1
|
Zabielski P, Roszczyc-Owsiejczuk K, Imierska M, Pogodzińska K, Błachnio-Zabielska AU. Silencing the glycerol-3-phosphate acyltransferase-1 gene in the liver of mice fed a high-fat diet, enhances insulin sensitivity and glucose metabolism by promoting fatty acid beta-oxidation. Biomed Pharmacother 2024; 180:117531. [PMID: 39383732 DOI: 10.1016/j.biopha.2024.117531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Liver plays a central role in systemic glucose and lipid metabolism. High-fat diet (HFD) and obesity are related to hepatic lipid accumulation and insulin resistance (InsR). Diacylglycerols (DAG) play a key role in the induction of InsR, however their involvement in hepatic InsR remains debated. This study aimed to clarify and confirm the role of glycero-3-phosphate acyltransferase 1 (GPAT1), a rate-limiting enzyme in DAG synthesis, in the progression of hepatic InsR in the context of HFD-induced lipid accumulation and insulin resistance in the liver. METHODS Liver-targeted GPAT1 silencing was performed using shRNA-mediated hydrodynamic gene delivery. Lipid species including LCA-CoA, sphingolipids, DAG and acyl-carnitines were quantified using UHPLC/MS/MS while insulin signalling was assessed at protein level by Western Blot. Hepatic glucose metabolism, including glucose-6-pasphate content and gluconeogenesis rate was evaluated using GC/MS. RESULTS HFD-fed animals developed InsR, evidenced by increased HOMA-IR, enhanced gluconeogenesis and reduced glycogen content compared to controls. Hepatic GPAT1 silencing in HFD-fed animals resulted in a significant reduction of DAG and TAG levels, increased acyl-carnitines content and upregulated mitochondrial β-oxidation protein expression. These changes were accompanied by improved insulin signalling, enhanced glycogen storage, and reduced gluconeogenesis. CONCLUSIONS Silencing GPAT1, and thereby reducing glycerolipid synthesis, promotes β-oxidation and ameliorates HFD-induced hepatic insulin resistance, confirming the enzyme's pivotal role in liver metabolic dysfunction associated with increased lipid supply.
Collapse
Affiliation(s)
- Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland
| | - Kamila Roszczyc-Owsiejczuk
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Monika Imierska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Karolina Pogodzińska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | | |
Collapse
|
2
|
Zhang C, Steadman M, Santos HP, Shaikh SR, Xavier RM. GPAT1 Activity and Abundant Palmitic Acid Impair Insulin Suppression of Hepatic Glucose Production in Primary Mouse Hepatocytes. J Nutr 2024; 154:1109-1118. [PMID: 38354952 PMCID: PMC11007742 DOI: 10.1016/j.tjnut.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Glycerol-3-phosphate acyltransferase (GPAT) activity is correlated with obesity and insulin resistance in mice and humans. However, insulin resistance exists in people with normal body weight, and individuals with obesity may be metabolically healthy, implying the presence of complex pathophysiologic mechanisms underpinning insulin resistance. OBJECTIVE We asked what conditions related to GPAT1 must be met concurrently for hepatic insulin resistance to occur. METHODS Mouse hepatocytes were overexpressed with GPATs via adenoviral infection or exposed to high or low concentrations of glucose. Glucose production by the cells and phosphatidic acid (PA) content in the cells were assayed, GPAT activity was measured, relative messenger RNA expressions of sterol-regulatory element-binding protein 1c (SREBP1c), carbohydrate response element-binding protein (ChREBP), and GPAT1 were analyzed, and insulin signaling transduction was examined. RESULTS Overexpressing GPAT1 in mouse hepatocytes impaired insulin's suppression of glucose production, together with an increase in both N-ethylmaleimide-resistant GPAT activity and the content of di-16:0 PA. Akt-mediated insulin signaling was inhibited in hepatocytes that overexpressed GPAT1. When the cells were exposed to high-glucose concentrations, insulin suppression of glucose production was impaired, and adding palmitic acid exacerbated this impairment. High-glucose exposure increased the expression of SREBP1c, ChREBP, and GPAT1 by ∼2-, 5-, and 5.7-fold, respectively. The addition of 200 mM palmitic acid or linoleic acid to the culture media did not change the upregulation of expression of these genes by high glucose. High-glucose exposure increased di-16:0 PA content in the cells, and adding palmitic acid further increased di-16:0 PA content. The effect was specific to palmitic acid because linoleic acid did not show these effects. CONCLUSION These data demonstrate that high-GPAT1 activity, whether induced by glucose exposure or acquired by transfection, and abundant palmitic acid can impair insulin's ability to suppress hepatic glucose production in primary mouse hepatocytes.
Collapse
Affiliation(s)
- Chongben Zhang
- Biobehavioral Laboratory, School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Mathew Steadman
- Biobehavioral Laboratory, School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Hudson P Santos
- School of Nursing and Health Studies, University of Miami, Coral Gables, FL, United States
| | - Saame R Shaikh
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rose Mary Xavier
- Biobehavioral Laboratory, School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
3
|
Silva E, Ferchaud‐Roucher V, Kramer A, Madi L, Pantham P, Chassen S, Jansson T, Powell TL. Oleic acid stimulation of amino acid uptake in primary human trophoblast cells is mediated by phosphatidic acid and mTOR signaling. FASEB Bioadv 2024; 6:1-11. [PMID: 38223199 PMCID: PMC10782470 DOI: 10.1096/fba.2023-00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 01/16/2024] Open
Abstract
Normal fetal development is critically dependent on optimal nutrient supply by the placenta, and placental amino acid transport has been demonstrated to be positively associated with fetal growth. Mechanistic target of rapamycin (mTOR) is a positive regulator of placental amino acid transporters, such as System A. Oleic acid (OA) has been previously shown to have a stimulatory role on placental mTOR signaling and System A amino acid uptake in primary human trophoblast (PHT) cells. We investigated the mechanistic link between OA and System A activity in PHT. We found that inhibition of mTOR complex 1 or 2, using small interfering RNA to knock down raptor or rictor, prevented OA-stimulated System A amino acid transport indicating the interaction of OA with mTOR. Phosphatidic acid (PA) is a key intermediary for phospholipid biosynthesis and a known regulator of the mTOR pathway; however, phospholipid biosynthetic pathways have not been extensively studied in placenta. We identified placental isoforms of acyl transferase enzymes involved in de novo phospholipid synthesis. Silencing of 1-acylglycerol-3-phosphate-O-acyltransferase-4, an enzyme in this pathway, prevented OA mediated stimulation of mTOR and System A amino acid transport. These data indicate that OA stimulates mTOR and amino acid transport in PHT cells mediated through de novo synthesis of PA. We speculate that fatty acids in the maternal circulation, such as OA, regulate placental functions critical for fetal growth by interaction with mTOR and that late pregnancy hyperlipidemia may be critical for increasing nutrient transfer to the fetus.
Collapse
Affiliation(s)
- Elena Silva
- Department of Obstetrics & GynecologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | | | - Anita Kramer
- Department of Obstetrics & GynecologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Lana Madi
- Department of Obstetrics & GynecologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Priyadarshini Pantham
- Ob/Gyn & Reproductive SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Stephanie Chassen
- Department of Pediatrics, Section of NeonatologyUniversity of Colorado, Anschutz Medical CampusAuroraColoradoUSA
| | - Thomas Jansson
- Department of Obstetrics & GynecologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Theresa L. Powell
- Department of Obstetrics & GynecologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Department of Pediatrics, Section of NeonatologyUniversity of Colorado, Anschutz Medical CampusAuroraColoradoUSA
| |
Collapse
|
4
|
Mabire M, Hegde P, Hammoutene A, Wan J, Caër C, Sayegh RA, Cadoux M, Allaire M, Weiss E, Thibault-Sogorb T, Lantz O, Goodhardt M, Paradis V, de la Grange P, Gilgenkrantz H, Lotersztajn S. MAIT cell inhibition promotes liver fibrosis regression via macrophage phenotype reprogramming. Nat Commun 2023; 14:1830. [PMID: 37005415 PMCID: PMC10067815 DOI: 10.1038/s41467-023-37453-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/16/2023] [Indexed: 04/04/2023] Open
Abstract
Recent data have shown that liver fibrosis can regress even at later stages of cirrhosis and shifting the immune response from pro-inflammatory towards a resolutive profile is considered as a promising option. The immune regulatory networks that govern the shift of the inflammatory phenotype and thus potential reversal of liver fibrosis are lesser known. Here we show that in precision-cut human liver slices obtained from patients with end-stage fibrosis and in mouse models, inhibiting Mucosal-Associated Invariant T (MAIT) cells using pharmacological or antibody-driven approaches, limits fibrosis progression and even regresses fibrosis, following chronic toxic- or non-alcoholic steatohepatitis (NASH)-induced liver injury. Mechanistic studies, combining RNA sequencing, in vivo functional studies (performed in male mice) and co-culture experiments indicate that disruption of the MAIT cell-monocyte/macrophage interaction results in resolution of fibrosis both by increasing the frequency of restorative Ly6Clo at the expenses of pro-fibrogenic Ly6Chi monocyte-derived macrophages and promoting an autophagic phenotype in both subsets. Thus, our data show that MAIT cell activation and the consequential phenotype shift of liver macrophages are important pathogenic features of liver fibrosis and could be targeted by anti-fibrogenic therapy.
Collapse
Affiliation(s)
- Morgane Mabire
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Pushpa Hegde
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Adel Hammoutene
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Jinghong Wan
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Charles Caër
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Rola Al Sayegh
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Mathilde Cadoux
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Manon Allaire
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Emmanuel Weiss
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018, Paris, France
- Département d'Anesthésie et Réanimation, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, 92110, Clichy, France
| | - Tristan Thibault-Sogorb
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018, Paris, France
- Département d'Anesthésie et Réanimation, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, 92110, Clichy, France
| | | | - Michèle Goodhardt
- Université Paris Cité, INSERM UMRS 976, Institut de Recherche Saint Louis, F-75010, Paris, France
| | - Valérie Paradis
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018, Paris, France
- Département de Pathologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, 92110, Clichy, France
| | | | - Hélène Gilgenkrantz
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Sophie Lotersztajn
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, F-75018, Paris, France.
| |
Collapse
|
5
|
Bouyahya A, El Allam A, Aboulaghras S, Bakrim S, El Menyiy N, Alshahrani MM, Al Awadh AA, Benali T, Lee LH, El Omari N, Goh KW, Ming LC, Mubarak MS. Targeting mTOR as a Cancer Therapy: Recent Advances in Natural Bioactive Compounds and Immunotherapy. Cancers (Basel) 2022; 14:5520. [PMID: 36428613 PMCID: PMC9688668 DOI: 10.3390/cancers14225520] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a highly conserved serine/threonine-protein kinase, which regulates many biological processes related to metabolism, cancer, immune function, and aging. It is an essential protein kinase that belongs to the phosphoinositide-3-kinase (PI3K) family and has two known signaling complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Even though mTOR signaling plays a critical role in promoting mitochondria-related protein synthesis, suppressing the catabolic process of autophagy, contributing to lipid metabolism, engaging in ribosome formation, and acting as a critical regulator of mRNA translation, it remains one of the significant signaling systems involved in the tumor process, particularly in apoptosis, cell cycle, and cancer cell proliferation. Therefore, the mTOR signaling system could be suggested as a cancer biomarker, and its targeting is important in anti-tumor therapy research. Indeed, its dysregulation is involved in different types of cancers such as colon, neck, cervical, head, lung, breast, reproductive, and bone cancers, as well as nasopharyngeal carcinoma. Moreover, recent investigations showed that targeting mTOR could be considered as cancer therapy. Accordingly, this review presents an overview of recent developments associated with the mTOR signaling pathway and its molecular involvement in various human cancer types. It also summarizes the research progress of different mTOR inhibitors, including natural and synthetised compounds and their main mechanisms, as well as the rational combinations with immunotherapies.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Aicha El Allam
- Department of Immunology, Yale University School of Medicine, 333 Cedars Street, TAC S610, New Haven, CT 06519, USA
| | - Sara Aboulaghras
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10100, Morocco
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Long Chiau Ming
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | | |
Collapse
|
6
|
Karagiota A, Chachami G, Paraskeva E. Lipid Metabolism in Cancer: The Role of Acylglycerolphosphate Acyltransferases (AGPATs). Cancers (Basel) 2022; 14:cancers14010228. [PMID: 35008394 PMCID: PMC8750616 DOI: 10.3390/cancers14010228] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Rapidly proliferating cancer cells reprogram lipid metabolism to keep the balance between fatty acid uptake, synthesis, consumption, and storage as triacylglycerides (TAG). Acylglycerolphosphate acyltransferases (AGPATs)/lysophosphatidic acid acyltransferases (LPAATs) are a family of enzymes that catalyze the synthesis of phosphatidic acid (PA), an intermediate in TAG synthesis, a signaling molecule, and a precursor of phospholipids. Importantly, the expression of AGPATs has been linked to diverse physiological and pathological phenotypes, including cancer. In this review, we present an overview of lipid metabolism reprogramming in cancer cells and give insight into the expression of AGPAT isoforms as well as their association with cancers, parameters of tumor biology, patient classification, and prognosis. Abstract Altered lipid metabolism is an emerging hallmark of aggressive tumors, as rapidly proliferating cancer cells reprogram fatty acid (FA) uptake, synthesis, storage, and usage to meet their increased energy demands. Central to these adaptive changes, is the conversion of excess FA to neutral triacylglycerides (TAG) and their storage in lipid droplets (LDs). Acylglycerolphosphate acyltransferases (AGPATs), also known as lysophosphatidic acid acyltransferases (LPAATs), are a family of five enzymes that catalyze the conversion of lysophosphatidic acid (LPA) to phosphatidic acid (PA), the second step of the TAG biosynthesis pathway. PA, apart from its role as an intermediate in TAG synthesis, is also a precursor of glycerophospholipids and a cell signaling molecule. Although the different AGPAT isoforms catalyze the same reaction, they appear to have unique non-overlapping roles possibly determined by their distinct tissue expression and substrate specificity. This is best exemplified by the role of AGPAT2 in the development of type 1 congenital generalized lipodystrophy (CGL) and is also manifested by recent studies highlighting the involvement of AGPATs in the physiology and pathology of various tissues and organs. Importantly, AGPAT isoform expression has been shown to enhance proliferation and chemoresistance of cancer cells and correlates with increased risk of tumor development or aggressive phenotypes of several types of tumors.
Collapse
Affiliation(s)
- Angeliki Karagiota
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.K.); (G.C.)
- Laboratory of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece
| | - Georgia Chachami
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.K.); (G.C.)
| | - Efrosyni Paraskeva
- Laboratory of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece
- Correspondence:
| |
Collapse
|
7
|
Selectivity of mTOR-Phosphatidic Acid Interactions Is Driven by Acyl Chain Structure and Cholesterol. Cells 2021; 11:cells11010119. [PMID: 35011681 PMCID: PMC8750377 DOI: 10.3390/cells11010119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/24/2022] Open
Abstract
The need to gain insights into the molecular details of peripheral membrane proteins’ specificity towards phosphatidic acid (PA) is undeniable. The variety of PA species classified in terms of acyl chain length and saturation translates into a complicated, enigmatic network of functional effects that exert a critical influence on cell physiology. As a consequence, numerous studies on the importance of phosphatidic acid in human diseases have been conducted in recent years. One of the key proteins in this context is mTOR, considered to be the most important cellular sensor of essential nutrients while regulating cell proliferation, and which also appears to require PA to build stable and active complexes. Here, we investigated the specific recognition of three physiologically important PA species by the mTOR FRB domain in the presence or absence of cholesterol in targeted membranes. Using a broad range of methods based on model lipid membrane systems, we elucidated how the length and saturation of PA acyl chains influence specific binding of the mTOR FRB domain to the membrane. We also discovered that cholesterol exerts a strong modulatory effect on PA-FRB recognition. Our data provide insight into the molecular details of some physiological effects reported previously and reveal novel mechanisms of fine-tuning the signaling cascades dependent on PA.
Collapse
|
8
|
Cui C, Li T, Xie Y, Yang J, Fu C, Qiu Y, Shen L, Ni Q, Wang Q, Nie A, Ning G, Wang W, Gu Y. Enhancing Acsl4 in absence of mTORC2/Rictor drove β-cell dedifferentiation via inhibiting FoxO1 and promoting ROS production. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166261. [PMID: 34455055 DOI: 10.1016/j.bbadis.2021.166261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
Rapamycin insensitive companion of mechanistic target of Rapamycin (Rictor), the key component of mTOR complex 2 (mTORC2), controls both β-cell proliferation and function. We sought to study whether long chain acyl-CoA synthetase 4 (Acsl4) worked downstream of Rictor/mTORC2 to maintain β-cell functional mass. We found Acsl4 was positively regulated by Rictor at transcriptional and posttranslational levels in mouse β-cell. Infecting adenovirus expressing Acsl4 in β-cell-specific-Rictor-knockout (βRicKO) islets and Min6 cells knocking down Rictor with lentivirus-expressing siRNA-oligos targeting Rictor(siRic), recovered the β-cell dysplasia but not dysfunction. Cell bioenergetic experiment performed with Seahorse XF showed that Acsl4 could not rescue the dampened glucose oxidation in Rictor-lacking β-cell, but further promoted lipid oxidation. Transposase-Accessible Chromatin (ATAC) and H3K27Ac chromatin immunoprecipitation (ChIP) sequencing studies reflected the epigenetic elevated molecular signature for β-cell dedifferentiation and mitigated oxidative defense/response. These results were confirmed by the observations of elevated acetylation and ubiquitination of FoxO1, increased protein levels of Gpx1 and Hif1an, excessive reactive oxygen species (ROS) production and diminished MafA in Acsl4 overexpressed Rictor-lacking β-cells. In these cells, antioxidant treatment significantly recovered MafA level and insulin content. Inducing lipid oxidation alone could not mimic the effect of Acsl4 in Rictor lacking β-cell. Our study suggested that Acsl4 function in β-cell was context dependent and might facilitate β-cell dedifferentiation with attenuated Rictor/mTORC2 activity or insulin signaling via posttranslational inhibiting FoxO1 and epigenetically enhancing ROS induced MafA degradation.
Collapse
Affiliation(s)
- Canqi Cui
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Li
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Xie
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Yang
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyang Fu
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixuan Qiu
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linyan Shen
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qicheng Ni
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qidi Wang
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aifang Nie
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Weiqing Wang
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyun Gu
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Tei R, Morstein J, Shemet A, Trauner D, Baskin JM. Optical Control of Phosphatidic Acid Signaling. ACS CENTRAL SCIENCE 2021; 7:1205-1215. [PMID: 34345670 PMCID: PMC8323247 DOI: 10.1021/acscentsci.1c00444] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 05/31/2023]
Abstract
Phosphatidic acids (PAs) are glycerophospholipids that regulate key cell signaling pathways governing cell growth and proliferation, including the mTOR and Hippo pathways. Their acyl chains vary in tail length and degree of saturation, leading to marked differences in the signaling functions of different PA species. For example, in mTOR signaling, saturated forms of PA are inhibitory, whereas unsaturated forms are activating. To enable rapid control over PA signaling, we describe here the development of photoswitchable analogues of PA, termed AzoPA and dAzoPA, that contain azobenzene groups in one or both lipid tails, respectively. These photolipids enable optical control of their tail structure and can be reversibly switched between a straight trans form and a relatively bent cis form. We found that cis-dAzoPA selectively activates mTOR signaling, mimicking the bioactivity of unsaturated forms of PA. Further, in the context of Hippo signaling, whose growth-suppressing activity is blocked by PA, we found that the cis forms of both AzoPA and dAzoPA selectively inhibit this pathway. Collectively, these photoswitchable PA analogues enable optical control of mTOR and Hippo signaling, and we envision future applications of these probes to dissect the pleiotropic effects of physiological and pathological PA signaling.
Collapse
Affiliation(s)
- Reika Tei
- Department
of Chemistry and Chemical Biology and Weill Institute for Cell and
Molecular Biology, Cornell University, Ithaca, New York 14850, United States
| | - Johannes Morstein
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Andrej Shemet
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Dirk Trauner
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Jeremy M. Baskin
- Department
of Chemistry and Chemical Biology and Weill Institute for Cell and
Molecular Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
10
|
Chambers KT, Cooper MA, Swearingen AR, Brookheart RT, Schweitzer GG, Weinheimer CJ, Kovacs A, Koves TR, Muoio DM, McCommis KS, Finck BN. Myocardial Lipin 1 knockout in mice approximates cardiac effects of human LPIN1 mutations. JCI Insight 2021; 6:134340. [PMID: 33986192 PMCID: PMC8262319 DOI: 10.1172/jci.insight.134340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/31/2021] [Indexed: 11/17/2022] Open
Abstract
Lipin 1 is a bifunctional protein that is a transcriptional regulator and has phosphatidic acid (PA) phosphohydrolase activity, which dephosphorylates PA to generate diacylglycerol. Human lipin 1 mutations lead to episodic rhabdomyolysis, and some affected patients exhibit cardiac abnormalities, including exercise-induced cardiac dysfunction and cardiac triglyceride accumulation. Furthermore, lipin 1 expression is deactivated in failing heart, but the effects of lipin 1 deactivation in myocardium are incompletely understood. We generated mice with cardiac-specific lipin 1 KO (cs-Lpin1-/-) to examine the intrinsic effects of lipin 1 in the myocardium. Cs-Lpin1-/- mice had normal systolic cardiac function but mild cardiac hypertrophy. Compared with littermate control mice, PA content was higher in cs-Lpin1-/- hearts, which also had an unexpected increase in diacylglycerol and triglyceride content. Cs-Lpin1-/- mice exhibited diminished cardiac cardiolipin content and impaired mitochondrial respiration rates when provided with pyruvate or succinate as metabolic substrates. After transverse aortic constriction-induced pressure overload, loss of lipin 1 did not exacerbate cardiac hypertrophy or dysfunction. However, loss of lipin 1 dampened the cardiac ionotropic response to dobutamine and exercise endurance in association with reduced protein kinase A signaling. These data suggest that loss of lipin 1 impairs cardiac functional reserve, likely due to effects on glycerolipid homeostasis, mitochondrial function, and protein kinase A signaling.
Collapse
Affiliation(s)
- Kari T Chambers
- Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael A Cooper
- Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alison R Swearingen
- Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rita T Brookheart
- Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - George G Schweitzer
- Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carla J Weinheimer
- Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Attila Kovacs
- Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Deborah M Muoio
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Kyle S McCommis
- Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Brian N Finck
- Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Maude H, Lau W, Maniatis N, Andrew T. New Insights Into Mitochondrial Dysfunction at Disease Susceptibility Loci in the Development of Type 2 Diabetes. Front Endocrinol (Lausanne) 2021; 12:694893. [PMID: 34456865 PMCID: PMC8385132 DOI: 10.3389/fendo.2021.694893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/08/2021] [Indexed: 12/25/2022] Open
Abstract
This study investigated the potential genetic mechanisms which underlie adipose tissue mitochondrial dysfunction in Type 2 diabetes (T2D), by systematically identifying nuclear-encoded mitochondrial genes (NEMGs) among the genes regulated by T2D-associated genetic loci. The target genes of these 'disease loci' were identified by mapping genetic loci associated with both disease and gene expression levels (expression quantitative trait loci, eQTL) using high resolution genetic maps, with independent estimates co-locating to within a small genetic distance. These co-locating signals were defined as T2D-eQTL and the target genes as T2D cis-genes. In total, 763 cis-genes were associated with T2D-eQTL, of which 50 were NEMGs. Independent gene expression datasets for T2D and insulin resistant cases and controls confirmed that the cis-genes and cis-NEMGs were enriched for differential expression in cases, providing independent validation that genetic maps can identify informative functional genes. Two additional results were consistent with a potential role of T2D-eQTL in regulating the 50 identified cis-NEMGs in the context of T2D risk: (1) the 50 cis-NEMGs showed greater differential expression compared to other NEMGs and (2) other NEMGs showed a trend towards significantly decreased expression if their expression levels correlated more highly with the subset of 50 cis-NEMGs. These 50 cis-NEMGs, which are differentially expressed and associated with mapped T2D disease loci, encode proteins acting within key mitochondrial pathways, including some of current therapeutic interest such as the metabolism of branched-chain amino acids, GABA and biotin.
Collapse
Affiliation(s)
- Hannah Maude
- Department of Metabolism, Digestion & Reproduction, Imperial College, London, United Kingdom
| | - Winston Lau
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Nikolas Maniatis
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Toby Andrew
- Department of Metabolism, Digestion & Reproduction, Imperial College, London, United Kingdom
- *Correspondence: Toby Andrew,
| |
Collapse
|
12
|
Lian N, Shi LQ, Hao ZM, Chen M. Research progress and perspective in metabolism and metabolomics of psoriasis. Chin Med J (Engl) 2020; 133:2976-2986. [PMID: 33237698 PMCID: PMC7752687 DOI: 10.1097/cm9.0000000000001242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT Psoriasis is considered a systemic disease associated with metabolic abnormalities, and it is important to understand the mechanisms by which metabolism affects pathophysiological processes both holistically and systematically. Metabolites are closely related to disease phenotypes, especially in systemic diseases under multifactorial modulation. The emergence of metabolomics has provided information regarding metabolite changes in lesions and circulation and deepened our understanding of the association between metabolic reprogramming and psoriasis. Metabolomics has great potential for the development of effective biomarkers for clinical diagnosis, therapeutic monitoring, prediction of the efficacy of psoriasis management, and further discovery of new metabolism-based therapeutic targets.
Collapse
Affiliation(s)
- Ni Lian
- Department of Dermatology, Hospital for Skin Diseases (Institute of Dermatology), Chinese Academy of Medical Sciences & Peking Union Medical Collage, Nanjing, Jiangsu 210042, China
| | | | | | | |
Collapse
|
13
|
Lutkewitte AJ, Finck BN. Regulation of Signaling and Metabolism by Lipin-mediated Phosphatidic Acid Phosphohydrolase Activity. Biomolecules 2020; 10:E1386. [PMID: 33003344 PMCID: PMC7600782 DOI: 10.3390/biom10101386] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Phosphatidic acid (PA) is a glycerophospholipid intermediate in the triglyceride synthesis pathway that has incredibly important structural functions as a component of cell membranes and dynamic effects on intracellular and intercellular signaling pathways. Although there are many pathways to synthesize and degrade PA, a family of PA phosphohydrolases (lipin family proteins) that generate diacylglycerol constitute the primary pathway for PA incorporation into triglycerides. Previously, it was believed that the pool of PA used to synthesize triglyceride was distinct, compartmentalized, and did not widely intersect with signaling pathways. However, we now know that modulating the activity of lipin 1 has profound effects on signaling in a variety of cell types. Indeed, in most tissues except adipose tissue, lipin-mediated PA phosphohydrolase activity is far from limiting for normal rates of triglyceride synthesis, but rather impacts critical signaling cascades that control cellular homeostasis. In this review, we will discuss how lipin-mediated control of PA concentrations regulates metabolism and signaling in mammalian organisms.
Collapse
Affiliation(s)
| | - Brian N. Finck
- Center for Human Nutrition, Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Euclid Avenue, Campus Box 8031, St. Louis, MO 63110, USA;
| |
Collapse
|
14
|
New Era of Diacylglycerol Kinase, Phosphatidic Acid and Phosphatidic Acid-Binding Protein. Int J Mol Sci 2020; 21:ijms21186794. [PMID: 32947951 PMCID: PMC7555651 DOI: 10.3390/ijms21186794] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG) to generate phosphatidic acid (PA). Mammalian DGK consists of ten isozymes (α–κ) and governs a wide range of physiological and pathological events, including immune responses, neuronal networking, bipolar disorder, obsessive-compulsive disorder, fragile X syndrome, cancer, and type 2 diabetes. DG and PA comprise diverse molecular species that have different acyl chains at the sn-1 and sn-2 positions. Because the DGK activity is essential for phosphatidylinositol turnover, which exclusively produces 1-stearoyl-2-arachidonoyl-DG, it has been generally thought that all DGK isozymes utilize the DG species derived from the turnover. However, it was recently revealed that DGK isozymes, except for DGKε, phosphorylate diverse DG species, which are not derived from phosphatidylinositol turnover. In addition, various PA-binding proteins (PABPs), which have different selectivities for PA species, were recently found. These results suggest that DGK–PA–PABP axes can potentially construct a large and complex signaling network and play physiologically and pathologically important roles in addition to DGK-dependent attenuation of DG–DG-binding protein axes. For example, 1-stearoyl-2-docosahexaenoyl-PA produced by DGKδ interacts with and activates Praja-1, the E3 ubiquitin ligase acting on the serotonin transporter, which is a target of drugs for obsessive-compulsive and major depressive disorders, in the brain. This article reviews recent research progress on PA species produced by DGK isozymes, the selective binding of PABPs to PA species and a phosphatidylinositol turnover-independent DG supply pathway.
Collapse
|
15
|
Knudsen JR, Fritzen AM, James DE, Jensen TE, Kleinert M, Richter EA. Growth Factor-Dependent and -Independent Activation of mTORC2. Trends Endocrinol Metab 2020; 31:13-24. [PMID: 31699566 DOI: 10.1016/j.tem.2019.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/19/2019] [Accepted: 09/12/2019] [Indexed: 01/03/2023]
Abstract
The target of rapamycin complex 2 (TORC2) was discovered in 2002 in budding yeast. Its mammalian counterpart, mTORC2, was first described in 2004. Soon thereafter it was demonstrated that mTORC2 directly phosphorylates Akt on Ser473, ending a long search for the elusive 'second' insulin-responsive Akt kinase. In this review we discuss key evidence pertaining to the subcellular localization of mTORC2, highlighting a spatial heterogeneity that relates to mTORC2 activation. We summarize current models for how growth factors (GFs), such as insulin, trigger mTORC2 activation, and we provide a comprehensive discussion focusing on a new exciting frontier, the molecular mechanisms underpinning GF-independent activation of mTORC2.
Collapse
Affiliation(s)
- Jonas R Knudsen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas M Fritzen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - David E James
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Kleinert
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum Muenchen & German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
McDermott MI, Wang Y, Wakelam MJO, Bankaitis VA. Mammalian phospholipase D: Function, and therapeutics. Prog Lipid Res 2019; 78:101018. [PMID: 31830503 DOI: 10.1016/j.plipres.2019.101018] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023]
Abstract
Despite being discovered over 60 years ago, the precise role of phospholipase D (PLD) is still being elucidated. PLD enzymes catalyze the hydrolysis of the phosphodiester bond of glycerophospholipids producing phosphatidic acid and the free headgroup. PLD family members are found in organisms ranging from viruses, and bacteria to plants, and mammals. They display a range of substrate specificities, are regulated by a diverse range of molecules, and have been implicated in a broad range of cellular processes including receptor signaling, cytoskeletal regulation and membrane trafficking. Recent technological advances including: the development of PLD knockout mice, isoform-specific antibodies, and specific inhibitors are finally permitting a thorough analysis of the in vivo role of mammalian PLDs. These studies are facilitating increased recognition of PLD's role in disease states including cancers and Alzheimer's disease, offering potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- M I McDermott
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America.
| | - Y Wang
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America; Department of Chemistry, Texas A&M University, College Station, Texas 77840, United States of America
| |
Collapse
|
17
|
Patel BM, Goyal RK. Liver and insulin resistance: New wine in old bottle!!! Eur J Pharmacol 2019; 862:172657. [DOI: 10.1016/j.ejphar.2019.172657] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
|
18
|
Baek MO, Ahn CB, Cho HJ, Choi JY, Son KH, Yoon MS. Simulated microgravity inhibits C2C12 myogenesis via phospholipase D2-induced Akt/FOXO1 regulation. Sci Rep 2019; 9:14910. [PMID: 31624287 PMCID: PMC6797799 DOI: 10.1038/s41598-019-51410-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022] Open
Abstract
The skeletal muscle system has evolved to maintain body posture against a constant gravitational load. Mammalian target of rapamycin (mTOR) regulates the mechanically induced increase in the skeletal muscle mass. In the present study, we investigated mTOR pathway in C2C12 myoblasts in a model of mechanical unloading by creating a simulated microgravity (SM) using 3 D clinorotation. SM decreased the phosphorylation of Akt at Ser 473, which was mediated by mTOR complex 2 (mTORC2), in C2C12 myoblasts, leading to a decrease in the cell growth rate. Subsequently, SM inhibited C2C12 myogenesis in an Akt-dependent manner. In addition, SM increased the phospholipase D (PLD) activity by enhancing PLD2 expression, resulting in the dissociation of mSIN1 from the mTORC2, followed by decrease in the phosphorylation of Akt at Ser 473, and FOXO1 at Ser 256 in C2C12 myoblasts. Exposure to SM decreased the autophagic flux of C2C12 myoblasts by regulation of mRNA level of autophagic genes in a PLD2 and FOXO1-dependent manner, subsequently, resulting in a decrease in the C2C12 myogenesis. In conclusion, by analyzing the molecular signature of C2C12 myogenesis using SM, we suggest that the regulatory axis of the PLD2 induced Akt/FOXO1, is critical for C2C12 myogenesis.
Collapse
Affiliation(s)
- Mi-Ock Baek
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Chi Bum Ahn
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Hye-Jeong Cho
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Ji-Young Choi
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, Republic of Korea.
| | - Mee-Sup Yoon
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea. .,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea. .,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea.
| |
Collapse
|
19
|
Lee J, Ridgway ND. Substrate channeling in the glycerol-3-phosphate pathway regulates the synthesis, storage and secretion of glycerolipids. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158438. [PMID: 30959116 DOI: 10.1016/j.bbalip.2019.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/16/2023]
Abstract
The successive acylation of glycerol-3-phosphate (G3P) by glycerol-3-phosphate acyltransferases and acylglycerol-3-phosphate acyltransferases produces phosphatidic acid (PA), a precursor for CDP-diacylglycerol-dependent phospholipid synthesis. PA is further dephosphorylated by LIPINs to produce diacylglycerol (DG), a substrate for the synthesis of triglyceride (TG) by DG acyltransferases and a precursor for phospholipid synthesis via the CDP-choline and CDP-ethanolamine (Kennedy) pathways. The channeling of fatty acids into TG for storage in lipid droplets and secretion in lipoproteins or phospholipids for membrane biogenesis is dependent on isoform expression, activity and localization of G3P pathway enzymes, as well as dietary and hormonal and tissue-specific factors. Here, we review the mechanisms that control partitioning of substrates into lipid products of the G3P pathway.
Collapse
Affiliation(s)
- Jonghwa Lee
- Atlantic Research Center, Depts. of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Neale D Ridgway
- Atlantic Research Center, Depts. of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
20
|
Coleman RA. It takes a village: channeling fatty acid metabolism and triacylglycerol formation via protein interactomes. J Lipid Res 2019; 60:490-497. [PMID: 30683668 PMCID: PMC6399496 DOI: 10.1194/jlr.s091843] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/14/2019] [Indexed: 12/21/2022] Open
Abstract
Diet, hormones, gene transcription, and posttranslational modifications control the hepatic metabolism of FAs; metabolic dysregulation causes chronic diseases, including cardiovascular disease, and warrants exploration into the mechanisms directing FA and triacylglycerol (TAG) synthesis and degradation. Long-chain FA metabolism begins by formation of an acyl-CoA by a member of the acyl-CoA synthetase (ACSL) family. Subsequently, TAG synthesis begins with acyl-CoA esterification to glycerol-3-phosphate by a member of the glycerol-3-phosphate acyltransferase (GPAT) family. Our studies of the isoforms ACSL1 and GPAT1 strongly suggest that these proteins are members of larger protein assemblies (interactomes). ACSL1 targeted to the ER interacts with peroxisomal, lipid droplet, and tethering proteins, uncovering a dynamic role for ACSL1 in organelle and lipid droplet interactions. On the outer mitochondrial membrane (OMM), PPARα upregulates ACSL1, which interacts with proteins believed to tether lipid droplets to the OMM. In contrast, GPAT1 is upregulated nutritionally by carbohydrate and insulin in a coordinated sequence of enzyme reactions, from saturated FA formation via de novo lipogenesis to FA esterification by GPAT1 and entry into the TAG biosynthesis pathway. We propose that involved enzymes form a dynamic protein interactome that facilitates esterification and that other lipid-metabolizing pathways will exist in similar physiologically regulated interactomes.
Collapse
Affiliation(s)
- Rosalind A Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
21
|
Transcriptional Regulation of Acyl-CoA:Glycerol- sn-3-Phosphate Acyltransferases. Int J Mol Sci 2019; 20:ijms20040964. [PMID: 30813330 PMCID: PMC6412627 DOI: 10.3390/ijms20040964] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022] Open
Abstract
Acyl-CoA:glycerol-sn-3-phosphate acyltransferase (GPAT) is an enzyme responsible for the rate-limiting step in the synthesis of glycerophospholipids and triacylglycerol (TAG). The enzymes of mammalian species are classified into four isoforms; GPAT1 and GPAT2 are localized in the mitochondrial outer membrane, whereas GPAT3 and GPAT4 are localized in the endoplasmic reticulum membrane. The activity of each enzyme expressed is associated with physiological and pathological functions. The transcriptional regulation is well known, particularly in GPAT1. GPAT1 mRNA expression is mainly regulated by the binding of the transcriptional factor SREBP-1c to the specific element (the sterol regulatory element) flanking the GPAT1 promoter. The TAG level is controlled by the insulin-induced transcriptional expression of GPAT1, which occupies most of the GPAT activity in the liver. The transcriptional regulation of the other three GPAT isoforms remains undetermined in detail. It is predicted that retinoic acid serves as a transcription factor in the GPAT2 promoter. PPARγ (peroxisome proliferator-activated receptor γ) increases the mRNA expression of GPAT3, which is associated with TAG synthesis in adipose tissues. Although GPAT has been considered to be a key enzyme in the production of TAG, unexpected functions have recently been reported, particularly in GPAT2. It is likely that GPAT2 is associated with tumorigenesis and normal spermatogenesis. In this review, the physiological and pathophysiological roles of the four GPAT isoforms are described, alongside the transcriptional regulation of these enzymes.
Collapse
|
22
|
Schweitzer GG, Collier SL, Chen Z, McCommis KS, Pittman SK, Yoshino J, Matkovich SJ, Hsu FF, Chrast R, Eaton JM, Harris TE, Weihl CC, Finck BN. Loss of lipin 1-mediated phosphatidic acid phosphohydrolase activity in muscle leads to skeletal myopathy in mice. FASEB J 2019; 33:652-667. [PMID: 30028636 PMCID: PMC6355067 DOI: 10.1096/fj.201800361r] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/02/2018] [Indexed: 12/25/2022]
Abstract
Lipin 1 regulates glycerolipid homeostasis by acting as a phosphatidic acid phosphohydrolase (PAP) enzyme in the triglyceride-synthesis pathway and by regulating transcription factor activity. Mutations in human lipin 1 are a common cause of recurrent rhabdomyolysis in children. Mice with constitutive whole-body lipin 1 deficiency have been used to examine mechanisms connecting lipin 1 deficiency to myocyte injury. However, that mouse model is confounded by lipodystrophy not phenocopied in people. Herein, 2 muscle-specific mouse models were studied: 1) Lpin1 exon 3 and 4 deletion, resulting in a hypomorphic protein without PAP activity, but which preserved transcriptional coregulatory function; and 2) Lpin1 exon 7 deletion, resulting in total protein loss. In both models, skeletal muscles exhibited a chronic myopathy with ongoing muscle fiber necrosis and regeneration and accumulation of phosphatidic acid and, paradoxically, diacylglycerol. Additionally, lipin 1-deficient mice had abundant, but abnormal, mitochondria likely because of impaired autophagy. Finally, these mice exhibited increased plasma creatine kinase following exhaustive exercise when unfed. These data suggest that mice lacking lipin 1-mediated PAP activity in skeletal muscle may serve as a model for determining the mechanisms by which lipin 1 deficiency leads to myocyte injury and for testing potential therapeutic approaches.-Schweitzer, G. G., Collier, S. L., Chen, Z., McCommis, K. S., Pittman, S. K., Yoshino, J., Matkovich, S. J., Hsu, F.-F., Chrast, R., Eaton, J. M., Harris, T. E., Weihl, C. C., Finck, B. N. Loss of lipin 1-mediated phosphatidic acid phosphohydrolase activity in muscle leads to skeletal myopathy in mice.
Collapse
Affiliation(s)
- George G. Schweitzer
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sara L. Collier
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zhouji Chen
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kyle S. McCommis
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sara K. Pittman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jun Yoshino
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Scot J. Matkovich
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Roman Chrast
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; and
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; and
| | - James M. Eaton
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Thurl E. Harris
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Conrad C. Weihl
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Brian N. Finck
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
23
|
Tillander V, Miniami A, Alves-Bezerra M, Coleman RA, Cohen DE. Thioesterase superfamily member 2 promotes hepatic insulin resistance in the setting of glycerol-3-phosphate acyltransferase 1-induced steatosis. J Biol Chem 2018; 294:2009-2020. [PMID: 30523156 DOI: 10.1074/jbc.ra118.005184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/21/2018] [Indexed: 02/05/2023] Open
Abstract
Hepatic insulin resistance in the setting of steatosis is attributable at least in part to the accumulation of bioactive lipids that suppress insulin signaling. The mitochondria-associated glycerol-3-phosphate acyltransferase 1 (GPAT1) catalyzes the first committed step in glycerolipid synthesis, and its activity diverts fatty acids from mitochondrial β-oxidation. GPAT1 overexpression in mouse liver leads to hepatic steatosis even in the absence of overnutrition. The mice develop insulin resistance owing to the generation of saturated diacylglycerol and phosphatidic acid molecular species that reduce insulin signaling by activating PKCϵ and by suppressing mTORC2, respectively. Them2, a mitochondria-associated acyl-CoA thioesterase, also participates in the trafficking of fatty acids into oxidative versus glycerolipid biosynthetic pathways. Them2 -/- mice are protected against diet-induced hepatic steatosis and insulin resistance. To determine whether Them2 contributes to hepatic insulin resistance due to hepatic overexpression of GPAT1, recombinant adenovirus was used to overexpress GPAT1 in livers of chow-fed Them2 +/+ and Them2 -/- mice. Hepatic GPAT1 overexpression led to steatosis in both genotypes. In the setting of GPAT1 overexpression, glucose tolerance was reduced in Them2 +/+ but not Them2 -/- mice, without influencing whole-body insulin sensitivity or basal hepatic glucose production. Improved glucose tolerance in Them2 -/- mice was associated with reduced PKCϵ translocation. Preserved insulin receptor activity was supported by Thr-308 phosphorylation of Akt following GPAT1 overexpression in Them2 -/- hepatocytes. These findings suggest a pathogenic role of Them2 in the biosynthesis of glycerolipid metabolites that promote hepatic insulin resistance.
Collapse
Affiliation(s)
- Veronika Tillander
- From the Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10021.,the Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, 14152 Huddinge, Sweden
| | - Akihiro Miniami
- From the Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10021.,the Department of Gastroenterology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan, and
| | - Michele Alves-Bezerra
- From the Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10021
| | - Rosalind A Coleman
- the Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - David E Cohen
- From the Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10021,
| |
Collapse
|
24
|
Update on glycerol-3-phosphate acyltransferases: the roles in the development of insulin resistance. Nutr Diabetes 2018; 8:34. [PMID: 29799006 PMCID: PMC5968029 DOI: 10.1038/s41387-018-0045-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 01/16/2023] Open
Abstract
Glycerol-3-phosphate acyltransferase (GPAT) is the rate-limiting enzyme in the de novo pathway of glycerolipid synthesis. It catalyzes the conversion of glycerol-3-phosphate and long-chain acyl-CoA to lysophosphatidic acid. In mammals, four isoforms of GPATs have been identified based on subcellular localization, substrate preferences, and NEM sensitivity, and they have been classified into two groups, one including GPAT1 and GPAT2, which are localized in the mitochondrial outer membrane, and the other including GPAT3 and GPAT4, which are localized in the endoplasmic reticulum membrane. GPATs play a pivotal role in the regulation of triglyceride and phospholipid synthesis. Through gain-of-function and loss-of-function experiments, it has been confirmed that GPATs play a critical role in the development of obesity, hepatic steatosis, and insulin resistance. In line with this, the role of GPATs in metabolism was supported by studies using a GPAT inhibitor, FSG67. Additionally, the functional characteristics of GPATs and the relation between three isoforms (GPAT1, 3, and 4) and insulin resistance has been described in this review.
Collapse
|
25
|
Peroxisomal Acyl-CoA Oxidase Type 1: Anti-Inflammatory and Anti-Aging Properties with a Special Emphasis on Studies with LPS and Argan Oil as a Model Transposable to Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6986984. [PMID: 29765501 PMCID: PMC5889864 DOI: 10.1155/2018/6986984] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/23/2018] [Indexed: 12/11/2022]
Abstract
To clarify appropriateness of current claims for health and wellness virtues of argan oil, studies were conducted in inflammatory states. LPS induces inflammation with reduction of PGC1-α signaling and energy metabolism. Argan oil protected the liver against LPS toxicity and interestingly enough preservation of peroxisomal acyl-CoA oxidase type 1 (ACOX1) activity against depression by LPS. This model of LPS-driven toxicity circumvented by argan oil along with a key anti-inflammatory role attributed to ACOX1 has been here transposed to model aging. This view is consistent with known physiological role of ACOX1 in yielding precursors of specialized proresolving mediators (SPM) and with characteristics of aging and related disorders including reduced PGC1-α function and improvement by strategies rising ACOX1 (via hormonal gut FGF19 and nordihydroguaiaretic acid in metabolic syndrome and diabetes conditions) and SPM (neurodegenerative disorders, atherosclerosis, and stroke). Delay of aging to resolve inflammation results from altered production of SPM, SPM improving most aging disorders. The strategic metabolic place of ACOX1, upstream of SPM biosynthesis, along with ability of ACOX1 preservation/induction and SPM to improve aging-related disorders and known association of aging with drop in ACOX1 and SPM, all converge to conclude that ACOX1 represents a previously unsuspected and currently emerging antiaging protein.
Collapse
|
26
|
|
27
|
Karuppasamy M, Kusmider B, Oliveira TM, Gaubitz C, Prouteau M, Loewith R, Schaffitzel C. Cryo-EM structure of Saccharomyces cerevisiae target of rapamycin complex 2. Nat Commun 2017; 8:1729. [PMID: 29170376 PMCID: PMC5700991 DOI: 10.1038/s41467-017-01862-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022] Open
Abstract
The target of rapamycin (TOR) kinase assembles into two distinct multiprotein complexes, conserved across eukaryote evolution. In contrast to TOR complex 1 (TORC1), TORC2 kinase activity is not inhibited by the macrolide rapamycin. Here, we present the structure of Saccharomyces cerevisiae TORC2 determined by electron cryo-microscopy. TORC2 contains six subunits assembling into a 1.4 MDa rhombohedron. Tor2 and Lst8 form the common core of both TOR complexes. Avo3/Rictor is unique to TORC2, but interacts with the same HEAT repeats of Tor2 that are engaged by Kog1/Raptor in mammalian TORC1, explaining the mutual exclusivity of these two proteins. Density, which we conclude is Avo3, occludes the FKBP12-rapamycin-binding site of Tor2’s FRB domain rendering TORC2 rapamycin insensitive and recessing the kinase active site. Although mobile, Avo1/hSin1 further restricts access to the active site as its conserved-region-in-the-middle (CRIM) domain is positioned along an edge of the TORC2 active-site-cleft, consistent with a role for CRIM in substrate recruitment. Target of rapamycin (TOR) kinase operates within two distinct multiprotein complexes named TORC1 and TORC2. Here the authors report a cryo-EM structure of TORC2, establish its subunit organization, providing a rationale for TORC2’s rapamycin insensitivity and the mutually exclusive inclusion of Avo3/Rictor or Raptor within their respective TOR complex.
Collapse
Affiliation(s)
- Manikandan Karuppasamy
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Beata Kusmider
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211, Geneva, Switzerland
| | - Taiana M Oliveira
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Christl Gaubitz
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211, Geneva, Switzerland
| | - Manoel Prouteau
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211, Geneva, Switzerland
| | - Robbie Loewith
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 Quai Ernest Ansermet, CH1211, Geneva, Switzerland. .,Swiss National Centre for Competence in Research (NCCR) in Chemical Biology, University of Geneva, 30 Quai Ernest-Ansermet, Bristol, CH1211 Geneva, Switzerland.
| | - Christiane Schaffitzel
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042, Grenoble, France. .,School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
28
|
Pagac M, Cooper DE, Qi Y, Lukmantara IE, Mak HY, Wu Z, Tian Y, Liu Z, Lei M, Du X, Ferguson C, Kotevski D, Sadowski P, Chen W, Boroda S, Harris TE, Liu G, Parton RG, Huang X, Coleman RA, Yang H. SEIPIN Regulates Lipid Droplet Expansion and Adipocyte Development by Modulating the Activity of Glycerol-3-phosphate Acyltransferase. Cell Rep 2017; 17:1546-1559. [PMID: 27806294 PMCID: PMC5647143 DOI: 10.1016/j.celrep.2016.10.037] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 09/03/2016] [Accepted: 10/10/2016] [Indexed: 12/26/2022] Open
Abstract
Berardinelli-Seip congenital lipodystrophy 2 (BSCL2) is caused by loss-of-function mutations in SEIPIN, a protein implicated in both adipogenesis and lipid droplet expansion but whose molecular function remains obscure. Here, we identify physical and functional interactions between SEIPIN and microsomal isoforms of glycerol-3-phosphate acyltransferase (GPAT) in multiple organisms. Compared to controls, GPAT activity was elevated in SEIPIN-deficient cells and tissues and GPAT kinetic values were altered. Increased GPAT activity appears to underpin the block in adipogenesis and abnormal lipid droplet morphology associated with SEIPIN loss. Overexpression of Gpat3 blocked adipogenesis, and Gpat3 knockdown in SEIPIN-deficient preadipocytes partially restored differentiation. GPAT overexpression in yeast, preadipocytes, and fly salivary glands also formed supersized lipid droplets. Finally, pharmacological inhibition of GPAT in Seipin-/- mouse preadipocytes partially restored adipogenesis. These data identify SEIPIN as an evolutionarily conserved regulator of microsomal GPAT and suggest that GPAT inhibitors might be useful for the treatment of human BSCL2 patients.
Collapse
Affiliation(s)
- Martin Pagac
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Daniel E Cooper
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yanfei Qi
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ivan E Lukmantara
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Hoi Yin Mak
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Zengying Wu
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yuan Tian
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhonghua Liu
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mona Lei
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Charles Ferguson
- Institute for Molecular Bioscience, The University of Queensland, Queensland, QLD 4072, Australia
| | - Damian Kotevski
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Pawel Sadowski
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Weiqin Chen
- Department of Physiology, Medical College of Georgia Regents University, Augusta, GA 30912, USA
| | - Salome Boroda
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Queensland, QLD 4072, Australia
| | - Xun Huang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
29
|
Zeng C, Wen B, Hou G, Lei L, Mei Z, Jia X, Chen X, Zhu W, Li J, Kuang Y, Zeng W, Su J, Liu S, Peng C, Chen X. Lipidomics profiling reveals the role of glycerophospholipid metabolism in psoriasis. Gigascience 2017; 6:1-11. [PMID: 29046044 PMCID: PMC5647792 DOI: 10.1093/gigascience/gix087] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/08/2017] [Accepted: 08/27/2017] [Indexed: 01/19/2023] Open
Abstract
Psoriasis is a common and chronic inflammatory skin disease that is complicated by gene-environment interactions. Although genomic, transcriptomic, and proteomic analyses have been performed to investigate the pathogenesis of psoriasis, the role of metabolites in psoriasis, particularly of lipids, remains unclear. Lipids not only comprise the bulk of the cellular membrane bilayers but also regulate a variety of biological processes such as cell proliferation, apoptosis, immunity, angiogenesis, and inflammation. In this study, an untargeted lipidomics approach was used to study the lipid profiles in psoriasis and to identify lipid metabolite signatures for psoriasis through ultra-performance liquid chromatography-tandem quadrupole mass spectrometry. Plasma samples from 90 participants (45 healthy and 45 psoriasis patients) were collected and analyzed. Statistical analysis was applied to find different metabolites between the disease and healthy groups. In addition, enzyme-linked immunosorbent assay was performed to validate differentially expressed lipids in psoriatic patient plasma. Finally, we identified differential expression of several lipids including lysophosphatidic acid (LPA), lysophosphatidylcholine (LysoPC), phosphatidylinositol (PI), phosphatidylcholine (PC), and phosphatidic acid (PA); among these metabolites, LPA, LysoPC, and PA were significantly increased, while PC and PI were down-regulated in psoriasis patients. We found that elements of glycerophospholipid metabolism such as LPA, LysoPC, PA, PI, and PC were significantly altered in the plasma of psoriatic patients; this study characterizes the circulating lipids in psoriatic patients and provides novel insight into the role of lipids in psoriasis.
Collapse
Affiliation(s)
- Chunwei Zeng
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China, 518083
- China National GeneBank-Shenzhen, Jinsha Road, Dapeng District, Shenzhen, China, 518083
| | - Bo Wen
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China, 518083
- China National GeneBank-Shenzhen, Jinsha Road, Dapeng District, Shenzhen, China, 518083
| | - Guixue Hou
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China, 518083
- China National GeneBank-Shenzhen, Jinsha Road, Dapeng District, Shenzhen, China, 518083
| | - Li Lei
- Department of Dermatology, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
| | - Zhanlong Mei
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China, 518083
- China National GeneBank-Shenzhen, Jinsha Road, Dapeng District, Shenzhen, China, 518083
| | - Xuekun Jia
- Department of Dermatology, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
| | - Xiaomin Chen
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China, 518083
- China National GeneBank-Shenzhen, Jinsha Road, Dapeng District, Shenzhen, China, 518083
| | - Wu Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
| | - Yehong Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
| | - Weiqi Zeng
- Department of Dermatology, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
| | - Siqi Liu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China, 518083
- China National GeneBank-Shenzhen, Jinsha Road, Dapeng District, Shenzhen, China, 518083
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Xiangya Road #87 Changsha, Hunan, China, 410008
| |
Collapse
|
30
|
Kim S, Hwang J, Kim J, Ahn JK, Cha HS, Kim KH. Metabolite profiles of synovial fluid change with the radiographic severity of knee osteoarthritis. Joint Bone Spine 2017; 84:605-610. [DOI: 10.1016/j.jbspin.2016.05.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/25/2016] [Indexed: 11/28/2022]
|
31
|
Exposures to arsenite and methylarsonite produce insulin resistance and impair insulin-dependent glycogen metabolism in hepatocytes. Arch Toxicol 2017; 91:3811-3821. [PMID: 28952001 DOI: 10.1007/s00204-017-2076-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
Abstract
Environmental exposure to inorganic arsenic (iAs) has been shown to disturb glucose homeostasis, leading to diabetes. Previous laboratory studies have suggested several mechanisms that may underlie the diabetogenic effects of iAs exposure, including (i) inhibition of insulin signaling (leading to insulin resistance) in glucose metabolizing peripheral tissues, (ii) inhibition of insulin secretion by pancreatic β cells, and (iii) dysregulation of the methylation or expression of genes involved in maintenance of glucose or insulin metabolism and function. Published studies have also shown that acute or chronic iAs exposures may result in depletion of hepatic glycogen stores. However, effects of iAs on pathways and mechanisms that regulate glycogen metabolism in the liver have never been studied. The present study examined glycogen metabolism in primary murine hepatocytes exposed in vitro to arsenite (iAs3+) or its methylated metabolite, methylarsonite (MAs3+). The results show that 4-h exposures to iAs3+ and MAs3+ at concentrations as low as 0.5 and 0.2 µM, respectively, decreased glycogen content in insulin-stimulated hepatocytes by inhibiting insulin-dependent activation of glycogen synthase (GS) and by inducing activity of glycogen phosphorylase (GP). Further investigation revealed that both iAs3+ and MAs3+ inhibit insulin-dependent phosphorylation of protein kinase B/Akt, one of the mechanisms involved in the regulation of GS and GP by insulin. Thus, inhibition of insulin signaling (i.e., insulin resistance) is likely responsible for the dysregulation of glycogen metabolism in hepatocytes exposed to iAs3+ and MAs3+. This study provides novel information about the mechanisms by which iAs exposure impairs glucose homeostasis, pointing to hepatic metabolism of glycogen as one of the targets.
Collapse
|
32
|
Lee PL, Jung SM, Guertin DA. The Complex Roles of Mechanistic Target of Rapamycin in Adipocytes and Beyond. Trends Endocrinol Metab 2017; 28:319-339. [PMID: 28237819 PMCID: PMC5682923 DOI: 10.1016/j.tem.2017.01.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 01/01/2023]
Abstract
Having healthy adipose tissue is essential for metabolic fitness. This is clear from the obesity epidemic, which is unveiling a myriad of comorbidities associated with excess adipose tissue including type 2 diabetes, cardiovascular disease, and cancer. Lipodystrophy also causes insulin resistance, emphasizing the importance of having a balanced amount of fat. In cells, the mechanistic target of rapamycin (mTOR) complexes 1 and 2 (mTORC1 and mTORC2, respectively) link nutrient and hormonal signaling with metabolism, and recent studies are shedding new light on their in vivo roles in adipocytes. In this review, we discuss how recent advances in adipose tissue and mTOR biology are converging to reveal new mechanisms that maintain healthy adipose tissue, and discuss ongoing mysteries of mTOR signaling, particularly for the less understood complex mTORC2.
Collapse
Affiliation(s)
- Peter L Lee
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Su Myung Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
33
|
Alves-Bezerra M, Ramos IB, De Paula IF, Maya-Monteiro CM, Klett EL, Coleman RA, Gondim KC. Deficiency of glycerol-3-phosphate acyltransferase 1 decreases triacylglycerol storage and induces fatty acid oxidation in insect fat body. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:324-336. [DOI: 10.1016/j.bbalip.2016.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/19/2022]
|
34
|
Menon D, Salloum D, Bernfeld E, Gorodetsky E, Akselrod A, Frias MA, Sudderth J, Chen PH, DeBerardinis R, Foster DA. Lipid sensing by mTOR complexes via de novo synthesis of phosphatidic acid. J Biol Chem 2017; 292:6303-6311. [PMID: 28223357 DOI: 10.1074/jbc.m116.772988] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/10/2017] [Indexed: 11/06/2022] Open
Abstract
mTOR, the mammalian target of rapamycin, integrates growth factor and nutrient signals to promote a transformation from catabolic to anabolic metabolism, cell growth, and cell cycle progression. Phosphatidic acid (PA) interacts with the FK506-binding protein-12-rapamycin-binding (FRB) domain of mTOR, which stabilizes both mTOR complexes: mTORC1 and mTORC2. We report here that mTORC1 and mTORC2 are activated in response to exogenously supplied fatty acids via the de novo synthesis of PA, a central metabolite for membrane phospholipid biosynthesis. We examined the impact of exogenously supplied fatty acids on mTOR in KRas-driven cancer cells, which are programmed to utilize exogenous lipids. The induction of mTOR by oleic acid was dependent upon the enzymes responsible for de novo synthesis of PA. Suppression of the de novo synthesis of PA resulted in G1 cell cycle arrest. Although it has long been appreciated that mTOR is a sensor of amino acids and glucose, this study reveals that mTOR also senses the presence of lipids via production of PA.
Collapse
Affiliation(s)
- Deepak Menon
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065.,the Biochemistry Program and
| | - Darin Salloum
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065.,the Biology Program, Graduate Center of the City University of New York, New York, New York 10016
| | - Elyssa Bernfeld
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065.,the Biochemistry Program and
| | - Elizabeth Gorodetsky
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065
| | - Alla Akselrod
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065
| | - Maria A Frias
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065
| | - Jessica Sudderth
- the Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | - Pei-Hsuan Chen
- the Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | - Ralph DeBerardinis
- the Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | - David A Foster
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065, .,the Biochemistry Program and.,the Biology Program, Graduate Center of the City University of New York, New York, New York 10016.,the Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021
| |
Collapse
|
35
|
Bond P. Phosphatidic acid: biosynthesis, pharmacokinetics, mechanisms of action and effect on strength and body composition in resistance-trained individuals. Nutr Metab (Lond) 2017; 14:12. [PMID: 28184235 PMCID: PMC5294693 DOI: 10.1186/s12986-017-0166-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/03/2017] [Indexed: 12/12/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) has received much attention in the field of exercise physiology as a master regulator of skeletal muscle hypertrophy. The multiprotein complex is regulated by various signals such as growth factors, energy status, amino acids and mechanical stimuli. Importantly, the glycerophospholipid phosphatidic acid (PA) appears to play an important role in mTORC1 activation by mechanical stimulation. PA has been shown to modulate mTOR activity by direct binding to its FKBP12-rapamycin binding domain. Additionally, it has been suggested that exogenous PA activates mTORC1 via extracellular conversion to lysophosphatidic acid and subsequent binding to endothelial differentiation gene receptors on the cell surface. Recent trials have therefore evaluated the effects of PA supplementation in resistance-trained individuals on strength and body composition. As research in this field is rapidly evolving, this review attempts to provide a comprehensive overview of its biosynthesis, pharmacokinetics, mechanisms of action and effect on strength and body composition in resistance-trained individuals.
Collapse
Affiliation(s)
- Peter Bond
- PeterBond.nl, Waterhoenlaan 25, 3704 GV Zeist, The Netherlands
| |
Collapse
|
36
|
Hur JH, Park SY, Dall’Armi C, Lee JS, Di Paolo G, Lee HY, Yoon MS, Min DS, Choi CS. Phospholipase D1 deficiency in mice causes nonalcoholic fatty liver disease via an autophagy defect. Sci Rep 2016; 6:39170. [PMID: 27976696 PMCID: PMC5156943 DOI: 10.1038/srep39170] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/18/2016] [Indexed: 12/23/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by the accumulation of triglycerides (TG) as lipid droplets in the liver. Although lipid-metabolizing enzymes are considered important in NAFLD, the involvement of phospholipase D1 (PLD1) has not yet been studied. Here, we show that the genetic ablation of PLD1 in mice induces NAFLD due to an autophagy defect. PLD1 expression was decreased in high-fat diet-induced NAFLD. Subsequently, PLD1 deficiency led to an increase in hepatic TGs and liver weight. Autophagic flux was blocked in Pld1-/- hepatocytes, with decreased β-oxidation rate, reduced oxidation-related gene expression, and swollen mitochondria. The dynamics of autophagy was restored by treatment with the PLD product, phosphatidic acid (PA) or adenoviral PLD1 expression in Pld1-/- hepatocytes, confirming that lysosomal PA produced by PLD1 regulates autophagy. Notably, PLD1 expression in Pld1-/- liver significantly reduced hepatic lipid accumulation, compared with Pld1-/- liver. Thus, PLD1 plays an important role in hepatic steatosis via the regulation of autophagy.
Collapse
Affiliation(s)
- Jang Ho Hur
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University School of Medicine, Incheon 406-840, Korea
- Korea Mouse Metabolic Phenotyping Center (KMMPC), Lee Gil Ya Cancer and Diabetes Institute, Gachon University School of Medicine, Incheon 406-840, Korea
| | - Shi-Young Park
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University School of Medicine, Incheon 406-840, Korea
- Korea Mouse Metabolic Phenotyping Center (KMMPC), Lee Gil Ya Cancer and Diabetes Institute, Gachon University School of Medicine, Incheon 406-840, Korea
| | - Claudia Dall’Armi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, United States of America
| | - Jae Sung Lee
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University School of Medicine, Incheon 406-840, Korea
- Korea Mouse Metabolic Phenotyping Center (KMMPC), Lee Gil Ya Cancer and Diabetes Institute, Gachon University School of Medicine, Incheon 406-840, Korea
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, United States of America
| | - Hui-Young Lee
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University School of Medicine, Incheon 406-840, Korea
- Korea Mouse Metabolic Phenotyping Center (KMMPC), Lee Gil Ya Cancer and Diabetes Institute, Gachon University School of Medicine, Incheon 406-840, Korea
| | - Mee-Sup Yoon
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University School of Medicine, Incheon 406-840, Korea
- Korea Mouse Metabolic Phenotyping Center (KMMPC), Lee Gil Ya Cancer and Diabetes Institute, Gachon University School of Medicine, Incheon 406-840, Korea
| | - Do Sik Min
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735, Korea
| | - Cheol Soo Choi
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University School of Medicine, Incheon 406-840, Korea
- Korea Mouse Metabolic Phenotyping Center (KMMPC), Lee Gil Ya Cancer and Diabetes Institute, Gachon University School of Medicine, Incheon 406-840, Korea
- Endocrinology, Internal Medicine, Gachon University Gil Medical Center, Incheon 405-760, Korea
| |
Collapse
|
37
|
Smulan LJ, Ding W, Freinkman E, Gujja S, Edwards YJK, Walker AK. Cholesterol-Independent SREBP-1 Maturation Is Linked to ARF1 Inactivation. Cell Rep 2016; 16:9-18. [PMID: 27320911 DOI: 10.1016/j.celrep.2016.05.086] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 04/29/2016] [Accepted: 05/22/2016] [Indexed: 11/19/2022] Open
Abstract
Lipogenesis requires coordinated expression of genes for fatty acid, phospholipid, and triglyceride synthesis. Transcription factors, such as SREBP-1 (Sterol regulatory element binding protein), may be activated in response to feedback mechanisms linking gene activation to levels of metabolites in the pathways. SREBPs can be regulated in response to membrane cholesterol and we also found that low levels of phosphatidylcholine (a methylated phospholipid) led to SBP-1/SREBP-1 maturation in C. elegans or mammalian models. To identify additional regulatory components, we performed a targeted RNAi screen in C. elegans, finding that both lpin-1/Lipin 1 (which converts phosphatidic acid to diacylglycerol) and arf-1.2/ARF1 (a GTPase regulating Golgi function) were important for low-PC activation of SBP-1/SREBP-1. Mechanistically linking the major hits of our screen, we find that limiting PC synthesis or LPIN1 knockdown in mammalian cells reduces the levels of active GTP-bound ARF1. Thus, changes in distinct lipid ratios may converge on ARF1 to increase SBP-1/SREBP-1 activity.
Collapse
Affiliation(s)
- Lorissa J Smulan
- Program in Molecular Medicine, UMASS Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Wei Ding
- Program in Molecular Medicine, UMASS Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Elizaveta Freinkman
- Metabolite Profiling Facility, Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Sharvari Gujja
- Program in Molecular Medicine, UMASS Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Yvonne J K Edwards
- Program in Molecular Medicine, UMASS Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Amy K Walker
- Program in Molecular Medicine, UMASS Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
38
|
The Mechanistic Target of Rapamycin: The Grand ConducTOR of Metabolism and Aging. Cell Metab 2016; 23:990-1003. [PMID: 27304501 PMCID: PMC4910876 DOI: 10.1016/j.cmet.2016.05.009] [Citation(s) in RCA: 371] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/17/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022]
Abstract
Since the discovery that rapamycin, a small molecule inhibitor of the protein kinase mTOR (mechanistic target of rapamycin), can extend the lifespan of model organisms including mice, interest in understanding the physiological role and molecular targets of this pathway has surged. While mTOR was already well known as a regulator of growth and protein translation, it is now clear that mTOR functions as a central coordinator of organismal metabolism in response to both environmental and hormonal signals. This review discusses recent developments in our understanding of how mTOR signaling is regulated by nutrients and the role of the mTOR signaling pathway in key metabolic tissues. Finally, we discuss the molecular basis for the negative metabolic side effects associated with rapamycin treatment, which may serve as barriers to the adoption of rapamycin or similar compounds for the treatment of diseases of aging and metabolism.
Collapse
|
39
|
Li B, Xiao X, Chen S, Huang J, Ma Y, Tang N, Sun H, Wang X. Changes of Phospholipids in Fetal Liver of Mice Conceived by In Vitro Fertilization1. Biol Reprod 2016; 94:105. [DOI: 10.1095/biolreprod.115.136325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/22/2016] [Indexed: 01/28/2023] Open
|
40
|
Ganesan S, Shabits BN, Zaremberg V. Tracking Diacylglycerol and Phosphatidic Acid Pools in Budding Yeast. Lipid Insights 2016; 8:75-85. [PMID: 27081314 PMCID: PMC4824325 DOI: 10.4137/lpi.s31781] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/24/2016] [Accepted: 03/05/2016] [Indexed: 02/07/2023] Open
Abstract
Phosphatidic acid (PA) and diacylglycerol (DAG) are key signaling molecules and important precursors for the biosynthesis of all glycerolipids found in eukaryotes. Research conducted in the model organism Saccharomyces cerevisiae has been at the forefront of the identification of the enzymes involved in the metabolism and transport of PA and DAG. Both these lipids can alter the local physical properties of membranes by introducing negative curvature, but the anionic nature of the phosphomonoester headgroup in PA sets it apart from DAG. As a result, the mechanisms underlying PA and DAG interaction with other lipids and proteins are notoriously different. This is apparent from the analysis of the protein domains responsible for recognition and binding to each of these lipids. We review the current evidence obtained using the PA-binding proteins and domains fused to fluorescent proteins for in vivo tracking of PA pools in yeast. In addition, we present original results for visualization of DAG pools in yeast using the C1 domain from mammalian PKCδ. An emerging first cellular map of the distribution of PA and DAG pools in actively growing yeast is discussed.
Collapse
Affiliation(s)
| | - Brittney N Shabits
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
41
|
Long chain n-3 polyunsaturated fatty acids increase the efficacy of docetaxel in mammary cancer cells by downregulating Akt and PKCε/δ-induced ERK pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:380-90. [DOI: 10.1016/j.bbalip.2016.01.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/15/2016] [Accepted: 01/22/2016] [Indexed: 12/21/2022]
|
42
|
Amin DN, Ahuja D, Yaswen P, Moasser MM. A TORC2-Akt Feed-Forward Topology Underlies HER3 Resiliency in HER2-Amplified Cancers. Mol Cancer Ther 2015; 14:2805-17. [PMID: 26438156 PMCID: PMC4674361 DOI: 10.1158/1535-7163.mct-15-0403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/18/2015] [Indexed: 11/16/2022]
Abstract
The requisite role of HER3 in HER2-amplified cancers is beyond what would be expected as a dimerization partner or effector substrate and it exhibits a substantial degree of resiliency that mitigates the effects of HER2-inhibitor therapies. To better understand the roots of this resiliency, we conducted an in-depth chemical-genetic interrogation of the signaling network downstream of HER3. A unique attribute of these tumors is the deregulation of TORC2. The upstream signals that ordinarily maintain TORC2 signaling are lost in these tumors, and instead TORC2 is driven by Akt. We find that in these cancers HER3 functions as a buffering arm of an Akt-TORC2 feed-forward loop that functions as a self-perpetuating module. This network topology alters the role of HER3 from a conditionally engaged ligand-driven upstream physiologic signaling input to an essential component of a concentric signaling throughput highly competent at preservation of homeostasis. The competence of this signaling topology is evident in its response to perturbation at any of its nodes. Thus, a critical pathophysiologic event in the evolution of HER2-amplified cancers is the loss of the input signals that normally drive TORC2 signaling, repositioning it under Akt dependency, and fundamentally altering the role of HER3. This reprogramming of the downstream network topology is a key aspect in the pathogenesis of HER2-amplified cancers and constitutes a formidable barrier in the targeted therapy of these cancers.
Collapse
Affiliation(s)
- Dhara N Amin
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Deepika Ahuja
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Paul Yaswen
- Lawrence Berkeley National Laboratory, Berkeley, California
| | - Mark M Moasser
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California.
| |
Collapse
|
43
|
Masuda M, Miyazaki-Anzai S, Keenan AL, Okamura K, Kendrick J, Chonchol M, Offermanns S, Ntambi JM, Kuro-O M, Miyazaki M. Saturated phosphatidic acids mediate saturated fatty acid-induced vascular calcification and lipotoxicity. J Clin Invest 2015; 125:4544-58. [PMID: 26517697 DOI: 10.1172/jci82871] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/10/2015] [Indexed: 01/06/2023] Open
Abstract
Recent evidence indicates that saturated fatty acid-induced (SFA-induced) lipotoxicity contributes to the pathogenesis of cardiovascular and metabolic diseases; however, the molecular mechanisms that underlie SFA-induced lipotoxicity remain unclear. Here, we have shown that repression of stearoyl-CoA desaturase (SCD) enzymes, which regulate the intracellular balance of SFAs and unsaturated FAs, and the subsequent accumulation of SFAs in vascular smooth muscle cells (VSMCs), are characteristic events in the development of vascular calcification. We evaluated whether SMC-specific inhibition of SCD and the resulting SFA accumulation plays a causative role in the pathogenesis of vascular calcification and generated mice with SMC-specific deletion of both Scd1 and Scd2. Mice lacking both SCD1 and SCD2 in SMCs displayed severe vascular calcification with increased ER stress. Moreover, we employed shRNA library screening and radiolabeling approaches, as well as in vitro and in vivo lipidomic analysis, and determined that fully saturated phosphatidic acids such as 1,2-distearoyl-PA (18:0/18:0-PA) mediate SFA-induced lipotoxicity and vascular calcification. Together, these results identify a key lipogenic pathway in SMCs that mediates vascular calcification.
Collapse
|
44
|
De Cicco M, Rahim MSA, Dames SA. Regulation of the Target of Rapamycin and Other Phosphatidylinositol 3-Kinase-Related Kinases by Membrane Targeting. MEMBRANES 2015; 5:553-75. [PMID: 26426064 PMCID: PMC4703999 DOI: 10.3390/membranes5040553] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/24/2015] [Indexed: 01/05/2023]
Abstract
Phosphatidylinositol 3-kinase-related kinases (PIKKs) play vital roles in the regulation of cell growth, proliferation, survival, and consequently metabolism, as well as in the cellular response to stresses such as ionizing radiation or redox changes. In humans six family members are known to date, namely mammalian/mechanistic target of rapamycin (mTOR), ataxia-telangiectasia mutated (ATM), ataxia- and Rad3-related (ATR), DNA-dependent protein kinase catalytic subunit (DNA-PKcs), suppressor of morphogenesis in genitalia-1 (SMG-1), and transformation/transcription domain-associated protein (TRRAP). All fulfill rather diverse functions and most of them have been detected in different cellular compartments including various cellular membranes. It has been suggested that the regulation of the localization of signaling proteins allows for generating a locally specific output. Moreover, spatial partitioning is expected to improve the reliability of biochemical signaling. Since these assumptions may also be true for the regulation of PIKK function, the current knowledge about the regulation of the localization of PIKKs at different cellular (membrane) compartments by a network of interactions is reviewed. Membrane targeting can involve direct lipid-/membrane interactions as well as interactions with membrane-anchored regulatory proteins, such as, for example, small GTPases, or a combination of both.
Collapse
Affiliation(s)
- Maristella De Cicco
- Department of Chemistry, Biomolecular NMR Spectroscopy, Technische Universität München, Lichtenbergstr. 4, Garching 85747, Germany.
| | - Munirah S Abd Rahim
- Department of Chemistry, Biomolecular NMR Spectroscopy, Technische Universität München, Lichtenbergstr. 4, Garching 85747, Germany.
| | - Sonja A Dames
- Department of Chemistry, Biomolecular NMR Spectroscopy, Technische Universität München, Lichtenbergstr. 4, Garching 85747, Germany.
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany.
| |
Collapse
|
45
|
Rao A, Pandya V, Whaley-Connell A. Obesity and insulin resistance in resistant hypertension: implications for the kidney. Adv Chronic Kidney Dis 2015; 22:211-7. [PMID: 25908470 DOI: 10.1053/j.ackd.2014.12.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/08/2014] [Accepted: 12/19/2014] [Indexed: 12/12/2022]
Abstract
There is recognition that the obesity epidemic contributes substantially to the increasing incidence of CKD and resistant hypertension (HTN). The mechanisms by which obesity promotes resistance are an area of active interest and intense investigation. It is thought that increases in visceral adiposity lead to a proinflammatory, pro-oxidative milieu that promote resistance to the metabolic actions of insulin. This resistance to insulin at the level of skeletal muscle tissue impairs glucose disposal/utilization through actions on the endothelium that include vascular rarefaction, reductions in vascular relaxation, and vascular remodeling. Insulin resistance derived from increased adipose tissue and obesity has system-wide implications for other tissue beds such as the kidney that affects blood pressure regulation. The additional autocrine and paracrine activities of adipose tissue contribute to inappropriate activation of the renin-angiotensin-aldosterone system and the sympathetic nervous system that promote kidney microvascular remodeling, stiffness, and sodium (Na(+)) retention that in turn promote HTN and in the CKD patient, resistance. In this review, we will summarize the important mechanisms that link obesity to CKD as they relate to resistant HTN.
Collapse
|
46
|
Yoon MS, Rosenberger CL, Wu C, Truong N, Sweedler JV, Chen J. Rapid mitogenic regulation of the mTORC1 inhibitor, DEPTOR, by phosphatidic acid. Mol Cell 2015; 58:549-56. [PMID: 25936805 DOI: 10.1016/j.molcel.2015.03.028] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/23/2015] [Accepted: 03/23/2015] [Indexed: 02/06/2023]
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) is regulated, in part, by the endogenous inhibitor DEPTOR. However, the mechanism of DEPTOR regulation with regard to rapid mTORC1 activation remains unknown. We report that DEPTOR is rapidly and temporarily dissociated from mTORC1 upon mitogenic stimulation, suggesting a mechanism underlying acute mTORC1 activation. This mitogen-stimulated DEPTOR dissociation is blocked by inhibition or depletion of the mTORC1 regulator, phospholipase D (PLD), and recapitulated with the addition of the PLD product phosphatidic acid (PA). Our mass spectrometry analysis has independently identified DEPTOR as an mTOR binding partner dissociated by PA. Interestingly, only PA species with unsaturated fatty acid chains, such as those produced by PLD, are capable of displacing DEPTOR and activating mTORC1, with high affinity for the FRB domain of mTOR. Our findings reveal a mechanism of mTOR regulation and provide a molecular explanation for the exquisite specificity of PA function.
Collapse
Affiliation(s)
- Mee-Sup Yoon
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Department of Molecular Medicine, Graduate School of Medicine, Gachon University, Incheon 406-840, Republic of Korea.
| | - Christina L Rosenberger
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Cong Wu
- Departments of Chemistry and Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Nga Truong
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Jonathan V Sweedler
- Departments of Chemistry and Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
47
|
Schweitzer GG, Chen Z, Gan C, McCommis KS, Soufi N, Chrast R, Mitra MS, Yang K, Gross RW, Finck BN. Liver-specific loss of lipin-1-mediated phosphatidic acid phosphatase activity does not mitigate intrahepatic TG accumulation in mice. J Lipid Res 2015; 56:848-58. [PMID: 25722343 DOI: 10.1194/jlr.m055962] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lipin proteins (lipin 1, 2, and 3) regulate glycerolipid homeostasis by acting as phosphatidic acid phosphohydrolase (PAP) enzymes in the TG synthesis pathway and by regulating DNA-bound transcription factors to control gene transcription. Hepatic PAP activity could contribute to hepatic fat accumulation in response to physiological and pathophysiological stimuli. To examine the role of lipin 1 in regulating hepatic lipid metabolism, we generated mice that are deficient in lipin-1-encoded PAP activity in a liver-specific manner (Alb-Lpin1(-/-) mice). This allele of lipin 1 was still able to transcriptionally regulate the expression of its target genes encoding fatty acid oxidation enzymes, and the expression of these genes was not affected in Alb-Lpin1(-/-) mouse liver. Hepatic PAP activity was significantly reduced in mice with liver-specific lipin 1 deficiency. However, hepatocytes from Alb-Lpin1(-/-) mice had normal rates of TG synthesis, and steady-state hepatic TG levels were unaffected under fed and fasted conditions. Furthermore, Alb-Lpin1(-/-) mice were not protected from intrahepatic accumulation of diacylglycerol and TG after chronic feeding of a diet rich in fat and fructose. Collectively, these data demonstrate that marked deficits in hepatic PAP activity do not impair TG synthesis and accumulation under acute or chronic conditions of lipid overload.
Collapse
Affiliation(s)
| | - Zhouji Chen
- Washington University School of Medicine, St. Louis, MO 63110
| | - Connie Gan
- Washington University School of Medicine, St. Louis, MO 63110
| | - Kyle S McCommis
- Washington University School of Medicine, St. Louis, MO 63110
| | - Nisreen Soufi
- Washington University School of Medicine, St. Louis, MO 63110
| | - Roman Chrast
- Department of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland
| | | | - Kui Yang
- Washington University School of Medicine, St. Louis, MO 63110
| | - Richard W Gross
- Washington University School of Medicine, St. Louis, MO 63110
| | - Brian N Finck
- Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
48
|
Abstract
Alzheimer's disease (AD) is characterized by cognitive impairment in clinical presentation, and by β-amyloid (Aβ) production and the hyper-phosphorylation of tau in basic research. More highlights demonstrate that the activation of the mammalian target of rapamycin (mTOR) enhances Aβ generation and deposition by modulating amyloid precursor protein (APP) metabolism and upregulating β- and γ-secretases. mTOR, an inhibitor of autophagy, decreases Aβ clearance by scissoring autophagy function. mTOR regulates Aβ generation or Aβ clearance by regulating several key signaling pathways, including phosphoinositide 3-kinase (PI3-K)/protein kinase B (Akt), glycogen synthase kinase 3 [GSK-3], AMP-activated protein kinase (AMPK), and insulin/insulin-like growth factor 1 (IGF-1). The activation of mTOR is also a contributor to aberrant hyperphosphorylated tau. Rapamycin, the inhibitor of mTOR, may mitigate cognitive impairment and inhibit the pathologies associated with amyloid plaques and neurofibrillary tangles by promoting autophagy. Furthermore, the upstream and downstream components of mTOR signaling are involved in the pathogenesis and progression of AD. Hence, inhibiting the activation of mTOR may be an important therapeutic target for AD.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Guanghui Chen
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Wenbo He
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Ming Xiao
- Department of Anatomy, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Liang-Jun Yan
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
49
|
Babenko NA, Kharchenko VS. Modulation of Insulin Sensitivity of Hepatocytes by the Pharmacological Downregulation of Phospholipase D. Int J Endocrinol 2015; 2015:794838. [PMID: 26089893 PMCID: PMC4458285 DOI: 10.1155/2015/794838] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/30/2015] [Accepted: 05/11/2015] [Indexed: 12/13/2022] Open
Abstract
Background. The role of phospholipase D (PLD) as a positive modulator of glucose uptake activation by insulin in muscle and adipose cells has been demonstrated. The role of PLD in the regulation of glucose metabolism by insulin in the primary hepatocytes has been determined in this study. Methods. For this purpose, we studied effects of inhibitors of PLD on glucose uptake and glycogen synthesis stimulation by insulin. To determine the PLD activity, the method based on determination of products of transphosphatidylation reaction, phosphatidylethanol or phosphatidylbutanol, was used. Results. Inhibition of PLD by a general antagonist (1-butanol) or specific inhibitor, halopemide, or N-hexanoylsphingosine, or by cellular ceramides accumulated in doxorubicin-treated hepatocytes decreased insulin-stimulated glucose metabolism. Doxorubicin-induced hepatocytes resistance to insulin action could be abolished by inhibition of ceramide production. Halopemide could nullify this effect. Addition of propranolol, as well as inhibitors of phosphatidylinositol 3-kinase (PI3-kinase) (wortmannin, LY294002) or suppressors of Akt phosphorylation/activity, luteolin-7-O-glucoside or apigenin-7-O-glucoside, to the culture media could block cell response to insulin action. Conclusion. PLD plays an important role in the insulin signaling in the hepatocytes. PLD is activated downstream of PI3-kinase and Akt and is highly sensitive to ceramide content in the liver cells.
Collapse
Affiliation(s)
- Nataliya A. Babenko
- Department of Physiology of Ontogenesis, Biology Research Institute, Karazin Kharkov National University, Svobody Square 4, Kharkov 61022, Ukraine
- *Nataliya A. Babenko:
| | - Vitalina S. Kharchenko
- Department of Physiology of Ontogenesis, Biology Research Institute, Karazin Kharkov National University, Svobody Square 4, Kharkov 61022, Ukraine
| |
Collapse
|
50
|
Zhang C, Hwarng G, Cooper DE, Grevengoed TJ, Eaton JM, Natarajan V, Harris TE, Coleman RA. Inhibited insulin signaling in mouse hepatocytes is associated with increased phosphatidic acid but not diacylglycerol. J Biol Chem 2014; 290:3519-28. [PMID: 25512376 DOI: 10.1074/jbc.m114.602789] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although an elevated triacylglycerol content in non-adipose tissues is often associated with insulin resistance, the mechanistic relationship remains unclear. The data support roles for intermediates in the glycerol-3-phosphate pathway of triacylglycerol synthesis: diacylglycerol (DAG), which may cause insulin resistance in liver by activating PKCϵ, and phosphatidic acid (PA), which inhibits insulin action in hepatocytes by disrupting the assembly of mTOR and rictor. To determine whether increases in DAG and PA impair insulin signaling when produced by pathways other than that of de novo synthesis, we examined primary mouse hepatocytes after enzymatically manipulating the cellular content of DAG or PA. Overexpressing phospholipase D1 or phospholipase D2 inhibited insulin signaling and was accompanied by an elevated cellular content of total PA, without a change in total DAG. Overexpression of diacylglycerol kinase-θ inhibited insulin signaling and was accompanied by an elevated cellular content of total PA and a decreased cellular content of total DAG. Overexpressing glycerol-3-phosphate acyltransferase-1 or -4 inhibited insulin signaling and increased the cellular content of both PA and DAG. Insulin signaling impairment caused by overexpression of phospholipase D1/D2 or diacylglycerol kinase-θ was always accompanied by disassociation of mTOR/rictor and reduction of mTORC2 kinase activity. However, although the protein ratio of membrane to cytosolic PKCϵ increased, PKC activity itself was unaltered. These data suggest that PA, but not DAG, is associated with impaired insulin action in mouse hepatocytes.
Collapse
Affiliation(s)
- Chongben Zhang
- From the Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Gwen Hwarng
- From the Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Daniel E Cooper
- From the Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Trisha J Grevengoed
- From the Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - James M Eaton
- the Department of Pharmacology, University of Virginia Health System, Charlottesville, Virginia 22908, and
| | - Viswanathan Natarajan
- the Departments of Pharmacology & Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Thurl E Harris
- the Department of Pharmacology, University of Virginia Health System, Charlottesville, Virginia 22908, and
| | - Rosalind A Coleman
- From the Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599,
| |
Collapse
|