1
|
Ji H, Li Y, Sun H, Chen R, Zhou R, Yang Y, Wang R, You C, Xiao A, Yi L. Decoding the Cell Atlas and Inflammatory Features of Human Intracranial Aneurysm Wall by Single-Cell RNA Sequencing. J Am Heart Assoc 2024; 13:e032456. [PMID: 38390814 PMCID: PMC10944067 DOI: 10.1161/jaha.123.032456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Intracranial aneurysm (IA) is common and occasionally results in life-threatening hemorrhagic strokes. However, the cell architecture and inflammation in the IA dome remain less understood. METHODS AND RESULTS Single-cell RNA sequencing was performed on ruptured and unruptured human IA domes for delineating the cell atlas, gene expression perturbations, and inflammation features. Two external bulk mRNA sequencing-based data sets and serological results of 126 patients were collected for validation. As a result, a total of 21 332 qualified cells were captured. Vascular cells, including endothelial cells, smooth muscle cells, fibroblasts, and pericytes, were assigned in extremely sparse numbers (4.84%), and were confirmed by immunofluorescence staining. Pericytes, characterized by ABCC9 and HIGD1B, were identified in the IA dome for the first time. Abundant immune cells were identified, with the proportion of monocytes/macrophages and neutrophils being remarkably higher in ruptured IA. The lymphocyte compartment was also thoroughly categorized. By leveraging external data sets and machine learning algorithms, macrophages were robustly associated with IA rupture, irrespective of their polarization status. The single nucleotide polymorphism rs2280543, which is identified in East Asian populations, was associated with macrophage metabolic reprogramming through regulating TALDO1 expression. CONCLUSIONS This study provides insights into the cellular architecture and inflammatory features in the IA dome and may enlighten novel therapeutics for unruptured IA.
Collapse
Affiliation(s)
- Hang Ji
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduChina
| | - Yue Li
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduChina
| | - Haogeng Sun
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduChina
| | - Ruiqi Chen
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduChina
| | - Ran Zhou
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Yongbo Yang
- Department of Neurosurgery, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chao You
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduChina
| | - Anqi Xiao
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduChina
| | - Liu Yi
- Department of Neurosurgery, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
2
|
Toader C, Eva L, Bratu BG, Covache-Busuioc RA, Costin HP, Dumitrascu DI, Glavan LA, Corlatescu AD, Ciurea AV. Intracranial Aneurysms and Genetics: An Extensive Overview of Genomic Variations, Underlying Molecular Dynamics, Inflammatory Indicators, and Forward-Looking Insights. Brain Sci 2023; 13:1454. [PMID: 37891822 PMCID: PMC10605587 DOI: 10.3390/brainsci13101454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/22/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
This review initiates by outlining the clinical relevance of IA, underlining the pressing need to comprehend its foundational elements. We delve into the assorted risk factors tied to IA, spotlighting both environmental and genetic influences. Additionally, we illuminate distinct genetic syndromes linked to a pronounced prevalence of intracranial aneurysms, underscoring the pivotal nature of genetics in this ailment's susceptibility. A detailed scrutiny of genome-wide association studies allows us to identify key genomic changes and locations associated with IA risk. We further detail the molecular and physiopathological dynamics instrumental in IA's evolution and escalation, with a focus on inflammation's role in affecting the vascular landscape. Wrapping up, we offer a glimpse into upcoming research directions and the promising horizons of personalized therapeutic strategies in IA intervention, emphasizing the central role of genetic insights. This thorough review solidifies genetics' cardinal role in IA, positioning it as a cornerstone resource for professionals in the realms of neurology and genomics.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (L.-A.G.); (A.D.C.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Lucian Eva
- Department of Neurosurgery, Dunarea de Jos University, 800010 Galati, Romania
- Department of Neurosurgery, Clinical Emergency Hospital “Prof. Dr. Nicolae Oblu”, 700309 Iasi, Romania
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - Luca-Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (L.-A.G.); (A.D.C.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
3
|
Vöcking O, Famulski JK. A temporal single cell transcriptome atlas of zebrafish anterior segment development. Sci Rep 2023; 13:5656. [PMID: 37024546 PMCID: PMC10079958 DOI: 10.1038/s41598-023-32212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Anterior segment dysgenesis (ASD), resulting in vision impairment, stems from maldevelopment of anterior segment (AS) tissues. Incidence of ASD has been linked to malfunction of periocular mesenchyme cells (POM). POM cells specify into anterior segment mesenchyme (ASM) cells which colonize and produce AS tissues. In this study we uncover ASM developmental trajectories associated with formation of the AS. Using a transgenic line of zebrafish that fluorescently labels the ASM throughout development, Tg[foxc1b:GFP], we isolated GFP+ ASM cells at several developmental timepoints (48-144 hpf) and performed single cell RNA sequencing. Clustering analysis indicates subdifferentiation of ASM as early as 48 hpf and subsequent diversification into corneal epithelium/endothelium/stroma, or annular ligament (AL) lineages. Tracking individual clusters reveals common developmental pathways, up to 72 hpf, for the AL and corneal endothelium/stroma and distinct pathways for corneal epithelium starting at 48 hpf. Spatiotemporal validation of over 80 genes found associated with AS development demonstrates a high degree of conservation with mammalian trabecular meshwork and corneal tissues. In addition, we characterize thirteen novel genes associated with annular ligament and seven with corneal development. Overall, the data provide a molecular verification of the long-standing hypothesis that POM derived ASM give rise to AS tissues and highlight the high degree of conservation between zebrafish and mammals.
Collapse
Affiliation(s)
- Oliver Vöcking
- Department of Biology, University of Kentucky, Lexington, USA
| | - J K Famulski
- Department of Biology, University of Kentucky, Lexington, USA.
| |
Collapse
|
4
|
Usategui-Martín R, Jiménez-Arribas P, Sakas-Gandullo C, González-Sarmiento R, Rodríguez-Arias CA. Endothelial nitric oxide synthase rs1799983 gene polymorphism is associated with the risk of developing intracranial aneurysm. Acta Neurochir (Wien) 2023; 165:1261-1267. [PMID: 36932233 DOI: 10.1007/s00701-023-05552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/20/2023] [Indexed: 03/19/2023]
Abstract
PURPOSE The intracranial aneurysm (IA) rupture is associated with a subarachnoid hemorrhage. One third of patients die, and one third remain depend for daily activities. Genetic factors are crucial in the formation and clinical evolution of IAs. Multiple loci have been associated with AIs, much of them implicating multiple pathways related to vascular endothelial maintenance and extracellular matrix integrity. Thus, the aim of our study was to characterize whether polymorphisms in genes implicated in the vascular endothelial maintenance could modify the risk of developing IAs. SUBJECTS AND METHODS We have studied 176 patients with IA recruited in the Service of Neurosurgery at the University Hospital of Valladolid (Spain) and a control group if 150 sex-matched healthy subjects. Clinical variables were collected from each patient. We have analyzed VEGFA rs833061, VEGFR2 rs2071559, endothelin rs5370, endoglin rs3739817, and eNOS rs1799983 polymorphisms. RESULTS Our results showed that allele T of the eNOS rs1799983 polymorphism is correlated with decreased risk of developing the disease; thus, allele G of the eNOS rs1799983 polymorphism increased the risk of developing IA. CONCLUSION The association of eNOS rs1799983 polymorphism with the risk to suffer IA reinforces the hypothesis that genetic variants in eNOS gene could be crucial in the pathogenesis of IA.
Collapse
Affiliation(s)
- Ricardo Usategui-Martín
- Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain.,Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain.,Salamanca Institute of Biomedical Research (IBSAL), University Hospital of Salamanca-University of Salamanca, Salamanca, Spain
| | | | - Carmen Sakas-Gandullo
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Rogelio González-Sarmiento
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain.,Salamanca Institute of Biomedical Research (IBSAL), University Hospital of Salamanca-University of Salamanca, Salamanca, Spain.,Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain
| | | |
Collapse
|
5
|
Chiu CH, Hsuan CF, Lin SH, Hung YJ, Hwu CM, Hee SW, Lin SW, Fong SW, Hsieh PCH, Yang WS, Lin WC, Lee HL, Hsieh ML, Li WY, Lin JW, Hsu CN, Wu VC, Chuang GT, Chang YC, Chuang LM. ER ribosomal-binding protein 1 regulates blood pressure and potassium homeostasis by modulating intracellular renin trafficking. J Biomed Sci 2023; 30:13. [PMID: 36803854 PMCID: PMC9940419 DOI: 10.1186/s12929-023-00905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/07/2023] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWASs) have linked RRBP1 (ribosomal-binding protein 1) genetic variants to atherosclerotic cardiovascular diseases and serum lipoprotein levels. However, how RRBP1 regulates blood pressure is unknown. METHODS To identify genetic variants associated with blood pressure, we performed a genome-wide linkage analysis with regional fine mapping in the Stanford Asia-Pacific Program for Hypertension and Insulin Resistance (SAPPHIRe) cohort. We further investigated the role of the RRBP1 gene using a transgenic mouse model and a human cell model. RESULTS In the SAPPHIRe cohort, we discovered that genetic variants of the RRBP1 gene were associated with blood pressure variation, which was confirmed by other GWASs for blood pressure. Rrbp1- knockout (KO) mice had lower blood pressure and were more likely to die suddenly from severe hyperkalemia caused by phenotypically hyporeninemic hypoaldosteronism than wild-type controls. The survival of Rrbp1-KO mice significantly decreased under high potassium intake due to lethal hyperkalemia-induced arrhythmia and persistent hypoaldosteronism, which could be rescued by fludrocortisone. An immunohistochemical study revealed renin accumulation in the juxtaglomerular cells of Rrbp1-KO mice. In the RRBP1-knockdown Calu-6 cells, a human renin-producing cell line, transmission electron and confocal microscopy revealed that renin was primarily retained in the endoplasmic reticulum and was unable to efficiently target the Golgi apparatus for secretion. CONCLUSIONS RRBP1 deficiency in mice caused hyporeninemic hypoaldosteronism, resulting in lower blood pressure, severe hyperkalemia, and sudden cardiac death. In juxtaglomerular cells, deficiency of RRBP1 reduced renin intracellular trafficking from ER to Golgi apparatus. RRBP1 is a brand-new regulator of blood pressure and potassium homeostasis discovered in this study.
Collapse
Affiliation(s)
- Chu-Hsuan Chiu
- grid.19188.390000 0004 0546 0241Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, 100 Taiwan ,grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan
| | - Chin-Feng Hsuan
- grid.414686.90000 0004 1797 2180Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, 824410 Taiwan ,Division of Cardiology, Department of Internal Medicine, E-Da Dachang Hospital, Kaohsiung, 82445 Taiwan ,grid.411447.30000 0004 0637 1806School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 840203 Taiwan
| | - Shih-Hua Lin
- grid.260565.20000 0004 0634 0356Graduate Institute of Medical Science, National Defense Medical Center, Taipei, 114 Taiwan ,grid.278247.c0000 0004 0604 5314Section of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, 111 Taiwan
| | - Yi-Jen Hung
- grid.260565.20000 0004 0634 0356Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 100 Taiwan
| | - Chii-Min Hwu
- grid.260539.b0000 0001 2059 7017Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, 112 Taiwan ,grid.278244.f0000 0004 0638 9360Division of Nephrology, Department of Medicine, Tri-Service General Hospital, Taipei, 114 Taiwan
| | - Siow-Wey Hee
- grid.412094.a0000 0004 0572 7815Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100 Taiwan
| | - Shu-Wha Lin
- grid.19188.390000 0004 0546 0241Division of Genomic Medicine, Research Center for Medical Excellence, Transgenic Mouse Models Core, National Taiwan University, Taipei, 100 Taiwan
| | - Sitt-Wai Fong
- grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan
| | - Patrick Ching-Ho Hsieh
- grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan
| | - Wei-Shun Yang
- grid.19188.390000 0004 0546 0241Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, 100 Taiwan ,grid.412094.a0000 0004 0572 7815Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, 302 Taiwan
| | - Wei-Chou Lin
- grid.412094.a0000 0004 0572 7815Department of Pathology, National Taiwan University Hospital, Taipei, 100 Taiwan
| | - Hsiao-Lin Lee
- grid.412094.a0000 0004 0572 7815Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100 Taiwan
| | - Meng-Lun Hsieh
- grid.412094.a0000 0004 0572 7815Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100 Taiwan ,grid.15276.370000 0004 1936 8091Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610 USA
| | - Wen-Yi Li
- grid.412094.a0000 0004 0572 7815Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, 640 Taiwan
| | - Jou-Wei Lin
- grid.412094.a0000 0004 0572 7815Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, 640 Taiwan
| | - Chih-Neng Hsu
- grid.412094.a0000 0004 0572 7815Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, 640 Taiwan
| | - Vin-Cent Wu
- grid.412094.a0000 0004 0572 7815Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100 Taiwan
| | - Gwo-Tsann Chuang
- grid.19188.390000 0004 0546 0241Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, 100 Taiwan ,grid.412094.a0000 0004 0572 7815Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 100 Taiwan
| | - Yi-Cheng Chang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, 100, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan. .,Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan. .,Graduate Institute of Molecular Medicine, National Taiwan University, Taipei, 100, Taiwan.
| | - Lee-Ming Chuang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan. .,Graduate Institute of Molecular Medicine, National Taiwan University, Taipei, 100, Taiwan. .,Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
6
|
Hale AT, He J, Jones J. Integrative Genomics Analysis Implicates Decreased FGD6 Expression Underlying Risk of Intracranial Aneurysm Rupture. NEUROSURGERY OPEN 2022. [DOI: 10.1227/neuopn.0000000000000025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
7
|
Hale AT, He J, Jones J. Multinational Genome-Wide Association Study and Functional Genomics Analysis Implicates Decreased SIRT3 Expression Underlying Intracranial Aneurysm Risk. Neurosurgery 2022; 91:625-632. [PMID: 35838494 DOI: 10.1227/neu.0000000000002082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The genetic mechanisms regulating intracranial aneurysm (IA) formation and rupture are largely unknown. To identify germline-genetic risk factors for IA, we perform a multinational genome-wide association study (GWAS) of individuals from the United Kingdom, Finland, and Japan. OBJECTIVE To identify a shared, multinational genetic basis of IA. METHODS Using GWAS summary statistics from UK Biobank, FinnGen, and Biobank Japan, we perform a meta-analysis of IA, containing ruptured and unruptured IA cases. Logistic regression was used to identify IA-associated single-nucleotide polymorphisms. Effect size was calculated using the coefficient r , estimating the contribution of the single-nucleotide polymorphism to the genetic variance of the trait. Genome-wide significance was set at 5.0 × 10 -8 . Expression quantitative trait loci mapping and functional genomics approaches were used to infer mechanistic consequences of implicated variants. RESULTS Our cohort contained 155 154 individuals (3132 IA cases and 152 022 controls). We identified 4 genetic loci reaching genome-wide: rs73392700 ( SIRT3 , effect size = 0.28, P = 4.3 × 10 -12 ), rs58721068 ( EDNRA , effect size = -0.20, P = 4.8 × 10 -12 ), rs4977574 ( AL359922.1 , effect size = 0.18, P = 7.9 × 10 -12 ), and rs11105337 ( ATP2B1 , effect size = -0.15, P = 3.4 × 10 -8 ). Expression quantitative trait loci mapping suggests that rs73392700 has a large effect size on SIRT3 gene expression in arterial and muscle, but not neurological, tissues. Functional genomics analysis suggests that rs73392700 causes decreased SIRT3 gene expression. CONCLUSION We perform a multinational GWAS of IA and identify 4 genetic risk loci, including 2 novel IA risk loci ( SIRT3 and AL359922.1 ). Identification of high-risk genetic loci across ancestries will enable population-genetic screening approaches to identify patients with IA.
Collapse
Affiliation(s)
- Andrew T Hale
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jing He
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jesse Jones
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
8
|
Lampmann T, Borger V, Konczalla J, Gispert S, Auburger G, Vatter H, Güresir E. Experimental Induction of Intracranial Aneurysms in Rats: A New Model Utilizing a Genetic Modification within the EDNRA Gene. Brain Sci 2022; 12:brainsci12091239. [PMID: 36138975 PMCID: PMC9497172 DOI: 10.3390/brainsci12091239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 12/01/2022] Open
Abstract
The rupture of an intracranial aneurysm (IA) leads to life-threatening subarachnoid hemorrhage. Aside from well-established risk factors, recently published genome-wide association studies of IA revealed the strong association of a common variant near the endothelin receptor type A (EDNRA) gene with IA risk. However, the role of EDNRA in the pathogenesis of IA remains unclear. The aim of this study was to investigate the influence of a genetic modification within the EDNRA gene on IA pathogenesis in a novel in vivo model. Adult wild-type Sprague–Dawley rats (WT rats) and genetically modified rats (EDNRA rats) were used for the induction of IA using arterial hypertension (HT). Animals were stratified into four groups: WT rats without (WT_CTL) and with induction of HT (WT + HT), as well as EDNRA rats without (EDNRA_CTL) and with induction of HT (EDNRA + HT). Blood pressure (BP) was observed for 12 weeks. After the observation period, cerebral arteries were analyzed for morphological (i.e., aneurysmal) changes as well as histological and functional changes by immunofluorescence and functional investigation. In the groups of rats with induction of HT, BP was higher in EDNRA + HT compared with that in WT + HT. No IAs were observed in WT_CTL and EDNRA_CTL but were found in WT + HT and EDNRA + HT. There was no histological difference in the immunofluorescence of EDNRA between all groups. Contractility and potency of endothelin-1 differed between the groups in functional investigation. In summary, we created a new model that is suitable for further studies for better understanding of the role of EDNRA in IA pathogenesis.
Collapse
Affiliation(s)
- Tim Lampmann
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
- Correspondence:
| | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Jürgen Konczalla
- Department of Neurosurgery, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
9
|
Li R, Chen X, Zhao Y. Potential triggering factors associated with aneurysmal subarachnoid hemorrhage: A large single-center retrospective study. J Clin Hypertens (Greenwich) 2022; 24:861-869. [PMID: 35739460 PMCID: PMC9278573 DOI: 10.1111/jch.14485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
Abstract
Controlling blood pressure levels is critical to preventing intracranial aneurysm rupture, and a summary review of induced rupture events allows better health education for patients. We retrospectively reviewed all medical records of consecutive patients with aneurysmal subarachnoid hemorrhage (aSAH) admitted to Beijing Tiantan Hospital from 2015 to 2020. We collected patients’ demographic information, aneurysm morphology, blood pressure level on admission, time to onset, and events at the time of aneurysm rupture to analyze the factors precipitating aneurysmal rupture. A total of 764 patients were enrolled for analysis, including 461 (60.3%) female patients and 303 (39.7%) male patients. The mean age of onset in this cohort was 55, and 465 (60.9%) patients had hypertension history. Autumn (245/764 [32.1%]) was the most frequent season for aneurysm rupture, and 07:00–12:59 (277/764 [36.3%]) was the most frequent time frame for aneurysm rupture. The five most prevalent events when aneurysm rupture happened were: (1) daily behaviors that may induce hypertension (181/764 [23.7%]), especially defecation or micturition (116/181 [64.1%]); (2) sporting (162/764 [21.2%]), especially high‐intensity sports (108/162 [66.7%]); (3) mood and mental factors (112/764 [14.7%]), especially arguing or quarreling (61/112 [54.5%]); (4) sudden postural changes (93/764 [12.2%]), especially getting up (69/93 [74.2%]); and (5) sleeping (72/764 [9.4%]). Patients should avoid behaviors that may cause fluctuations in blood pressure, including keeping warm during seasonal alternation, keeping their urine and defecation unobstructed, avoiding high intensity physical exercise, maintaining a happy mood, avoiding sudden postural changes, and should not bathe with too cold or too hot water.
Collapse
Affiliation(s)
- Runting Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Stroke Center, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Tiantan hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Peking University International Hospital, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Stroke Center, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Tiantan hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| |
Collapse
|
10
|
Endothelin and the Cardiovascular System: The Long Journey and Where We Are Going. BIOLOGY 2022; 11:biology11050759. [PMID: 35625487 PMCID: PMC9138590 DOI: 10.3390/biology11050759] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022]
Abstract
Simple Summary In this review, we describe the basic functions of endothelin and related molecules, including their receptors and enzymes. Furthermore, we discuss the important role of endothelin in several cardiovascular diseases, the relevant clinical evidence for targeting the endothelin pathway, and the scope of endothelin-targeting treatments in the future. We highlight the present uses of endothelin receptor antagonists and the advancements in the development of future treatment options, thereby providing an overview of endothelin research over the years and its future scope. Abstract Endothelin was first discovered more than 30 years ago as a potent vasoconstrictor. In subsequent years, three isoforms, two canonical receptors, and two converting enzymes were identified, and their basic functions were elucidated by numerous preclinical and clinical studies. Over the years, the endothelin system has been found to be critical in the pathogenesis of several cardiovascular diseases, including hypertension, pulmonary arterial hypertension, heart failure, and coronary artery disease. In this review, we summarize the current knowledge on endothelin and its role in cardiovascular diseases. Furthermore, we discuss how endothelin-targeting therapies, such as endothelin receptor antagonists, have been employed to treat cardiovascular diseases with varying degrees of success. Lastly, we provide a glimpse of what could be in store for endothelin-targeting treatment options for cardiovascular diseases in the future.
Collapse
|
11
|
Tikhvinskii D, Kuianova J, Kislitsin D, Orlov K, Gorbatykh A, Parshin D. Numerical Assessment of the Risk of Abnormal Endothelialization for Diverter Devices: Clinical Data Driven Numerical Study. J Pers Med 2022; 12:652. [PMID: 35455768 PMCID: PMC9025183 DOI: 10.3390/jpm12040652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/07/2022] Open
Abstract
Numerical modeling is an effective tool for preoperative planning. The present work is devoted to a retrospective analysis of neurosurgical treatments for the occlusion of cerebral aneurysms using flow-diverters and hemodynamic factors affecting stent endothelization. Several different geometric approaches have been considered for virtual flow-diverters deployment. A comparative analysis of hemodynamic parameters as a result of computational modeling has been carried out basing on the four clinical cases: one successful treatment, one with no occlusion and two with in stent stenosis. For the first time, a quantitative assessment of both: the limiting magnitude of shear stresses that are necessary for the occurrence of in stent stenosis (MaxWSS > 1.23) and for conditions in which endothelialization is insufficiently active and occlusion of the cervical part of the aneurysm does not occur (MaxWSS < 1.68)—has been statistacally proven (p < 0.01).
Collapse
Affiliation(s)
- Denis Tikhvinskii
- Lavrentyev Institute of Hydrodynamics SB RAS, Lavrentiev Avenue 15, 630090 Novosibirsk, Russia; (D.T.); (J.K.)
| | - Julia Kuianova
- Lavrentyev Institute of Hydrodynamics SB RAS, Lavrentiev Avenue 15, 630090 Novosibirsk, Russia; (D.T.); (J.K.)
| | - Dmitrii Kislitsin
- Neurosurgery Department, Meshalkin National Medical Research Center, 630055 Novosibirsk, Russia; (D.K.); (K.O.); (A.G.)
| | - Kirill Orlov
- Neurosurgery Department, Meshalkin National Medical Research Center, 630055 Novosibirsk, Russia; (D.K.); (K.O.); (A.G.)
| | - Anton Gorbatykh
- Neurosurgery Department, Meshalkin National Medical Research Center, 630055 Novosibirsk, Russia; (D.K.); (K.O.); (A.G.)
| | - Daniil Parshin
- Lavrentyev Institute of Hydrodynamics SB RAS, Lavrentiev Avenue 15, 630090 Novosibirsk, Russia; (D.T.); (J.K.)
| |
Collapse
|
12
|
Barak T, Günel M. The quest to unravel the complex genomics of intracranial aneurysms. NATURE CARDIOVASCULAR RESEARCH 2022; 1:281-282. [PMID: 39196131 DOI: 10.1038/s44161-022-00051-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Tanyeri Barak
- Department of Neurosurgery, Genetics and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Murat Günel
- Department of Neurosurgery, Genetics and Neuroscience, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
13
|
Whole-exome sequencing in a Japanese multiplex family identifies new susceptibility genes for intracranial aneurysms. PLoS One 2022; 17:e0265359. [PMID: 35299232 PMCID: PMC8929693 DOI: 10.1371/journal.pone.0265359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/28/2022] [Indexed: 11/19/2022] Open
Abstract
Background Intracranial aneurysms (IAs) cause subarachnoid hemorrhage, which has high rates of mortality and morbidity when ruptured. Recently, the role of rare variants in the genetic background of complex diseases has been increasingly recognized. The aim of this study was to identify rare variants for susceptibility to IA. Methods Whole-exome sequencing was performed on seven members of a Japanese pedigree with highly aggregated IA. Candidate genes harboring co-segregating rare variants with IA were re-sequenced and tested for association with IA using additional 500 probands and 323 non-IA controls. Functional analysis of rare variants detected in the pedigree was also conducted. Results We identified two gene variants shared among all four affected participants in the pedigree. One was the splicing donor c.1515+1G>A variant in NPNT (Nephronectin), which was confirmed to cause aberrant splicing by a minigene assay. The other was the missense p.P83T variant in CBY2 (Chibby family member 2). Overexpression of p.P83T CBY2 fused with red fluorescent protein tended to aggregate in the cytoplasm. Although Nephronectin has been previously reported to be involved in endothelial angiogenic functions, CBY2 is a novel molecule in terms of vascular pathophysiology. We confirmed that CBY2 was expressed in cerebrovascular smooth muscle cells in an isoform2-specific manner. Targeted CBY2 re-sequencing in additional case-control samples identified three deleterious rare variants (p.R46H, p.P83T, and p.L183R) in seven probands, showing a significant enrichment in the overall probands (8/501) compared to the controls (0/323) (p = 0.026, Fisher’s extract test). Conclusions NPNT and CBY2 were identified as novel susceptibility genes for IA. The highly heterogeneous and polygenic architecture of IA susceptibility can be uncovered by accumulating extensive analyses that focus on each pedigree with a high incidence of IA.
Collapse
|
14
|
Meschia JF, Fornage M. Genetic Basis of Stroke Occurrence, Prevention, and Outcome. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Barak T, Ristori E, Ercan-Sencicek AG, Miyagishima DF, Nelson-Williams C, Dong W, Jin SC, Prendergast A, Armero W, Henegariu O, Erson-Omay EZ, Harmancı AS, Guy M, Gültekin B, Kilic D, Rai DK, Goc N, Aguilera SM, Gülez B, Altinok S, Ozcan K, Yarman Y, Coskun S, Sempou E, Deniz E, Hintzen J, Cox A, Fomchenko E, Jung SW, Ozturk AK, Louvi A, Bilgüvar K, Connolly ES, Khokha MK, Kahle KT, Yasuno K, Lifton RP, Mishra-Gorur K, Nicoli S, Günel M. PPIL4 is essential for brain angiogenesis and implicated in intracranial aneurysms in humans. Nat Med 2021; 27:2165-2175. [PMID: 34887573 PMCID: PMC8768030 DOI: 10.1038/s41591-021-01572-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 10/05/2021] [Indexed: 12/16/2022]
Abstract
Intracranial aneurysm (IA) rupture leads to subarachnoid hemorrhage, a sudden-onset disease that often causes death or severe disability. Although genome-wide association studies have identified common genetic variants that increase IA risk moderately, the contribution of variants with large effect remains poorly defined. Using whole-exome sequencing, we identified significant enrichment of rare, deleterious mutations in PPIL4, encoding peptidyl-prolyl cis-trans isomerase-like 4, in both familial and index IA cases. Ppil4 depletion in vertebrate models causes intracerebral hemorrhage, defects in cerebrovascular morphology and impaired Wnt signaling. Wild-type, but not IA-mutant, PPIL4 potentiates Wnt signaling by binding JMJD6, a known angiogenesis regulator and Wnt activator. These findings identify a novel PPIL4-dependent Wnt signaling mechanism involved in brain-specific angiogenesis and maintenance of cerebrovascular integrity and implicate PPIL4 gene mutations in the pathogenesis of IA.
Collapse
Affiliation(s)
- Tanyeri Barak
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Emma Ristori
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale School of Medicine, New Haven, CT, USA
| | - A Gulhan Ercan-Sencicek
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Danielle F Miyagishima
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Weilai Dong
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Sheng Chih Jin
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew Prendergast
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale School of Medicine, New Haven, CT, USA
| | - William Armero
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale School of Medicine, New Haven, CT, USA
| | - Octavian Henegariu
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - E Zeynep Erson-Omay
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Akdes Serin Harmancı
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Mikhael Guy
- Yale Center for Research Computing, Yale University, New Haven, CT, USA
| | - Batur Gültekin
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Deniz Kilic
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Devendra K Rai
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Nükte Goc
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Burcu Gülez
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Selin Altinok
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Kent Ozcan
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Yanki Yarman
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Süleyman Coskun
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Emily Sempou
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Engin Deniz
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Jared Hintzen
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale School of Medicine, New Haven, CT, USA
| | - Andrew Cox
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Elena Fomchenko
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Su Woong Jung
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Ali Kemal Ozturk
- Department of Neurosurgery, Pennsylvania Hospital, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Angeliki Louvi
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Kaya Bilgüvar
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - E Sander Connolly
- Department of Neurosurgery, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Mustafa K Khokha
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Katsuhito Yasuno
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Richard P Lifton
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Ketu Mishra-Gorur
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA.
| | - Stefania Nicoli
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale School of Medicine, New Haven, CT, USA.
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| | - Murat Günel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
16
|
Abstract
Rupture of an intracranial aneurysm leads to aneurysmal subarachnoid hemorrhage, a severe type of stroke which is, in part, driven by genetic variation. In the past 10 years, genetic studies of IA have boosted the number of known genetic risk factors and improved our understanding of the disease. In this review, we provide an overview of the current status of the field and highlight the latest findings of family based, sequencing, and genome-wide association studies. We further describe opportunities of genetic analyses for understanding, prevention, and treatment of the disease.
Collapse
Affiliation(s)
- Mark K Bakker
- University Medical Center Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, the Netherlands
| | - Ynte M Ruigrok
- University Medical Center Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, the Netherlands
| |
Collapse
|
17
|
Yan Y, Nie K, Zheng J, Jiang X, Huang Y, Zheng Z, Wen Y, Li P. High Endothelin Receptor Type A Expression as an Independent Prognostic Biomarker and Correlated with Immune Infiltrates in Stomach Adenocarcinoma. Cancer Manag Res 2021; 13:5013-5026. [PMID: 34234547 PMCID: PMC8254415 DOI: 10.2147/cmar.s313078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/02/2021] [Indexed: 12/09/2022] Open
Abstract
Background Stomach adenocarcinoma (STAD) is the most common gastrointestinal cancer and is associated with high mortality worldwide. Endothelin receptor type A (EDNRA) is associated with guanine-nucleotide-binding (G) proteins and plays important roles in cellular processes and various diseases. Purpose To investigate the prognosis value of EDNRA expression and its correlation with immune infiltrates in patients with STAD. Methods The association between clinical characteristics and EDNRA expression in STAD was analyzed using the Wilcoxon signed-rank test and logistic regression. The Kaplan–Meier plotter analysis and Cox regression were constructed to evaluate the influence of EDNRA on prognosis, and a receiver operating characteristic (ROC) curve and nomogram were constructed. Gene set enrichment analysis (GSEA) and single-sample gene set enrichment analysis (ssGSEA) were conducted to analyze the correlation between EDNRA and immune infiltrates. In addition, Oncomine, TIMER databases and qRT-PCR of STAD cell lines were used to verify the EDNRA expression in STAD. Results Our results revealed that EDNRA expression was significantly higher in patients with STAD than normal gastric tissues, and the results have been confirmed by RT-qPCR. KM-plotter analysis revealed that patients with STAD had shorter OS, FP, and PPS (P<0.001). Multivariate Cox analysis further confirmed that high EDNRA expression was an independent risk factor for OS in patients with STAD. Moreover, other clinicopathologic features were related with worse prognosis in STAD, including age, lymph nodes metastases and primary outcome. More importantly, ROC analysis also confirmed the diagnostic value, and a prognostic nomogram involving age, T, M, N classification, pathologic stage, residual tumor and EDNRA was constructed. GSEA revealed that high EDNRA expression was correlated with immunoregulatory interactions between lymphoid and non lymphoid cells pathways, natural killer cell activation involved in immune response, interleukin 1 receptor binding and pathways in cancer, and ssGSEA showed that EDNRA is correlated with macrophages and NK cells. Conclusion Collectively, EDNRA can be an independent prognostic biomarker and correlated with immune infiltration in stomach adenocarcinoma.
Collapse
Affiliation(s)
- Yanhua Yan
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510000, People's Republic of China
| | - Kechao Nie
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Junhui Zheng
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510000, People's Republic of China
| | - Xiaotao Jiang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510000, People's Republic of China
| | - Yuancheng Huang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510000, People's Republic of China
| | - Zhihua Zheng
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510000, People's Republic of China
| | - Yi Wen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, People's Republic of China
| | - Peiwu Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, People's Republic of China
| |
Collapse
|
18
|
Poppenberg KE, Zebraski HR, Avasthi N, Waqas M, Siddiqui AH, Jarvis JN, Tutino VM. Epigenetic landscapes of intracranial aneurysm risk haplotypes implicate enhancer function of endothelial cells and fibroblasts in dysregulated gene expression. BMC Med Genomics 2021; 14:162. [PMID: 34134708 PMCID: PMC8210394 DOI: 10.1186/s12920-021-01007-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome-wide association studies have identified many single nucleotide polymorphisms (SNPs) associated with increased risk for intracranial aneurysm (IA). However, how such variants affect gene expression within IA is poorly understood. We used publicly-available ChIP-Seq data to study chromatin landscapes surrounding risk loci to determine whether IA-associated SNPs affect functional elements that regulate gene expression in cell types comprising IA tissue. METHODS We mapped 16 significant IA-associated SNPs to linkage disequilibrium (LD) blocks within human genome. Using ChIP-Seq data, we examined these regions for presence of H3K4me1, H3K27ac, and H3K9ac histone marks (typically associated with latent/active enhancers). This analysis was conducted in several cell types that are present in IA tissue (endothelial cells, smooth muscle cells, fibroblasts, macrophages, monocytes, neutrophils, T cells, B cells, NK cells). In cell types with significant histone enrichment, we used HiC data to investigate topologically associated domains (TADs) encompassing the LD blocks to identify genes that may be affected by IA-associated variants. Bioinformatics were performed to determine the biological significance of these genes. Genes within HiC-defined TADs were also compared to differentially expressed genes from RNA-seq/microarray studies of IA tissues. RESULTS We found that endothelial cells and fibroblasts, rather than smooth muscle or immune cells, have significant enrichment for enhancer marks on IA risk haplotypes (p < 0.05). Bioinformatics demonstrated that genes within TADs subsuming these regions are associated with structural extracellular matrix components and enzymatic activity. The majority of histone marked TADs (83% fibroblasts [IMR90], 77% HUVEC) encompassed at least one differentially expressed gene from IA tissue studies. CONCLUSIONS These findings provide evidence that genetic variants associated with IA risk act on endothelial cells and fibroblasts. There is strong circumstantial evidence that this may be mediated through altered enhancer function, as genes in TADs encompassing enhancer marks have also been shown to be differentially expressed in IA tissue. These genes are largely related to organization and regulation of the extracellular matrix. This study builds upon our previous (Poppenberg et al., BMC Med Genomics, 2019) by including a more diverse set of data from additional cell types and by identifying potential affected genes (i.e. those in TADs).
Collapse
Affiliation(s)
- Kerry E Poppenberg
- Canon Stroke and Vascular Research Center, University at Buffalo, Clinical and Translational Research Center, 875 Ellicott Street, Buffalo, NY, 14214, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - Haley R Zebraski
- Canon Stroke and Vascular Research Center, University at Buffalo, Clinical and Translational Research Center, 875 Ellicott Street, Buffalo, NY, 14214, USA
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | - Naval Avasthi
- Canon Stroke and Vascular Research Center, University at Buffalo, Clinical and Translational Research Center, 875 Ellicott Street, Buffalo, NY, 14214, USA
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | - Muhammad Waqas
- Canon Stroke and Vascular Research Center, University at Buffalo, Clinical and Translational Research Center, 875 Ellicott Street, Buffalo, NY, 14214, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - Adnan H Siddiqui
- Canon Stroke and Vascular Research Center, University at Buffalo, Clinical and Translational Research Center, 875 Ellicott Street, Buffalo, NY, 14214, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - James N Jarvis
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Vincent M Tutino
- Canon Stroke and Vascular Research Center, University at Buffalo, Clinical and Translational Research Center, 875 Ellicott Street, Buffalo, NY, 14214, USA.
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA.
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA.
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY, USA.
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
19
|
Interleukin 6 and Aneurysmal Subarachnoid Hemorrhage. A Narrative Review. Int J Mol Sci 2021; 22:ijms22084133. [PMID: 33923626 PMCID: PMC8073154 DOI: 10.3390/ijms22084133] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Interleukin 6 (IL-6) is a prominent proinflammatory cytokine. Neuroinflammation in general, and IL-6 signaling in particular, appear to play a major role in the pathobiology and pathophysiology of aneurysm formation and aneurysmal subarachnoid hemorrhage (SAH). Most importantly, elevated IL-6 CSF (rather than serum) levels appear to correlate with delayed cerebral ischemia (DCI, “vasospasm”) and secondary (“vasospastic”) infarctions. IL-6 CSF levels may also reflect other forms of injury to the brain following SAH, i.e., early brain damage and septic complications of SAH and aneurysm treatment. This would explain why many researchers have found an association between IL-6 levels and patient outcomes. These findings clearly suggest CSF IL-6 as a candidate biomarker in SAH patients. However, at this point, discrepant findings in variable study settings, as well as timing and other issues, e.g., defining proper clinical endpoints (i.e., secondary clinical deterioration vs. angiographic vasospasm vs. secondary vasospastic infarct) do not allow for its routine use. It is also tempting to speculate about potential therapeutic measures targeting elevated IL-6 CSF levels and neuroinflammation in SAH patients. Corticosteroids and anti-platelet drugs are indeed used in many SAH cases (not necessarily with the intention to interfere with detrimental inflammatory signaling), however, no convincing benefit has been demonstrated yet. The lack of a robust clinical perspective against the background of a relatively large body of data linking IL-6 and neuroinflammation with the pathophysiology of SAH is somewhat disappointing. One underlying reason might be that most relevant studies only report correlative data. The specific molecular pathways behind elevated IL-6 levels in SAH patients and their various interactions still remain to be delineated. We are optimistic that future research in this field will result in a better understanding of the role of neuroinflammation in the pathophysiology of SAH, which in turn, will translate into the identification of suitable biomarkers and even potential therapeutic targets.
Collapse
|
20
|
Endogenous animal models of intracranial aneurysm development: a review. Neurosurg Rev 2021; 44:2545-2570. [PMID: 33501561 DOI: 10.1007/s10143-021-01481-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/05/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022]
Abstract
The pathogenesis and natural history of intracranial aneurysm (IA) remains poorly understood. To this end, animal models with induced cerebral vessel lesions mimicking human aneurysms have provided the ability to greatly expand our understanding. In this review, we comprehensively searched the published literature to identify studies that endogenously induced IA formation in animals. Studies that constructed aneurysms (i.e., by surgically creating a sac) were excluded. From the eligible studies, we reported information including the animal species, method for aneurysm induction, aneurysm definitions, evaluation methods, aneurysm characteristics, formation rate, rupture rate, and time course. Between 1960 and 2019, 174 articles reported endogenous animal models of IA. The majority used flow modification, hypertension, and vessel wall weakening (i.e., elastase treatment) to induce IAs, primarily in rats and mice. Most studies utilized subjective or qualitative descriptions to define experimental aneurysms and histology to study them. In general, experimental IAs resembled the pathobiology of the human disease in terms of internal elastic lamina loss, medial layer degradation, and inflammatory cell infiltration. After the early 2000s, many endogenous animal models of IA began to incorporate state-of-the-art technology, such as gene expression profiling and 9.4-T magnetic resonance imaging (MRI) in vivo imaging, to quantitatively analyze the biological mechanisms of IA. Future studies aimed at longitudinally assessing IA pathobiology in models that incorporate aneurysm growth will likely have the largest impact on our understanding of the disease. We believe this will be aided by high-resolution, small animal, survival imaging, in situ live-cell imaging, and next-generation omics technology.
Collapse
|
21
|
Luo C, Hu C, Li B, Liu J, Hu L, Dong R, Liao X, Zhou J, Xu L, Liu S, Li Y, Yuan D, Jiang W, Yan J. Polymorphisms in Lysyl Oxidase Family Genes Are Associated With Intracranial Aneurysm Susceptibility in a Chinese Population. Front Endocrinol (Lausanne) 2021; 12:642698. [PMID: 34393991 PMCID: PMC8355735 DOI: 10.3389/fendo.2021.642698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/29/2021] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Intracranial aneurysms (IA) comprise a multifactorial disease with unclear physiological mechanisms. The lysyl oxidase (LOX) family genes (LOX, LOX-like 1-4) plays important roles in extracellular matrix (ECM) reconstruction and has been investigated in terms of susceptibility to IA in a few populations. We aimed to determine whether polymorphisms in LOX family genes are associated with susceptibility to IA in a Chinese population. METHODS This case-control study included 384 patients with IA and 384 healthy individuals without IA (controls). We genotyped 27 single nucleotide polymorphisms (SNPs) of LOX family genes using the Sequenom MassARRAY® platform. These SNPs were adjusted for known risk factors and then, odds ratios (OR) and 95% confidence intervals (CI) were evaluated using binary logistic regression analysis. RESULTS The result showed that LOX rs10519694 was associated with the risk of IA in recessive (OR, 3.88; 95% CI, 1.12-13.47) and additive (OR, 1.56; 95%CI, 1.05-2.34) models. Stratified analyses illustrated that LOX rs10519694 was associated with the risk of single IA in the recessive (OR, 3.95; 95%CI, 1.04-15.11) and additive (OR, 1.64; 95%CI, 1.04-2.56) models. The LOXL2 rs1010156 polymorphism was associated with multiple IA in the dominant model (OR, 1.92; 95%CI, 1.02-3.62). No associations were observed between SNPs of LOXL1, LOXL3, and LOXL4 and risk of IA. CONCLUSION LOX and LOXL2 polymorphisms were associated with risk of single IA and multiple IA in a Chinese population, suggesting potential roles of these genes in IA. The effects of these genes on IA require further investigation.
Collapse
Affiliation(s)
- Chun Luo
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China
| | - Chongyu Hu
- Department of Neurology, Hunan People’s Hospital, Changsha, China
| | - Bingyang Li
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China
- Department of Information Statistics, Changsha Hospital of Traditional Chinese Medicine (Changsha Eight Hospital), Changsha, China
| | - Junyu Liu
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, China
| | - Liming Hu
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China
| | - Rui Dong
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China
| | - Xin Liao
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China
- Department of Scientific Research, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jilin Zhou
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, China
| | - Lu Xu
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, China
| | - Songlin Liu
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, China
| | - Yifeng Li
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, China
| | - Dun Yuan
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, China
| | - Weixi Jiang
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, China
| | - Junxia Yan
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, XiangYa School of Public Health, Central South University, Changsha, China
- *Correspondence: Junxia Yan,
| |
Collapse
|
22
|
Yu T, Jiang H, Fan Y, Xu Y, Wang N. The association of CDKN2BAS gene polymorphisms and intracranial aneurysm: A meta-analysis. Medicine (Baltimore) 2020; 99:e23209. [PMID: 33285697 PMCID: PMC7717858 DOI: 10.1097/md.0000000000023209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Intracranial aneurysm (IA) is one of the main causes of subarachnoid hemorrhage (SAH) leading to a high percentage of disability and mortality worldwide. In addition to environmental factors, the risk of rupture or prognosis of intracranial aneurysm is also closely related to gene. Thus, a lot of genetic studies have been used to explore associated risk genes as well as variant loci of intracranial aneurysm and found several chromosome variates including 9p21.3 (CDKN2BAS) related to Intracranial aneurysm. However, due to differences in population and the existence of SNP, it is still not determined that whether these genetic changes can be identified as independent risk factors for intracranial aneurysm. Therefore, we performed a meta-analysis of CDKN2BAS SNPs to explore its association with intracranial aneurysms and the results show a significance relation between rs10757272, rs1333040, and rs6475606 with intracranial aneurysm. This will open a new perspective for future intracranial aneurysm gene research and therapy.
Collapse
Affiliation(s)
- Ting Yu
- Department of Neurosurgery, Tiantai People's Hospital, Taizhou
| | - Hailong Jiang
- Department of Neurosurgery, Tiantai People's Hospital, Taizhou
| | - Yunren Fan
- Department of Neurosurgery, Tiantai People's Hospital, Taizhou
| | - Yunfeng Xu
- Department of Neurosurgery, Tiantai People's Hospital, Taizhou
| | - Ning Wang
- Department of Neurosurgery, Zhuji People's Hospital, Zhuji City, Zhejiang Province, PR China
| |
Collapse
|
23
|
Bakker MK, van der Spek RAA, van Rheenen W, Morel S, Bourcier R, Hostettler IC, Alg VS, van Eijk KR, Koido M, Akiyama M, Terao C, Matsuda K, Walters RG, Lin K, Li L, Millwood IY, Chen Z, Rouleau GA, Zhou S, Rannikmäe K, Sudlow CLM, Houlden H, van den Berg LH, Dina C, Naggara O, Gentric JC, Shotar E, Eugène F, Desal H, Winsvold BS, Børte S, Johnsen MB, Brumpton BM, Sandvei MS, Willer CJ, Hveem K, Zwart JA, Verschuren WMM, Friedrich CM, Hirsch S, Schilling S, Dauvillier J, Martin O, Jones GT, Bown MJ, Ko NU, Kim H, Coleman JRI, Breen G, Zaroff JG, Klijn CJM, Malik R, Dichgans M, Sargurupremraj M, Tatlisumak T, Amouyel P, Debette S, Rinkel GJE, Worrall BB, Pera J, Slowik A, Gaál-Paavola EI, Niemelä M, Jääskeläinen JE, von Und Zu Fraunberg M, Lindgren A, Broderick JP, Werring DJ, Woo D, Redon R, Bijlenga P, Kamatani Y, Veldink JH, Ruigrok YM. Genome-wide association study of intracranial aneurysms identifies 17 risk loci and genetic overlap with clinical risk factors. Nat Genet 2020; 52:1303-1313. [PMID: 33199917 PMCID: PMC7116530 DOI: 10.1038/s41588-020-00725-7] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/24/2020] [Indexed: 01/16/2023]
Abstract
Rupture of an intracranial aneurysm leads to subarachnoid hemorrhage, a severe type of stroke. To discover new risk loci and the genetic architecture of intracranial aneurysms, we performed a cross-ancestry, genome-wide association study in 10,754 cases and 306,882 controls of European and East Asian ancestry. We discovered 17 risk loci, 11 of which are new. We reveal a polygenic architecture and explain over half of the disease heritability. We show a high genetic correlation between ruptured and unruptured intracranial aneurysms. We also find a suggestive role for endothelial cells by using gene mapping and heritability enrichment. Drug-target enrichment shows pleiotropy between intracranial aneurysms and antiepileptic and sex hormone drugs, providing insights into intracranial aneurysm pathophysiology. Finally, genetic risks for smoking and high blood pressure, the two main clinical risk factors, play important roles in intracranial aneurysm risk, and drive most of the genetic correlation between intracranial aneurysms and other cerebrovascular traits.
Collapse
Affiliation(s)
- Mark K Bakker
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| | - Rick A A van der Spek
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Wouter van Rheenen
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Sandrine Morel
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Romain Bourcier
- l'institut du thorax Université de Nantes, CHU Nantes, INSERM, CNRS, Nantes, France
- CHU Nantes, Department of Neuroradiology, Nantes, France
| | - Isabel C Hostettler
- Stroke Research Centre, University College London Queen Square Institute of Neurology, London, UK
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Varinder S Alg
- Stroke Research Centre, University College London Queen Square Institute of Neurology, London, UK
| | - Kristel R van Eijk
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Masaru Koido
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Cancer Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masato Akiyama
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Koichi Matsuda
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory of Clinical Genome Sequencing, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Robin G Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Kuang Lin
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Liming Li
- Department of Epidemiology, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Iona Y Millwood
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Guy A Rouleau
- Montréal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
| | - Sirui Zhou
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada
| | - Kristiina Rannikmäe
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Cathie L M Sudlow
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK
- UK Biobank, Cheadle, Stockport, UK
| | - Henry Houlden
- Neurogenetics Laboratory, The National Hospital of Neurology and Neurosurgery, London, UK
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Christian Dina
- l'institut du thorax Université de Nantes, CHU Nantes, INSERM, CNRS, Nantes, France
| | - Olivier Naggara
- Pediatric Radiology, Necker Hospital for Sick Children, Université Paris Descartes, Paris, France
- Department of Neuroradiology, Sainte-Anne Hospital and Université Paris Descartes, INSERM UMR, S894, Paris, France
| | | | - Eimad Shotar
- Department of Neuroradiology, Pitié-Salpêtrière Hospital, Paris, France
| | - François Eugène
- Department of Neuroradiology, University Hospital of Rennes, Rennes, France
| | - Hubert Desal
- l'institut du thorax Université de Nantes, CHU Nantes, INSERM, CNRS, Nantes, France
- CHU Nantes, Department of Neuroradiology, Nantes, France
| | - Bendik S Winsvold
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sigrid Børte
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Research and Communication Unit for Musculoskeletal Health (FORMI), Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marianne Bakke Johnsen
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Research and Communication Unit for Musculoskeletal Health (FORMI), Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ben M Brumpton
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marie Søfteland Sandvei
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- The Cancer Clinic, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kristian Hveem
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - John-Anker Zwart
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - W M Monique Verschuren
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Christoph M Friedrich
- Dortmund University of Applied Science and Arts, Dortmund, Germany
- Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, Essen, Germany
| | - Sven Hirsch
- Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Zurich, Switzerland
| | - Sabine Schilling
- Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Zurich, Switzerland
| | | | - Olivier Martin
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | | | | | | | | | | | | | - Gregory T Jones
- Department of Surgery, University of Otago, Dunedin, New Zealand
| | - Matthew J Bown
- Department of Cardiovascular Sciences and National Institute for Health Research, University of Leicester, Leicester, UK
- Leicester Biomedical Research Centre, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Nerissa U Ko
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Helen Kim
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Jonathan R I Coleman
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- UK National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- UK National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK
| | - Jonathan G Zaroff
- Division of Research, Kaiser Permanente of Northern California, Oakland, CA, USA
| | - Catharina J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rainer Malik
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Martin Dichgans
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Munich, Germany
| | - Muralidharan Sargurupremraj
- INSERM U1219 Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
- Department of Neurology, Institute for Neurodegenerative Disease, Bordeaux University Hospital, Bordeaux, France
| | - Turgut Tatlisumak
- Department of Clinical Neuroscience at Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Philippe Amouyel
- Institut Pasteur de Lille, UMR1167 LabEx DISTALZ - RID-AGE Université de Lille, INSERM, Centre Hospitalier Université de Lille Lille, Lille Lille, France
| | - Stéphanie Debette
- INSERM U1219 Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
- Department of Neurology, Institute for Neurodegenerative Disease, Bordeaux University Hospital, Bordeaux, France
| | - Gabriel J E Rinkel
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Bradford B Worrall
- Departments of Neurology and Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Joanna Pera
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Agnieszka Slowik
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Emília I Gaál-Paavola
- Department of Neurosurgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Clinical Neurosciences, University of Helsinki, Helsinki, Finland
| | - Mika Niemelä
- Department of Neurosurgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Juha E Jääskeläinen
- Neurosurgery NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikael von Und Zu Fraunberg
- Neurosurgery NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Antti Lindgren
- Neurosurgery NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - David J Werring
- Stroke Research Centre, University College London Queen Square Institute of Neurology, London, UK
| | - Daniel Woo
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Richard Redon
- l'institut du thorax Université de Nantes, CHU Nantes, INSERM, CNRS, Nantes, France
| | - Philippe Bijlenga
- Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Jan H Veldink
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Ynte M Ruigrok
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
24
|
Xing Q, Liu S, Jiang S, Li T, Wang Z, Wang Y. Prognostic model of 10 immune-related genes and identification of small molecule drugs in bladder urothelial carcinoma (BLCA). Transl Androl Urol 2020; 9:2054-2070. [PMID: 33209669 PMCID: PMC7658175 DOI: 10.21037/tau-20-696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background We aimed to establish an immune-related gene (IRG) based signature that could provide guidance for clinical bladder cancer (BC) prognostic surveillance. Methods Differentially expressed IRGs and transcription factors (TFs) between BCs and normal tissues were extracted from transcriptome data downloaded from the TCGA database. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out to identify related pathways based on differently expressed IRGs. Then, univariate Cox regression analysis was performed to investigate IRGs with prognostic values and LASSO penalized Cox regression analysis was utilized to develop the prognostic index (PI) model. Results A total of 411 BC tissue samples and 19 normal bladder tissues in the TCGA database were enrolled in this study and 259 differentially expressed IRGs were identified. Networks between TFs and IRGs were also provided to seek the upstream regulators of differentially expressed IRGs. By means of univariate Cox regression analysis, 57 IRGs were analyzed with prognostic values and 10 IRGs were finally identified by LASSO penalized Cox regression analysis to construct the PI model. This model could significantly classified BC patients into high-risk group and low-risk group in terms of OS (P=9.923e-07) and its AUC reached 0.711. By means of univariate and multivariate COX regression analysis, this PI was proven to be a valuable independent prognostic factor (HR =1.119, 95% CI =1.066-1.175, P<0.001). CMap database analysis was also utilized to screen out 10 small molecules drugs with the potential for the treatment of BC. Conclusions Our study successfully provided a novel PI based on IRGs with the potential to predict the prognosis of BC and screened out 10 small molecules drugs with the potential to treat BC. Besides, networks between TFs and IRGs were also displayed to seek its upstream regulators for future researches.
Collapse
Affiliation(s)
- Qianwei Xing
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
| | - Shouyong Liu
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Silin Jiang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Li
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Wang
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
25
|
Ding X, Zhao S, Zhang Q, Yan Z, Wang Y, Wu Y, Li X, Liu J, Niu Y, Zhang Y, Zhang M, Wang H, Zhang Y, Chen W, Yang XZ, Liu P, Posey JE, Lupski JR, Wu Z, Yang X, Wu N, Wang K. Exome sequencing reveals a novel variant in NFX1 causing intracranial aneurysm in a Chinese family. J Neurointerv Surg 2020; 12:221-226. [PMID: 31401562 PMCID: PMC7014815 DOI: 10.1136/neurintsurg-2019-014900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND Genetic risk factors play an important role in the pathogenesis of familial intracranial aneurysms (FIAs); however, the molecular mechanisms remain largely unknown. OBJECTIVE To investigate potential FIA-causing genetic variants by rare variant interrogation and a family-based genomics approach in a large family with an extensive multigenerational pedigree with FIAs. METHOD Exome sequencing (ES) was performed in a dominant likely family with intracranial aneurysms (IAs). Variants were analyzed by an in-house developed pipeline and prioritized using various filtering strategies, including population frequency, variant type, and predicted variant pathogenicity. Sanger sequencing was also performed to evaluate the segregation of the variants with the phenotype. RESULTS Based on the ES data obtained from five individuals from a family with 7/21 living members affected with IAs, a total of 14 variants were prioritized as candidate variants. Familial segregation analysis revealed that NFX1 c.2519T>C (p.Leu840Pro) segregated in accordance with Mendelian expectations with the phenotype within the family-that is, present in all IA-affected cases and absent from all unaffected members of the second generation. This missense variant is absent from public databases (1000genome, ExAC, gnomAD, ESP5400), and has damaging predictions by bioinformatics tools (Gerp ++ score = 5.88, CADD score = 16.43, MutationTaster score = 1, LRT score = 0). In addition, 840Leu in NFX1 is robustly conserved in mammals and maps in a region before the RING-type zinc finger domain. CONCLUSION NFX1 c.2519T>C (p.Leu840Pro) may contribute to the pathogenetics of a subset of FIAs.
Collapse
Affiliation(s)
- Xinghuan Ding
- Department of Interventional Neuroradiology, Beijing
Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University,
Beijing 100070, China
| | - Sen Zhao
- Beijing Key Laboratory for Genetic Research of Skeletal
Deformity, Beijing 100730, China
- Medical Research Center of Orthopedics, Chinese Academy of
Medical Sciences, Beijing 100730, China
- Department of Orthopedic Surgery, Peking Union Medical
College Hospital, Peking Union Medical College and Chinese Academy of Medical
Sciences, Beijing 100730, China
| | - Qianqian Zhang
- Department of Interventional Neuroradiology, Beijing
Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University,
Beijing 100070, China
| | - Zihui Yan
- Beijing Key Laboratory for Genetic Research of Skeletal
Deformity, Beijing 100730, China
- Medical Research Center of Orthopedics, Chinese Academy of
Medical Sciences, Beijing 100730, China
- Department of Orthopedic Surgery, Peking Union Medical
College Hospital, Peking Union Medical College and Chinese Academy of Medical
Sciences, Beijing 100730, China
| | - Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital
of Nanchang University, Nanchang University, Nanchang 330000, China
| | - Yong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal
Deformity, Beijing 100730, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal
Deformity, Beijing 100730, China
- Department of Central Laboratory, Peking Union Medical
College Hospital, Peking Union Medical College and Chinese Academy of Medical
Sciences, Beijing 100730, China
| | - Jian Liu
- Department of Interventional Neuroradiology, Beijing
Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University,
Beijing 100070, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal
Deformity, Beijing 100730, China
- Department of Central Laboratory, Peking Union Medical
College Hospital, Peking Union Medical College and Chinese Academy of Medical
Sciences, Beijing 100730, China
| | - Yisen Zhang
- Department of Interventional Neuroradiology, Beijing
Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University,
Beijing 100070, China
| | - Mingqi Zhang
- Department of Interventional Neuroradiology, Beijing
Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University,
Beijing 100070, China
| | - Huizi Wang
- Beijing Key Laboratory for Genetic Research of Skeletal
Deformity, Beijing 100730, China
- Department of Central Laboratory, Peking Union Medical
College Hospital, Peking Union Medical College and Chinese Academy of Medical
Sciences, Beijing 100730, China
| | - Ying Zhang
- Department of Interventional Neuroradiology, Beijing
Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University,
Beijing 100070, China
| | - Weisheng Chen
- Beijing Key Laboratory for Genetic Research of Skeletal
Deformity, Beijing 100730, China
- Department of Orthopedic Surgery, Peking Union Medical
College Hospital, Peking Union Medical College and Chinese Academy of Medical
Sciences, Beijing 100730, China
| | - Xin-Zhuang Yang
- Department of Central Laboratory, Peking Union Medical
College Hospital, Peking Union Medical College and Chinese Academy of Medical
Sciences, Beijing 100730, China
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, Texas 77030, USA
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, Texas 77030, USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, Texas 77030, USA
- Department of Pediatrics, Baylor College of Medicine,
Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine,
Houston Texas 77030 USA
- Texas Children’s Hospital, Houston, Texas 77030,
USA
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal
Deformity, Beijing 100730, China
- Medical Research Center of Orthopedics, Chinese Academy of
Medical Sciences, Beijing 100730, China
- Department of Central Laboratory, Peking Union Medical
College Hospital, Peking Union Medical College and Chinese Academy of Medical
Sciences, Beijing 100730, China
| | - Xinjian Yang
- Department of Interventional Neuroradiology, Beijing
Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University,
Beijing 100070, China
| | - Nan Wu
- Beijing Key Laboratory for Genetic Research of Skeletal
Deformity, Beijing 100730, China
- Medical Research Center of Orthopedics, Chinese Academy of
Medical Sciences, Beijing 100730, China
- Department of Orthopedic Surgery, Peking Union Medical
College Hospital, Peking Union Medical College and Chinese Academy of Medical
Sciences, Beijing 100730, China
| | - Kun Wang
- Department of Interventional Neuroradiology, Beijing
Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University,
Beijing 100070, China
| |
Collapse
|
26
|
van 't Hof FNG, Lai D, van Setten J, Bots ML, Vaartjes I, Broderick J, Woo D, Foroud T, Rinkel GJE, de Bakker PIW, Ruigrok YM. Exome-chip association analysis of intracranial aneurysms. Neurology 2019; 94:e481-e488. [PMID: 31732565 DOI: 10.1212/wnl.0000000000008665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/01/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate to what extent low-frequency genetic variants (with minor allele frequencies <5%) affect the risk of intracranial aneurysms (IAs). METHODS One thousand fifty-six patients with IA and 2,097 population-based controls from the Netherlands were genotyped with the Illumina HumanExome BeadChip. After quality control (QC) of samples and single nucleotide variants (SNVs), we conducted a single variant analysis using the Fisher exact test. We also performed the variable threshold (VT) test and the sequence kernel association test (SKAT) at different minor allele count (MAC) thresholds of >5 and >0 to test the hypothesis that multiple variants within the same gene are associated with IA risk. Significant results were tested in a replication cohort of 425 patients with IA and 311 controls, and results of the 2 cohorts were combined in a meta-analysis. RESULTS After QC, 995 patients with IA and 2,080 controls remained for further analysis. The single variant analysis comprising 46,534 SNVs did not identify significant loci at the genome-wide level. The gene-based tests showed a statistically significant association for fibulin 2 (FBLN2) (best p = 1 × 10-6 for the VT test, MAC >5). Associations were not statistically significant in the independent but smaller replication cohort (p > 0.57) but became slightly stronger in a meta-analysis of the 2 cohorts (best p = 4.8 × 10-7 for the SKAT, MAC ≥1). CONCLUSION Gene-based tests indicated an association for FBLN2, a gene encoding an extracellular matrix protein implicated in vascular wall remodeling, but independent validation in larger cohorts is warranted. We did not identify any significant associations for single low-frequency genetic variants.
Collapse
Affiliation(s)
- Femke N G van 't Hof
- From the Department of Neurology and Neurosurgery (F.N.G.v.H., G.J.E.R., Y.M.R.), Brain Center Rudolf Magnus, Department of Cardiology (J.v.S.), Department of Medical Genetics (P.I.W.d.B.), Centre for Molecular Medicine, and Department of Epidemiology (M.L.B., I.V., P.I.W.d.B.), Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands; Department of Medical and Molecular Genetics (D.L., T.F.), Indiana University School of Medicine, Indianapolis; and Department of Neurology and Rehabilitation Medicine (J.B., D.W.), University of Cincinnati School of Medicine, OH.
| | - Dongbing Lai
- From the Department of Neurology and Neurosurgery (F.N.G.v.H., G.J.E.R., Y.M.R.), Brain Center Rudolf Magnus, Department of Cardiology (J.v.S.), Department of Medical Genetics (P.I.W.d.B.), Centre for Molecular Medicine, and Department of Epidemiology (M.L.B., I.V., P.I.W.d.B.), Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands; Department of Medical and Molecular Genetics (D.L., T.F.), Indiana University School of Medicine, Indianapolis; and Department of Neurology and Rehabilitation Medicine (J.B., D.W.), University of Cincinnati School of Medicine, OH
| | - Jessica van Setten
- From the Department of Neurology and Neurosurgery (F.N.G.v.H., G.J.E.R., Y.M.R.), Brain Center Rudolf Magnus, Department of Cardiology (J.v.S.), Department of Medical Genetics (P.I.W.d.B.), Centre for Molecular Medicine, and Department of Epidemiology (M.L.B., I.V., P.I.W.d.B.), Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands; Department of Medical and Molecular Genetics (D.L., T.F.), Indiana University School of Medicine, Indianapolis; and Department of Neurology and Rehabilitation Medicine (J.B., D.W.), University of Cincinnati School of Medicine, OH
| | - Michiel L Bots
- From the Department of Neurology and Neurosurgery (F.N.G.v.H., G.J.E.R., Y.M.R.), Brain Center Rudolf Magnus, Department of Cardiology (J.v.S.), Department of Medical Genetics (P.I.W.d.B.), Centre for Molecular Medicine, and Department of Epidemiology (M.L.B., I.V., P.I.W.d.B.), Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands; Department of Medical and Molecular Genetics (D.L., T.F.), Indiana University School of Medicine, Indianapolis; and Department of Neurology and Rehabilitation Medicine (J.B., D.W.), University of Cincinnati School of Medicine, OH
| | - Ilonca Vaartjes
- From the Department of Neurology and Neurosurgery (F.N.G.v.H., G.J.E.R., Y.M.R.), Brain Center Rudolf Magnus, Department of Cardiology (J.v.S.), Department of Medical Genetics (P.I.W.d.B.), Centre for Molecular Medicine, and Department of Epidemiology (M.L.B., I.V., P.I.W.d.B.), Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands; Department of Medical and Molecular Genetics (D.L., T.F.), Indiana University School of Medicine, Indianapolis; and Department of Neurology and Rehabilitation Medicine (J.B., D.W.), University of Cincinnati School of Medicine, OH
| | - Joseph Broderick
- From the Department of Neurology and Neurosurgery (F.N.G.v.H., G.J.E.R., Y.M.R.), Brain Center Rudolf Magnus, Department of Cardiology (J.v.S.), Department of Medical Genetics (P.I.W.d.B.), Centre for Molecular Medicine, and Department of Epidemiology (M.L.B., I.V., P.I.W.d.B.), Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands; Department of Medical and Molecular Genetics (D.L., T.F.), Indiana University School of Medicine, Indianapolis; and Department of Neurology and Rehabilitation Medicine (J.B., D.W.), University of Cincinnati School of Medicine, OH
| | - Daniel Woo
- From the Department of Neurology and Neurosurgery (F.N.G.v.H., G.J.E.R., Y.M.R.), Brain Center Rudolf Magnus, Department of Cardiology (J.v.S.), Department of Medical Genetics (P.I.W.d.B.), Centre for Molecular Medicine, and Department of Epidemiology (M.L.B., I.V., P.I.W.d.B.), Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands; Department of Medical and Molecular Genetics (D.L., T.F.), Indiana University School of Medicine, Indianapolis; and Department of Neurology and Rehabilitation Medicine (J.B., D.W.), University of Cincinnati School of Medicine, OH
| | - Tatiana Foroud
- From the Department of Neurology and Neurosurgery (F.N.G.v.H., G.J.E.R., Y.M.R.), Brain Center Rudolf Magnus, Department of Cardiology (J.v.S.), Department of Medical Genetics (P.I.W.d.B.), Centre for Molecular Medicine, and Department of Epidemiology (M.L.B., I.V., P.I.W.d.B.), Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands; Department of Medical and Molecular Genetics (D.L., T.F.), Indiana University School of Medicine, Indianapolis; and Department of Neurology and Rehabilitation Medicine (J.B., D.W.), University of Cincinnati School of Medicine, OH
| | - Gabriel J E Rinkel
- From the Department of Neurology and Neurosurgery (F.N.G.v.H., G.J.E.R., Y.M.R.), Brain Center Rudolf Magnus, Department of Cardiology (J.v.S.), Department of Medical Genetics (P.I.W.d.B.), Centre for Molecular Medicine, and Department of Epidemiology (M.L.B., I.V., P.I.W.d.B.), Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands; Department of Medical and Molecular Genetics (D.L., T.F.), Indiana University School of Medicine, Indianapolis; and Department of Neurology and Rehabilitation Medicine (J.B., D.W.), University of Cincinnati School of Medicine, OH
| | - Paul I W de Bakker
- From the Department of Neurology and Neurosurgery (F.N.G.v.H., G.J.E.R., Y.M.R.), Brain Center Rudolf Magnus, Department of Cardiology (J.v.S.), Department of Medical Genetics (P.I.W.d.B.), Centre for Molecular Medicine, and Department of Epidemiology (M.L.B., I.V., P.I.W.d.B.), Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands; Department of Medical and Molecular Genetics (D.L., T.F.), Indiana University School of Medicine, Indianapolis; and Department of Neurology and Rehabilitation Medicine (J.B., D.W.), University of Cincinnati School of Medicine, OH
| | - Ynte M Ruigrok
- From the Department of Neurology and Neurosurgery (F.N.G.v.H., G.J.E.R., Y.M.R.), Brain Center Rudolf Magnus, Department of Cardiology (J.v.S.), Department of Medical Genetics (P.I.W.d.B.), Centre for Molecular Medicine, and Department of Epidemiology (M.L.B., I.V., P.I.W.d.B.), Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands; Department of Medical and Molecular Genetics (D.L., T.F.), Indiana University School of Medicine, Indianapolis; and Department of Neurology and Rehabilitation Medicine (J.B., D.W.), University of Cincinnati School of Medicine, OH
| |
Collapse
|
27
|
Poppenberg KE, Jiang K, Tso MK, Snyder KV, Siddiqui AH, Kolega J, Jarvis JN, Meng H, Tutino VM. Epigenetic landscapes suggest that genetic risk for intracranial aneurysm operates on the endothelium. BMC Med Genomics 2019; 12:149. [PMID: 31666072 PMCID: PMC6821037 DOI: 10.1186/s12920-019-0591-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Genetics play an important role in intracranial aneurysm (IA) pathophysiology. Genome-wide association studies have identified several single nucleotide polymorphisms (SNPs) that are linked to IA but how they affect disease pathobiology remains poorly understood. We used Encyclopedia of DNA Elements (ENCODE) data to investigate the epigenetic landscapes surrounding genetic risk loci to determine if IA-associated SNPs affect functional elements that regulate gene expression and if those SNPs are most likely to impact a specific type of cells. METHODS We mapped 16 highly significant IA-associated SNPs to linkage disequilibrium (LD) blocks within the human genome. Within these regions, we examined the presence of H3K4me1 and H3K27ac histone marks and CCCTC-binding factor (CTCF) and transcription-factor binding sites using chromatin immunoprecipitation-sequencing (ChIP-Seq) data. This analysis was conducted in several cell types relevant to endothelial (human umbilical vein endothelial cells [HUVECs]) and inflammatory (monocytes, neutrophils, and peripheral blood mononuclear cells [PBMCs]) biology. Gene ontology analysis was performed on genes within extended IA-risk regions to understand which biological processes could be affected by IA-risk SNPs. We also evaluated recently published data that showed differential methylation and differential ribonucleic acid (RNA) expression in IA to investigate the correlation between differentially regulated elements and the IA-risk LD blocks. RESULTS The IA-associated LD blocks were statistically significantly enriched for H3K4me1 and/or H3K27ac marks (markers of enhancer function) in endothelial cells but not in immune cells. The IA-associated LD blocks also contained more binding sites for CTCF in endothelial cells than monocytes, although not statistically significant. Differentially methylated regions of DNA identified in IA tissue were also present in several IA-risk LD blocks, suggesting SNPs could affect this epigenetic machinery. Gene ontology analysis supports that genes affected by IA-risk SNPs are associated with extracellular matrix reorganization and endopeptidase activity. CONCLUSION These findings suggest that known genetic alterations linked to IA risk act on endothelial cell function. These alterations do not correlate with IA-associated gene expression signatures of circulating blood cells, which suggests that such signatures are a secondary response reflecting the presence of IA rather than indicating risk for IA.
Collapse
Affiliation(s)
- Kerry E Poppenberg
- Clinical and Translational Research Center, Canon Stroke and Vascular Research Center, 875 Ellicott Street, 14203, Buffalo, NY, USA.,Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | - Kaiyu Jiang
- Genetics, Genomics, and Bioinformatics Program, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Michael K Tso
- Clinical and Translational Research Center, Canon Stroke and Vascular Research Center, 875 Ellicott Street, 14203, Buffalo, NY, USA.,Department of Neurosurgery, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kenneth V Snyder
- Clinical and Translational Research Center, Canon Stroke and Vascular Research Center, 875 Ellicott Street, 14203, Buffalo, NY, USA.,Department of Neurosurgery, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Department of Radiology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Adnan H Siddiqui
- Clinical and Translational Research Center, Canon Stroke and Vascular Research Center, 875 Ellicott Street, 14203, Buffalo, NY, USA.,Department of Neurosurgery, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Department of Radiology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - John Kolega
- Clinical and Translational Research Center, Canon Stroke and Vascular Research Center, 875 Ellicott Street, 14203, Buffalo, NY, USA.,Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - James N Jarvis
- Genetics, Genomics, and Bioinformatics Program, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Department of Pediatrics, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Hui Meng
- Clinical and Translational Research Center, Canon Stroke and Vascular Research Center, 875 Ellicott Street, 14203, Buffalo, NY, USA.,Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA.,Department of Neurosurgery, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Department of Mechanical & Aerospace Engineering, University at Buffalo, Buffalo, NY, USA
| | - Vincent M Tutino
- Clinical and Translational Research Center, Canon Stroke and Vascular Research Center, 875 Ellicott Street, 14203, Buffalo, NY, USA. .,Department of Neurosurgery, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, USA. .,Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
28
|
Hong EP, Kim BJ, Jeon JP, Yang JS, Choi HJ, Kang SH, Cho YJ. Association of Endothelin Receptor Type A with Intracranial Aneurysm in 20,609 East Asians: An Updated Meta-Analysis. World Neurosurg 2019; 130:e804-e814. [PMID: 31295611 DOI: 10.1016/j.wneu.2019.06.228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Genome-wide association studies have reported an association between the EDNRA gene and intracranial aneurysm (IA) in European and Japanese populations; however, there is no study on this polymorphism in other Asian populations. Therefore, we performed an extensive large-scale meta-analysis for association of the rs6841581 variant of EDNRA with IA susceptibility in East Asian population. METHODS We conducted a systemic review via electronic search for papers published between January 2002 and February 2019. We used fixed and random effect models and applied the inverse variance method. The statistical power of the result was estimated in the genome-wide significant threshold under an additive inheritance model. RESULTS Our meta-analysis included 5873 patients with IA and 14,736 non-IA controls from 6 independent populations: 4 Japanese, 1 Chinese, and 1 Korean. The risk (major) G allele of rs6841581 showed the highest significant association with the increased risk of IA under the fixed effect model in the East-Asian population (odds ratio = 1.244, 95% confidence interval: 1.174-1.318, P = 1.36E-13). The rs6841581 variant showed sufficient statistical power (80.3%) in this meta-analysis under the additive model. In subsequent analysis, the frequencies of the risk G allele showed similar pattern in all of the Japanese, Chinese, and Korean populations (69%, 80%, and 78%, respectively). In the in silico functional analysis, none of the functional variants was correlated with rs6841581. CONCLUSIONS The genetic variant of EDNRA, rs6841581, was significantly associated with increased risk of IA. Our findings indicate that it could be used as an IA-predicting variant in East Asian populations.
Collapse
Affiliation(s)
- Eun Pyo Hong
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Institute of New Frontier Stroke Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Bong Jun Kim
- Institute of New Frontier Stroke Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Jin Pyeong Jeon
- Institute of New Frontier Stroke Research, Hallym University College of Medicine, Chuncheon, Korea; Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea; Genetic and Research, Chuncheon, Korea.
| | - Jin Seo Yang
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea
| | - Hyuk Jai Choi
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea
| | - Suk Hyung Kang
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea
| | - Yong Jun Cho
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea
| |
Collapse
|
29
|
Bijlenga P, Morel S, Hirsch S, Schaller K, Rüfenacht D. Plea for an international Aneurysm Data Bank: description and perspectives. Neurosurg Focus 2019; 47:E17. [PMID: 31261121 DOI: 10.3171/2019.4.focus19185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022]
Abstract
The disease resulting in the formation, growth, and rupture of intracranial aneurysms is complex. Research is accumulating evidence that the disease is driven by many different factors, some constant and others variable over time. Combinations of factors may induce specific biophysical reactions at different stages of the disease. A better understanding of the biophysical mechanisms responsible for the disease initiation and progression is essential to predict the natural history of the disease. More accurate predictions are mandatory to adequately balance risks between observation and intervention at the individual level as expected in the age of personalized medicine. Multidisciplinary exploration of the disease also opens an avenue to the discovery of possible preventive actions or medical treatments. Modern information technologies and data processing methods offer tools to address such complex challenges requiring 1) the collection of a high volume of information provided globally, 2) integration and harmonization of the information, and 3) management of data sharing with a broad spectrum of stakeholders.Over the last decade an infrastructure has been set up and is now made available to the academic community to support and promote exploration of intracranial disease, modeling, and clinical management simulation and monitoring.The background and purpose of the infrastructure is reviewed. The infrastructure data flow architecture is presented. The basic concepts of disease modeling that oriented the design of the core information model are explained. Disease phases, milestones, cases stratification group in each phase, key relevant factors, and outcomes are defined. Data processing and disease model visualization tools are presented. Most relevant contributions to the literature resulting from the exploitation of the infrastructure are reviewed, and future perspectives are discussed.
Collapse
Affiliation(s)
- Philippe Bijlenga
- 1Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Medical Center, Geneva
| | - Sandrine Morel
- 1Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Medical Center, Geneva.,2Department of Pathology and Immunology, University of Geneva, Faculty of Medicine, Geneva
| | - Sven Hirsch
- 3Institute of Applied Simulation, University of Applied Sciences, Wädenswil, Zürich; and
| | - Karl Schaller
- 1Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Medical Center, Geneva
| | - Daniel Rüfenacht
- 4Neuroradiologie, SwissNeuroInstitute, Klinik Hirslanden, Zürich, Switzerland
| |
Collapse
|
30
|
Li B, Hu C, Liu J, Liao X, Xun J, Xiao M, Yan J. Associations among Genetic Variants and Intracranial Aneurysm in a Chinese Population. Yonsei Med J 2019; 60:651-658. [PMID: 31250579 PMCID: PMC6597466 DOI: 10.3349/ymj.2019.60.7.651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/02/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Genome-wide association studies (GWAS) have revealed that common variants on or near EDNRA, HDAC9, SOX17, RP1, CDKN2B-AS1, and RBBP8 genes are associated with intracranial aneurysm (IA) in European or Japanese populations. However, due to population heterogeneity, whether these loci are associated with IA pathogenesis in Chinese individuals is still unknown. The purpose of this study was to investigate associations among GWAS-identified loci and risk of IA in a Chinese population. MATERIALS AND METHODS A total of 765 individuals (including 230 IA patients and 535 controls) were involved in this study. Twelve single nucleotide polymorphisms (SNPs) of candidate loci were genotyped using the Sequenom MassARRAY platform. Associations were analyzed using univariate or multivariate logistic regression analysis. RESULTS SNPs in CDKN2B-AS1 (especially rs10757272) showed significant associations with IA in dominant and additive models [odds ratio (OR), 2.99 and 1.43; 95% confidence interval (CI), 1.44-6.24 and 1.10-1.86, respectively]. A SNP near HDAC9 (rs10230207) was associated with IA in the dominant model (OR, 1.42; 95% CI, 1.01-1.99). One SNP near RP1 (rs1072737) showed a protective effect on IA in the dominant model (OR, 0.66; 95% CI, 0.46-0.95), while another SNP in RP1 (rs9298506) showed a risk effect on IA in a recessive model (OR, 3.82; 95% CI, 1.84-7.91). No associations were observed among common variants near EDNRA, SOX17, or RBBP8 and IA. CONCLUSION These data partially confirmed earlier results and showed that variants in CDKN2B-AS1, RP1, and HDAC9 could be genetic susceptibility factors for IA in a Chinese population.
Collapse
Affiliation(s)
- Bingyang Li
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Hunan, China
| | - Chongyu Hu
- Department of Neurology, Hunan People's Hospital, Changsha, China
| | - Junyu Liu
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Xin Liao
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Hunan, China
| | - Jiayu Xun
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Hunan, China
| | - Manqian Xiao
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Hunan, China
| | - Junxia Yan
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Hunan, China.
| |
Collapse
|
31
|
Zeng Y, Chen R, Ma M, Liu B, Xia J, Xu H, Liu Y, Du X, Hu Z, Yang Q, Zhang L. Associations of EDNRA and EDNRB Polymorphisms with Intracerebral Hemorrhage. World Neurosurg 2019; 129:e472-e477. [PMID: 31150867 DOI: 10.1016/j.wneu.2019.05.186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The most potent vasoconstrictor, endothelin-1 and its receptors, endothelin receptor A (EDNRA) and endothelin receptor B (EDNRB) are involved in hypertension. Hypertension is a major risk factor of intracerebral hemorrhage (ICH). Recent studies have demonstrated increased plasma endothelin-1 level in ICH patients and relationships between EDNRA and EDNRB genetic variants and ischemic stroke. The aim of the current study was to investigate whether EDNRA and EDNRB polymorphisms are associated with ICH by interacting with blood pressure levels. METHODS Five EDNRA and EDNRB polymorphisms were genotyped in this case-control study. RESULTS We identified that EDNRA rs5333 T allele might be a protective factor of ICH (adjusted odds ratio [OR] = 0.638, 95% CI: 0.417-0.977, P = 0.038), while EDNRB rs5351 A allele could be a risk factor of ICH (adjusted OR = 1.476, 95% CI: 1.042-2.089, P = 0.028). Moreover, we only found that the GG genotype of EDNRA rs5335 had higher diastolic blood pressure than the GC + CC genotypes in ICH patients (91.69 ± 18.77 vs. 84.71 ± 21.48, P = 0.004). CONCLUSIONS These findings support the important role of EDNRA and EDNRB polymorphisms in ICH, and suggest that they do not interact with blood pressure levels on altering ICH risk.
Collapse
Affiliation(s)
- Yi Zeng
- Department of Geriatrics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - RuiJuan Chen
- Department of Geriatrics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - MingMing Ma
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - BaoQiong Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - HongWei Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - YunHai Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - XiaoPing Du
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - ZhiPing Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - QiDong Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Le Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
32
|
Laarman MD, Geeven G, Barnett P, Rinkel GJE, de Laat W, Ruigrok YM, Bakkers J. Chromatin Conformation Links Putative Enhancers in Intracranial Aneurysm-Associated Regions to Potential Candidate Genes. J Am Heart Assoc 2019; 8:e011201. [PMID: 30994044 PMCID: PMC6512097 DOI: 10.1161/jaha.118.011201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background We previously showed that intracranial aneurysm (IA)–associated single‐nucleotide polymorphisms are enriched in promoters and putative enhancers identified in the human circle of Willis, on which IAs develop, suggesting a role for promoters and enhancers in IAs. We further investigated the role of putative enhancers in the pathogenesis of IA by identifying their potential target genes and validating their regulatory activity. Methods and Results Using our previously published circle of Willis chromatin immunoprecipitation and sequencing data, we selected 34 putative enhancers in IA‐associated regions from genome‐wide association studies. We then used a chromatin conformation capture technique to prioritize target genes and found that 15 putative enhancers interact with the promoters of 6 target genes: SOX17,CDKN2B,MTAP,CNNM2,RPEL1, and GATA6. Subsequently, we assessed the activity of these putative enhancers in vivo in zebrafish embryos and confirmed activity for 8 putative enhancers. Last, we found that all 6 target genes are expressed in the circle of Willis, on the basis of RNA sequencing data and in situ hybridization. Furthermore, in situ hybridization showed that these genes are expressed in multiple cell types in the circle of Willis. Conclusions In 4 of 6 IA‐associated genome‐wide association study regions, we identified 8 putative enhancers that are active in vivo and interact with 6 nearby genes, suggesting that these genes are regulated by the identified putative enhancers. These genes, SOX17,CDKN2B,MTAP,CNNM2,RPEL1, and GATA6, are therefore potential candidate genes involved in IA pathogenesis and should be studied using animal models in the future.
Collapse
Affiliation(s)
- Melanie D Laarman
- 1 Department of Neurology and Neurosurgery Brain Center Rudolf Magnus University Medical Center, Utrecht the Netherlands.,2 Hubrecht Institute (Royal Netherlands Academy of Arts and Sciences (KNAW)) University Medical Center, Utrecht the Netherlands
| | - Geert Geeven
- 2 Hubrecht Institute (Royal Netherlands Academy of Arts and Sciences (KNAW)) University Medical Center, Utrecht the Netherlands
| | - Phil Barnett
- 4 Department of Medical Biology Academic Medical Center University of Amsterdam the Netherlands
| | -
- 5 Netherlands Institute for Neuroscience Amsterdam the Netherlands
| | - Gabriël J E Rinkel
- 1 Department of Neurology and Neurosurgery Brain Center Rudolf Magnus University Medical Center, Utrecht the Netherlands
| | - Wouter de Laat
- 2 Hubrecht Institute (Royal Netherlands Academy of Arts and Sciences (KNAW)) University Medical Center, Utrecht the Netherlands
| | - Ynte M Ruigrok
- 1 Department of Neurology and Neurosurgery Brain Center Rudolf Magnus University Medical Center, Utrecht the Netherlands
| | - Jeroen Bakkers
- 2 Hubrecht Institute (Royal Netherlands Academy of Arts and Sciences (KNAW)) University Medical Center, Utrecht the Netherlands.,3 Division of Heart and Lungs Department of Medical Physiology University Medical Center, Utrecht the Netherlands
| |
Collapse
|
33
|
Karschnia P, Nishimura S, Louvi A. Cerebrovascular disorders associated with genetic lesions. Cell Mol Life Sci 2019; 76:283-300. [PMID: 30327838 PMCID: PMC6450555 DOI: 10.1007/s00018-018-2934-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 01/15/2023]
Abstract
Cerebrovascular disorders are underlain by perturbations in cerebral blood flow and abnormalities in blood vessel structure. Here, we provide an overview of the current knowledge of select cerebrovascular disorders that are associated with genetic lesions and connect genomic findings with analyses aiming to elucidate the cellular and molecular mechanisms of disease pathogenesis. We argue that a mechanistic understanding of genetic (familial) forms of cerebrovascular disease is a prerequisite for the development of rational therapeutic approaches, and has wider implications for treatment of sporadic (non-familial) forms, which are usually more common.
Collapse
Affiliation(s)
- Philipp Karschnia
- Departments of Neurosurgery and Neuroscience, Program on Neurogenetics, Yale School of Medicine, P.O. Box 208082, New Haven, CT, 06520-8082, USA
| | - Sayoko Nishimura
- Departments of Neurosurgery and Neuroscience, Program on Neurogenetics, Yale School of Medicine, P.O. Box 208082, New Haven, CT, 06520-8082, USA
| | - Angeliki Louvi
- Departments of Neurosurgery and Neuroscience, Program on Neurogenetics, Yale School of Medicine, P.O. Box 208082, New Haven, CT, 06520-8082, USA.
| |
Collapse
|
34
|
Ton QV, Leino D, Mowery SA, Bredemeier NO, Lafontant PJ, Lubert A, Gurung S, Farlow JL, Foroud TM, Broderick J, Sumanas S. Collagen COL22A1 maintains vascular stability and mutations in COL22A1 are potentially associated with intracranial aneurysms. Dis Model Mech 2018; 11:11/12/dmm033654. [PMID: 30541770 PMCID: PMC6307901 DOI: 10.1242/dmm.033654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 11/01/2018] [Indexed: 12/31/2022] Open
Abstract
Collagen XXII (COL22A1) is a quantitatively minor collagen, which belongs to the family of fibril-associated collagens with interrupted triple helices. Its biological function has been poorly understood. Here, we used a genome-editing approach to generate a loss-of-function mutant in zebrafish col22a1. Homozygous mutant adults exhibit increased incidence of intracranial hemorrhages, which become more prominent with age and after cardiovascular stress. Homozygous col22a1 mutant embryos show higher sensitivity to cardiovascular stress and increased vascular permeability, resulting in a greater percentage of embryos with intracranial hemorrhages. Mutant embryos also exhibit dilations and irregular structure of cranial vessels. To test whether COL22A1 is associated with vascular disease in humans, we analyzed data from a previous study that performed whole-exome sequencing of 45 individuals from seven families with intracranial aneurysms. The rs142175725 single-nucleotide polymorphism was identified, which segregated with the phenotype in all four affected individuals in one of the families, and affects a highly conserved E736 residue in COL22A1 protein, resulting in E736D substitution. Overexpression of human wild-type COL22A1, but not the E736D variant, partially rescued the col22a1 loss-of-function mutant phenotype in zebrafish embryos. Our data further suggest that the E736D mutation interferes with COL22A1 protein secretion, potentially leading to endoplasmic reticulum stress. Altogether, these results argue that COL22A1 is required to maintain vascular integrity. These data further suggest that mutations in COL22A1 could be one of the risk factors for intracranial aneurysms in humans. Summary: Collagen COL22A1 is expressed in perivascular fibroblast-like cells and is required to maintain vascular stability in a zebrafish model. Mutations in COL22A1 are likely to be associated with intracranial aneurysms.
Collapse
Affiliation(s)
- Quynh V Ton
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Daniel Leino
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Sarah A Mowery
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Nina O Bredemeier
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | - Allison Lubert
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Suman Gurung
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Janice L Farlow
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Tatiana M Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Joseph Broderick
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
35
|
Alg VS, Ke X, Grieve J, Bonner S, Walsh DC, Bulters D, Kitchen N, Houlden H, Werring DJ. Association of functional MMP-2 gene variant with intracranial aneurysms: case-control genetic association study and meta-analysis. Br J Neurosurg 2018; 32:255-259. [PMID: 29334797 DOI: 10.1080/02688697.2018.1427213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 11/30/2017] [Accepted: 01/09/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Abnormalities in Matrix Metalloproteinase (MMP) genes, which are important in extracellular matrix (ECM) maintenance and therefore arterial wall integrity are a plausible underlying mechanism of intracranial aneurysm (IA) formation, growth and subsequent rupture. We investigated whether the rs243865 C > T SNP (single nucleotide polymorphism) within the MMP-2 gene (which influences gene transcription) is associated with IA compared to matched controls. MATERIALS AND METHODS We conducted a case-control genetic association study, adjusted for known IA risk factors (smoking and hypertension), in a UK Caucasian population of 1409 patients with intracranial aneurysms (IA), and 1290 matched controls, to determine the association of the rs243865 C > T functional MMP-2 gene SNP with IA (overall, and classified as ruptured and unruptured). We also undertook a meta-analysis of two previous studies examining this SNP. RESULTS The rs243865 T allele was associated with IA presence in univariate (OR 1.18 [95% CI 1.04-1.33], p = .01) and in multi-variable analyses adjusted for smoking and hypertension status (OR 1.16 [95% CI 1.01-1.35], p = .042). Subgroup analysis demonstrated an association of the rs243865 SNP with ruptured IA (OR 1.18 [95% CI 1.03-1.34] p = .017), but, not unruptured IA (OR 1.17 [95% CI 0.97-1.42], p = .11). CONCLUSIONS Our study demonstrated an association between the functional MMP-2 rs243865 variant and IAs. Our findings suggest a genetic role for altered extracellular matrix integrity in the pathogenesis of IA development and rupture.
Collapse
Affiliation(s)
- Varinder S Alg
- a Stroke Research Centre, Department of Brain Repair and Rehabilitation , Institute of Neurology, National Hospital for Neurology and Neurosurgery , London , UK
| | - Xiayi Ke
- b Institute of Child Health, Genetics & Genomic Medicine Programme , Institute of Child Health, Faculty of Pop Health Sciences, UCL , London , UK
| | - Joan Grieve
- a Stroke Research Centre, Department of Brain Repair and Rehabilitation , Institute of Neurology, National Hospital for Neurology and Neurosurgery , London , UK
| | - Stephen Bonner
- c Department of Neuroanaesthesia , James Cook University Hospital, Durham University , London , UK
| | - Daniel C Walsh
- d Department of Neurosurgery, Neurovascular Surgery , Kings College Hospital , London , UK
| | - Diederik Bulters
- e Department of Neurovascular Surgery , University Hospital Southampton , Southampton , UK
| | - Neil Kitchen
- a Stroke Research Centre, Department of Brain Repair and Rehabilitation , Institute of Neurology, National Hospital for Neurology and Neurosurgery , London , UK
| | - Henry Houlden
- a Stroke Research Centre, Department of Brain Repair and Rehabilitation , Institute of Neurology, National Hospital for Neurology and Neurosurgery , London , UK
| | - David J Werring
- a Stroke Research Centre, Department of Brain Repair and Rehabilitation , Institute of Neurology, National Hospital for Neurology and Neurosurgery , London , UK
| |
Collapse
|
36
|
Zhou S, Dion PA, Rouleau GA. Genetics of Intracranial Aneurysms. Stroke 2018; 49:780-787. [DOI: 10.1161/strokeaha.117.018152] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/06/2017] [Accepted: 12/20/2017] [Indexed: 01/23/2023]
Affiliation(s)
- Sirui Zhou
- From the Montréal Neurological Institute and Hospital (S.Z., P.A.D., G.A.R.) and Department of Neurology and Neurosurgery (P.A.D., G.A.R.), McGill University, Québec, Canada; and Department of Medicine, Université de Montréal, Québec, Canada (S.Z.)
| | - Patrick A. Dion
- From the Montréal Neurological Institute and Hospital (S.Z., P.A.D., G.A.R.) and Department of Neurology and Neurosurgery (P.A.D., G.A.R.), McGill University, Québec, Canada; and Department of Medicine, Université de Montréal, Québec, Canada (S.Z.)
| | - Guy A. Rouleau
- From the Montréal Neurological Institute and Hospital (S.Z., P.A.D., G.A.R.) and Department of Neurology and Neurosurgery (P.A.D., G.A.R.), McGill University, Québec, Canada; and Department of Medicine, Université de Montréal, Québec, Canada (S.Z.)
| |
Collapse
|
37
|
Wan L, Huang J, Ni H, Yu G. Screening key genes for abdominal aortic aneurysm based on gene expression omnibus dataset. BMC Cardiovasc Disord 2018; 18:34. [PMID: 29439675 PMCID: PMC5812227 DOI: 10.1186/s12872-018-0766-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/31/2018] [Indexed: 01/15/2023] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a common cardiovascular system disease with high mortality. The aim of this study was to identify potential genes for diagnosis and therapy in AAA. Methods We searched and downloaded mRNA expression data from the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs) from AAA and normal individuals. Then, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, transcriptional factors (TFs) network and protein-protein interaction (PPI) network were used to explore the function of genes. Additionally, immunohistochemical (IHC) staining was used to validate the expression of identified genes. Finally, the diagnostic value of identified genes was accessed by receiver operating characteristic (ROC) analysis in GEO database. Results A total of 1199 DEGs (188 up-regulated and 1011 down-regulated) were identified between AAA and normal individual. KEGG pathway analysis displayed that vascular smooth muscle contraction and pathways in cancer were significantly enriched signal pathway. The top 10 up-regulated and top 10 down-regulated DEGs were used to construct TFs and PPI networks. Some genes with high degrees such as NELL2, CCR7, MGAM, HBB, CSNK2A2, ZBTB16 and FOXO1 were identified to be related to AAA. The consequences of IHC staining showed that CCR7 and PDGFA were up-regulated in tissue samples of AAA. ROC analysis showed that NELL2, CCR7, MGAM, HBB, CSNK2A2, ZBTB16, FOXO1 and PDGFA had the potential diagnostic value for AAA. Conclusions The identified genes including NELL2, CCR7, MGAM, HBB, CSNK2A2, ZBTB16, FOXO1 and PDGFA might be involved in the pathology of AAA.
Collapse
Affiliation(s)
- Li Wan
- Department of pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingyong Huang
- Department of vascular surgery, The First Affiliated Hospital of Wenzhou Medical University, NO.3, YuanXi Lane, Lucheng District, Wenzhou, Zhejiang, 325000, China.
| | - Haizhen Ni
- Department of vascular surgery, The First Affiliated Hospital of Wenzhou Medical University, NO.3, YuanXi Lane, Lucheng District, Wenzhou, Zhejiang, 325000, China
| | - Guanfeng Yu
- Department of vascular surgery, The First Affiliated Hospital of Wenzhou Medical University, NO.3, YuanXi Lane, Lucheng District, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
38
|
Laarman MD, Vermunt MW, Kleinloog R, de Boer-Bergsma JJ, Brain Bank N, Rinkel GJ, Creyghton MP, Mokry M, Bakkers J, Ruigrok YM. Intracranial Aneurysm–Associated Single-Nucleotide Polymorphisms Alter Regulatory DNA in the Human Circle of Willis. Stroke 2018; 49:447-453. [DOI: 10.1161/strokeaha.117.018557] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/17/2017] [Accepted: 11/10/2017] [Indexed: 12/31/2022]
Abstract
Background and Purpose—
Genome-wide association studies significantly link intracranial aneurysm (IA) to single-nucleotide polymorphisms (SNPs) in 6 genomic loci. To gain insight into the relevance of these IA-associated SNPs, we aimed to identify regulatory regions and analyze overall gene expression in the human circle of Willis (CoW), on which these aneurysms develop.
Methods—
We performed chromatin immunoprecipitation and sequencing for histone modifications H3K4me1 and H3K27ac to identify regulatory regions, including distal enhancers and active promoters, in postmortem specimens of the human CoW. These experiments were complemented with RNA sequencing on the same specimens. We determined whether these regulatory regions overlap with IA-associated SNPs, using computational methods. By combining our results with publicly available data, we investigated the effect of IA-associated SNPs on the newly identified regulatory regions and linked them to potential target genes.
Results—
We find that IA-associated SNPs are significantly enriched in CoW regulatory regions. Some of the IA-associated SNPs that overlap with a regulatory region are likely to alter transcription factor binding, and in proximity to these regulatory regions are 102 genes that are expressed in the CoW. In addition, gene expression in the CoW is enriched for genes related to cell adhesion and the extracellular matrix.
Conclusions—
CoW regulatory regions link IA-associated SNPs to genes with a potential role in the development of IAs. Our data refine previous predictions on SNPs associated with IA and provide a substantial resource from which candidates for follow-up studies can be prioritized.
Collapse
Affiliation(s)
- Melanie D. Laarman
- From the Department of Neurology and Neurosurgery (M.D.L., R.K., G.J.E., Y.M.R.), Hubrecht Institute-KNAW, and Division of Heart and Lungs, Department of Medical Physiology (J.B.), University Medical Center Utrecht, the Netherlands (M.D.L., M.W.V., M.P.C., J.B.); Department of Genetics, University Medical Center Groningen, University of Groningen, the Netherlands (J.J.d.B.-B.); Netherlands Institute for Neuroscience, Amsterdam (N.B.B.); and Division of Pediatrics, Wilhelmina Children’s Hospital,
| | - Marit W. Vermunt
- From the Department of Neurology and Neurosurgery (M.D.L., R.K., G.J.E., Y.M.R.), Hubrecht Institute-KNAW, and Division of Heart and Lungs, Department of Medical Physiology (J.B.), University Medical Center Utrecht, the Netherlands (M.D.L., M.W.V., M.P.C., J.B.); Department of Genetics, University Medical Center Groningen, University of Groningen, the Netherlands (J.J.d.B.-B.); Netherlands Institute for Neuroscience, Amsterdam (N.B.B.); and Division of Pediatrics, Wilhelmina Children’s Hospital,
| | - Rachel Kleinloog
- From the Department of Neurology and Neurosurgery (M.D.L., R.K., G.J.E., Y.M.R.), Hubrecht Institute-KNAW, and Division of Heart and Lungs, Department of Medical Physiology (J.B.), University Medical Center Utrecht, the Netherlands (M.D.L., M.W.V., M.P.C., J.B.); Department of Genetics, University Medical Center Groningen, University of Groningen, the Netherlands (J.J.d.B.-B.); Netherlands Institute for Neuroscience, Amsterdam (N.B.B.); and Division of Pediatrics, Wilhelmina Children’s Hospital,
| | - Jelkje J. de Boer-Bergsma
- From the Department of Neurology and Neurosurgery (M.D.L., R.K., G.J.E., Y.M.R.), Hubrecht Institute-KNAW, and Division of Heart and Lungs, Department of Medical Physiology (J.B.), University Medical Center Utrecht, the Netherlands (M.D.L., M.W.V., M.P.C., J.B.); Department of Genetics, University Medical Center Groningen, University of Groningen, the Netherlands (J.J.d.B.-B.); Netherlands Institute for Neuroscience, Amsterdam (N.B.B.); and Division of Pediatrics, Wilhelmina Children’s Hospital,
| | - Netherlands Brain Bank
- From the Department of Neurology and Neurosurgery (M.D.L., R.K., G.J.E., Y.M.R.), Hubrecht Institute-KNAW, and Division of Heart and Lungs, Department of Medical Physiology (J.B.), University Medical Center Utrecht, the Netherlands (M.D.L., M.W.V., M.P.C., J.B.); Department of Genetics, University Medical Center Groningen, University of Groningen, the Netherlands (J.J.d.B.-B.); Netherlands Institute for Neuroscience, Amsterdam (N.B.B.); and Division of Pediatrics, Wilhelmina Children’s Hospital,
| | - Gabriël J.E. Rinkel
- From the Department of Neurology and Neurosurgery (M.D.L., R.K., G.J.E., Y.M.R.), Hubrecht Institute-KNAW, and Division of Heart and Lungs, Department of Medical Physiology (J.B.), University Medical Center Utrecht, the Netherlands (M.D.L., M.W.V., M.P.C., J.B.); Department of Genetics, University Medical Center Groningen, University of Groningen, the Netherlands (J.J.d.B.-B.); Netherlands Institute for Neuroscience, Amsterdam (N.B.B.); and Division of Pediatrics, Wilhelmina Children’s Hospital,
| | - Menno P. Creyghton
- From the Department of Neurology and Neurosurgery (M.D.L., R.K., G.J.E., Y.M.R.), Hubrecht Institute-KNAW, and Division of Heart and Lungs, Department of Medical Physiology (J.B.), University Medical Center Utrecht, the Netherlands (M.D.L., M.W.V., M.P.C., J.B.); Department of Genetics, University Medical Center Groningen, University of Groningen, the Netherlands (J.J.d.B.-B.); Netherlands Institute for Neuroscience, Amsterdam (N.B.B.); and Division of Pediatrics, Wilhelmina Children’s Hospital,
| | - Michal Mokry
- From the Department of Neurology and Neurosurgery (M.D.L., R.K., G.J.E., Y.M.R.), Hubrecht Institute-KNAW, and Division of Heart and Lungs, Department of Medical Physiology (J.B.), University Medical Center Utrecht, the Netherlands (M.D.L., M.W.V., M.P.C., J.B.); Department of Genetics, University Medical Center Groningen, University of Groningen, the Netherlands (J.J.d.B.-B.); Netherlands Institute for Neuroscience, Amsterdam (N.B.B.); and Division of Pediatrics, Wilhelmina Children’s Hospital,
| | - Jeroen Bakkers
- From the Department of Neurology and Neurosurgery (M.D.L., R.K., G.J.E., Y.M.R.), Hubrecht Institute-KNAW, and Division of Heart and Lungs, Department of Medical Physiology (J.B.), University Medical Center Utrecht, the Netherlands (M.D.L., M.W.V., M.P.C., J.B.); Department of Genetics, University Medical Center Groningen, University of Groningen, the Netherlands (J.J.d.B.-B.); Netherlands Institute for Neuroscience, Amsterdam (N.B.B.); and Division of Pediatrics, Wilhelmina Children’s Hospital,
| | - Ynte M. Ruigrok
- From the Department of Neurology and Neurosurgery (M.D.L., R.K., G.J.E., Y.M.R.), Hubrecht Institute-KNAW, and Division of Heart and Lungs, Department of Medical Physiology (J.B.), University Medical Center Utrecht, the Netherlands (M.D.L., M.W.V., M.P.C., J.B.); Department of Genetics, University Medical Center Groningen, University of Groningen, the Netherlands (J.J.d.B.-B.); Netherlands Institute for Neuroscience, Amsterdam (N.B.B.); and Division of Pediatrics, Wilhelmina Children’s Hospital,
| |
Collapse
|
39
|
Bourcier R, Le Scouarnec S, Bonnaud S, Karakachoff M, Bourcereau E, Heurtebise-Chrétien S, Menguy C, Dina C, Simonet F, Moles A, Lenoble C, Lindenbaum P, Chatel S, Isidor B, Génin E, Deleuze JF, Schott JJ, Le Marec H, Loirand G, Desal H, Redon R, Desal H, Bourcier R, Daumas-Duport B, Isidor B, Connault J, Lebranchu P, Le Tourneau T, Viarouge MP, Papagiannaki C, Piotin M, Redjem H, Mazighi M, Desilles JP, Naggara O, Trystram D, Edjlali-Goujon M, Rodriguez C, Ben Hassen W, Saleme S, Mounayer C, Levrier O, Aguettaz P, Combaz X, Pasco A, Berthier E, Bintner M, Molho M, Gauthier P, Chivot C, Costalat V, Darganzil C, Bonafé A, Januel AC, Michelozzi C, Cognard C, Bonneville F, Tall P, Darcourt J, Biondi A, Iosif C, Pomero E, Ferre JC, Gauvrit JY, Eugene F, Raoult H, Gentric JC, Ognard J, Anxionnat R, Bracard S, Derelle AL, Tonnelet R, Spelle L, Ikka L, Fahed R, Rouchaud A, Ozanne A, Caroff J, Ben Achour N, Moret J, Chabert E, Berge J, Marnat G, Barreau X, Gariel F, Clarencon F, Aggour M, Ricolfi F, Chavent A, Thouant P, Lebidinsky P, Lemogne B, Herbreteau D, Bibi R, Pierot L, Soize S, Labeyrie MA, Vandendries C, Houdart E, Kazemi A, Leclerc X, Pruvo JP, Gallas S, Velasco S. Rare Coding Variants in ANGPTL6 Are Associated with Familial Forms of Intracranial Aneurysm. Am J Hum Genet 2018; 102:133-141. [PMID: 29304371 DOI: 10.1016/j.ajhg.2017.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/05/2017] [Indexed: 10/18/2022] Open
Abstract
Intracranial aneurysms (IAs) are acquired cerebrovascular abnormalities characterized by localized dilation and wall thinning in intracranial arteries, possibly leading to subarachnoid hemorrhage and severe outcome in case of rupture. Here, we identified one rare nonsense variant (c.1378A>T) in the last exon of ANGPTL6 (Angiopoietin-Like 6)-which encodes a circulating pro-angiogenic factor mainly secreted from the liver-shared by the four tested affected members of a large pedigree with multiple IA-affected case subjects. We showed a 50% reduction of ANGPTL6 serum concentration in individuals heterozygous for the c.1378A>T allele (p.Lys460Ter) compared to relatives homozygous for the normal allele, probably due to the non-secretion of the truncated protein produced by the c.1378A>T transcripts. Sequencing ANGPTL6 in a series of 94 additional index case subjects with familial IA identified three other rare coding variants in five case subjects. Overall, we detected a significant enrichment (p = 0.023) in rare coding variants within this gene among the 95 index case subjects with familial IA, compared to a reference population of 404 individuals with French ancestry. Among the 6 recruited families, 12 out of 13 (92%) individuals carrying IA also carry such variants in ANGPTL6, versus 15 out of 41 (37%) unaffected ones. We observed a higher rate of individuals with a history of high blood pressure among affected versus healthy individuals carrying ANGPTL6 variants, suggesting that ANGPTL6 could trigger cerebrovascular lesions when combined with other risk factors such as hypertension. Altogether, our results indicate that rare coding variants in ANGPTL6 are causally related to familial forms of IA.
Collapse
|
40
|
The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J Vasc Surg 2018; 67:2-77.e2. [DOI: 10.1016/j.jvs.2017.10.044] [Citation(s) in RCA: 1150] [Impact Index Per Article: 191.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Wu Y, Li Z, Shi Y, Chen L, Tan H, Wang Z, Yin C, Liu L, Hu J. Exome Sequencing Identifies LOXL2 Mutation as a Cause of Familial Intracranial Aneurysm. World Neurosurg 2018; 109:e812-e818. [DOI: 10.1016/j.wneu.2017.10.094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/27/2022]
|
42
|
CDKN2BAS gene polymorphisms and the risk of intracranial aneurysm in the Chinese population. BMC Neurol 2017; 17:214. [PMID: 29228923 PMCID: PMC5725912 DOI: 10.1186/s12883-017-0986-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/22/2017] [Indexed: 01/31/2023] Open
Abstract
Background CDKN2BAS gene polymorphisms has been shown to correlation with intracranial aneurysm(IA) in the study of foreign people. The study, the author selected the Chinese people as the research object to explore whether CDKN2BAS gene polymorphisms associated with Chinese patients with IA. Methods We selected 200 patients(52.69 ± 11.50) with sporadic IA as experimental group, 200 participants(49.99 ± 13.00) over the same period to the hospital without cerebrovascular diseases as control group. Extraction of peripheral blood DNA, applying polymerase chain reaction(PCR)-ligase detection reaction (LDR) identified CDKN2BAS Single nucleotide polymorphism(SNP) locus genotype: rs6475606, rs1333040, rs10757272, rs3217992, rs974336, rs3217986, rs1063192. The differences in allelic and genotype frequencies between the patient and control groups were evaluated by the chi-square test or Fisher’s exact tests. Results The genotype of rs1333040 and rs6475606 shown association with sporadic IA(X2 = 8.545, P = 0.014; X2 = 10.961, P = 0.004; respectively);the C allele of rs6475606 showed reduction the occurrence of IA; the rs1333040 and rs6475606 associated with hemorrhage, the C allele of rs1333040 could lower the risk of hemorrhage, and rs6475606 will not, rs1333040 also associated with aneurysm size. Conclusion Our research shows that variant rs1333040 and rs6475606 of CDKN2BAS related to the Chinese han population of sporadic IAs occurs. This study confirms the association between CDKN2BAS and IAs.
Collapse
|
43
|
Mathur S, Pollock JS, Mathur S, Harshfield GA, Pollock DM. Relation of urinary endothelin-1 to stress-induced pressure natriuresis in healthy adolescents. ACTA ACUST UNITED AC 2017; 12:34-41. [PMID: 29246686 DOI: 10.1016/j.jash.2017.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 10/10/2017] [Accepted: 11/10/2017] [Indexed: 10/24/2022]
Abstract
We hypothesize that delayed natriuresis during mental stress increases the risk of hypertension and other diseases. Our preclinical studies demonstrate an important role for renal endothelin-1 (ET-1) in regulating sodium excretion. Thus, we predict ET-1 may be linked to the delayed stress response in at-risk individuals. We hypothesize that reduced renal ET-1 accounts for derangements in sodium handling under stress, a link never explored in a large human cohort. We determined urinary ET-1 excretion in three observational studies of changes in sodium excretion during mental stress, in which 776 healthy youth (15-19 years) enrolled in a 5-hour protocol (2 hours of rest before and after 1 hour of mental stress). In all studies, 60-minute urine samples were obtained throughout the protocol. Subjects were grouped as retainers (reduced sodium excretion during stress relative to baseline) or excreters (increased sodium excretion during stress relative to baseline). In excreters, ET-1 excretion was significantly increased from baseline to stress (+0.02 pg/min; P < .001). In contrast, ET-1 excretion was significantly higher (P = .028) in retainers than excreters at baseline but significantly reduced in retainers under stress (-0.02 pg/min; P < .001). ET-1 excretion declined further in retainers during recovery but returned to prestress levels in excreters. Albumin excretion and albumin-to-creatinine ratio were significantly higher in retainers (P = .022, P < .001, respectively). Thus, loss of ET-1-dependent natriuresis may account for sodium retention during stress and may predispose retainers to renal diseases such as hypertension and kidney disease.
Collapse
Affiliation(s)
- Shreya Mathur
- Department of Neurobiology, Harvard College, Harvard University, Cambridge, MA, USA; Department of Biostatistics and Epidemiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jennifer S Pollock
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sunil Mathur
- Department of Biostatistics and Epidemiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Gregory A Harshfield
- Georgia Prevention Institute, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - David M Pollock
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
44
|
Associations of Endothelin Polymorphisms and Aneurysm Size at Time of Rupture. World Neurosurg 2017; 102:253-257. [DOI: 10.1016/j.wneu.2017.03.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 11/21/2022]
|
45
|
Amygdalar Endothelin-1 Regulates Pyramidal Neuron Excitability and Affects Anxiety. Sci Rep 2017; 7:2316. [PMID: 28539637 PMCID: PMC5443782 DOI: 10.1038/s41598-017-02583-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/13/2017] [Indexed: 11/24/2022] Open
Abstract
An abnormal neuronal activity in the amygdala is involved in the pathogenesis of anxiety disorders. However, little is known about the mechanisms. High-anxiety mice and low-anxiety mice, representing the innate extremes of anxiety-related behaviors, were first grouped according to their anxiety levels in the elevated plus maze test. We found that the mRNA for endothelin-1 (ET1) and ET1 B-type receptors (ETBRs) in the amygdala was down-regulated in high-anxiety mice compared with low-anxiety mice. Knocking down basolateral amygdala (BLA) ET1 expression enhanced anxiety-like behaviors, whereas over-expressing ETBRs, but not A-type receptors (ETARs), had an anxiolytic effect. The combined down-regulation of ETBR and ET1 had no additional anxiogenic effect compared to knocking down the ETBR gene alone, suggesting that BLA ET1 acts through ETBRs to regulate anxiety-like behaviors. To explore the mechanism underlying this phenomenon further, we verified that most of the ET1 and the ET1 receptors in the BLA were expressed in pyramidal neurons. The ET1–ETBR signaling pathway decreased the firing frequencies and threshold currents for the action potentials of BLA pyramidal neurons but did not alter BLA synaptic neurotransmission. Together, these results indicate that amygdalar ET1-ETBR signaling could attenuate anxiety-like behaviors by directly decreasing the excitability of glutamatergic neurons.
Collapse
|
46
|
Yamada Y, Sakuma J, Takeuchi I, Yasukochi Y, Kato K, Oguri M, Fujimaki T, Horibe H, Muramatsu M, Sawabe M, Fujiwara Y, Taniguchi Y, Obuchi S, Kawai H, Shinkai S, Mori S, Arai T, Tanaka M. Identification of six polymorphisms as novel susceptibility loci for ischemic or hemorrhagic stroke by exome-wide association studies. Int J Mol Med 2017; 39:1477-1491. [PMID: 28487959 PMCID: PMC5428971 DOI: 10.3892/ijmm.2017.2972] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/20/2017] [Indexed: 11/05/2022] Open
Abstract
In this study, we performed exome-wide association studies (EWASs) to identify genetic variants that confer susceptibility to ischemic stroke, intracerebral hemorrhage (ICH), or subarachnoid hemorrhage (SAH). EWAS for ischemic stroke was performed using 1,575 patients with this condition and 9,210 controls, and EWASs for ICH and SAH were performed using 673 patients with ICH, 265 patients with SAH and 9,158 controls. Analyses were performed with Illumina HumanExome-12 DNA Analysis BeadChip or Infinium Exome-24 BeadChip arrays. The relation of allele frequencies for 41,339 or 41,332 single nucleotide polymorphisms (SNPs) that passed quality control to ischemic or hemorrhagic stroke, respectively, was examined with Fisher's exact test. Based on Bonferroni's correction, a P-value of <1.21x10-6 was considered statistically significant. EWAS for ischemic stroke revealed that 77 SNPs were significantly associated with this condition. Multivariable logistic regression analysis with adjustment for age, sex and the prevalence of hypertension and diabetes mellitus revealed that 4 of these SNPs [rs3212335 of GABRB3 (P=0.0036; odds ratio, 1.29), rs147783135 of TMPRSS7 (P=0.0024; odds ratio, 0.37), rs2292661 of PDIA5 (P=0.0054; odds ratio, 0.35) and rs191885206 of CYP4F12 (P=0.0082; odds ratio, 2.60)] were related (P<0.01) to ischemic stroke. EWASs for ICH or SAH revealed that 48 and 12 SNPs, respectively, were significantly associated with these conditions. Multivariable logistic regression analysis with adjustment for age, sex and the prevalence of hypertension revealed that rs138533962 of STYK1 (P<1.0x10-23; odds ratio, 111.3) was significantly (P<2.60x10-4) associated with ICH and that rs117564807 of COL17A1 (P=0.0009; odds ratio, 2.23x10-8) was significantly (P<0.0010) associated with SAH. GABRB3, TMPRSS7, PDIA5 and CYP4F12 may thus be novel susceptibility loci for ischemic stroke, whereas STYK1 and COL17A1 may be such loci for ICH and SAH, respectively.
Collapse
Affiliation(s)
- Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu 514‑8507, Japan
| | - Jun Sakuma
- CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Ichiro Takeuchi
- CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu 514‑8507, Japan
| | - Kimihiko Kato
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu 514‑8507, Japan
| | - Mitsutoshi Oguri
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu 514‑8507, Japan
| | - Tetsuo Fujimaki
- Department of Cardiovascular Medicine, Inabe General Hospital, Inabe 511-0428, Japan
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi 507-8522, Japan
| | - Masaaki Muramatsu
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Motoji Sawabe
- Section of Molecular Pathology, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yoshinori Fujiwara
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Yu Taniguchi
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Shuichi Obuchi
- Research Team for Promoting Support System for Home Care, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Hisashi Kawai
- Research Team for Promoting Support System for Home Care, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Shoji Shinkai
- Research Team for Social Participation and Health Promotion, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Seijiro Mori
- Center for Promotion of Clinical Investigation, Tokyo Metropolitan Geriatric Hospital, Tokyo 173-0015, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo 173-0015, Japan
| | - Masashi Tanaka
- Department of Clinical Laboratory, Tokyo Metropolitan Geriatric Hospital, Tokyo 173-0015, Japan
| |
Collapse
|
47
|
Meeuwsen JAL, van ´t Hof FNG, van Rheenen W, Rinkel GJE, Veldink JH, Ruigrok YM. Circulating microRNAs in patients with intracranial aneurysms. PLoS One 2017; 12:e0176558. [PMID: 28459827 PMCID: PMC5411042 DOI: 10.1371/journal.pone.0176558] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/12/2017] [Indexed: 12/31/2022] Open
Abstract
Introduction We compared circulating microRNA (miRNA) levels in plasma of patients with intracranial aneurysms (IA) to those of controls as a first step towards finding potential biomarkers for individuals at high risk of IA development and its subsequent rupture. Patients and methods Using a PCR array we measured 370 miRNAs in plasma of 15 patients with prior aneurysmal subarachnoid hemorrhage (aSAH), of whom 11 had an additional unruptured IA (UIA), and of 15 controls. MiRNAs with a difference in levels with an absolute fold change (FC) > 1.2 and p<0.01 were further tested using real-time (RT) PCR in an additional independent set of 15 aSAH patients, 15 untreated UIA patients and 15 controls for replication (absolute FC >1.2 and p<0.05). We used receiver operating characteristic (ROC) curves to illustrate the diagnostic potential of these miRNAs. Results Three of five miRNAs with a difference in levels in the PCR array study were replicated with miRNA-183-5p decreased in all patients (FC = -2.2, p = 1.7x10-3), miRNA-200a-3p increased in aSAH patients (FC = 1.8, p = 2.8x10-2) and miRNA-let7b-5p decreased in UIA patients (FC = -1.7, p = 1.27x10-3) as compared to controls. In distinguishing aSAH patients from controls, the area under the ROC curve (AUC) was 0.80 (95% confidence interval (95% CI) 0.63–0.97) for miRNA-183-5p, and 0.74 (95% CI 0.55–0.94) for miRNA-200a-3p. In distinguishing untreated UIA patients from controls, AUC was 0.83 (95% CI 0.69–0.98) for miRNA-183-5p and 0.92 (95% CI 0.81–1) for miRNA-let-7b. Discussion/Conclusions We identified three specific circulating miRNAs that are able to discriminate between IA patients and controls. Follow-up studies should assess if these miRNAs may be used biomarkers for identifying individuals at high risk of IA development and its subsequent rupture.
Collapse
Affiliation(s)
- John A. L. Meeuwsen
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Femke N. G. van ´t Hof
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Wouter van Rheenen
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Gabriel J. E. Rinkel
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Jan H. Veldink
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Ynte M. Ruigrok
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
48
|
Foreman PM, Starke RM, Hendrix P, Harrigan MR, Fisher WS, Vyas NA, Lipsky RH, Lin M, Walters BC, Pittet JF, Mathru M, Griessenauer CJ. Endothelin polymorphisms as a risk factor for cerebral aneurysm rebleeding following aneurysmal subarachnoid hemorrhage. Clin Neurol Neurosurg 2017; 157:65-69. [PMID: 28412541 DOI: 10.1016/j.clineuro.2017.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Aneurysm rebleeding following presentation with aneurysmal subarachnoid hemorrhage (aSAH) is associated with high mortality and poor functional outcome. While a substantial genetic contribution to aneurysm formation and rupture is known, the genetic influence on the risk of rebleeding is poorly understood. OBJECTIVE To evaluate the role of common endothelin polymorphisms in aneurysm rebleeding. PATIENTS AND METHODS Blood sample from all patients enrolled in the CARAS (Cerebral Aneurysm Renin Angiotensin System) study were used for genetic evaluation. The CARAS study prospectively enrolled aSAH patients at two academic institutions in the United States from 2012 to 2015. Common endothelin SNPs were detected using 5'exonnuclease (Taqman) genotyping assays. Analysis of associations between endothelin single nucleotide polymorphisms (SNP) and aneurysm rebleeding was performed. RESULTS One hundred and forty-nine aSAH patients were included. Acute spontaneous aneurysm rebleeding occurred in 5 (3.4%) patients. Multivariable analysis identified the TT genotype for EDN1 G/T SNP (rs2070699; OR 97.4, 95% CI 3.825-2479.984, p=0.006) as an independent risk factor for aneurysm rebleeding. Aneurysm rebleeding was associated with an unfavorable functional outcome (mRS 3-6) at last follow up in all 5 patients. CONCLUSION Aneurysm rebleeding following presentation with aSAH was independently associated with the TT genotype of the EDN1 G/T SNP. All patients with acute spontaneous aneurysm rebleeding suffered a poor functional outcome at last follow up.
Collapse
Affiliation(s)
- Paul M Foreman
- Department of Neurosurgery, University of Alabama at Birmingham, AL, United States.
| | - Robert M Starke
- Department of Neurosurgery, University of Miami, FL, United States
| | - Philipp Hendrix
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Saar, Germany
| | - Mark R Harrigan
- Department of Neurosurgery, University of Miami, FL, United States
| | | | - Nilesh A Vyas
- Department of Neurosciences, Inova Health System, Falls Church, VA, United States
| | - Robert H Lipsky
- Department of Neurosciences, Inova Health System, Falls Church, VA, United States; Department of Molecular Neuroscience, George Mason University, Fairfax, VA, United States
| | - Minkuan Lin
- Department of Molecular Neuroscience, George Mason University, Fairfax, VA, United States
| | - Beverly C Walters
- Department of Neurosurgery, University of Alabama at Birmingham, AL, United States; Department of Neurosciences, Inova Health System, Falls Church, VA, United States; Department of Molecular Neuroscience, George Mason University, Fairfax, VA, United States
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, AL, United States
| | - Mali Mathru
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, AL, United States
| | | |
Collapse
|
49
|
Bourcier R, Chatel S, Bourcereau E, Jouan S, Marec HL, Daumas-Duport B, Sevin-Allouet M, Guillon B, Roualdes V, Riem T, Isidor B, Lebranchu P, Connault J, Tourneau TL, Gaignard A, Loirand G, Redon R, Desal H. Understanding the Pathophysiology of Intracranial Aneurysm: The ICAN Project. Neurosurgery 2017; 80:621-626. [DOI: 10.1093/neuros/nyw135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 02/22/2017] [Indexed: 11/15/2022] Open
Abstract
Abstract
BACKGROUND: Understanding the pathophysiologic mechanism of intracranial aneurysm (IA) formation is a prerequisite to assess the potential risk of rupture. Nowadays, there are neither reliable biomarkers nor diagnostic tools to predict the formation or the evolution of IA. Increasing evidence suggests a genetic component of IA but genetics studies have failed to identify genetic variation causally related to IA.
OBJECTIVE: To develop diagnostic and predictive tools for the risk of IA formation and rupture.
METHODS: The French ICAN project is a noninterventional nationwide and multicentric research program. Each typical IA of bifurcation will be included. For familial forms, further IA screening will be applied among first-degree relatives. By accurate phenotype description with high-throughput genetic screening, we aim to identify new genes involved in IA. These potential genetic markers will be tested in large groups of patients. Any relevant pathway identified will be further explored in a large cohort of sporadic carriers of IA, which will be well documented with clinical, biological, and imaging data.
EXPECTED OUTCOMES: Discovering genetic risk factors, better understanding the pathophysiology, and identifying molecular mechanisms responsible for IA formation will be essential bases for the development of biomarkers and identification of therapeutic targets.
DISCUSSION: Our protocol has many assets. A nationwide recruitment allows for the inclusion of large pedigrees with familial forms of IA. It will combine accurate phenotyping and comprehensive imaging with high-throughput genetic screening. Last, it will enable exploiting metadata to explore new pathophysiological pathways of interest by crossing clinical, genetic, biological, and imaging information.
Collapse
Affiliation(s)
- Romain Bourcier
- Neuroradiological Department, Centre Hospitalier Universitaire of Nantes, Nantes, France
- L'institut du thorax Nantes, INSERM, CNRS, UNIV Nantes, Centre Hospitalier Universitaire Nantes, Nantes, France
| | - Stéphanie Chatel
- L'institut du thorax Nantes, INSERM, CNRS, UNIV Nantes, Centre Hospitalier Universitaire Nantes, Nantes, France
| | - Emmanuelle Bourcereau
- L'institut du thorax Nantes, INSERM, CNRS, UNIV Nantes, Centre Hospitalier Universitaire Nantes, Nantes, France
| | - Solène Jouan
- Neuroradiological Department, Centre Hospitalier Universitaire of Nantes, Nantes, France
| | - Hervé Le Marec
- L'institut du thorax Nantes, INSERM, CNRS, UNIV Nantes, Centre Hospitalier Universitaire Nantes, Nantes, France
- Cardiology Department, Centre Hospitalier Universitaire of Nantes, Nantes, France
| | - Benjamin Daumas-Duport
- Neuroradiological Department, Centre Hospitalier Universitaire of Nantes, Nantes, France
| | | | - Benoit Guillon
- Neurology Department, Centre Hospitalier Universitaire of Nantes, Nantes, France
| | - Vincent Roualdes
- Neurosurgery Department, Centre Hospitalier Universitaire of Nantes, Nantes, France
| | - Tanguy Riem
- Neurosurgery Department, Centre Hospitalier Universitaire of Nantes, Nantes, France
| | - Bertrand Isidor
- Clinical genetics Department, Centre Hospitalier Universitaire of Nantes, Nantes, France
| | - Pierre Lebranchu
- Ophtalmologic Department, Centre Hospitalier Universitaire of Nantes, Nantes, France
| | - Jérôme Connault
- L'institut du thorax Nantes, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Thierry Le Tourneau
- L'institut du thorax Nantes, INSERM, CNRS, UNIV Nantes, Centre Hospitalier Universitaire Nantes, Nantes, France
- Cardiology Department, Centre Hospitalier Universitaire of Nantes, Nantes, France
| | - Alban Gaignard
- L'institut du thorax Nantes, INSERM, CNRS, UNIV Nantes, Centre Hospitalier Universitaire Nantes, Nantes, France
| | - Gervaise Loirand
- L'institut du thorax Nantes, INSERM, CNRS, UNIV Nantes, Centre Hospitalier Universitaire Nantes, Nantes, France
| | - Richard Redon
- L'institut du thorax Nantes, INSERM, CNRS, UNIV Nantes, Centre Hospitalier Universitaire Nantes, Nantes, France
| | - Hubert Desal
- Neuroradiological Department, Centre Hospitalier Universitaire of Nantes, Nantes, France
- L'institut du thorax Nantes, INSERM, CNRS, UNIV Nantes, Centre Hospitalier Universitaire Nantes, Nantes, France
| | | |
Collapse
|
50
|
Chen M, Shu S, Yan HH, Pei L, Wang ZF, Wan Q, Bi LL. Hippocampal Endothelin-1 decreases excitability of pyramidal neurons and produces anxiolytic effects. Neuropharmacology 2017; 118:242-250. [PMID: 28302570 DOI: 10.1016/j.neuropharm.2017.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/03/2017] [Accepted: 03/12/2017] [Indexed: 02/01/2023]
Abstract
Anxiety disorders contribute to the pathophysiology of psychiatric diseases, including major depression, substance abuse, and schizophrenia. The hippocampus is important for anxiety modulation. However, the mechanisms that control the neuronal activity of the hippocampus in anxiety are still not clear. We found that Endothelin-1 (ET1) mRNA in the hippocampus was down-regulated in high-anxiety mice. Neutralizing endogenous ET1 in the hippocampal CA1 enhanced anxiety-like behaviors. We next revealed that most expression of ET1 and its receptors in the CA1 takes place in pyramidal neurons, and the ET1 signaling pathway directly regulated the excitability of CA1 pyramidal neurons and glutamatergic synaptic neurotransmission. Finally, we proved that neutralizing endogenous CA1 ET1 produces anxiogenic effects on low-anxiety mice, whereas infusing exogenous ET1 into the CA1 alleviates the anxiety susceptibility of high-anxiety mice. Together, these results indicate that ET1 signaling is critical in maintaining the excitability of glutamatergic neurons in the hippocampus and, thus, in modulating anxiety-like behaviors. Because ET1 is a risk factor for ischemic stroke, our findings might also help to explain the potential mechanism of emotional abnormality in stroke.
Collapse
Affiliation(s)
- Ming Chen
- Department of Pathology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shu Shu
- The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huan-Huan Yan
- The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lei Pei
- The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ze-Fen Wang
- Department of Physiology, Basic Medical Sciences, Wuhan University School, Wuhan 430071, China
| | - Qi Wan
- Department of Physiology, Basic Medical Sciences, Wuhan University School, Wuhan 430071, China
| | - Lin-Lin Bi
- Department of Pathology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Wuhan University Center for Pathology and Molecular Diagnostics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|