1
|
Pan X, Wang L, Yang J, Li Y, Xu M, Liang C, Liu L, Li Z, Xia C, Pang J, Wang M, Li M, Guo S, Yan P, Ding C, Rosas IO, Yu G. TRβ activation confers AT2-to-AT1 cell differentiation and anti-fibrosis during lung repair via KLF2 and CEBPA. Nat Commun 2024; 15:8672. [PMID: 39375377 PMCID: PMC11458772 DOI: 10.1038/s41467-024-52827-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
Aberrant repair underlies the pathogenesis of pulmonary fibrosis while effective strategies to convert fibrosis to normal regeneration are scarce. Here, we found that thyroid hormone is decreased in multiple models of lung injury but is essential for lung regeneration. Moreover, thyroid hormone receptor α (TRα) promotes cell proliferation, while TRβ fuels cell maturation in lung regeneration. Using a specific TRβ agonist, sobetirome, we demonstrate that the anti-fibrotic effects of thyroid hormone mainly rely on TRβ in mice. Cellularly, TRβ activation enhances alveolar type-2 (AT2) cell differentiation into AT1 cell and constrains AT2 cell hyperplasia. Molecularly, TRβ activation directly regulates the expression of KLF2 and CEBPA, both of which further synergistically drive the differentiation program of AT1 cells and benefit regeneration and anti-fibrosis. Our findings elucidate the modulation function of the TRβ-KLF2/CEBPA axis on AT2 cell fate and provide a potential treatment strategy to facilitate lung regeneration and anti-fibrosis.
Collapse
Affiliation(s)
- Xin Pan
- Pingyuan Laboratory, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Lan Wang
- Pingyuan Laboratory, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China.
| | - Juntang Yang
- Pingyuan Laboratory, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Yingge Li
- Pingyuan Laboratory, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Min Xu
- Pingyuan Laboratory, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Chenxi Liang
- Pingyuan Laboratory, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Lulu Liu
- Pingyuan Laboratory, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Zhongzheng Li
- Pingyuan Laboratory, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Cong Xia
- Pingyuan Laboratory, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Jiaojiao Pang
- Pingyuan Laboratory, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Mengyuan Wang
- Pingyuan Laboratory, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Meng Li
- Pingyuan Laboratory, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Saiya Guo
- Pingyuan Laboratory, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Peishuo Yan
- Pingyuan Laboratory, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ivan O Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Guoying Yu
- Pingyuan Laboratory, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China.
| |
Collapse
|
2
|
Li B, Xia C, He W, Liu J, Duan R, Ji Z, Pan X, Zhou Y, Yu G, Wang L. The Thyroid Hormone Analog GC-1 Mitigates Acute Lung Injury by Inhibiting M1 Macrophage Polarization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2401931. [PMID: 39373388 DOI: 10.1002/advs.202401931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/09/2024] [Indexed: 10/08/2024]
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a life-threatening condition with a high mortality rate of ≈40%. Thyroid hormones (THs) play crucial roles in maintaining homeostasis of the cellular microenvironment under stress. The previous studies confirmed that the clinical-stage TH analog GC-1 significantly alleviates pulmonary fibrosis by improving the function of mitochondria in epithelial cells. However, the effects of GC-1 on macrophages in lung injury and the related mechanisms remain unclear. This study evaluated the therapeutic effects of GC-1 in two murine models of lipopolysaccharide (LPS)- or hydrochloric acid (HCl)-induced ALI. Additionally, mouse alveolar macrophages (AMs) and human THP-1-derived macrophages are utilized to investigate the impact of GC-1 on macrophage polarization. GC-1 effectively reduces the inflammatory response and lung injury in ALI mice, as evidenced by neutrophil infiltration, cytokine levels, alveolar fluid clearance, and pulmonary pathology. Notably, GC-1 selectively inhibits M1 macrophage polarization, which may be achieved by impeding NF-κB signaling activation through the DNMT3b-PPARγ-NF-κB pathway in a TH receptor β1 (TRβ1)-dependent manner, consequently suppressing the polarization of macrophages toward the M1 phenotype and overproduction of inflammatory cytokines. Overall, these findings highlight the immunomodulatory property of GC-1 as an anti-inflammatory strategy for ALI/ARDS and inflammation-related diseases.
Collapse
Affiliation(s)
- Bin Li
- Pingyuan Laboratory, State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, 453007, P. R. China
- College of Chemical and Pharmaceutical Engineering, Huanghuai University, Zhumadian, 463000, P. R. China
| | - Cong Xia
- Pingyuan Laboratory, State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Wanyu He
- Pingyuan Laboratory, State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Jingyi Liu
- Pingyuan Laboratory, State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Ruoyu Duan
- Pingyuan Laboratory, State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Zhihua Ji
- Pingyuan Laboratory, State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Xiaoyue Pan
- Pingyuan Laboratory, State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Yanlin Zhou
- Pingyuan Laboratory, State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Guoying Yu
- Pingyuan Laboratory, State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Lan Wang
- Pingyuan Laboratory, State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, 453007, P. R. China
| |
Collapse
|
3
|
Guo X, Xu K, Wang Q, Han Z, Yu G. Assessing the impact of triiodothyronine treatment on the lung microbiome of mice with pulmonary fibrosis. BMC Pulm Med 2024; 24:405. [PMID: 39180004 PMCID: PMC11344337 DOI: 10.1186/s12890-024-03214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF), an interstitial lung disease, is characterized by the exacerbation of progressive pulmonary fibrosis (PF). IPF primarily affects older individuals and can lead to respiratory failure. This study aimed to assess the effects of triiodothyronine (T3) treatment on the lung microbiome of mice with PF. METHODS Mice were perfused with bleomycin (BLM) to establish a PF model. Using a randomized design, 40 female specific pathogen-free (SPF) C57BL6/N mice were divided into four groups: saline, saline + T3, BLM, and BLM + T3. Histological morphology was assessed through Hematoxylin and Eosin staining as well as Masson's Trichrome staining. For the identification of lung bacteria, 16S rRNA gene sequencing was employed. An Enzyme-Linked Immunosorbent Assay was used to measure total T3 (TT3), free T3 (FT3, and reverse T3 (rT3) levels in the peripheral serum. RESULTS T3 treatment ameliorated BLM-induced lung fibrosis and structural damage. The microbiome experienced a decrease in the abundance of Proteobacteria, Bacteroides, and Actinomycetes and an increase in the abundance of Firmicutes when exposed to BLM; however, T3 treatment reversed this effect. The four groups showed no significant difference in alpha microbiome diversity (P > 0.05). Serum concentrations of TT3 and FT3 were positively correlated with microbiome abundance (P < 0.05). Administration of T3 enhanced the microbiota in PF without affecting the diversity and biological functions of the microbiome (P > 0.05). CONCLUSION The administration of T3 demonstrated a favorable impact on the lung microbiota of mice afflicted with PF, thereby partially substantiating the potential role of T3 as a therapeutic agent in the management of PF.
Collapse
Affiliation(s)
- Xiaoshu Guo
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; Pingyuan Laboratory; College of Life Science , Henan Normal University, No.46 Jianshe Road, Xinxiang City, 453007, Henan, China.
- Department of Physiology, Department of Fundamental Medicine, Changzhi Medical College, Changzhi, 046000, Shanxi, China.
| | - Kai Xu
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; Pingyuan Laboratory; College of Life Science , Henan Normal University, No.46 Jianshe Road, Xinxiang City, 453007, Henan, China
| | - Qiwen Wang
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; Pingyuan Laboratory; College of Life Science , Henan Normal University, No.46 Jianshe Road, Xinxiang City, 453007, Henan, China
| | - Zongyuan Han
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; Pingyuan Laboratory; College of Life Science , Henan Normal University, No.46 Jianshe Road, Xinxiang City, 453007, Henan, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; Pingyuan Laboratory; College of Life Science , Henan Normal University, No.46 Jianshe Road, Xinxiang City, 453007, Henan, China.
| |
Collapse
|
4
|
D'Onofrio I, De Giorgio G, Sajapin R, Vurro D, Liboà A, Dembech E, Trevisi G, Botti M, Galstyan V, Tarabella G, D'Angelo P. Inhalable drug-loaded silk fibroin carriers for pulmonary drug delivery. RSC Adv 2024; 14:27288-27297. [PMID: 39219844 PMCID: PMC11362913 DOI: 10.1039/d4ra03324h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
The design and development of engineered micro and nano-carriers offering superior therapeutic performance compared to traditional delivery forms, are crucial in pharmaceutical research. Aerosolization and inhalation of carriers with improved solubility/stability of insoluble drugs, has huge potential for targeted drug delivery (DD) in various pulmonary diseases. Indeed, dedicated carriers must meet specific dimensional rules for proper lung delivery. Particles between 2-10 μm in size are normally deposited in the tracheobronchial region, while particles of 0.5-2 μm may be properly deposited in the alveoli. In this work, we report the development of inhalable nanostructured carries made of a 'green' bio-inspired polymer from aqueous solutions, i.e. silk fibroin (SF), efficiently loaded with a hydrophobic drug, i.e. the thyroid hormone levothyroxine (L-T4), a drug for the treatment of idiopathic pulmonary fibrosis. The aim is to optimize a standard method for the synthesis of SF-based nanocarriers with controlled size and shape, where a fine control of their geometrical properties is aimed at efficiently controlling the pulmonary DD. L-T4 loaded SF particles were synthesized through a one-pot co-precipitation method. Optimized systems were determined by varying the chemo-physical parameters during the synthesis. Ethylenediaminetetraacetic acid (EDTA) was used to remove CaCO3 cores. The proposed synthesis routes have led to two SF structures, whose structural heterogeneity and nanostructured morphology have been demonstrated using fluorescence microscopy, DLS, SEM and EDX. Two systems with varying shape and size have been obtained: (i) a flat disk-like SF structure with an irregular surface and an in-plane length of about 1-2 μm; (ii) solid SF nanospheres, obtained using ethylene glycol as additive, showing two size populations (main diameters of 0.5 μm and 1.7 μm). Solid nanospherical systems, in particular, show a tendency to arrange into agglomerates that, when loosely bound into smaller particles, can facilitate the delivery at the alveoli. Both formulations exhibited similar drug loading efficiencies, evaluated by HPLC analysis. However, SF nanospheres showed greater in vitro drug release after 24 hours. The demonstrated control over the characteristics imparted to the proposed DD systems may be critical to select the most suitable size/shape to achieve high rates of delivery to the appropriate lung compartment.
Collapse
Affiliation(s)
- Ilenia D'Onofrio
- Institute of Materials for Electronics and Magnetism, IMEM-CNR P.co Area delle Scienze 37/A 43124 Parma Italy
- Graduate School in Science and Technologies of Materials, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma Parco Area delle Scienze, 11/A 43121 Parma Italy
| | - Giuseppe De Giorgio
- Institute of Materials for Electronics and Magnetism, IMEM-CNR P.co Area delle Scienze 37/A 43124 Parma Italy
| | - Roman Sajapin
- Institute of Materials for Electronics and Magnetism, IMEM-CNR P.co Area delle Scienze 37/A 43124 Parma Italy
| | - Davide Vurro
- Institute of Materials for Electronics and Magnetism, IMEM-CNR P.co Area delle Scienze 37/A 43124 Parma Italy
| | - Aris Liboà
- Institute of Materials for Electronics and Magnetism, IMEM-CNR P.co Area delle Scienze 37/A 43124 Parma Italy
- Graduate School in Science and Technologies of Materials, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma Parco Area delle Scienze, 11/A 43121 Parma Italy
| | - Elena Dembech
- Institute of Materials for Electronics and Magnetism, IMEM-CNR P.co Area delle Scienze 37/A 43124 Parma Italy
| | - Giovanna Trevisi
- Institute of Materials for Electronics and Magnetism, IMEM-CNR P.co Area delle Scienze 37/A 43124 Parma Italy
| | - Maddalena Botti
- Institute of Materials for Electronics and Magnetism, IMEM-CNR P.co Area delle Scienze 37/A 43124 Parma Italy
- Department of Veterinary Medical Sciences, University of Parma Via del Taglio, 10 43121 Parma Italy
| | - Vardan Galstyan
- Institute of Materials for Electronics and Magnetism, IMEM-CNR P.co Area delle Scienze 37/A 43124 Parma Italy
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia Via Vivarelli 10 41125 Modena Italy
| | - Giuseppe Tarabella
- Institute of Materials for Electronics and Magnetism, IMEM-CNR P.co Area delle Scienze 37/A 43124 Parma Italy
| | - Pasquale D'Angelo
- Institute of Materials for Electronics and Magnetism, IMEM-CNR P.co Area delle Scienze 37/A 43124 Parma Italy
| |
Collapse
|
5
|
Salmin VV, Morgun AV, Olovyannikova RY, Kutyakov VA, Lychkovskaya EV, Brusina EB, Salmina AB. Atmospheric Reactive Oxygen Species and Some Aspects of the Antiviral Protection at the Respiratory Epithelium. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2022; 16:79-90. [PMID: 35601461 PMCID: PMC9113385 DOI: 10.1134/s1990750822020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022]
Affiliation(s)
- V. V. Salmin
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, ul. Partizana Zheleznyaka 1, 660022 Krasnoyarsk, Russia
| | - A. V. Morgun
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, ul. Partizana Zheleznyaka 1, 660022 Krasnoyarsk, Russia
| | - R. Ya. Olovyannikova
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, ul. Partizana Zheleznyaka 1, 660022 Krasnoyarsk, Russia
| | - V. A. Kutyakov
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, ul. Partizana Zheleznyaka 1, 660022 Krasnoyarsk, Russia
| | - E. V. Lychkovskaya
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, ul. Partizana Zheleznyaka 1, 660022 Krasnoyarsk, Russia
| | - E. B. Brusina
- Kemerovo State Medical University, ul. Voroshilova 22A, 650056 Kemerovo, Russia
| | - A. B. Salmina
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, ul. Partizana Zheleznyaka 1, 660022 Krasnoyarsk, Russia
- Research Center of Neurology, Volokolamskoe shosse 80, 125367 Moscow, Russia
| |
Collapse
|
6
|
Webber T, Ronacher K, Conradie-Smit M, Kleynhans L. Interplay Between the Immune and Endocrine Systems in the Lung: Implications for TB Susceptibility. Front Immunol 2022; 13:829355. [PMID: 35273609 PMCID: PMC8901994 DOI: 10.3389/fimmu.2022.829355] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/02/2022] [Indexed: 12/25/2022] Open
Abstract
The role of the endocrine system on the immune response, especially in the lung, remains poorly understood. Hormones play a crucial role in the development, homeostasis, metabolism, and response to the environment of cells and tissues. Major infectious and metabolic diseases, such as tuberculosis and diabetes, continue to converge, necessitating the development of a clearer understanding of the immune and endocrine interactions that occur in the lung. Research in bacterial respiratory infections is at a critical point, where the limitations in identifying and developing antibiotics is becoming more profound. Hormone receptors on alveolar and immune cells may provide a plethora of targets for host-directed therapy. This review discusses the interactions between the immune and endocrine systems in the lung. We describe hormone receptors currently identified in the lungs, focusing on the effect hormones have on the pulmonary immune response. Altered endocrine responses in the lung affect the balance between pro- and anti-inflammatory immune responses and play a role in the response to infection in the lung. While some hormones, such as leptin, resistin and lipocalin-2 promote pro-inflammatory responses and immune cell infiltration, others including adiponectin and ghrelin reduce inflammation and promote anti-inflammatory cell responses. Furthermore, type 2 diabetes as a major endocrine disease presents with altered immune responses leading to susceptibility to lung infections, such as tuberculosis. A better understanding of these interactions will expand our knowledge of the mechanisms at play in susceptibility to infectious diseases and may reveal opportunities for the development of host-directed therapies.
Collapse
Affiliation(s)
- Tariq Webber
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Katharina Ronacher
- Translational Research Institute, Mater Research Institute - The University of Queensland, Brisbane, QLD, Australia
| | - Marli Conradie-Smit
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Léanie Kleynhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
7
|
Wenzek C, Boelen A, Westendorf AM, Engel DR, Moeller LC, Führer D. The interplay of thyroid hormones and the immune system - where we stand and why we need to know about it. Eur J Endocrinol 2022; 186:R65-R77. [PMID: 35175936 PMCID: PMC9010816 DOI: 10.1530/eje-21-1171] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/17/2022] [Indexed: 11/08/2022]
Abstract
Over the past few years, growing evidence suggests direct crosstalk between thyroid hormones (THs) and the immune system. Components of the immune system were proposed to interfere with the central regulation of systemic TH levels. Conversely, THs regulate innate and adaptive immune responses as immune cells are direct target cells of THs. Accordingly, they express different components of local TH action, such as TH transporters or receptors, but our picture of the interplay between THs and the immune system is still incomplete. This review provides a critical overview of current knowledge regarding the interaction of THs and the immune system with the main focus on local TH action within major innate and adaptive immune cell subsets. Thereby, this review aims to highlight open issues which might help to infer the clinical relevance of THs in host defence in the context of different types of diseases such as infection, ischemic organ injury or cancer.
Collapse
Affiliation(s)
- Christina Wenzek
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anita Boelen
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Astrid M Westendorf
- Institute for Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Daniel R Engel
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lars C Moeller
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Dagmar Führer
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Correspondence should be addressed to D Führer;
| |
Collapse
|
8
|
Salmin VV, Morgun AV, Olovyannikova RY, Kutyakov VA, Lychkovskaya EV, Brusina EB, Salmina AB. [Atmospheric reactive oxygen species and some aspects of the antiviral protection of the respiratory epithelium]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2021; 67:383-393. [PMID: 34730551 DOI: 10.18097/pbmc20216705383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review focuses on molecular and biochemical mechanisms of nonspecific protection of respiratory epithelium. The authors provide a comprehensive analysis of up-to-date data on the activity of the lactoperoxidase system expressed on the surface of the respiratory epithelium which provides the generation of hypothiocyanate and hypoiodite in the presence of locally produced or inhaled hydrogen peroxide. Molecular mechanisms of production of active compounds with antiviral and antibacterial effects, expression profiles of enzymes, transporters and ion channels involved in the generation of hypothiocyanite and hypoiodate in the mucous membrane of the respiratory system in physiological and pathological conditions (inflammation) are discussed. In the context of antibacterial and antiviral defense special attention is paid to recent data confirming the effects of atmospheric air composition on the efficiency of hypothiocyanite and hypoiodate synthesis in the respiratory epithelium. The causes and outcomes of lactoperoxidase system impairment due to the action of atmospheric factors are discussed in the context of controlling the sensitivity of the epithelium to the action of bacterial agents and viruses. Restoration of the lactoperoxidase system activity can be achieved by application of pharmacological agents aimed to compensate for the lack of halides in tissues, and by the control of chemical composition of the inhaled air.
Collapse
Affiliation(s)
- V V Salmin
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - A V Morgun
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - R Ya Olovyannikova
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - V A Kutyakov
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - E V Lychkovskaya
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - E B Brusina
- Kemerovo State Medical University, Kemerovo, Russia
| | - A B Salmina
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia; Research Center of Neurology, Moscow, Russia
| |
Collapse
|
9
|
Yang M, Wang D, Gan S, Wang B, Yu L, Xie Y, Fan L, Ma J, Chen W. Triiodothyronine ameliorates silica-induced pulmonary inflammation and fibrosis in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148041. [PMID: 34090168 DOI: 10.1016/j.scitotenv.2021.148041] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/21/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Environmental exposure to silica or particles is very common in natural, agricultural and industrial activities. Chronic silica exposure can lead to silicosis, which remains one of the most serious interstitial lung diseases all through the world, while viable therapeutic choices are restricted. Triiodothyronine (T3) has been shown to exert a defensive role in many pulmonary diseases, however, rare data are available regarding the role of T3 on silica-induced injury. We constructed an experimental silicosis mouse model and T3 was intraperitoneally administrated after instillation of silica to observe the effect of T3 on silica-induced lung inflammation and fibrosis. Our results showed that the silicosis mouse model was accompanied by changes in thyroid morphology and function, and T3 supplement reduced silica-induced lung damage, inflammation and collagen deposition. The protective properties of T3 on silica-induced lung injury could be partially mediated through thyroid hormone receptors. And the mechanism by which T3 treatment ameliorated silica-induced fibrosis appeared to be via the reduction of glycolysis. Also, T3 could sufficiently postpone the progression of pulmonary fibrosis in established silicosis. Our findings reveal that administration of T3 could down-regulate the inflammatory response, pulmonary fibrosis and other lung damage caused by silica. The reduction of glycolysis may be one of the mechanisms.
Collapse
Affiliation(s)
- Meng Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiming Gan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yujia Xie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lieyang Fan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
10
|
Zhang Y, Yu G, Kaminski N, Lee PJ. PINK1 mediates the protective effects of thyroid hormone T3 in hyperoxia-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1118-L1125. [PMID: 33851544 PMCID: PMC8285622 DOI: 10.1152/ajplung.00598.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/08/2021] [Accepted: 04/04/2021] [Indexed: 11/22/2022] Open
Abstract
Hyperoxia can lead to respiratory failure and death. Our previous work demonstrates that oxidant and mitochondrial injury play a critical role in hyperoxia-induced acute lung injury (HALI). Recently, thyroid hormone has been demonstrated to promote mitochondrial survival in other models of lung injury, but its role in hyperoxia is unknown. Adult wild-type (WT) mice were pretreated with either nebulized triiodothyronine (T3, 40 μg/kg) for 1 or 3 days, or with propylthiouracil (PTU, 100 μg/kg), for 3 days. Following pretreatment, WT mice underwent 72 h of hyperoxia exposure. WT and PINK1-/- mice were pretreated with either nebulized T3 (40 μg/kg) for 3 days or no pretreatment before 72 h continuous hyperoxia exposure. Bronchoalveolar lavage (BAL), histological changes in cellular composition, and type I cytokine induction were assessed. Lung lysates for mitochondrial cellular bioenergetics markers were analyzed by Western blot. Hyperoxia caused a significant increase in BAL total cell counts and lung cellular infiltrates. Administration of PTU enhanced HALI, whereas T3 attenuated HALI, inflammation, and oxidants in WT mice. In addition, T3 pretreatment increased mitochondrial biogenesis/fusion/mitophagy and decreased ER stress and apoptosis. PINK1-/- mice were more susceptible to hyperoxia than WT mice. Notably, pretreatment with T3 did not attenuate HALI in PINK1-/- mice. In addition, T3 pretreatment increased mitochondrial anti-ROS potential, improved mitochondrial bioenergetics and mitophagy, and attenuated mitochondria-regulated apoptosis, all in a PINK1-dependent manner. Our results highlight a novel protective role for PINK1 in mediating the cytoprotective effects of thyroid hormone in HALI. Therefore, thyroid hormone may represent a potential therapy for ALI.
Collapse
Affiliation(s)
- Yi Zhang
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Guoying Yu
- College of Life Sciences, Henan Normal University Xinxiang, Xinxiang, People's Republic of China
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Patty J Lee
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
- Pulmonary & Critical Care, Durham VA Medical Center, Durham, North Carolina
| |
Collapse
|
11
|
van der Spek AH, Fliers E, Boelen A. Thyroid Hormone and Deiodination in Innate Immune Cells. Endocrinology 2021; 162:6016930. [PMID: 33275661 DOI: 10.1210/endocr/bqaa200] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Thyroid hormone has recently been recognized as an important determinant of innate immune cell function. Highly specialized cells of the innate immune system, including neutrophils, monocytes/macrophages, and dendritic cells, are capable of identifying pathogens and initiating an inflammatory response. They can either phagocytose and kill microbes, or recruit other innate or adaptive immune cells to the site of inflammation. Innate immune cells derive from the hematopoietic lineage and are generated in the bone marrow, from where they can be recruited into the blood and tissues in the case of infection. The link between the immune and endocrine systems is increasingly well established, and recent studies have shown that innate immune cells can be seen as important thyroid hormone target cells. Tight regulation of cellular thyroid hormone availability and action is performed by thyroid hormone transporters, receptors, and the deiodinase enzymes. Innate immune cells express all these molecular elements of intracellular thyroid hormone metabolism. Interestingly, there is recent evidence for a causal relationship between cellular thyroid hormone status and innate immune cell function. This review describes the effects of modulation of intracellular thyroid hormone metabolism on innate immune cell function, specifically neutrophils, macrophages, and dendritic cells, with a special focus on the deiodinase enzymes. Although there are insufficient data at this stage for conclusions on the clinical relevance of these findings, thyroid hormone metabolism may partially determine the innate immune response and, by inference, the clinical susceptibility to infections.
Collapse
Affiliation(s)
- Anne H van der Spek
- Amsterdam UMC, University of Amsterdam, Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam Gastroenterology Endocrinology & Metabolism, AZ Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism, AZ Amsterdam, the Netherlands
| | - Eric Fliers
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism, AZ Amsterdam, the Netherlands
| | - Anita Boelen
- Amsterdam UMC, University of Amsterdam, Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam Gastroenterology Endocrinology & Metabolism, AZ Amsterdam, the Netherlands
| |
Collapse
|
12
|
Li L, Nie X, Yi M, Qin W, Li F, Wu B, Yuan X. Aerosolized Thyroid Hormone Prevents Radiation Induced Lung Fibrosis. Front Oncol 2020; 10:528686. [PMID: 33042829 PMCID: PMC7523090 DOI: 10.3389/fonc.2020.528686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/20/2020] [Indexed: 12/09/2022] Open
|
13
|
Owji MS, Varedi M, Naghibalhossaini F, Pajouhi N. Thyroid Function Modulates Lung Fluid and Alveolar Viscoelasticity in Mechanically Ventilated Rat. J Surg Res 2020; 253:272-279. [PMID: 32402852 DOI: 10.1016/j.jss.2020.03.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/23/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Mechanical ventilation (MV) is life saving; yet it may induce severe lung injury and lead to multisystem organ failure and death. Thyroid hormones (THs) promote alveolar fluid clearance and alleviates hypoxia-induced lung injury. Given that the mechanism involved in hypoxia-induced lung injury is different from that of ventilator-induced lung injury, we examined the effects of thyroid function on lung extravascular fluid (LF), aquaporin 5 (AQP 5) expression, and alveolar viscoelasticity (AVE) in mechanically ventilated rat. METHODS Hypothyroid (hypo) and hyperthyroid (hyper) animals were generated by administration of metimazole and L-thyroxine, respectively. Lung injury was induced by high-tidal volume MV. The LF was estimated by lung wet weight-to-dry weight ratio assessment. Expression of AQP 5 was evaluated by western blotting and in situ immunohistochemistry. The AVE was judged by elastic lung pressure/volume curve recording. RESULTS Injurious MV significantly reduced lung AQP 5 expression and altered LF and AVE in a thyroid function-dependent manner. Regardless of animals' ventilation mode, hyper state caused significant reductions in LF and lung AQP 5 protein. It also improved AVE irrespective of animals' ventilation mode. The effects of hypo condition on LF, AQP 5 expression, and AVE were in contrast to that of hyper state. CONCLUSIONS These data indicate that thyroid function has profound effects on LF, AQP 5, and AVE in mechanically ventilated lungs. Given that the effects of thyroidal status were as prominent as that of injurious MV, we suggest that thyroid function should be considered when patients are to be subjected to MV.
Collapse
Affiliation(s)
- Mohammad S Owji
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Varedi
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Nasser Pajouhi
- Department of Physiology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Lorestan, Iran
| |
Collapse
|
14
|
Bianco AC, Dumitrescu A, Gereben B, Ribeiro MO, Fonseca TL, Fernandes GW, Bocco BMLC. Paradigms of Dynamic Control of Thyroid Hormone Signaling. Endocr Rev 2019; 40:1000-1047. [PMID: 31033998 PMCID: PMC6596318 DOI: 10.1210/er.2018-00275] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/15/2019] [Indexed: 12/17/2022]
Abstract
Thyroid hormone (TH) molecules enter cells via membrane transporters and, depending on the cell type, can be activated (i.e., T4 to T3 conversion) or inactivated (i.e., T3 to 3,3'-diiodo-l-thyronine or T4 to reverse T3 conversion). These reactions are catalyzed by the deiodinases. The biologically active hormone, T3, eventually binds to intracellular TH receptors (TRs), TRα and TRβ, and initiate TH signaling, that is, regulation of target genes and other metabolic pathways. At least three families of transmembrane transporters, MCT, OATP, and LAT, facilitate the entry of TH into cells, which follow the gradient of free hormone between the extracellular fluid and the cytoplasm. Inactivation or marked downregulation of TH transporters can dampen TH signaling. At the same time, dynamic modifications in the expression or activity of TRs and transcriptional coregulators can affect positively or negatively the intensity of TH signaling. However, the deiodinases are the element that provides greatest amplitude in dynamic control of TH signaling. Cells that express the activating deiodinase DIO2 can rapidly enhance TH signaling due to intracellular buildup of T3. In contrast, TH signaling is dampened in cells that express the inactivating deiodinase DIO3. This explains how THs can regulate pathways in development, metabolism, and growth, despite rather stable levels in the circulation. As a consequence, TH signaling is unique for each cell (tissue or organ), depending on circulating TH levels and on the exclusive blend of transporters, deiodinases, and TRs present in each cell. In this review we explore the key mechanisms underlying customization of TH signaling during development, in health and in disease states.
Collapse
Affiliation(s)
- Antonio C Bianco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Alexandra Dumitrescu
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center of Biologic Sciences and Health, Mackenzie Presbyterian University, São Paulo, São Paulo, Brazil
| | - Tatiana L Fonseca
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Gustavo W Fernandes
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Barbara M L C Bocco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| |
Collapse
|
15
|
Breitzig MT, Alleyn MD, Lockey RF, Kolliputi N. Thyroid hormone: a resurgent treatment for an emergent concern. Am J Physiol Lung Cell Mol Physiol 2018; 315:L945-L950. [PMID: 30260285 PMCID: PMC6337010 DOI: 10.1152/ajplung.00336.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/20/2018] [Accepted: 09/23/2018] [Indexed: 12/16/2022] Open
Abstract
The story of thyroid hormone in human physiology is one of mixed emotions. Studying past literature on its use leads one to believe that it serves only a few functions in a handful of diseases. In reality, the pathophysiological role of thyroid hormone is an uncharted expanse. Over the past few decades, research on thyroid hormone has been understandably monopolized by studies of hypo- and hyperthyroidism and cancers. However, in our focused pursuit, we have neglected to observe its role in systems that are not so easily relatable. Recent evidence in lung disease suggests that the thyroid hormone is capable of preserving mitochondria in an indirect manner. This is an exciting revelation given the profound implications of mitochondrial dysfunction in several lung diseases. When paired with known links between thyroid hormone and fibrotic pathways, thyroid hormone-based therapies become more enticing for research. In this article, we inspect the sudden awareness surrounding thyroid hormone and discuss why it is of paramount importance that further studies scrutinize the potential of thyroid hormone, and/or thyromimetics, as therapies for lung diseases.
Collapse
Affiliation(s)
- Mason T Breitzig
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Matthew D Alleyn
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| |
Collapse
|
16
|
Maino F, Cantara S, Forleo R, Pilli T, Castagna MG. Clinical significance of type 2 iodothyronine deiodinase polymorphism. Expert Rev Endocrinol Metab 2018; 13:273-277. [PMID: 30257587 DOI: 10.1080/17446651.2018.1523714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Biological activity of thyroid hormones (TH) is regulated by enzymes known as deiodinases. The most important is represented by the type 2 deiodinase (D2), which is the main T4-activating enzyme, ubiquitous in human tissues and therefore essential in many metabolic processes. A single nucleotide polymorphism (SPN) of D2, known as Thr92Ala (rs225014), has been reported in the general population while other polymorphisms are less frequently described. AREAS COVERED Several authors investigated the potential metabolic effect of these polymorphisms in the general population and in specific groups of patients. Thr92Ala polymorphism was mainly studied in patients with autoimmune or surgical hypothyroidism and in patients with physical/psychological disorders that could be related to an overt hypothyroidism. Susceptibility to develop more severe type 2 diabetes or insulin resistance has also been evaluated. EXPERT COMMENTARY There is an increasing evidence that the presence of D2 polymorphisms may play a pivotal role in a better definition and customized therapeutic approach of patients with hypothyroidism and/or type 2 diabetes, suggesting that these patients should be screened for D2 polymorphisms. Nevertheless, further research should be performed in order to clarify the association between D2 polymorphisms, metabolic alterations and clinical conditions of the carrier patients.
Collapse
Affiliation(s)
- Fabio Maino
- a Department of Medical, Surgical and Neurological Sciences , University of Siena , Siena , Italy
| | - Silvia Cantara
- a Department of Medical, Surgical and Neurological Sciences , University of Siena , Siena , Italy
| | - Raffaella Forleo
- a Department of Medical, Surgical and Neurological Sciences , University of Siena , Siena , Italy
| | - Tania Pilli
- a Department of Medical, Surgical and Neurological Sciences , University of Siena , Siena , Italy
| | - Maria Grazia Castagna
- a Department of Medical, Surgical and Neurological Sciences , University of Siena , Siena , Italy
| |
Collapse
|
17
|
Gałecka E, Talarowska M, Maes M, Su KP, Górski P, Kumor-Kisielewska A, Szemraj J. Expression levels of interferon-ɣ and type 2 deiodinase in patients diagnosed with recurrent depressive disorders. Pharmacol Rep 2018; 70:133-138. [PMID: 29367100 DOI: 10.1016/j.pharep.2017.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/03/2017] [Accepted: 08/23/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Thyroid hormones (TH) are involved in modulation of the immune system and inflammation. TH dysregulation is associated with depressive disorders. The iodothyronine deiodinases (DIOs), the key enzymes for TH synthesis, can be affected and induced by pro-inflammatory cytokines. We aimed to investigate the levels of and correlation between type 2 DIO (DIO2) and interferon-gamma (IFN-ɣ) in patients with recurrent depressive disorders (rDD). METHODS Data from 91 rDD patients and 105 healthy controls were analyzed. The diagnoses are based on the ICD-10 criteria (F33.0-F33.8). Expression levels of DIO2 and IFN-ɣ were estimated using the method based on the polymerase chain reaction and the enzyme-linked immunosorbent assay (ELISA). RESULTS The DIO2 expression on mRNA/protein levels in rDD patients (both female and males) was reduced as compared with the control subjects. No correlation between DIO2 and IFN-ɣ expression was observed. CONCLUSION This is the first study to reveal that one may cautiously suggest that DIO2 may be involved in the development and/or progression of rDD. The mechanisms of TH regulation on depression, however, need further investigation.
Collapse
Affiliation(s)
- Elżbieta Gałecka
- Department of Pneumology and Allergy, Medical University of Łódź, Łódź, Poland.
| | - Monika Talarowska
- Department of Adult Psychiatry, Medical University of Łódź, Łódź, Poland
| | - Michael Maes
- Deakin University IMPACT Strategic Research Centre, Deakin University, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand; Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Brazil
| | - Kuan-Pin Su
- Graduate Institute of Neural and Cognitive Sciences, School of Medicine, China Medical University, Taichung, Taiwan; Department of Psychiatry and Mind-Body Research Center (MBI-Lab), China Medical University Hospital, 404, Taichung, Taiwan
| | - Paweł Górski
- Department of Pneumology and Allergy, Medical University of Łódź, Łódź, Poland
| | | | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Łódź, Łódź Poland
| |
Collapse
|
18
|
Yu G, Tzouvelekis A, Wang R, Herazo-Maya JD, Ibarra GH, Srivastava A, de Castro JPW, DeIuliis G, Ahangari F, Woolard T, Aurelien N, e Drigo RA, Gan Y, Graham M, Liu X, Homer RJ, Scanlan TS, Mannam P, Lee PJ, Herzog EL, Bianco AC, Kaminski N. Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function. Nat Med 2018; 24:39-49. [PMID: 29200204 PMCID: PMC5760280 DOI: 10.1038/nm.4447] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 10/23/2017] [Indexed: 12/15/2022]
Abstract
Thyroid hormone (TH) is critical for the maintenance of cellular homeostasis during stress responses, but its role in lung fibrosis is unknown. Here we found that the activity and expression of iodothyronine deiodinase 2 (DIO2), an enzyme that activates TH, were higher in lungs from patients with idiopathic pulmonary fibrosis than in control individuals and were correlated with disease severity. We also found that Dio2-knockout mice exhibited enhanced bleomycin-induced lung fibrosis. Aerosolized TH delivery increased survival and resolved fibrosis in two models of pulmonary fibrosis in mice (intratracheal bleomycin and inducible TGF-β1). Sobetirome, a TH mimetic, also blunted bleomycin-induced lung fibrosis. After bleomycin-induced injury, TH promoted mitochondrial biogenesis, improved mitochondrial bioenergetics and attenuated mitochondria-regulated apoptosis in alveolar epithelial cells both in vivo and in vitro. TH did not blunt fibrosis in Ppargc1a- or Pink1-knockout mice, suggesting dependence on these pathways. We conclude that the antifibrotic properties of TH are associated with protection of alveolar epithelial cells and restoration of mitochondrial function and that TH may thus represent a potential therapy for pulmonary fibrosis.
Collapse
Affiliation(s)
- Guoying Yu
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Argyris Tzouvelekis
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
- Division of Immunology, Biomedical Sciences Research Center
“Alexander Fleming”, Athens, Greece
| | - Rong Wang
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Jose D. Herazo-Maya
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Gabriel H. Ibarra
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Anup Srivastava
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Joao Pedro Werneck de Castro
- Division of Endocrinology/Metabolism, Rush University Medical
Center, Chicago IL
- Biophysics Institute, Federal University of Rio de Janeiro, RJ,
Brazil
| | - Giuseppe DeIuliis
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Farida Ahangari
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Tony Woolard
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Nachelle Aurelien
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Rafael Arrojo e Drigo
- The Salk Institute for Biological Studies, Molecular and Cell
biology laboratory, La Jolla, CA
| | - Ye Gan
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Morven Graham
- CCMI Electron Microscopy Core Facility, Yale University School of
Medicine, New Haven, CT
| | - Xinran Liu
- CCMI Electron Microscopy Core Facility, Yale University School of
Medicine, New Haven, CT
| | - Robert J. Homer
- Department of Pathology, Yale University School of Medicine, New
Haven, C
- Pathology and Laboratory Medicine Service, VA CT HealthCare System,
West Haven, CT
| | - Thomas S. Scanlan
- Department of Physiology and Pharmacology, Oregon Health and Science
University, Portland, Oregon, USA
| | - Praveen Mannam
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Patty J. Lee
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Erica L. Herzog
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Antonio C. Bianco
- Division of Endocrinology/Metabolism, Rush University Medical
Center, Chicago IL
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department
of Internal Medicine, Yale School of Medicine, New Haven, CT
| |
Collapse
|
19
|
Adegunsoye A, Oldham JM, Husain AN, Chen L, Hsu S, Montner S, Chung JH, Vij R, Noth I, Strek ME. Autoimmune Hypothyroidism As a Predictor of Mortality in Chronic Hypersensitivity Pneumonitis. Front Med (Lausanne) 2017; 4:170. [PMID: 29085824 PMCID: PMC5650730 DOI: 10.3389/fmed.2017.00170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/26/2017] [Indexed: 11/13/2022] Open
Abstract
Background Chronic hypersensitivity pneumonitis (CHP) is a fibrotic parenchymal lung disease that occurs when inhalation of environmental antigens leads to immune dysregulation. Autoimmune features have recently been identified as potentially important among patients with CHP. However, the relationship between hypothyroidism (HT) and CHP is unknown. In this study, we investigate the prevalence and impact of HT among patients with CHP. Methods We conducted a retrospective, case–control analysis. We identified 121 patients at the University of Chicago Interstitial Lung Disease Center with a multidisciplinary diagnosis of CHP. These patients were matched 3:1 according to age, sex, and race to 363 control subjects with asthma from 2006 to 2015. We analyzed demographics, clinical characteristics, and survival between both groups and assessed the relationship of HT with CHP. Survival analysis was performed using Cox proportional hazards modeling. Results Patients with CHP had higher prevalence of HT (25.6%, n = 31) compared to controls (10.7%, n = 39; OR, 2.86; 95% CI, 1.62–4.99; P < 0.0001). Compared to CHP alone, patients with CHP/HT were more likely to be female (80.6 vs 51.1%, P = 0.004), have increased incidence of autoimmune disease (19.4 vs 3.3%, P = 0.009), antinuclear antibody seropositivity (80.6 vs 57.0%, P = 0.019), and higher TSH levels (4.0 vs 1.9 mIU/L, P < 0.0001). HT was a significant independent predictor of mortality among CHP patients with seropositive ANA (HR, 3.39; 95% CI, 1.31–8.80; P = 0.012). Conclusion HT is common in patients with CHP and may carry prognostic significance in patients with features of autoimmunity. Further research exploring common pathogenic pathways between autoimmune HT and CHP may illuminate the association of HT with survival.
Collapse
Affiliation(s)
- Ayodeji Adegunsoye
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States
| | - Justin M Oldham
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis, Davis, CA, United States
| | - Aliya N Husain
- Department of Pathology, University of Chicago, Chicago, IL, United States
| | - Lena Chen
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States
| | - Scully Hsu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States
| | - Steven Montner
- Department of Radiology, University of Chicago, Chicago, IL, United States
| | - Jonathan H Chung
- Department of Radiology, University of Chicago, Chicago, IL, United States
| | - Rekha Vij
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States
| | - Imre Noth
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States
| | - Mary E Strek
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
20
|
Oh JM, Lee HW, Kalimuthu S, Gangadaran P, Baek SH, Han MH, Hong CM, Jeong SY, Lee SW, Lee J, Ahn BC. Development of an athyroid mouse model using 131I ablation after preparation with a low-iodine diet. Sci Rep 2017; 7:13284. [PMID: 29038462 PMCID: PMC5643325 DOI: 10.1038/s41598-017-13772-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/02/2017] [Indexed: 12/30/2022] Open
Abstract
We optimized the protocol for thyroid ablation in living mice using radioactive iodine (RAI) and a low-iodine diet (LID). To examine the effect of LID on thyroid ablation, mice were randomly divided into 4 groups: Vehicle, 131I 2.775 MBq, 131I 5.55 MBq, and LID + 131I 2.775 MBq. The LID group was fed a LID for up to 7 days and then mice in the 131I 2.775, 131I 5.55, and LID + 131I 2.775 MBq groups were intravenously administrated with 131I, respectively. Scintigraphy imaging with 99mTc pertechnetate was performed once in 2 weeks for 4 weeks. After establishment of athyroid mice, control or athyroid mice were injected with human anaplastic thyroid cancer cells co-expressing sodium iodine symporter and enhanced firefly luciferase (ARO/NF) to evaluate RAI uptake. Scintigraphy imaging with 99mTc pertechnetate was performed with ARO/NF tumor-bearing mice. Scintigraphy imaging showed decreased thyroid uptake in the LID + 131I 2.775 MBq group compared to other groups. Scintigraphy images showed that tumor uptake was statically higher in athyroid mice than in control mice. These data suggest that these optimized conditions for thyroid ablation could be helpful to establish an in vivo mouse model.
Collapse
Affiliation(s)
- Ji Min Oh
- Department of Nuclear Medicine, Kyungpook National University and Hospital, Daegu, South Korea
| | - Ho Won Lee
- Department of Nuclear Medicine, Kyungpook National University and Hospital, Daegu, South Korea
| | - Senthilkumar Kalimuthu
- Department of Nuclear Medicine, Kyungpook National University and Hospital, Daegu, South Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, Kyungpook National University and Hospital, Daegu, South Korea
| | - Se Hwan Baek
- Department of Nuclear Medicine, Kyungpook National University and Hospital, Daegu, South Korea
| | - Man-Hoon Han
- Department of Pathology, Kyungpook National University and Hospital, Daegu, South Korea
| | - Chae Moon Hong
- Department of Nuclear Medicine, Kyungpook National University and Hospital, Daegu, South Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, Kyungpook National University and Hospital, Daegu, South Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, Kyungpook National University and Hospital, Daegu, South Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, Kyungpook National University and Hospital, Daegu, South Korea.,Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Chembok-ro, Dong-gu, Daegu, South Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, Kyungpook National University and Hospital, Daegu, South Korea.
| |
Collapse
|
21
|
Furuya F, Ishii T, Tamura S, Takahashi K, Kobayashi H, Ichijo M, Takizawa S, Kaneshige M, Suzuki-Inoue K, Kitamura K. The ligand-bound thyroid hormone receptor in macrophages ameliorates kidney injury via inhibition of nuclear factor-κB activities. Sci Rep 2017; 7:43960. [PMID: 28272516 PMCID: PMC5341020 DOI: 10.1038/srep43960] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/31/2017] [Indexed: 02/07/2023] Open
Abstract
In chronic kidney disease (CKD) patients, inflammation plays a pivotal role in the progression of renal fibrosis. Hypothyroidism is associated with an increased occurrence of atherosclerosis and inflammation, suggesting protective roles of thyroid hormones and their receptors against inflammatory processes. The contribution of thyroid hormone receptors to macrophage differentiation has not been well documented. Here, we focused on the endogenous thyroid hormone receptor α (TRα) in macrophages and examined the role of ligand-bound TRα in macrophage polarization-mediated anti-inflammatory effects. TRα-deficient irradiated chimeric mice showed exacerbated tubulointerstitial injury in a unilateral ureteral obstruction model. Compared with wild-type macrophages, macrophages isolated from the obstructed kidneys of mice lacking TRα displayed increased expression of proinflammatory cytokines that was accompanied by enhanced nuclear translocation of p65. Comparison of TRα-deficient bone marrow-derived macrophages with wild-type macrophages confirmed the propensity of the former cells to produce excessive IL-1β levels. Co-culture of these macrophages with renal epithelial cells induced more severe damage to the epithelial cells via the IL-1 receptor. Our findings indicate that ligand-bound TRα on macrophages plays a protective role in kidney inflammation through the inhibition of NF-κB pathways, possibly by affecting the pro- and anti-inflammatory balance that controls the development of CKD.
Collapse
Affiliation(s)
- Fumihiko Furuya
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Toshihisa Ishii
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Shogo Tamura
- Department of Laboratory and Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Kazuya Takahashi
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Hidetoshi Kobayashi
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Masashi Ichijo
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Soichi Takizawa
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Masahiro Kaneshige
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Katsue Suzuki-Inoue
- Department of Laboratory and Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Kenichiro Kitamura
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| |
Collapse
|
22
|
Varedi M, Pajouhi N, Owji M, Naghibalhossaini F, Omrani GHR. Differential modulation of claudin 4 expression and myosin light chain phosphorylation by thyroid function in lung injury. CLINICAL RESPIRATORY JOURNAL 2015; 11:797-804. [PMID: 26619308 DOI: 10.1111/crj.12418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 09/27/2015] [Accepted: 11/13/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Trauma and ventilator-induced lung injury is often associated with endothelial-epithelial barriers breakdown, which may lead to multiple system organ failure (MSOF) and death in critically ill patients. Although molecular mechanism involved in MSOF is not known, junctional opening is believed to happen. In vitro, thyroid hormones inhibit myosin light chain (MLC) phosphorylation and may, thus, inhibit cellular contraction and junctional opening. Trauma is also associated with tissue hypo-thyroid state. Therefore, we examined the effects of thyroid function on expression of phospho-MLC (pp-MLC) and claudin 4 (Clud4), key proteins involved in regulation of junctional tightness, in lung injury. METHODS Rats were rendered hypo-thyroid (Hypo) or hyperthyroid (Hyper) by adding methimazole or levo-thyroxine, respectively, to their drinking water. Untreated euthyroid (Eue) animals were used as control. Lung pp-MLC and Clud4 proteins were assessed by western blotting and in situ immunodetection, respectively. Lung injury was induced by high tidal volume mechanical ventilation. RESULTS Lung injury was significantly enhanced in Hypo animals and attenuated in Hyper animals. Parallel changes in expression of lung pp-MLC were detected. Alterations in lung histomorphology correlated with the level of pp-MLC. Expression of alveolar and bronchiolar Clud4 protein was differentially affected by the state of thyroid gland. CONCLUSIONS Our data suggest that thyroid function plays significant role in lung injury perhaps by modulating expression of the proteins involved in junctional tightness. Besides, they strongly support the idea that the tissue hypo-thyroid state may contribute to endothelial-epithelial barriers breakdown associated with trauma.
Collapse
Affiliation(s)
- Masoumeh Varedi
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Naser Pajouhi
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Owji
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Gholam H R Omrani
- Department of Internal Medicine and Endocrine/Metabolism Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Vujovic M, Dudazy-Gralla S, Hård J, Solsjö P, Warner A, Vennström B, Mittag J. Thyroid hormone drives the expression of mouse carbonic anhydrase Car4 in kidney, lung and brain. Mol Cell Endocrinol 2015; 416:19-26. [PMID: 26319697 DOI: 10.1016/j.mce.2015.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/11/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022]
Abstract
Thyroid hormone is a well-known regulator of brain, lung and kidney development and function. However, the molecular mechanisms by which the hormone exerts its function have remained largely enigmatic, and only a limited set of target genes have been identified in these tissues. Using a mouse model with a mutation in thyroid hormone receptor α1 (TRα1), we here demonstrate that the expression of carbonic anhydrase 4 in lung and brain of the adult animal depends on intact TRα1 signaling. In the kidney, carbonic anhydrase 4 mRNA and protein are not affected by the mutant TRα1, but are acutely repressed by thyroid hormone. However, neither lung function--as measured by respiration rate and oxygen saturation--nor urine pH levels were affected by altered carbonic anhydrase 4 levels, suggesting that other carbonic anhydrases are likely to compensate. Taken together, our findings identify a previously unknown marker of TRα1 action in brain and lung, and provide a novel negatively regulated target gene to assess renal thyroid hormone status.
Collapse
Affiliation(s)
- Milica Vujovic
- Karolinska Institutet, Department of Cell and Molecular Biology, 17177 Stockholm, Sweden
| | - Susi Dudazy-Gralla
- Karolinska Institutet, Department of Cell and Molecular Biology, 17177 Stockholm, Sweden
| | - Joanna Hård
- Karolinska Institutet, Department of Cell and Molecular Biology, 17177 Stockholm, Sweden
| | - Peter Solsjö
- Karolinska Institutet, Department of Cell and Molecular Biology, 17177 Stockholm, Sweden
| | - Amy Warner
- Karolinska Institutet, Department of Cell and Molecular Biology, 17177 Stockholm, Sweden
| | - Björn Vennström
- Karolinska Institutet, Department of Cell and Molecular Biology, 17177 Stockholm, Sweden
| | - Jens Mittag
- Karolinska Institutet, Department of Cell and Molecular Biology, 17177 Stockholm, Sweden; Universität zu Lübeck, Medizinische Klinik 1/Center of Brain, Behavior and Metabolism, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| |
Collapse
|
24
|
Fliers E, Bianco AC, Langouche L, Boelen A. Thyroid function in critically ill patients. Lancet Diabetes Endocrinol 2015; 3:816-25. [PMID: 26071885 PMCID: PMC4979220 DOI: 10.1016/s2213-8587(15)00225-9] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/14/2015] [Accepted: 01/19/2015] [Indexed: 12/20/2022]
Abstract
Patients in the intensive care unit (ICU) typically present with decreased concentrations of plasma tri-iodothyronine, low thyroxine, and normal range or slightly decreased concentration of thyroid-stimulating hormone. This ensemble of changes is collectively known as non-thyroidal illness syndrome (NTIS). The extent of NTIS is associated with prognosis, but no proof exists for causality of this association. Initially, NTIS is a consequence of the acute phase response to systemic illness and macronutrient restriction, which might be beneficial. Pathogenesis of NTIS in long-term critical illness is more complex and includes suppression of hypothalamic thyrotropin-releasing hormone, accounting for persistently reduced secretion of thyroid-stimulating hormone despite low plasma thyroid hormone. In some cases distinguishing between NTIS and severe hypothyroidism, which is a rare primary cause for admission to the ICU, can be difficult. Infusion of hypothalamic-releasing factors can reactivate the thyroid axis in patients with NTIS, inducing an anabolic response. Whether this approach has a clinical benefit in terms of outcome is unknown. In this Series paper, we discuss diagnostic aspects, pathogenesis, and implications of NTIS as well as its distinction from severe, primary thyroid disorders in patients in the ICU.
Collapse
Affiliation(s)
- Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Centre, University of Amsterdam, AZ, Amsterdam, Netherlands
| | - Antonio C Bianco
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, IL, USA
| | - Lies Langouche
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Anita Boelen
- Department of Endocrinology and Metabolism, Academic Medical Centre, University of Amsterdam, AZ, Amsterdam, Netherlands.
| |
Collapse
|
25
|
Schmohl KA, Müller AM, Schwenk N, Knoop K, Rijntjes E, Köhrle J, Heuer H, Bartenstein P, Göke B, Nelson PJ, Spitzweg C. Establishment of an Effective Radioiodide Thyroid Ablation Protocol in Mice. Eur Thyroid J 2015; 4:74-80. [PMID: 26601076 PMCID: PMC4640294 DOI: 10.1159/000381019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/16/2015] [Indexed: 12/12/2022] Open
Abstract
Due to the high variance in available protocols on iodide-131 ((131)I) ablation in rodents, we set out to establish an effective method to generate a thyroid-ablated mouse model that allows the application of the sodium iodide symporter (NIS) as a reporter gene without interference with thyroidal NIS. We tested a range of (131)I doses with and without prestimulation of thyroidal radioiodide uptake by a low-iodine diet and thyroid-stimulating hormone (TSH) application. Efficacy of induction of hypothyroidism was tested by measurement of serum T4 concentrations, pituitary TSHβ and liver deiodinase type 1 (DIO1) mRNA expression, body weight analysis, and (99m)Tc-pertechnetate scintigraphy. While 200 µCi (7.4 MBq) (131)I alone was not sufficient to abolish thyroidal T4 production, 500 µCi (18.5 MBq) (131)I combined with 1 week of a low-iodine diet decreased serum concentrations below the detection limit. However, the high (131)I dose resulted in severe side effects. A combination of 1 week of a low-iodine diet followed by injection of bovine TSH before the application of 150 µCi (5.5 MBq) (131)I decreased serum T4 concentrations below the detection limit and significantly increased pituitary TSHβ concentrations. The systemic effects of induced hypothyroidism were shown by growth arrest and a decrease in liver DIO1 expression below the detection limit. (99m)Tc-pertechnetate scintigraphy revealed absence of thyroidal (99m)Tc-pertechnetate uptake in ablated mice. In summary, we report a revised protocol for radioiodide ablation of the thyroid gland in the mouse to generate an in vivo model that allows the study of thyroid hormone action using NIS as a reporter gene.
Collapse
Affiliation(s)
| | | | | | | | - Eddy Rijntjes
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heike Heuer
- Leibniz Institute for Environmental Medicine, Düsseldorf, Germany
| | | | | | - Peter J. Nelson
- Medical Policlinic IV, University Hospital of Munich, Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine II, Munich, Germany
- *Christine Spitzweg, MD, Department of Internal Medicine II, University Hospital of Munich, Marchioninistrasse 15, DE-81377 Munich (Germany), E-Mail
| |
Collapse
|
26
|
Abstract
The 'sick euthyroid syndrome' or 'non-thyroidal illness syndrome' (NTIS) occurs in a large proportion of hospitalized patients and comprises a variety of alterations in the hypothalamus-pituitary-thyroid (HPT) axis that are observed during illness. One of the hallmarks of NTIS is decreased thyroid hormone (TH) serum concentrations, often viewed as an adaptive mechanism to save energy. Downregulation of hypophysiotropic TRH neurons in the paraventricular nucleus of the hypothalamus and of TSH production in the pituitary gland points to disturbed negative feedback regulation during illness. In addition to these alterations in the central component of the HPT axis, changes in TH metabolism occur in a variety of TH target tissues during NTIS, dependent on the timing, nature and severity of the illness. Cytokines, released during illness, are known to affect a variety of genes involved in TH metabolism and are therefore considered a major determinant of NTIS. The availability of in vivo and in vitro models for NTIS has elucidated part of the mechanisms involved in the sometimes paradoxical changes in the HPT axis and TH responsive tissues. However, the pathogenesis of NTIS is still incompletely understood. This review focusses on the molecular mechanisms involved in the tissue changes in TH metabolism and discusses the gaps that still require further research.
Collapse
Affiliation(s)
- Emmely M de Vries
- Department of Endocrinology and Metabolism Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Anita Boelen
- Department of Endocrinology and Metabolism Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
27
|
Wittmann G, Szabon J, Mohácsik P, Nouriel SS, Gereben B, Fekete C, Lechan RM. Parallel regulation of thyroid hormone transporters OATP1c1 and MCT8 during and after endotoxemia at the blood-brain barrier of male rodents. Endocrinology 2015; 156:1552-64. [PMID: 25594699 PMCID: PMC4399310 DOI: 10.1210/en.2014-1830] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is increasing evidence that local thyroid hormone (TH) availability changes profoundly in inflammatory conditions due to altered expression of deiodinases that metabolize TH. It is largely unknown, however, how inflammation affects TH availability via the expression of TH transporters. In this study we examined the effect of bacterial lipopolysaccharide (LPS) administration on two TH transporters that are critically important for brain TH homeostasis, organic anion-transporting polypeptide 1c1 (OATP1c1), and monocarboxylate transporter 8 (MCT8). MRNA levels were studied by in situ hybridization and qPCR as well as protein levels by immunofluorescence in both the rat and mouse forebrain. The mRNA of both transporters decreased robustly in the first 9 hours after LPS injection, specifically in brain blood vessels; OATP1c1 mRNA in astrocytes and MCT8 mRNA in neurons remained unchanged. At 24 and/or 48 hours after LPS administration, OATP1c1 and MCT8 mRNAs increased markedly above control levels in brain vessels. OATP1c1 protein decreased markedly in vessels by 24 hours whereas MCT8 protein levels did not decrease significantly. These changes were highly similar in mice and rats. The data demonstrate that OATP1c1 and MCT8 expression are regulated in a parallel manner during inflammation at the blood-brain barrier of rodents. Given the indispensable role of both transporters in allowing TH access to the brain, the results suggest reduced brain TH uptake during systemic inflammation.
Collapse
Affiliation(s)
- Gábor Wittmann
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism (G.W., S.S.N., C.F., R.M.L.), Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; Department of Endocrine Neurobiology (J.S., P.M., B.G., C.F.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest 1083, Hungary; János Szentágothai PhD School of Neurosciences (P.M.), Semmelweis University, Budapest, 1085 Hungary; and Department of Neuroscience (R.M.L.), Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | | | | | | | | | | |
Collapse
|
28
|
Modulation by thyroid hormone of myosin light chain phosphorylation and aquaporin 5 protein expression in intact lung. J Physiol Biochem 2015; 71:99-106. [DOI: 10.1007/s13105-015-0386-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/21/2015] [Indexed: 10/24/2022]
|
29
|
Bassett JHD, Boyde A, Zikmund T, Evans H, Croucher PI, Zhu X, Park JW, Cheng SY, Williams GR. Thyroid hormone receptor α mutation causes a severe and thyroxine-resistant skeletal dysplasia in female mice. Endocrinology 2014; 155:3699-712. [PMID: 24914936 PMCID: PMC4138578 DOI: 10.1210/en.2013-2156] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/11/2014] [Indexed: 02/03/2023]
Abstract
A new genetic disorder has been identified that results from mutation of THRA, encoding thyroid hormone receptor α1 (TRα1). Affected children have a high serum T3:T4 ratio and variable degrees of intellectual deficit and constipation but exhibit a consistently severe skeletal dysplasia. In an attempt to improve developmental delay and alleviate symptoms of hypothyroidism, patients are receiving varying doses and durations of T4 treatment, but responses have been inconsistent so far. Thra1(PV/+) mice express a similar potent dominant-negative mutant TRα1 to affected individuals, and thus represent an excellent disease model. We hypothesized that Thra1(PV/+) mice could be used to predict the skeletal outcome of human THRA mutations and determine whether prolonged treatment with a supraphysiological dose of T4 ameliorates the skeletal abnormalities. Adult female Thra1(PV/+) mice had short stature, grossly abnormal bone morphology but normal bone strength despite high bone mass. Although T4 treatment suppressed TSH secretion, it had no effect on skeletal maturation, linear growth, or bone mineralization, thus demonstrating profound tissue resistance to thyroid hormone. Despite this, prolonged T4 treatment abnormally increased bone stiffness and strength, suggesting the potential for detrimental consequences in the long term. Our studies establish that TRα1 has an essential role in the developing and adult skeleton and predict that patients with different THRA mutations will display variable responses to T4 treatment, which depend on the severity of the causative mutation.
Collapse
Affiliation(s)
- J H Duncan Bassett
- Department of Medicine (J.H.D.B., G.R.W.), Imperial College London, London W12 0NN, United Kingdom; Dental Physical Sciences, Oral Growth and Development (A.B.), Queen Mary University of London, London E1 4NS, United Kingdom; Laboratory of X-Ray Micro-Computed Tomography and Nano-Computed Tomography (T.Z.), Central European Institute of Technology, Brno University of Technology CZ-61600 Brno, Czech Republic; Sheffield Myeloma Research Team (H.E.), University of Sheffield, Sheffield S10 2RX, United Kingdom; Bone Biology Program (P.I.C.), Garvan Institute of Medical Research, Sydney NSW 2010, Australia; and Laboratory of Molecular Biology (X.Z., J.W.P., S-y.C.), National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kwakkel J, Surovtseva OV, de Vries EM, Stap J, Fliers E, Boelen A. A novel role for the thyroid hormone-activating enzyme type 2 deiodinase in the inflammatory response of macrophages. Endocrinology 2014; 155:2725-34. [PMID: 24731098 DOI: 10.1210/en.2013-2066] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Deiodinase type 2 (D2) is a thyroid hormone-activating enzyme converting the prohormone T4 into the active hormone T3. In the present study, we show for the first time that D2 is up-regulated in the mouse liver during acute and chronic inflammation, in close correlation with the proinflammatory cytokine IL-1β and independently of serum T3. Inflammation-induced D2 expression was confirmed in macrophages, in conjunction with selective thyroid hormone transporter (monocarboxylate transporter 10) and thyroid hormone receptor (TR)α1 stimulation, and was absent in hepatocytes. Moreover, D2 knockdown in macrophages resulted in a clear attenuation of the lipopolysaccharide (LPS)-induced IL-1β and GM-CSF expression, in addition to aberrant phagocytosis. Locally produced T3, acting via the TRα, may be instrumental in this novel inflammatory response, because LPS-treated TRα(0/0) mice showed a markedly decreased LPS-induced GM-CSF mRNA expression. We now propose that hepatic D2 favors the innate immune response by specifically regulating cellular thyroid hormone levels in macrophages.
Collapse
Affiliation(s)
- J Kwakkel
- Departments of Endocrinology and Metabolism (J.K., O.V.S., E.M.d.V., A.B., E.F.) and Cell Biology and Histology (J.S.), Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Wittmann G, Harney JW, Singru PS, Nouriel SS, Reed Larsen P, Lechan RM. Inflammation-inducible type 2 deiodinase expression in the leptomeninges, choroid plexus, and at brain blood vessels in male rodents. Endocrinology 2014; 155:2009-19. [PMID: 24601886 PMCID: PMC3990842 DOI: 10.1210/en.2013-2154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/23/2014] [Indexed: 11/19/2022]
Abstract
Thyroid hormone regulates immune functions and has antiinflammatory effects. In promoter assays, the thyroid hormone-activating enzyme, type 2 deiodinase (D2), is highly inducible by the inflammatory transcription factor nuclear factor-κ B (NF-κB), but it is unknown whether D2 is induced in a similar fashion in vivo during inflammation. We first reexamined the effect of bacterial lipopolysaccharide (LPS) on D2 expression and NF-κB activation in the rat and mouse brain using in situ hybridization. In rats, LPS induced very robust D2 expression in normally non-D2-expressing cells in the leptomeninges, adjacent brain blood vessels, and the choroid plexus. These cells were vimentin-positive fibroblasts and expressed the NF-κB activation marker, inhibitor κ B-α mRNA, at 2 hours after injection, before the increase in D2 mRNA. In mice, LPS induced intense D2 expression in the choroid plexus but not in leptomeninges, with an early expression peak at 2 hours. Moderate D2 expression along numerous brain blood vessels appeared later. D2 and NF-κB activation was induced in tanycytes in both species but with a different time course. Enzymatic assays from leptomeningeal and choroid plexus samples revealed exceptionally high D2 activity in LPS-treated rats and Syrian hamsters and moderate but significant increases in mice. These data demonstrate the cell type-specific, highly inducible nature of D2 expression by inflammation, and NF-κB as a possible initiating factor, but also warrant attention for species differences. The results suggest that D2-mediated T₃ production by fibroblasts regulate local inflammatory actions in the leptomeninges, choroid plexus and brain blood vessels, and perhaps also in other organs.
Collapse
Affiliation(s)
- Gábor Wittmann
- Department of Medicine (G.W., P.S.S., S.S.N., R.M.L.), Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, and Department of Neuroscience (R.M.L.), Tufts University School of Medicine, Boston, Massachusetts 02111; Thyroid Section (J.W.H., P.R.L.), Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, Massachusetts 02115; and School of Biological Sciences (P.S.S.), National Institute of Science Education and Research, Institute of Physics Campus, PO Sainik School, Bhubaneswar-751005, India
| | | | | | | | | | | |
Collapse
|
32
|
Drigo RA, Fonseca TL, Werneck-de-Castro JPS, Bianco AC. Role of the type 2 iodothyronine deiodinase (D2) in the control of thyroid hormone signaling. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1830:3956-64. [PMID: 22967761 PMCID: PMC4979226 DOI: 10.1016/j.bbagen.2012.08.019] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 08/11/2012] [Accepted: 08/23/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND Thyroid hormone signaling is critical for development, growth and metabolic control in vertebrates. Although serum concentration of thyroid hormone is remarkable stable, deiodinases modulate thyroid hormone signaling on a time- and cell-specific fashion by controlling the activation and inactivation of thyroid hormone. SCOPE OF THE REVIEW This review covers the recent advances in D2 biology, a member of the iodothyronine deiodinase family, thioredoxin fold-containing selenoenzymes that modify thyroid hormone signaling in a time- and cell-specific manner. MAJOR CONCLUSIONS D2-catalyzed T3 production increases thyroid hormone signaling whereas blocking D2 activity or disruption of the Dio2 gene leads to a state of localized hypothyroidism. D2 expression is regulated by different developmental, metabolic or environmental cues such as the hedgehog pathway, the adrenergic- and the TGR5-activated cAMP pathway, by xenobiotic molecules such as flavonols and by stress in the endoplasmic reticulum, which specifically reduces de novo synthesis of D2 via an eIF2a-mediated mechanism. Thus, D2 plays a central role in important physiological processes such as determining T3 content in developing tissues and in the adult brain, and promoting adaptive thermogenesis in brown adipose tissue. Notably, D2 is critical in the T4-mediated negative feed-back at the pituitary and hypothalamic levels, whereby T4 inhibits TSH and TRH expression, respectively. Notably, ubiquitination is a major step in the control of D2 activity, whereby T4 binding to and/or T4 catalysis triggers D2 inactivation by ubiquitination that is mediated by the E3 ubiquitin ligases WSB-1 and/or TEB4. Ubiquitinated D2 can be either targeted to proteasomal degradation or reactivated by deubiquitination, a process that is mediated by the deubiquitinases USP20/33 and is important in adaptive thermogenesis. GENERAL SIGNIFICANCE Here we review the recent advances in the understanding of D2 biology focusing on the mechanisms that regulate its expression and their biological significance in metabolically relevant tissues. This article is part of a Special Issue entitled Thyroid hormone signalling.
Collapse
Affiliation(s)
- Rafael Arrojo Drigo
- Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Tatiana L. Fonseca
- Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Joao Pedro Saar Werneck-de-Castro
- Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miller School of Medicine, Miami, FL, USA
- Instituto de Biofisica Carlos Chagas, Brazil
- Escola de Educacao Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antonio C. Bianco
- Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
33
|
Bianco AC, Casula S. Thyroid hormone replacement therapy: three 'simple' questions, complex answers. Eur Thyroid J 2012; 1:88-98. [PMID: 24783002 PMCID: PMC3821470 DOI: 10.1159/000339447] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/03/2012] [Indexed: 12/16/2022] Open
Abstract
Current guidelines recommend that hypothyroid patients should be treated with levothyroxine, which in the vast majority of the cases leads to resolution of the symptoms and normalization of serum free T4 (FT4), T3 and TSH levels. However, a small group of hypothyroid patients remain symptomatic for neurocognitive dysfunction despite normal serum FT4 and TSH, which could be explained by localized brain hypothyroidism. More than half of the T3 in the brain is produced locally via the action of the type II deiodinase (D2) and variability/defects in this pathway could explain the residual symptoms. If this rationale is correct, adding liothyronine to the replacement therapy could prove beneficial. However, with a few exceptions, several clinical trials failed to identify any beneficial effects of combined therapy. More recently, the results of a large clinical trial revealed a better neurocognitive outcome with combined therapy only in hypothyroid patients carrying a polymorphism in the DIO2 gene. This obviously needs to be confirmed by other groups but it is tempting to speculate that combined levothyroxine and liothyronine has a place in the treatment of hypothyroidism, for some.
Collapse
Affiliation(s)
- Antonio C Bianco
- *Dr. Antonio C. Bianco, University of Miami Miller School of Medicine, 1400 N.W. 10th Avenue, Suite 601, Miami, FL 33136 (USA), Tel. +1 305 243 5631, E-Mail
| | | |
Collapse
|
34
|
Dentice M, Marsili A, Zavacki A, Larsen PR, Salvatore D. The deiodinases and the control of intracellular thyroid hormone signaling during cellular differentiation. Biochim Biophys Acta Gen Subj 2012; 1830:3937-45. [PMID: 22634734 PMCID: PMC3670672 DOI: 10.1016/j.bbagen.2012.05.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/15/2012] [Accepted: 05/17/2012] [Indexed: 12/04/2022]
Abstract
Background Thyroid hormone influences gene expression in virtually all vertebrates. Its action is initiated by the activation of T4 to T3, an outer ring deiodination reaction that is catalyzed by the type 1 or the type 2 iodothyronine selenodeiodinases (D1 or D2). Inactivation of T4 and T3 occurs via inner ring deiodination catalyzed by the type 3 iodothyronine selenodeiodinases (D3). The T4 concentration is generally quite stable in human plasma, with T3 levels also remaining constant. Deiodinase actions are tightly regulated in both pre- and post-natal life when they are required to make local adjustments of intracellular T3 concentrations in a precise spatio- and temporal manner. Although all the signals governing the dynamic expression of deiodinases in specific cell types are not known, many important regulatory factors have been deciphered. Scope of review This review provides striking examples from the recent literature illustrating how the expression of D2 and D3 is finely tuned during maturation of different organs, and how their action play a critical role in different settings to control intracellular T3 availability. Major conclusions Emerging evidence indicates that in various cell contexts, D2 and D3 are expressed in a dynamic balance, in which the expression of one enzyme is coordinately regulated with that of the other to tightly control intracellular T3 levels commensurate with cell requirements at that time. General significance Deiodinases control TH action in a precise spatio-temporal fashion thereby providing a novel mechanism for the local paracrine and autocrine regulation of TH action. This remarkable tissue-specific regulation of intracellular thyroid status remains hidden due to the maintenance of constant circulating TH concentrations by the hypothalamic–pituitary–thyroid axis. This article is part of a Special Issue entitled Thyroid hormone signalling.
Collapse
Affiliation(s)
- Monica Dentice
- Department of Molecular and Clinical Endocrinology and Oncology, University of Naples Federico II, Italy
| | | | | | | | | |
Collapse
|