for Clinical and Cognitive Neuroscience, School of Psychology, Bangor University Bangor, UK
| | - Kristin Koller
- Wolfson Centre for Clinical and Cognitive Neuroscience, School of Psychology, Bangor University Bangor, UK
| | - Robert D Rafal
- Wolfson Centre for Clinical and Cognitive Neuroscience, School of Psychology, Bangor UniversityBangor, UK; Department of Psychological and Brain Sciences, University of Delaware, NewarkDE, USA
| |
Collapse
|
31
|
Abstract
Target selection is often biased by an observer's recent experiences. However, not much is known about whether these selection biases influence behavior across different effectors. For example, does looking at a red object make it easier to subsequently reach towards another red object? In the current study, we asked observers to find the uniquely colored target object on each trial. Randomly intermixed pre-trial cues indicated the mode of action: either an eye movement or a visually guided reach movement to the target. In Experiment 1, we found that priming of popout, reflected in faster responses following repetition of the target color on consecutive trials, occurred regardless of whether the effector was repeated from the previous trial or not. In Experiment 2, we examined whether an inhibitory selection bias away from a feature could transfer across effectors. While priming of popout reflects both enhancement of the repeated target features and suppression of the repeated distractor features, the distractor previewing effect isolates a purely inhibitory component of target selection in which a previewed color is presented in a homogenous display and subsequently inhibited. Much like priming of popout, intertrial suppression biases in the distractor previewing effect transferred across effectors. Together, these results suggest that biases for target selection driven by recent trial history transfer across effectors. This indicates that representations in memory that bias attention towards or away from specific features are largely independent from their associated actions.
Collapse
|
32
|
Primate superior colliculus neurons activated by unexpected sensation. Exp Brain Res 2016; 234:3465-3471. [DOI: 10.1007/s00221-016-4745-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
|
33
|
Thompson JA, Costabile JD, Felsen G. Mesencephalic representations of recent experience influence decision making. eLife 2016; 5. [PMID: 27454033 PMCID: PMC4987136 DOI: 10.7554/elife.16572] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/23/2016] [Indexed: 01/25/2023] Open
Abstract
Decisions are influenced by recent experience, but the neural basis for this phenomenon is not well understood. Here, we address this question in the context of action selection. We focused on activity in the pedunculopontine tegmental nucleus (PPTg), a mesencephalic region that provides input to several nuclei in the action selection network, in well-trained mice selecting actions based on sensory cues and recent trial history. We found that, at the time of action selection, the activity of many PPTg neurons reflected the action on the previous trial and its outcome, and the strength of this activity predicted the upcoming choice. Further, inactivating the PPTg predictably decreased the influence of recent experience on action selection. These findings suggest that PPTg input to downstream motor regions, where it can be integrated with other relevant information, provides a simple mechanism for incorporating recent experience into the computations underlying action selection. DOI:http://dx.doi.org/10.7554/eLife.16572.001 The decisions we make are influenced by recent experience, yet it is not known how this experience is represented in the brain. For decisions about when, where and how to move, researchers have hypothesized that recent experience might influence activity in a region of the brainstem – the central trunk of the brain – that is known to be involved in movement. When deciding when, where and how to move, several areas of the brain are involved in selecting the optimal action. Recent studies suggest that groups of neurons known as locomotor brainstem nuclei may also contribute to making decisions about movements. Thompson et al. investigated whether a brainstem locomotor area called the pedunculopontine tegmental (PPTg) nucleus in mice might contribute to decision making rather than just conveying the selected response. The mice were trained to recognize particular odors and move to either the left or right to collect a food reward. While the mice were selecting an action, the activity of neurons in the PPTg nucleus reflected the action they had chosen on a previous experience and the outcome of that choice (i.e. whether they received a reward). These representations of past experiences influenced the upcoming decision the mice were about to take. The findings of Thompson et al. suggest that the PPTg nucleus might play a critical role in the process of selecting the optimal action. Future work will examine what kinds of information about the environment or recent experience have the biggest effect on the activity of this region. DOI:http://dx.doi.org/10.7554/eLife.16572.002
Collapse
Affiliation(s)
- John A Thompson
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, United States.,Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, United States
| | - Jamie D Costabile
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, United States
| | - Gidon Felsen
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, United States
| |
Collapse
|
34
|
Heath M, DeSimone JC. The visual properties of proximal and remote distractors differentially influence reaching planning times: evidence from pro- and antipointing tasks. Exp Brain Res 2016; 234:3259-3268. [DOI: 10.1007/s00221-016-4723-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 07/04/2016] [Indexed: 11/30/2022]
|
35
|
Holmes NP, Dakwar AR. Online control of reaching and pointing to visual, auditory, and multimodal targets: Effects of target modality and method of determining correction latency. Vision Res 2015; 117:105-16. [DOI: 10.1016/j.visres.2015.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 11/30/2022]
|
36
|
Inactivation of Parietal Reach Region Affects Reaching But Not Saccade Choices in Internally Guided Decisions. J Neurosci 2015; 35:11719-28. [PMID: 26290248 DOI: 10.1523/jneurosci.1068-15.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The posterior parietal cortex (PPC) has traditionally been considered important for awareness, spatial perception, and attention. However, recent findings provide evidence that the PPC also encodes information important for making decisions. These findings have initiated a running argument of whether the PPC is critically involved in decision making. To examine this issue, we reversibly inactivated the parietal reach region (PRR), the area of the PPC that is specialized for reaching movements, while two monkeys performed a memory-guided reaching or saccade task. The task included choices between two equally rewarded targets presented simultaneously in opposite visual fields. Free-choice trials were interleaved with instructed trials, in which a single cue presented in the peripheral visual field defined the reach and saccade target unequivocally. We found that PRR inactivation led to a strong reduction of contralesional choices, but only for reaches. On the other hand, saccade choices were not affected by PRR inactivation. Importantly, reaching and saccade movements to single instructed targets remained largely intact. These results cannot be explained as an effector-nonspecific deficit in spatial attention or awareness, since the temporary "lesion" had an impact only on reach choices. Hence, the PPR is a part of a network for reach decisions and not just reach planning. SIGNIFICANCE STATEMENT There has been an ongoing debate on whether the posterior parietal cortex (PPC) represents only spatial awareness, perception, and attention or whether it is also involved in decision making for actions. In this study we explore whether the parietal reach region (PRR), the region of the PPC that is specialized for reaches, is involved in the decision process. We inactivated the PRR while two monkeys performed reach and saccade choices between two targets presented simultaneously in both hemifields. We found that inactivation affected only the reach choices, while leaving saccade choices intact. These results cannot be explained as a deficit in attention, since the temporary lesion affected only the reach choices. Thus, PRR is a part of a network for making reach decisions.
Collapse
|
37
|
Gopal A, Murthy A. Eye-hand coordination during a double-step task: evidence for a common stochastic accumulator. J Neurophysiol 2015; 114:1438-54. [PMID: 26084906 PMCID: PMC4556852 DOI: 10.1152/jn.00276.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/15/2015] [Indexed: 11/22/2022] Open
Abstract
Many studies of reaching and pointing have shown significant spatial and temporal correlations between eye and hand movements. Nevertheless, it remains unclear whether these correlations are incidental, arising from common inputs (independent model); whether these correlations represent an interaction between otherwise independent eye and hand systems (interactive model); or whether these correlations arise from a single dedicated eye-hand system (common command model). Subjects were instructed to redirect gaze and pointing movements in a double-step task in an attempt to decouple eye-hand movements and causally distinguish between the three architectures. We used a drift-diffusion framework in the context of a race model, which has been previously used to explain redirect behavior for eye and hand movements separately, to predict the pattern of eye-hand decoupling. We found that the common command architecture could best explain the observed frequency of different eye and hand response patterns to the target step. A common stochastic accumulator for eye-hand coordination also predicts comparable variances, despite significant difference in the means of the eye and hand reaction time (RT) distributions, which we tested. Consistent with this prediction, we observed that the variances of the eye and hand RTs were similar, despite much larger hand RTs (∼90 ms). Moreover, changes in mean eye RTs, which also increased eye RT variance, produced a similar increase in mean and variance of the associated hand RT. Taken together, these data suggest that a dedicated circuit underlies coordinated eye-hand planning.
Collapse
Affiliation(s)
- Atul Gopal
- National Brain Research Centre, Manesar, Haryana, India; and
| | - Aditya Murthy
- Centre for Neuroscience, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
38
|
Abstract
Alfred L. Yarbus was among the first to demonstrate that eye movements actively serve our perceptual and cognitive goals, a crucial recognition that is at the heart of today's research on active vision. He realized that not the changes in fixation stick in memory but the changes in shifts of attention. Indeed, oculomotor control is tightly coupled to functions as fundamental as attention and memory. This tight relationship offers an intriguing perspective on transsaccadic perceptual continuity, which we experience despite the fact that saccades cause rapid shifts of the image across the retina. Here, I elaborate this perspective based on a series of psychophysical findings. First, saccade preparation shapes the visual system's priorities; it enhances visual performance and perceived stimulus intensity at the targets of the eye movement. Second, before saccades, the deployment of visual attention is updated, predictively facilitating perception at those retinal locations that will be relevant once the eyes land. Third, saccadic eye movements strongly affect the contents of visual memory, highlighting their crucial role for which parts of a scene we remember or forget. Together, these results provide insights on how attentional processes enable the visual system to cope with the retinal consequences of saccades.
Collapse
Affiliation(s)
- Martin Rolfs
- Department of Psychology, Humboldt Universität zu Berlin, GermanyBernstein Center for Computational Neuroscience, Humboldt Universität zu Berlin, Germany
| |
Collapse
|
39
|
van Zoest W, Kerzel D. The effects of saliency on manual reach trajectories and reach target selection. Vision Res 2015; 113:179-87. [DOI: 10.1016/j.visres.2014.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/27/2014] [Accepted: 11/11/2014] [Indexed: 11/30/2022]
|
40
|
Courjon JH, Zénon A, Clément G, Urquizar C, Olivier E, Pélisson D. Electrical stimulation of the superior colliculus induces non-topographically organized perturbation of reaching movements in cats. Front Syst Neurosci 2015; 9:109. [PMID: 26283933 PMCID: PMC4516875 DOI: 10.3389/fnsys.2015.00109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/13/2015] [Indexed: 11/13/2022] Open
Abstract
Besides its well-known contribution to orienting behaviors, the superior colliculus (SC) might also play a role in controlling visually guided reaching movements. This view has been inferred from studies in monkeys showing that some tectal cells located in the deep layers are active prior to reaching movements; it was corroborated by functional imaging studies performed in humans. Likewise, our group has already demonstrated that, in cats, SC electrical stimulation can modify the trajectory of goal-directed forelimb movements without necessarily affecting the gaze position. However, as in monkeys, we could not establish any congruence between the usual retinotopic SC map and direction of evoked forelimb movements, albeit only a small portion of the collicular map was investigated. Therefore, the aim of the current study was to further ascertain the causal contribution of SC to reaching movement by exploring the whole collicular map. Our results confirmed that SC electrical stimulation deflected the trajectory of reaching movements, but this deviation was always directed downward and backward, irrespective of the location of the stimulation site. The lack of a complete map of reach directions in the SC and the absence of congruence between the direction of evoked forelimb movements and the collicular oculomotor map challenge the view that, in the cat, the SC causally contributes to coding forelimb movements. Interestingly, the very short latencies of the effect argue also against the interruption of reaching movements being driven by a disruption of the early visual processing. Our results rather suggest that the SC might contribute to the reach target selection process. Alternatively, SC stimulation might have triggered a postural adjustment anticipating an upcoming orienting reaction, leading to an interruption of the on-going reaching movement.
Collapse
Affiliation(s)
- Jean-Hubert Courjon
- Integrative, Multisensory, Perception Action and Cognition Team, Centre de Recherches en Neurosciences de Lyon, INSERM U1028 and CNRS UMR5292, Bron France
| | - Alexandre Zénon
- Institute of Neuroscience, Université Catholique de Louvain, Brussels Belgium
| | - Gilles Clément
- Integrative, Multisensory, Perception Action and Cognition Team, Centre de Recherches en Neurosciences de Lyon, INSERM U1028 and CNRS UMR5292, Bron France
| | - Christian Urquizar
- Integrative, Multisensory, Perception Action and Cognition Team, Centre de Recherches en Neurosciences de Lyon, INSERM U1028 and CNRS UMR5292, Bron France
| | - Etienne Olivier
- Institute of Neuroscience, Université Catholique de Louvain, Brussels Belgium
| | - Denis Pélisson
- Integrative, Multisensory, Perception Action and Cognition Team, Centre de Recherches en Neurosciences de Lyon, INSERM U1028 and CNRS UMR5292, Bron France
| |
Collapse
|
41
|
Wolf AB, Lintz MJ, Costabile JD, Thompson JA, Stubblefield EA, Felsen G. An integrative role for the superior colliculus in selecting targets for movements. J Neurophysiol 2015. [PMID: 26203103 DOI: 10.1152/jn.00262.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A fundamental goal of systems neuroscience is to understand the neural mechanisms underlying decision making. The midbrain superior colliculus (SC) is known to be central to the selection of one among many potential spatial targets for movements, which represents an important form of decision making that is tractable to rigorous experimental investigation. In this review, we first discuss data from mammalian models-including primates, cats, and rodents-that inform our understanding of how neural activity in the SC underlies the selection of targets for movements. We then examine the anatomy and physiology of inputs to the SC from three key regions that are themselves implicated in motor decisions-the basal ganglia, parabrachial region, and neocortex-and discuss how they may influence SC activity related to target selection. Finally, we discuss the potential for methodological advances to further our understanding of the neural bases of target selection. Our overarching goal is to synthesize what is known about how the SC and its inputs act together to mediate the selection of targets for movements, to highlight open questions about this process, and to spur future studies addressing these questions.
Collapse
Affiliation(s)
- Andrew B Wolf
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado; Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado; Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Mario J Lintz
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado; Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado; Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Jamie D Costabile
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| | - John A Thompson
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Elizabeth A Stubblefield
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| | - Gidon Felsen
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado; Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado; Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado; and
| |
Collapse
|
42
|
Clark K, Squire RF, Merrikhi Y, Noudoost B. Visual attention: Linking prefrontal sources to neuronal and behavioral correlates. Prog Neurobiol 2015; 132:59-80. [PMID: 26159708 DOI: 10.1016/j.pneurobio.2015.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 06/25/2015] [Accepted: 06/28/2015] [Indexed: 11/26/2022]
Abstract
Attention is a means of flexibly selecting and enhancing a subset of sensory input based on the current behavioral goals. Numerous signatures of attention have been identified throughout the brain, and now experimenters are seeking to determine which of these signatures are causally related to the behavioral benefits of attention, and the source of these modulations within the brain. Here, we review the neural signatures of attention throughout the brain, their theoretical benefits for visual processing, and their experimental correlations with behavioral performance. We discuss the importance of measuring cue benefits as a way to distinguish between impairments on an attention task, which may instead be visual or motor impairments, and true attentional deficits. We examine evidence for various areas proposed as sources of attentional modulation within the brain, with a focus on the prefrontal cortex. Lastly, we look at studies that aim to link sources of attention to its neuronal signatures elsewhere in the brain.
Collapse
Affiliation(s)
- Kelsey Clark
- Montana State University, Bozeman, MT, United States
| | - Ryan Fox Squire
- Stanford University, Stanford, CA, United States; Lumos Labs, San Francisco, CA, United States
| | - Yaser Merrikhi
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | | |
Collapse
|
43
|
Wood DK, Gu C, Corneil BD, Gribble PL, Goodale MA. Transient visual responses reset the phase of low-frequency oscillations in the skeletomotor periphery. Eur J Neurosci 2015; 42:1919-32. [PMID: 26061189 DOI: 10.1111/ejn.12976] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/05/2015] [Indexed: 11/28/2022]
Abstract
We recorded muscle activity from an upper limb muscle while human subjects reached towards peripheral targets. We tested the hypothesis that the transient visual response sweeps not only through the central nervous system, but also through the peripheral nervous system. Like the transient visual response in the central nervous system, stimulus-locked muscle responses (< 100 ms) were sensitive to stimulus contrast, and were temporally and spatially dissociable from voluntary orienting activity. Also, the arrival of visual responses reduced the variability of muscle activity by resetting the phase of ongoing low-frequency oscillations. This latter finding critically extends the emerging evidence that the feedforward visual sweep reduces neural variability via phase resetting. We conclude that, when sensory information is relevant to a particular effector, detailed information about the sensorimotor transformation, even from the earliest stages, is found in the peripheral nervous system.
Collapse
Affiliation(s)
- Daniel K Wood
- Brain and Mind Institute, University of Western Ontario, London, ON, Canada.,Department of Neurobiology, Northwestern University, 2205 Tech Dr., Hogan 2-160, Evanston, IL, 60208, USA
| | - Chao Gu
- Brain and Mind Institute, University of Western Ontario, London, ON, Canada.,Graduate Program in Neuroscience, University of Western Ontario, London, ON, Canada.,Robarts Research Institute, London, ON, Canada
| | - Brian D Corneil
- Brain and Mind Institute, University of Western Ontario, London, ON, Canada.,Robarts Research Institute, London, ON, Canada.,Departments of Psychology, Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Paul L Gribble
- Brain and Mind Institute, University of Western Ontario, London, ON, Canada.,Departments of Psychology, Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Melvyn A Goodale
- Brain and Mind Institute, University of Western Ontario, London, ON, Canada.,Departments of Psychology, Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
44
|
Woodgate PJW, Strauss S, Sami SA, Heinke D. Motor cortex guides selection of predictable movement targets. Behav Brain Res 2015; 287:238-46. [PMID: 25835319 DOI: 10.1016/j.bbr.2015.03.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/19/2015] [Accepted: 03/23/2015] [Indexed: 11/30/2022]
Abstract
The present paper asks whether the motor cortex contributes to prediction-based guidance of target selection. This question was inspired by recent evidence that suggests (i) recurrent connections from the motor system into the attentional system may extract movement-relevant perceptual information and (ii) that the motor cortex cannot only generate predictions of the sensory consequences of movements but may also operate as predictor of perceptual events in general. To test this idea we employed a choice reaching task requiring participants to rapidly reach and touch a predictable or unpredictable colour target. Motor cortex activity was modulated via transcranial direct current stimulation (tDCS). In Experiment 1 target colour repetitions were predictable. Under such conditions anodal tDCS facilitated selection versus sham and cathodal tDCS. This improvement was apparent for trajectory curvature but not movement initiation. Conversely, where no predictability of colour was embedded reach performance was unaffected by tDCS. Finally, the results of a key-press experiment suggested that motor cortex involvement is restricted to tasks where the predictable target colour is movement-relevant. The outcomes are interpreted as evidence that the motor system contributes to the top-down guidance of selective attention to movement targets.
Collapse
Affiliation(s)
- Philip J W Woodgate
- Centre for Computational Neuroscience and Cognitive Robotics, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK.
| | - Soeren Strauss
- Centre for Computational Neuroscience and Cognitive Robotics, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK.
| | - Saber A Sami
- Behavioural Brain Sciences, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK.
| | - Dietmar Heinke
- Centre for Computational Neuroscience and Cognitive Robotics, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
45
|
Song JH, McPeek RM. Neural correlates of target selection for reaching movements in superior colliculus. J Neurophysiol 2014; 113:1414-22. [PMID: 25505107 DOI: 10.1152/jn.00417.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recently demonstrated that inactivation of the primate superior colliculus (SC) causes a deficit in target selection for arm-reaching movements when the reach target is located in the inactivated field (Song JH, Rafal RD, McPeek RM. Proc Natl Acad Sci USA 108: E1433-E1440, 2011). This is consistent with the notion that the SC is part of a general-purpose target selection network beyond eye movements. To understand better the role of SC activity in reach target selection, we examined how individual SC neurons in the intermediate layers discriminate a reach target from distractors. Monkeys reached to touch a color oddball target among distractors while maintaining fixation. We found that many SC neurons robustly discriminate the goal of the reaching movement before the onset of the reach even though no saccade is made. To identify these cells in the context of conventional SC cell classification schemes, we also recorded visual, delay-period, and saccade-related responses in a delayed saccade task. On average, SC cells that discriminated the reach target from distractors showed significantly higher visual and delay-period activity than nondiscriminating cells, but there was no significant difference in saccade-related activity. Whereas a majority of SC neurons that discriminated the reach target showed significant delay-period activity, all nondiscriminating cells lacked such activity. We also found that some cells without delay-period activity did discriminate the reach target from distractors. We conclude that the majority of intermediate-layer SC cells discriminate a reach target from distractors, consistent with the idea that the SC contains a priority map used for effector-independent target selection.
Collapse
Affiliation(s)
- Joo-Hyun Song
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, Rhode Island; Brown Institute for Brain Science, Brown University, Providence, Rhode Island; The Smith-Kettlewell Eye Research Institute, San Francisco, California; and
| | - Robert M McPeek
- The Smith-Kettlewell Eye Research Institute, San Francisco, California; and Graduate Center for Vision Research and SUNY Eye Institute, SUNY College of Optometry, New York, New York
| |
Collapse
|
46
|
Franklin DW, Franklin S, Wolpert DM. Fractionation of the visuomotor feedback response to directions of movement and perturbation. J Neurophysiol 2014; 112:2218-33. [PMID: 25098965 PMCID: PMC4274920 DOI: 10.1152/jn.00377.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies have highlighted the modulation and control of feedback gains as support for optimal feedback control. While many experiments contrast feedback gains across different environments, only a few have demonstrated the appropriate modulation of feedback gains from one movement to the next. Here we extend previous work by examining whether different visuomotor feedback gains can be learned for different directions of movement or perturbation directions in the same posture. To do this we measure visuomotor responses (involuntary motor responses to shifts in the visual feedback of the hand) during reaching movements. Previous work has demonstrated that these feedback responses can be modulated depending on the statistical distributions of the environment. Specifically, feedback gains were upregulated for task-relevant environments and downregulated for task-irrelevant environments. Using these two statistical distributions, the first experiment examined whether these feedback responses could be independently modulated for the same limb posture for two directions of movement (same limb posture but on either an inward or outward movement), while the second examined whether the feedback responses could modulate, within a single movement, to perturbations to the left or right of the reach. Both experiments demonstrated that visuomotor feedback responses could be learned independently such that the response was appropriate for the environment. This work demonstrates that feedback gains can be simultaneously tuned (upregulated and downregulated) depending on the state of the body and the environment. The results indicate the degree to which feedback responses can be fractionated in order to adapt to the world.
Collapse
Affiliation(s)
- David W Franklin
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Sae Franklin
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Daniel M Wolpert
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
47
|
Moher J, Song JH. Perceptual decision processes flexibly adapt to avoid change-of-mind motor costs. J Vis 2014; 14:1. [PMID: 24986186 DOI: 10.1167/14.8.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The motor system is tightly linked with perception and cognition. Recent studies have shown that even anticipated biophysical action costs associated with competing response options can be incorporated into decision-making processes. As a result, choices associated with high energy costs are less likely to be selected. However, some action costs may be harder to predict. For example, a person choosing among apples at a grocery store may change his or her mind suddenly about which apple to put into the cart. This change of mind may be reflected in motor output as the initial decision triggers a motor response toward a Granny Smith that is subsequently redirected toward a Red Delicious. In the present study, to examine how motor costs associated with changes of mind affect perceptual decision making, participants performed a difficult random dot–motion discrimination task in which they had to indicate the direction of motion by reaching to one of two response options. Although each response box was always equidistant from the starting position, the physical distance between the two response options was varied. We found that when the boxes were far apart from one another, and thus changes of mind incurred greater redirection motor costs, change-of-mind frequency decreased while latency to initiate movement increased. This occurred even when response box distance varied randomly from trial to trial and was cued only 1 s before each trial began. Thus, we demonstrated that observers can dynamically adjust perceptual decision-making processes to avoid high motor costs incurred by a change of mind.
Collapse
Affiliation(s)
- Jeff Moher
- Cognitive, Linguistic, & Psychological Sciences, Brown University, Providence, RI, USA
| | - Joo-Hyun Song
- Cognitive, Linguistic, & Psychological Sciences, Brown University, Providence, RI, USABrown Institute for Brain Sciences, Brown University, Providence, RI, USA
| |
Collapse
|
48
|
|
49
|
Arm movements induced by electrical microstimulation in the superior colliculus of the macaque monkey. J Neurosci 2014; 34:3350-63. [PMID: 24573292 DOI: 10.1523/jneurosci.0443-13.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Neuronal activity in the deep layers of the macaque (Macaca mulatta) superior colliculus (SC) and the underlying reticular formation is correlated with the initiation and execution of arm movements (Werner, 1993). Although the correlation of this activity with EMGs of proximal arm muscles is as strong as in motor cortex (Werner et al., 1997a; Stuphorn et al., 1999), little is known about the influence of electrical microstimulation in the SC on the initiation and trajectories of arm movements. Our experiments on three macaque monkeys clearly show that arm movements can be elicited by electrical microstimulation in the deep layers of the lateral SC and underlying reticular formation. The most extensively trained monkey, M1, extended his arm toward the screen in front of him more or less stereotypically upon electrical SC stimulation. In two other monkeys, M2 and M3, a larger repertoire of arm movements were elicited, categorized into three movement types, and compared before (M3) and after (M2 and M3) training: twitch (56% vs. 62%), lift (6% vs. 5%), and extend (37% vs. 32%), respectively. Therefore, arm movements induced by electrical stimulation in the monkey SC represent a further component of the functional repertoire of the SC using its impact on motoneurons in the spinal cord, probably via premotor neurons in the brainstem, as well as on structures involved in executing more complex movements such as target-directed reaching. Therefore, the macaque SC could be involved directly in the initiation, execution, and amendment of arm and hand movements.
Collapse
|
50
|
Effects of direct and averted gaze on the subsequent saccadic response. Atten Percept Psychophys 2014; 76:1085-92. [DOI: 10.3758/s13414-014-0660-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|