1
|
Letko Khait N, Zuccaro S, Abdo D, Cui H, Siu R, Ho E, Morshead CM, Shoichet MS. Redesigned chondroitinase ABC degrades inhibitory chondroitin sulfate proteoglycans in vitro and in vivo in the stroke-injured rat brain. Biomaterials 2025; 314:122818. [PMID: 39260032 DOI: 10.1016/j.biomaterials.2024.122818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Injuries to the central nervous system, such as stroke and traumatic spinal cord injury, result in an aggregate scar that both limits tissue degeneration and inhibits tissue regeneration. The aggregate scar includes chondroitin sulfate proteoglycans (CSPGs), which impede cell migration and axonal outgrowth. Chondroitinase ABC (ChASE) is a potent yet fragile enzyme that degrades CSPGs, and thus may enable tissue regeneration. ChASE37, with 37-point mutations to the native enzyme, has been shown to be more stable than ChASE, but its efficacy has never been tested. To answer this question, we investigated the efficacy of ChASE37 first in vitro using human cell-based assays and then in vivo in a rodent model of stroke. We demonstrated ChASE37 degradation of CSPGs in vitro and the consequent cell adhesion and axonal sprouting now possible using human induced pluripotent stem cell (hiPSC)-derived neurons. To enable prolonged release of ChASE37 to injured tissue, we expressed it as a fusion protein with a Src homology 3 (SH3) domain and modified an injectable, carboxymethylcellulose (CMC) hydrogel with SH3-binding peptides (CMC-bp) using inverse electron-demand Diels-Alder chemistry. We injected this affinity release CMC-bp/SH3-ChASE37 hydrogel epicortically to endothelin-1 stroke-injured rats and confirmed bioactivity via degradation of CSPGs and axonal sprouting in and around the lesion. With CSPG degradation shown both in vitro by greater cell interaction and in vivo with local delivery from a sustained release formulation, we lay the foundation to test the potential of ChASE37 and its delivery by local affinity release for tissue regeneration after stroke.
Collapse
Affiliation(s)
- Nitzan Letko Khait
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Sabrina Zuccaro
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Dhana Abdo
- Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada; Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada
| | - Hong Cui
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Ricky Siu
- Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada; Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada
| | - Eric Ho
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada; Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada
| | - Cindi M Morshead
- Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada; Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada; Department of Surgery, University of Toronto, 149 College Street, Toronto, ON, M5S 3E1, Canada
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada; Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
2
|
Ito K, Shinozaki M, Hashimoto S, Saijo Y, Suematsu Y, Tanaka T, Nishi K, Yagi H, Shibata S, Kitagawa Y, Nakamura M, Okano H, Kohyama J, Nagoshi N. Histological effects of combined therapy involving scar resection, decellularized scaffolds, and human iPSC-NS/PCs transplantation in chronic complete spinal cord injury. Sci Rep 2024; 14:31500. [PMID: 39733145 DOI: 10.1038/s41598-024-82959-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Chronic complete spinal cord injury (SCI) is difficult to treat because of scar formation and cavitary lesions. While human iPS cell-derived neural stem/progenitor cell (hNS/PC) therapy shows promise, its efficacy is limited without the structural support needed to address cavitary lesions. Our study investigated a combined approach involving surgical scar resection, decellularized extracellular matrix (dECM) hydrogel as a scaffold, and hNS/PC transplantation. To mitigate risks such as prion disease associated with spinal cord-derived dECM, we used kidney-derived dECM hydrogel. This material was chosen for its biocompatibility and angiogenic potential. In vitro studies with dorsal root ganglia (DRG) confirmed its ability to support axonal growth. In a chronic SCI rat model, scar resection enhanced the local microenvironment by increasing neuroprotective microglia and macrophages, while reducing inhibitory factors that prevent axonal regeneration. The combination of scar resection and dECM hydrogel further promoted vascular endothelial cell migration. These changes improved the survival of transplanted hNS/PCs and facilitated host axon regeneration. Overall, the integrated approach of scar resection, dECM hydrogel scaffolding, and hNS/PC transplantation has been proven to be a more effective treatment strategy for chronic SCI. However, despite histological improvements, no functional recovery occurred and further research is needed to enhance functional outcomes.
Collapse
Affiliation(s)
- Keitaro Ito
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Munehisa Shinozaki
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Keio University Regenerative Medicine Research Center, 3-25-10 Tonomachi, Kawasaki-Ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Shogo Hashimoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yusuke Saijo
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yu Suematsu
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Tomoharu Tanaka
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Kotaro Nishi
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Laboratory of Small Animal Internal Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-Ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Hiroshi Yagi
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Shinsuke Shibata
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, Niigata, 951-8510, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Keio University Regenerative Medicine Research Center, 3-25-10 Tonomachi, Kawasaki-Ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
3
|
Alhadidi QM, Bahader GA, Arvola O, Kitchen P, Shah ZA, Salman MM. Astrocytes in functional recovery following central nervous system injuries. J Physiol 2024; 602:3069-3096. [PMID: 37702572 PMCID: PMC11421637 DOI: 10.1113/jp284197] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Astrocytes are increasingly recognised as partaking in complex homeostatic mechanisms critical for regulating neuronal plasticity following central nervous system (CNS) insults. Ischaemic stroke and traumatic brain injury are associated with high rates of disability and mortality. Depending on the context and type of injury, reactive astrocytes respond with diverse morphological, proliferative and functional changes collectively known as astrogliosis, which results in both pathogenic and protective effects. There is a large body of research on the negative consequences of astrogliosis following brain injuries. There is also growing interest in how astrogliosis might in some contexts be protective and help to limit the spread of the injury. However, little is known about how astrocytes contribute to the chronic functional recovery phase following traumatic and ischaemic brain insults. In this review, we explore the protective functions of astrocytes in various aspects of secondary brain injury such as oedema, inflammation and blood-brain barrier dysfunction. We also discuss the current knowledge on astrocyte contribution to tissue regeneration, including angiogenesis, neurogenesis, synaptogenesis, dendrogenesis and axogenesis. Finally, we discuss diverse astrocyte-related factors that, if selectively targeted, could form the basis of astrocyte-targeted therapeutic strategies to better address currently untreatable CNS disorders.
Collapse
Affiliation(s)
- Qasim M Alhadidi
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pharmacy, Al-Yarmok University College, Diyala, Iraq
| | - Ghaith A Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Oiva Arvola
- Division of Anaesthesiology, Jorvi Hospital, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Mootaz M Salman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Kavli Institute for NanoScience Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Melrose J. Hippo cell signaling and HS-proteoglycans regulate tissue form and function, age-dependent maturation, extracellular matrix remodeling, and repair. Am J Physiol Cell Physiol 2024; 326:C810-C828. [PMID: 38223931 DOI: 10.1152/ajpcell.00683.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
This review examined how Hippo cell signaling and heparan sulfate (HS)-proteoglycans (HSPGs) regulate tissue form and function. Despite being a nonweight-bearing tissue, the brain is regulated by Hippo mechanoresponsive cell signaling pathways during embryonic development. HS-proteoglycans interact with growth factors, morphogens, and extracellular matrix components to regulate development and pathology. Pikachurin and Eyes shut (Eys) interact with dystroglycan to stabilize the photoreceptor axoneme primary cilium and ribbon synapse facilitating phototransduction and neurotransduction with bipolar retinal neuronal networks in ocular vision, the primary human sense. Another HSPG, Neurexin interacts with structural and adaptor proteins to stabilize synapses and ensure specificity of neural interactions, and aids in synaptic potentiation and plasticity in neurotransduction. HSPGs also stabilize the blood-brain barrier and motor neuron basal structures in the neuromuscular junction. Agrin and perlecan localize acetylcholinesterase and its receptors in the neuromuscular junction essential for neuromuscular control. The primary cilium is a mechanosensory hub on neurons, utilized by YES associated protein (YAP)-transcriptional coactivator with PDZ-binding motif (TAZ) Hippo, Hh, Wnt, transforming growth factor (TGF)-β/bone matrix protein (BMP) receptor tyrosine kinase cell signaling. Members of the glypican HSPG proteoglycan family interact with Smoothened and Patched G-protein coupled receptors on the cilium to regulate Hh and Wnt signaling during neuronal development. Control of glycosyl sulfotransferases and endogenous protease expression by Hippo TAZ YAP represents a mechanism whereby the fine structure of HS-proteoglycans can be potentially modulated spatiotemporally to regulate tissue morphogenesis in a similar manner to how Hippo signaling controls sialyltransferase expression and mediation of cell-cell recognition, dysfunctional sialic acid expression is a feature of many tumors.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Sydney Medical School-Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Boyle BR, Berghella AP, Blanco-Suarez E. Astrocyte Regulation of Neuronal Function and Survival in Stroke Pathophysiology. ADVANCES IN NEUROBIOLOGY 2024; 39:233-267. [PMID: 39190078 DOI: 10.1007/978-3-031-64839-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The interactions between astrocytes and neurons in the context of stroke play crucial roles in the disease's progression and eventual outcomes. After a stroke, astrocytes undergo significant changes in their morphology, molecular profile, and function, together termed reactive astrogliosis. Many of these changes modulate how astrocytes relate to neurons, inducing mechanisms both beneficial and detrimental to stroke recovery. For example, excessive glutamate release and astrocytic malfunction contribute to excitotoxicity in stroke, eventually causing neuronal death. Astrocytes also provide essential metabolic support and neurotrophic signals to neurons after stroke, ensuring homeostatic stability and promoting neuronal survival. Furthermore, several astrocyte-secreted molecules regulate synaptic plasticity in response to stroke, allowing for the rewiring of neural circuits to compensate for damaged areas. In this chapter, we highlight the current understanding of the interactions between astrocytes and neurons in response to stroke, explaining the varied mechanisms contributing to injury progression and the potential implications for future therapeutic interventions.
Collapse
Affiliation(s)
- Bridget R Boyle
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrea P Berghella
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elena Blanco-Suarez
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA.
- Department of Neurological Surgery, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Kheirollahi A, Sadeghi S, Orandi S, Moayedi K, Khajeh K, Khoobi M, Golestani A. Chondroitinase as a therapeutic enzyme: Prospects and challenges. Enzyme Microb Technol 2024; 172:110348. [PMID: 37898093 DOI: 10.1016/j.enzmictec.2023.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/28/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
The chondroitinases (Chase) are bacterial lyases that specifically digest chondroitin sulfate and/or dermatan sulfate glycosaminoglycans via a β-elimination reaction and generate unsaturated disaccharides. In recent decades, these enzymes have attracted the attention of many researchers due to their potential applications in various aspects of medicine from the treatment of spinal cord injury to use as an analytical tool. In spite of this diverse spectrum, the application of Chase is faced with several limitations and challenges such as thermal instability and lack of a suitable delivery system. In the current review, we address potential therapeutic applications of Chase with emphasis on the challenges ahead. Then, we summarize the latest achievements to overcome the problems by considering the studies carried out in the field of enzyme engineering, drug delivery, and combination-based therapy.
Collapse
Affiliation(s)
- Asma Kheirollahi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Solmaz Sadeghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Orandi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiana Moayedi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Mehdi Khoobi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Golestani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Li H, Ghorbani S, Ling CC, Yong VW, Xue M. The extracellular matrix as modifier of neuroinflammation and recovery in ischemic stroke and intracerebral hemorrhage. Neurobiol Dis 2023; 186:106282. [PMID: 37683956 DOI: 10.1016/j.nbd.2023.106282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023] Open
Abstract
Stroke is the second leading cause of death worldwide and has two major subtypes: ischemic stroke and hemorrhagic stroke. Neuroinflammation is a pathological hallmark of ischemic stroke and intracerebral hemorrhage (ICH), contributing to the extent of brain injury but also in its repair. Neuroinflammation is intricately linked to the extracellular matrix (ECM), which is profoundly altered after brain injury and in aging. In the early stages after ischemic stroke and ICH, immune cells are involved in the deposition and remodeling of the ECM thereby affecting processes such as blood-brain barrier and cellular integrity. ECM components regulate leukocyte infiltration into the central nervous system, activate a variety of immune cells, and induce the elevation of matrix metalloproteinases (MMPs) after stroke. In turn, excessive MMPs may degrade ECM into components that are pro-inflammatory and injurious. Conversely, in the later stages after stroke, several ECM molecules may contribute to tissue recovery. For example, thrombospondin-1 and biglycan may promote activity of regulatory T cells, inhibit the synthesis of proinflammatory cytokines, and aid regenerative processes. We highlight these roles of the ECM in ischemic stroke and ICH and discuss their potential cellular and molecular mechanisms. Finally, we discuss therapeutics that could be considered to normalize the ECM in stroke. Our goal is to spur research on the ECM in order to improve the prognosis of ischemic stroke and ICH.
Collapse
Affiliation(s)
- Hongmin Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China; Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | - Samira Ghorbani
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | - Chang-Chun Ling
- Department of Chemistry, University of Calgary, Alberta, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Alberta, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Le C, Hu X, Tong L, Ye X, Zhang J, Yan J, Sherchan P, Zhang JH, Gao F, Tang J. Inhibition of LAR attenuates neuroinflammation through RhoA/IRS-1/Akt signaling pathway after intracerebral hemorrhage in mice. J Cereb Blood Flow Metab 2023; 43:869-881. [PMID: 36802818 PMCID: PMC10196755 DOI: 10.1177/0271678x231159352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/03/2023] [Accepted: 01/28/2023] [Indexed: 02/23/2023]
Abstract
Leukocyte common antigen-related phosphatase (LAR) is widely expressed in the central nervous system and is known to regulate a variety of processes including cell growth, differentiation, and inflammation. However, little is currently known about LAR signaling mediated neuroinflammation after intracerebral hemorrhage (ICH). The objective of this study was to investigate the role of LAR in ICH using autologous blood injection-induced ICH mouse model. Expression of endogenous proteins, brain edema and neurological function after ICH were evaluated. Extracellular LAR peptide (ELP), an inhibitor of LAR, was administered to ICH mice and outcomes were evaluated. LAR activating-CRISPR or IRS inhibitor NT-157 was administered to elucidate the mechanism. The results showed that expressions of LAR, its endogenous agonist chondroitin sulfate proteoglycans (CSPGs) including neurocan and brevican, and downstream factor RhoA increased after ICH. Administration of ELP reduced brain edema, improved neurological function, and decreased microglia activation after ICH. ELP decreased RhoA and phosphorylated serine-IRS1, increased phosphorylated tyrosine-IRS1 and p-Akt, and attenuated neuroinflammation after ICH, which was reversed by LAR activating-CRISPR or NT-157. In conclusion, this study demonstrated that LAR contributed to neuroinflammation after ICH via RhoA/IRS-1 pathway, and ELP may be a potential therapeutic strategy to attenuate LAR mediated neuroinflammation after ICH.
Collapse
Affiliation(s)
- Chensheng Le
- Department of Neurology, The Second
Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou,
China
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Neurology, Ningbo
Medical Center Lihuili Hospital, Ningbo, China
| | - Xin Hu
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Neurosurgery, West
China Hospital, Sichuan University, Chengdu, China
| | - Lusha Tong
- Department of Neurology, The Second
Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou,
China
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Xianghua Ye
- Department of Neurology, The Second
Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou,
China
| | - Junyi Zhang
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Jun Yan
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Neurosurgery, Guangxi
Medical University Cancer Hospital, Nanning, China
| | - Prativa Sherchan
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Feng Gao
- Department of Neurology, The Second
Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou,
China
| | - Jiping Tang
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
9
|
Chemistry and Function of Glycosaminoglycans in the Nervous System. ADVANCES IN NEUROBIOLOGY 2023; 29:117-162. [DOI: 10.1007/978-3-031-12390-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Lagging C, Klasson S, Pedersen A, Nilsson S, Jood K, Stanne TM, Jern C. Investigation of 91 proteins implicated in neurobiological processes identifies multiple candidate plasma biomarkers of stroke outcome. Sci Rep 2022; 12:20080. [PMID: 36418382 PMCID: PMC9684578 DOI: 10.1038/s41598-022-23288-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
The inter-individual variation in stroke outcomes is large and protein studies could point to potential underlying biological mechanisms. We measured plasma levels of 91 neurobiological proteins in 209 cases included in the Sahlgrenska Academy Study on Ischemic Stroke using a Proximity Extension Assay, and blood was sampled in the acute phase and at 3-month and 7-year follow-ups. Levels were also determined once in 209 controls. Acute stroke severity and neurological outcome were evaluated by the National Institutes of Health Stroke Scale. In linear regression models corrected for age, sex, and sampling day, acute phase levels of 37 proteins were associated with acute stroke severity, and 47 with 3-month and/or 7-year outcome at false discovery rate < 0.05. Three-month levels of 8 proteins were associated with 7-year outcome, of which the associations for BCAN and Nr-CAM were independent also of acute stroke severity. Most proteins followed a trajectory with lower levels in the acute phase compared to the 3-month follow-up and the control sampling point. Conclusively, we identified multiple candidate plasma biomarkers of stroke severity and neurological outcome meriting further investigation. This study adds novel information, as most of the reported proteins have not been previously investigated in a stroke cohort.
Collapse
Affiliation(s)
- Cecilia Lagging
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden ,grid.1649.a000000009445082XDepartment of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Sofia Klasson
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Annie Pedersen
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden ,grid.1649.a000000009445082XDepartment of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Staffan Nilsson
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden ,grid.5371.00000 0001 0775 6028Division of Applied Mathematics and Statistics, Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Katarina Jood
- grid.8761.80000 0000 9919 9582Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ,grid.1649.a000000009445082XDepartment of Neurology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Tara M. Stanne
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Christina Jern
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden ,grid.1649.a000000009445082XDepartment of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
11
|
Siddiqui N, Oshima K, Hippensteel JA. Proteoglycans and Glycosaminoglycans in Central Nervous System Injury. Am J Physiol Cell Physiol 2022; 323:C46-C55. [PMID: 35613357 PMCID: PMC9273265 DOI: 10.1152/ajpcell.00053.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The brain and spinal cord constitute the central nervous system (CNS), which when injured, can be exceedingly devastating. The mechanistic roles of proteoglycans (PGs) and their glycosaminoglycan (GAG) side chains in such injuries have been extensively studied. CNS injury immediately alters endothelial and extracellular matrix (ECM) PGs and GAGs. Subsequently, these alterations contribute to acute injury, post-injury fibrosis, and post-injury repair. These effects are central to the pathophysiology of CNS injury. This review focuses on the importance of PGs and GAGs in multiple forms of injury including traumatic brain injury, spinal cord injury, and stroke. We highlight the causes and consequences of degradation of the PG and GAG-enriched endothelial glycocalyx in early injury and discuss the pleiotropic roles of PGs in neuroinflammation. We subsequently evaluate the dualistic effects of PGs on recovery: both PG/GAG-mediated inhibition and facilitation of repair. We then report promising therapeutic strategies that may prove effective for repair of CNS injury including PG receptor inhibition, delivery of endogenous, pro-repair PGs and GAGs, and direct degradation of pathologic GAGs. Last, we discuss importance of two PG- and GAG-containing ECM structures (synapses and perineuronal nets) in CNS injury and recovery.
Collapse
Affiliation(s)
- Noah Siddiqui
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kaori Oshima
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Joseph A Hippensteel
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
12
|
Houlton J, Zubkova OV, Clarkson AN. Recovery of Post-Stroke Spatial Memory and Thalamocortical Connectivity Following Novel Glycomimetic and rhBDNF Treatment. Int J Mol Sci 2022; 23:ijms23094817. [PMID: 35563207 PMCID: PMC9101131 DOI: 10.3390/ijms23094817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
Stroke-induced cognitive impairments remain of significant concern, with very few treatment options available. The involvement of glycosaminoglycans in neuroregenerative processes is becoming better understood and recent advancements in technology have allowed for cost-effective synthesis of novel glycomimetics. The current study evaluated the therapeutic potential of two novel glycomimetics, compound A and G, when administered systemically five-days post-photothrombotic stroke to the PFC. As glycosaminoglycans are thought to facilitate growth factor function, we also investigated the combination of our glycomimetics with intracerebral, recombinant human brain-derived neurotrophic factor (rhBDNF). C56BL/6J mice received sham or stroke surgery and experimental treatment (day-5), before undergoing the object location recognition task (OLRT). Four-weeks post-surgery, animals received prelimbic injections of the retrograde tracer cholera toxin B (CTB), before tissue was collected for quantification of thalamo-PFC connectivity and reactive astrogliosis. Compound A or G treatment alone modulated a degree of reactive astrogliosis yet did not influence spatial memory performance. Contrastingly, compound G+rhBDNF treatment significantly improved spatial memory, dampened reactive astrogliosis and limited stroke-induced loss of connectivity between the PFC and midline thalamus. As rhBDNF treatment had negligible effects, these findings support compound A acted synergistically to enhance rhBDNF to restrict secondary degeneration and facilitate functional recovery after PFC stroke.
Collapse
Affiliation(s)
- Josh Houlton
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand;
| | - Olga V. Zubkova
- The Ferrier Research Institute, Gracefield Research Centre, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand;
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand;
- Correspondence: ; Tel./Fax: +64-3-279-7326
| |
Collapse
|
13
|
Hernández IH, Villa-González M, Martín G, Soto M, Pérez-Álvarez MJ. Glial Cells as Therapeutic Approaches in Brain Ischemia-Reperfusion Injury. Cells 2021; 10:1639. [PMID: 34208834 PMCID: PMC8305833 DOI: 10.3390/cells10071639] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke is the second cause of mortality and the first cause of long-term disability constituting a serious socioeconomic burden worldwide. Approved treatments include thrombectomy and rtPA intravenous administration, which, despite their efficacy in some cases, are not suitable for a great proportion of patients. Glial cell-related therapies are progressively overcoming inefficient neuron-centered approaches in the preclinical phase. Exploiting the ability of microglia to naturally switch between detrimental and protective phenotypes represents a promising therapeutic treatment, in a similar way to what happens with astrocytes. However, the duality present in many of the roles of these cells upon ischemia poses a notorious difficulty in disentangling the precise pathways to target. Still, promoting M2/A2 microglia/astrocyte protective phenotypes and inhibiting M1/A1 neurotoxic profiles is globally rendering promising results in different in vivo models of stroke. On the other hand, described oligodendrogenesis after brain ischemia seems to be strictly beneficial, although these cells are the less studied players in the stroke paradigm and negative effects could be described for oligodendrocytes in the next years. Here, we review recent advances in understanding the precise role of mentioned glial cell types in the main pathological events of ischemic stroke, including inflammation, blood brain barrier integrity, excitotoxicity, reactive oxygen species management, metabolic support, and neurogenesis, among others, with a special attention to tested therapeutic approaches.
Collapse
Affiliation(s)
- Ivó H Hernández
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Mario Villa-González
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Gerardo Martín
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Manuel Soto
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María José Pérez-Álvarez
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
14
|
Melrose J, Hayes AJ, Bix G. The CNS/PNS Extracellular Matrix Provides Instructive Guidance Cues to Neural Cells and Neuroregulatory Proteins in Neural Development and Repair. Int J Mol Sci 2021; 22:5583. [PMID: 34070424 PMCID: PMC8197505 DOI: 10.3390/ijms22115583] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The extracellular matrix of the PNS/CNS is unusual in that it is dominated by glycosaminoglycans, especially hyaluronan, whose space filling and hydrating properties make essential contributions to the functional properties of this tissue. Hyaluronan has a relatively simple structure but its space-filling properties ensure micro-compartments are maintained in the brain ultrastructure, ensuring ionic niches and gradients are maintained for optimal cellular function. Hyaluronan has cell-instructive, anti-inflammatory properties and forms macro-molecular aggregates with the lectican CS-proteoglycans, forming dense protective perineuronal net structures that provide neural and synaptic plasticity and support cognitive learning. AIMS To highlight the central nervous system/peripheral nervous system (CNS/PNS) and its diverse extracellular and cell-associated proteoglycans that have cell-instructive properties regulating neural repair processes and functional recovery through interactions with cell adhesive molecules, receptors and neuroregulatory proteins. Despite a general lack of stabilising fibrillar collagenous and elastic structures in the CNS/PNS, a sophisticated dynamic extracellular matrix is nevertheless important in tissue form and function. CONCLUSIONS This review provides examples of the sophistication of the CNS/PNS extracellular matrix, showing how it maintains homeostasis and regulates neural repair and regeneration.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern, The University of Sydney, Sydney, NSW 2052, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
| | - Gregory Bix
- Clinical Neuroscience Research Center, Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| |
Collapse
|
15
|
Joy MT, Carmichael ST. Encouraging an excitable brain state: mechanisms of brain repair in stroke. Nat Rev Neurosci 2021; 22:38-53. [PMID: 33184469 PMCID: PMC10625167 DOI: 10.1038/s41583-020-00396-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2020] [Indexed: 02/02/2023]
Abstract
Stroke induces a plastic state in the brain. This period of enhanced plasticity leads to the sprouting of new axons, the formation of new synapses and the remapping of sensory-motor functions, and is associated with motor recovery. This is a remarkable process in the adult brain, which is normally constrained in its levels of neuronal plasticity and connectional change. Recent evidence indicates that these changes are driven by molecular systems that underlie learning and memory, such as changes in cellular excitability during memory formation. This Review examines circuit changes after stroke, the shared mechanisms between memory formation and brain repair, the changes in neuronal excitability that underlie stroke recovery, and the molecular and pharmacological interventions that follow from these findings to promote motor recovery in animal models. From these findings, a framework emerges for understanding recovery after stroke, central to which is the concept of neuronal allocation to damaged circuits. The translation of the concepts discussed here to recovery in humans is underway in clinical trials for stroke recovery drugs.
Collapse
Affiliation(s)
- Mary T Joy
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Napoli D, Lupori L, Mazziotti R, Sagona G, Bagnoli S, Samad M, Sacramento EK, Kirkpartick J, Putignano E, Chen S, Terzibasi Tozzini E, Tognini P, Baldi P, Kwok JC, Cellerino A, Pizzorusso T. MiR-29 coordinates age-dependent plasticity brakes in the adult visual cortex. EMBO Rep 2020; 21:e50431. [PMID: 33026181 DOI: 10.15252/embr.202050431] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
Visual cortical circuits show profound plasticity during early life and are later stabilized by molecular "brakes" limiting excessive rewiring beyond a critical period. The mechanisms coordinating the expression of these factors during the transition from development to adulthood remain unknown. We found that miR-29a expression in the visual cortex dramatically increases with age, but it is not experience-dependent. Precocious high levels of miR-29a blocked ocular dominance plasticity and caused an early appearance of perineuronal nets. Conversely, inhibition of miR-29a in adult mice using LNA antagomirs activated ocular dominance plasticity, reduced perineuronal nets, and restored their juvenile chemical composition. Activated adult plasticity had the typical functional and proteomic signature of critical period plasticity. Transcriptomic and proteomic studies indicated that miR-29a manipulation regulates the expression of plasticity brakes in specific cortical circuits. These data indicate that miR-29a is a regulator of the plasticity brakes promoting age-dependent stabilization of visual cortical connections.
Collapse
Affiliation(s)
- Debora Napoli
- BIO@SNS Lab, Scuola Normale Superiore, Pisa, Italy.,Institute of Neuroscience, National Research Council, Pisa, Italy
| | | | - Raffaele Mazziotti
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA University of Florence, Florence, Italy
| | - Giulia Sagona
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA University of Florence, Florence, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Sara Bagnoli
- BIO@SNS Lab, Scuola Normale Superiore, Pisa, Italy
| | - Muntaha Samad
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, USA
| | | | - Joanna Kirkpartick
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Elena Putignano
- Institute of Neuroscience, National Research Council, Pisa, Italy
| | - Siwei Chen
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, USA
| | | | - Paola Tognini
- BIO@SNS Lab, Scuola Normale Superiore, Pisa, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, USA
| | - Jessica Cf Kwok
- School of Biomedical Sciences, University of Leeds, Leeds, UK.,Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic
| | - Alessandro Cellerino
- BIO@SNS Lab, Scuola Normale Superiore, Pisa, Italy.,Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Tommaso Pizzorusso
- BIO@SNS Lab, Scuola Normale Superiore, Pisa, Italy.,Institute of Neuroscience, National Research Council, Pisa, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA University of Florence, Florence, Italy
| |
Collapse
|
17
|
Zhong K, Wang RX, Qian XD, Yu P, Zhu XY, Zhang Q, Ye YL. Neuroprotective effects of saffron on the late cerebral ischemia injury through inhibiting astrogliosis and glial scar formation in rats. Biomed Pharmacother 2020; 126:110041. [PMID: 32113053 DOI: 10.1016/j.biopha.2020.110041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
This study is to explore the neuroprotective effects and involved glial scar of saffron (Crocus sativus L.) on the late cerebral ischemia in rats. Focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in Sprague Dawley rats that were randomly divided into sham group, MCAO group, edaravone group (as a positive control) and saffron groups (saffron extract 30, 100, 300 mg/kg). Saffron was administered orally at 2 h at the first day and once daily from day 2 to 42 after ischemia. Behavioral changes were detected from day 43 to 46 after ischemia to evaluate the effects of saffron. Infarct volume, survival neuron density, activated astrocyte, and the thickness of glial scar were also detected. GFAP, neurocan, phosphocan, neurofilament expressions and inflammatory cytokine contents were detected by Western-blotting and ELISA methods, respectively. Saffron improved the body weight loss, neurological deficit and spontaneous activity. It also ameliorated anxiety-like state and cognitive dysfunction, which were detected by elevated plus maze (EPM), marble burying test (MBT) and novel object recognition test (NORT). Toluidine blue staining found that saffron treatment decreased the infarct volume and increased the neuron density in cortex in the ischemic boundary zone. The activated astrocyte number and the thickness of glial scar in the penumbra zone reduced after saffron treatment. Additionally, saffron decreased the contents of IL-6 and IL-1β, increased the content of IL-10 in the ischemic boundary zone. GFAP, neurocan, and phosphocan expressions in ischemic boundary zone and ischemic core zone all decreased after saffron treatment. Saffron exerted neuroprotective effects on late cerebral ischemia, associating with attenuating astrogliosis and glial scar formation after ischemic injury.
Collapse
Affiliation(s)
- Kai Zhong
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Rou-Xin Wang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | | | - Ping Yu
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xin-Ying Zhu
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qi Zhang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi-Lu Ye
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Kawakita F, Kanamaru H, Asada R, Suzuki H. Potential roles of matricellular proteins in stroke. Exp Neurol 2019; 322:113057. [DOI: 10.1016/j.expneurol.2019.113057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022]
|
19
|
Yang J, Shen M, Wen H, Luo Y, Huang R, Rong L, Xie J. Recent advance in delivery system and tissue engineering applications of chondroitin sulfate. Carbohydr Polym 2019; 230:115650. [PMID: 31887904 DOI: 10.1016/j.carbpol.2019.115650] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022]
Abstract
Chondroitin sulfate (CS) is a naturally derived bioactive macromolecule and the major component of extracellular matrix (ECM), which widely distributed in various organisms and has attracted much attention due to their significant bioactivities. It is regarded as a favorable biomaterial that has been applied extensively in field of drug delivery and tissue engineering due to its property of non-poisonous, biodegradation, biocompatible and as a major component of ECM. The present article reviews the structure and bioactivities of CS, from the preparation to structure analysis, and emphatically focuses on the biomaterial exertion in delivery system and tissue engineering. At the same time, the present application status and prospect of CS are analyzed and the biomaterial exertion of CS in delivery system and various tissue engineering are also comparatively discussed in view of biomaterial development.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Huiliang Wen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Yu Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Rong Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Liyuan Rong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
20
|
Serra MC, Accardi CJ, Ma C, Park Y, Tran V, Jones DP, Hafer-Macko CE, Ryan AS. Metabolomics of Aerobic Exercise in Chronic Stroke Survivors: A Pilot Study. J Stroke Cerebrovasc Dis 2019; 28:104453. [PMID: 31668688 DOI: 10.1016/j.jstrokecerebrovasdis.2019.104453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/09/2019] [Accepted: 09/27/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Understanding the metabolic response to exercise may aid in optimizing stroke management. Therefore, the purpose of this pilot study was to evaluate plasma metabolomic profiles in chronic stroke survivors following aerobic exercise training. METHODS Participants (age: 62 ± 1 years, body mass index: 31 ± 1 kg/m2, mean ± standard error of the mean) were randomized to 6 months of treadmill exercise (N = 17) or whole-body stretching (N = 8) with preintervention and postintervention measurement of aerobic capacity (VO2peak). Linear models for microarray data expression analysis was performed to determine metabolic changes over time, and Mummichog was used for pathway enrichment analysis following analysis of plasma samples by high-performance liquid chromatography coupled to ultrahigh resolution mass spectrometry. RESULTS VO2peak change was greater following exercise than stretching (18.9% versus -.2%; P < .01). Pathway enrichment analysis of differentially expressed metabolites results showed significant enrichment in 4 pathways following treadmill exercise, 3 of which (heparan-, chondroitin-, keratan-sulfate degradation) involved connective tissue metabolism and the fourth involve lipid signaling (linoleate metabolism). More pathways were altered in pre and post comparisons of stretching, including branched-chain amino acid, tryptophan, tyrosine, and urea cycle, which could indicate loss of lean body mass. CONCLUSIONS These preliminary data show different metabolic changes due to treadmill training and stretching in chronic stroke survivors and suggest that in addition to improved aerobic capacity, weight-bearing activity, like walking, could protect against loss of lean body mass. Future studies are needed to examine the relationship between changes in metabolomic profiles to reductions in cardiometabolic risk after treadmill rehabilitation.
Collapse
Affiliation(s)
- Monica C Serra
- San Antonio GRECC, South Texas VA and the Division of Geriatrics, Gerontology & Palliative Medicine and the Sam & Ann Barshop Institute for Longevity & Aging Studies, UT Health San Antonio, San Antonio, Texas.
| | - Carolyn J Accardi
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Chunyu Ma
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Younja Park
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia; College of Pharmacy, Korea University, Sejong City, Korea
| | - ViLinh Tran
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Charlene E Hafer-Macko
- Baltimore VA Research Service and GRECC and the Division of Gerontology and Geriatric Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Alice S Ryan
- Baltimore VA Research Service and GRECC and the Division of Gerontology and Geriatric Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
21
|
Zong X, Dong Y, Li Y, Yang L, Li Y, Yang B, Tucker L, Zhao N, Brann DW, Yan X, Hu S, Zhang Q. Beneficial Effects of Theta-Burst Transcranial Magnetic Stimulation on Stroke Injury via Improving Neuronal Microenvironment and Mitochondrial Integrity. Transl Stroke Res 2019; 11:450-467. [PMID: 31515743 DOI: 10.1007/s12975-019-00731-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/19/2022]
Abstract
Recent work suggests that repetitive transcranial magnetic stimulation (rTMS) may beneficially alter the pathological status of several neurological disorders, although the mechanism remains unclear. The current study was designed to investigate the effects of rTMS on behavioral deficits and potential underlying mechanisms in a rat photothrombotic (PT) stroke model. From day 0 (3 h) to day 5 after the establishment of PT stroke, 5-min daily continuous theta-burst rTMS (3 pulses of 50 Hz repeated every 200 ms, intensity at 200 G) was applied on the infarct hemisphere. We report that rTMS significantly attenuated behavioral deficits and infarct volume after PT stroke. Further investigation demonstrated that rTMS remarkably reduced synaptic loss and neuronal degeneration in the peri-infarct cortical region. Mechanistic studies displayed that beneficial effects of rTMS were associated with robust suppression of reactive micro/astrogliosis and the overproduction of pro-inflammatory cytokines, as well as oxidative stress and oxidative neuronal damage especially at the late stage following PT stroke. Intriguingly, rTMS could effectively induce a shift in microglial M1/M2 phenotype activation and an A1 to A2 switch in astrocytic phenotypes. In addition, the release of anti-inflammatory cytokines and mitochondrial MnSOD in peri-infarct regions were elevated following rTMS treatment. Finally, rTMS treatment efficaciously preserved mitochondrial membrane integrity and suppressed the intrinsic mitochondrial caspase-9/3 apoptotic pathway within the peri-infarct cortex. Our novel findings indicate that rTMS treatment exerted robust neuroprotection when applied at least 3 h after ischemic stroke. The underlying mechanisms are partially associated with improvement of the local neuronal microenvironment by altering inflammatory and oxidative status and preserving mitochondrial integrity in the peri-infarct zone. These findings provide strong support for the promising therapeutic effect of rTMS against ischemic neuronal injury and functional deficits following stroke.
Collapse
Affiliation(s)
- Xuemei Zong
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University; the Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu province, China.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yuyu Li
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University; the Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu province, China
| | - Luodan Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yong Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Baocheng Yang
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University; the Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu province, China.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Lorelei Tucker
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Ningjun Zhao
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University; the Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu province, China
| | - Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Xianliang Yan
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University; the Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu province, China
| | - Shuqun Hu
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University; the Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu province, China.
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
22
|
Stamatovic SM, Phillips CM, Martinez-Revollar G, Keep RF, Andjelkovic AV. Involvement of Epigenetic Mechanisms and Non-coding RNAs in Blood-Brain Barrier and Neurovascular Unit Injury and Recovery After Stroke. Front Neurosci 2019; 13:864. [PMID: 31543756 PMCID: PMC6732937 DOI: 10.3389/fnins.2019.00864] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
Cessation of blood flow leads to a complex cascade of pathophysiological events at the blood-vascular-parenchymal interface which evolves over time and space, and results in damage to neural cells and edema formation. Cerebral ischemic injury evokes a profound and deleterious upregulation in inflammation and triggers multiple cell death pathways, but it also induces a series of the events associated with regenerative responses, including vascular remodeling, angiogenesis, and neurogenesis. Emerging evidence suggests that epigenetic reprograming could play a pivotal role in ongoing post-stroke neurovascular unit (NVU) changes and recovery. This review summarizes current knowledge about post-stroke recovery processes at the NVU, as well as epigenetic mechanisms and modifiers (e.g., DNA methylation, histone modifying enzymes and microRNAs) associated with stroke injury, and NVU repair. It also discusses novel drug targets and therapeutic strategies for enhancing post-stroke recovery.
Collapse
Affiliation(s)
- Svetlana M. Stamatovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Chelsea M. Phillips
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Richard F. Keep
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Molecular Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anuska V. Andjelkovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
23
|
Houlton J, Abumaria N, Hinkley SFR, Clarkson AN. Therapeutic Potential of Neurotrophins for Repair After Brain Injury: A Helping Hand From Biomaterials. Front Neurosci 2019; 13:790. [PMID: 31427916 PMCID: PMC6688532 DOI: 10.3389/fnins.2019.00790] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022] Open
Abstract
Stroke remains the leading cause of long-term disability with limited options available to aid in recovery. Significant effort has been made to try and minimize neuronal damage following stroke with use of neuroprotective agents, however, these treatments have yet to show clinical efficacy. Regenerative interventions have since become of huge interest as they provide the potential to restore damaged neural tissue without being limited by a narrow therapeutic window. Neurotrophins, such as brain-derived neurotrophic factor (BDNF), and their high affinity receptors are actively produced throughout the brain and are involved in regulating neuronal activity and normal day-to-day function. Furthermore, neurotrophins are known to play a significant role in both protection and recovery of function following neurodegenerative diseases such as stroke and traumatic brain injury (TBI). Unfortunately, exogenous administration of these neurotrophins is limited by a lack of blood-brain-barrier (BBB) permeability, poor half-life, and rapid degradation. Therefore, we have focused this review on approaches that provide a direct and sustained neurotrophic support using pharmacological therapies and mimetics, physical activity, and potential drug delivery systems, including discussion around advantages and limitations for use of each of these systems. Finally, we discuss future directions of biomaterial drug-delivery systems, including the incorporation of heparan sulfate (HS) in conjunction with neurotrophin-based interventions.
Collapse
Affiliation(s)
- Josh Houlton
- Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Nashat Abumaria
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
- Department of Laboratory Animal Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Simon F. R. Hinkley
- The Ferrier Research Institute, Victoria University of Wellington, Petone, New Zealand
| | - Andrew N. Clarkson
- Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
Influencing neuroplasticity in stroke treatment with advanced biomaterials-based approaches. Adv Drug Deliv Rev 2019; 148:204-218. [PMID: 30579882 DOI: 10.1016/j.addr.2018.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/05/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
Abstract
Since the early 1990s, we have known that the adult brain is not static and has the capacity to repair itself. The delivery of various therapeutic factors and cells have resulted in some exciting pre-clinical and clinical outcomes in stroke models by targeting post-injury plasticity to enhance recovery. Developing a deeper understanding of the pathways that modulate plasticity will enable us to optimize delivery strategies for therapeutics and achieve more robust effects. Biomaterials are a key tool for the optimization of these potential treatments, owing to their biocompatibility and tunability. In this review, we identify factors and targets that impact plastic processes known to contribute to recovery, discuss the role of biomaterials in enhancing the efficacy of treatment strategies, and suggest combinatorial approaches based on the stage of injury progression.
Collapse
|
25
|
Rosenzweig ES, Salegio EA, Liang JJ, Weber JL, Weinholtz CA, Brock JH, Moseanko R, Hawbecker S, Pender R, Cruzen CL, Iaci JF, Caggiano AO, Blight AR, Haenzi B, Huie JR, Havton LA, Nout-Lomas YS, Fawcett JW, Ferguson AR, Beattie MS, Bresnahan JC, Tuszynski MH. Chondroitinase improves anatomical and functional outcomes after primate spinal cord injury. Nat Neurosci 2019; 22:1269-1275. [PMID: 31235933 PMCID: PMC6693679 DOI: 10.1038/s41593-019-0424-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 05/10/2019] [Indexed: 01/07/2023]
Abstract
Inhibitory extracellular matrices form around mature neurons as perineuronal nets containing chondroitin sulfate proteoglycans that limit axonal sprouting after CNS injury. The enzyme chondroitinase (Chase) degrades inhibitory chondroitin sulfate proteoglycans and improves axonal sprouting and functional recovery after spinal cord injury in rodents. We evaluated the effects of Chase in rhesus monkeys that had undergone C7 spinal cord hemisection. Four weeks after hemisection, we administered multiple intraparenchymal Chase injections below the lesion, targeting spinal cord circuits that control hand function. Hand function improved significantly in Chase-treated monkeys relative to vehicle-injected controls. Moreover, Chase significantly increased corticospinal axon growth and the number of synapses formed by corticospinal terminals in gray matter caudal to the lesion. No detrimental effects were detected. This approach appears to merit clinical translation in spinal cord injury.
Collapse
Affiliation(s)
- Ephron S Rosenzweig
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Ernesto A Salegio
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Justine J Liang
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Janet L Weber
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Chase A Weinholtz
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - John H Brock
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Veterans Administration Medical Center, La Jolla, CA, USA
| | - Rod Moseanko
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Stephanie Hawbecker
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Roger Pender
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Christina L Cruzen
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | | | | | | | | | - J Russell Huie
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Leif A Havton
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yvette S Nout-Lomas
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Adam R Ferguson
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Michael S Beattie
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jacqueline C Bresnahan
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Mark H Tuszynski
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.
- Veterans Administration Medical Center, La Jolla, CA, USA.
| |
Collapse
|
26
|
Mo XB, Lei SF, Zhang YH, Zhang H. Integrative Analysis Identified IRF6 and NDST1 as Potential Causal Genes for Ischemic Stroke. Front Neurol 2019; 10:517. [PMID: 31156544 PMCID: PMC6529957 DOI: 10.3389/fneur.2019.00517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/01/2019] [Indexed: 02/02/2023] Open
Abstract
Objective: To highlight potential functional variants and causal genes for ischemic stroke (IS) in genomic loci identified by genome-wide association studies (GWAS). Methods: We examined the association between m6A-SNPs and IS in large scale GWAS. Furthermore, eQTL analysis was performed to evaluate the effect of m6A-SNPs on gene expression. The top associations between m6A-SNPs and gene expressions were validated in 40 individuals from the Chinese Han population. Besides, we applied differential expression analysis and Mendelian randomization (MR) analysis to detect potential causal genes for IS. Results: We found 310 (7.39%) m6A-SNPs which were nominally associated with IS. The proportion of m6A-SNPs with P < 0.05 for IS was significantly higher than the non-m6A-SNPs (95%CI: [5.84%, 7.36%], P = 0.02). We found that the IS-associated m6A-SNP rs2013162 was associated with IRF6 expression (P = 6.30 × 10−23), meanwhile IRF6 was differentially expressed between IS cases and controls (P = 6.15 × 10−3) and showed a causal association with IS (P = 3.64 × 10−4). Similar results were found for m6A-SNP rs2273235 in the NDST1 gene which was associated with cardioembolic stroke (P = 8.47 × 10−3). The associations of rs2013162 and rs2273235 with the expression of IRF6 and NDST1 were validated in blood cells (P = 0.0247 and 0.0007), respectively. Conclusions: This study showed that m6A-SNPs may affect IS risk through altering gene expressions. The results suggested that m6A might play a role in IS etiology and gene expressions that affected by m6A may be causal factors for IS.
Collapse
Affiliation(s)
- Xing-Bo Mo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Soochow University, Suzhou, China
| | - Shu-Feng Lei
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Soochow University, Suzhou, China
| | - Yong-Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Soochow University, Suzhou, China
| | - Huan Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Soochow University, Suzhou, China
| |
Collapse
|
27
|
Hettiaratchi MH, O'Meara MJ, Teal CJ, Payne SL, Pickering AJ, Shoichet MS. Local delivery of stabilized chondroitinase ABC degrades chondroitin sulfate proteoglycans in stroke-injured rat brains. J Control Release 2019; 297:14-25. [DOI: 10.1016/j.jconrel.2019.01.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 02/07/2023]
|
28
|
Wan YJ, Xu L, Song WT, Liu YQ, Wang LC, Zhao MB, Jiang Y, Liu LY, Zeng KW, Tu PF. The Ethanolic Extract of Caesalpinia sappan Heartwood Inhibits Cerebral Ischemia/Reperfusion Injury in a Rat Model Through a Multi-Targeted Pharmacological Mechanism. Front Pharmacol 2019; 10:29. [PMID: 30804781 PMCID: PMC6370896 DOI: 10.3389/fphar.2019.00029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Caesalpinia sappan L. (C. sappan) is a traditional Chinese medicinal plant. The dried heartwood of C. sappan (also known as Sappan wood) has been widely used for the folkloric medical treatment of ischemic cerebral stroke in China. However, the detailed underlying pharmacological mechanism still remains largely unexplored. Methods: In this study, a middle cerebral artery occlusion (MCAO) rat model was employed to elucidate the mechanism of the anti-cerebral ischemic effects of C. sappan ethanolic extract (CEE). Moreover, systemic multi-target identification coupled with gene ontology biological process (GO BP) and reactome pathway analysis was used to investigate the potential neuroprotective mechanism. Furthermore, the presumed mechanism was confirmed through biological analysis by determining the effects of CEE on the identified signaling pathways in PC12 cells model-induced by oxygen-glucose deprivation/reperfusion (OGD/R). Results: Our study demonstrates that CEE (both through in vivo administration at a dosage of 300 mg/kg and through in vitro incubation at a dosage of 2.4 μg/mL) is a neuroprotective agent that can effectively inhibit neuronal damage, promote synaptic generation, and suppress the activation of neutrophils, microglia, and astrocytes. Moreover, the neuroprotective mechanism of CEE is mediated via regulating 150 potential target proteins, which are associated with 6 biological processes and 10 pathways, including JAK-STAT, HSP90 and DNA damage/telomere stress. Conclusion: CEE can exert neuroprotective effect through multi-target pharmacological mechanisms to prevent ischemia/reperfusion-induced cerebral injury.
Collapse
Affiliation(s)
- Yan-Jun Wan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Li Xu
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-Ting Song
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Qi Liu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Li-Chao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ming-Bo Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Lian-Ying Liu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
29
|
Khelif Y, Toutain J, Quittet MS, Chantepie S, Laffray X, Valable S, Divoux D, Sineriz F, Pascolo-Rebouillat E, Papy-Garcia D, Barritault D, Touzani O, Bernaudin M. A heparan sulfate-based matrix therapy reduces brain damage and enhances functional recovery following stroke. Am J Cancer Res 2018; 8:5814-5827. [PMID: 30613264 PMCID: PMC6299437 DOI: 10.7150/thno.28252] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022] Open
Abstract
Alteration of the extracellular matrix (ECM) is one of the major events in the pathogenesis of brain lesions following ischemic stroke. Heparan sulfate mimetics (HSm) are synthetic pharmacologically active polysaccharides that promote ECM remodeling and tissue regeneration in various types of lesions. HSm bind to growth factors, protect them from enzymatic degradation and increase their bioavailability, which promotes tissue repair. As the ECM is altered during stroke and HSm have been shown to restore the ECM, we investigated the potential of HSm4131 (also named RGTA-4131®) to protect brain tissue and promote regeneration and plasticity after a stroke. Methods: Ischemic stroke was induced in rats using transient (1 h) intraluminal middle cerebral artery occlusion (MCAo). Animals were assigned to the treatment (HSm4131; 0.1, 0.5, 1.5, or 5 mg/kg) or vehicle control (saline) groups at different times (1, 2.5 or 6 h) after MCAo. Brain damage was assessed by MRI for the acute (2 days) and chronic (14 days) phases post-occlusion. Functional deficits were evaluated with a battery of sensorimotor behavioral tests. HSm4131-99mTc biodistribution in the ischemic brain was analyzed between 5 min and 3 h following middle cerebral artery reperfusion. Heparan sulfate distribution and cellular reactions, including angiogenesis and neurogenesis, were evaluated by immunohistochemistry, and growth factor gene expression (VEGF-A, Ang-2) was quantified by RT-PCR. Results: HSm4131, administered intravenously after stroke induction, located and remained in the ischemic hemisphere. HSm4131 conferred long-lasting neuroprotection, and significantly reduced functional deficits with no alteration of physiological parameters. It also restored the ECM, and increased brain plasticity processes, i.e., angiogenesis and neurogenesis, in the affected brain hemisphere. Conclusion: HSm represent a promising ECM-based therapeutic strategy to protect and repair the brain after a stroke and favor functional recovery.
Collapse
|
30
|
Influence of passage number on the impact of the secretome of adipose tissue stem cells on neural survival, neurodifferentiation and axonal growth. Biochimie 2018; 155:119-128. [PMID: 30342112 DOI: 10.1016/j.biochi.2018.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/13/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs), and within them adipose tissue derived stem cells (ASCs), have been shown to have therapeutic effects on central nervous system (CNS) cell populations. Such effects have been mostly attributed to soluble factors, as well as vesicles, present in their secretome. Yet, little is known about the impact that MSC passaging might have in the secretion therapeutic profile. Our aim was to show how human ASCs (hASCs) passage number influences the effect of their secretome in neuronal survival, differentiation and axonal growth. For this purpose, post-natal rat hippocampal primary cultures, human neural progenitor cell (hNPCs) cultures and dorsal root ganglia (DRGs) explants were incubated with secretome, collected as conditioned media (CM), obtained from hASCs in P3, P6, P9 and P12. Results showed no differences when comparing percentages of MAP-2 positive cells (a mature neuronal marker) in neuronal cultures or hNPCs, after incubation with hASCs secretome from different passages. The same was observed regarding DRG neurite outgrowth. In order to characterize the secretomes obtained from different passages, a proteomic analysis was performed, revealing that its composition did not vary significantly with passage number P3 to P12. Results allowed us to identify several key proteins, such as pigment epithelium derived factor (PEDF), DJ-1, interleucin-6 (IL-6) and galectin, all of which have already proven to play neuroprotective and neurodifferentiating roles. Proteins that promote neurite outgrowth were also found present, such as semaphorin 7A and glypican-1. We conclude that cellular passaging does not influence significantly hASCs's secretome properties especially their ability to support post-natal neuronal survival, induce neurodifferentiation and promote axonal growth.
Collapse
|
31
|
Gaidhani N, Uteshev VV. Treatment duration affects cytoprotective efficacy of positive allosteric modulation of α7 nAChRs after focal ischemia in rats. Pharmacol Res 2018; 136:121-132. [PMID: 30205140 PMCID: PMC6218269 DOI: 10.1016/j.phrs.2018.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/22/2018] [Accepted: 09/02/2018] [Indexed: 12/30/2022]
Abstract
To minimize irreversible brain injury after acute ischemic stroke (AIS), the time to treatment (i.e., treatment delay) should be minimized. However, thus far, all cytoprotective clinical trials have failed. Analysis of literature identified short treatment durations (≤72 h) as a common motif among completed cytoprotective clinical trials. Here, we argue that short cytoprotective regimens even if given early after AIS may only slow down the evolution of ischemic brain injury and fail to deliver sustained long-term solutions leading to relapses that may be misinterpreted for conceptual failure of cytoprotection. In this randomized blinded study, we used young adult male rats subjected to transient 90 min suture middle cerebral artery occlusion (MCAO) and treated with acute vs. sub-chronic regimens of PNU120596, a prototypical positive allosteric modulator of α7 nicotinic acetylcholine receptors with anti-inflammatory cytoprotective properties to test the hypothesis that insufficient treatment durations may reduce therapeutic benefits of otherwise efficacious cytoprotectants after AIS. A single acute treatment 90 min after MCAO significantly reduced brain injury and neurological deficits 24 h later, but these effects vanished 72 h after MCAO. These relapses were avoided by utilizing sub-chronic treatments. Thus, extending treatment duration augments therapeutic efficacy of PNU120596 after MCAO. Furthermore, sub-chronic treatments could offset the negative effects of prolonged treatment delays in cases where the acute treatment window after MCAO was left unexploited. We conclude that a combination of short treatment delays and prolonged treatment durations may be required to maximize therapeutic effects of PNU120596, reduce relapses and ensure sustained therapeutic efficacy after AIS. Similar concepts may hold for other cytoprotectants including those that failed in clinical trials.
Collapse
Affiliation(s)
- Nikhil Gaidhani
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States
| | - Victor V Uteshev
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States.
| |
Collapse
|
32
|
Xu X, Bass B, McKillop WM, Mailloux J, Liu T, Geremia NM, Hryciw T, Brown A. Sox9 knockout mice have improved recovery following stroke. Exp Neurol 2018; 303:59-71. [DOI: 10.1016/j.expneurol.2018.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/13/2017] [Accepted: 02/04/2018] [Indexed: 12/17/2022]
|
33
|
Cornelison RC, Gonzalez-Rothi EJ, Porvasnik SL, Wellman SM, Park JH, Fuller DD, Schmidt CE. Injectable hydrogels of optimized acellular nerve for injection in the injured spinal cord. Biomed Mater 2018; 13:034110. [PMID: 29380749 PMCID: PMC5911159 DOI: 10.1088/1748-605x/aaab82] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Spinal cord injury (SCI) affects a quarter million individuals in the United States, and there is currently no clinical treatment. Both fresh and acellular peripheral nerve grafts can induce spinal axon regeneration and support functional recovery in experimental injury models. Nonetheless, a scaffold that can be injected into a spinal contusion would be far less invasive to apply. We aimed to develop the first injectable acellular nerve graft for promoting repair after contusion SCI. APPROACH We report a method to enzymatically solubilize optimized acellular (OA) nerve-a decellularized peripheral nerve graft developed in our laboratory and currently used clinically-to obtain an injectable solution that undergoes thermal gelation under physiological conditions. We quantified multiple physical and compositional properties of this novel material as well as tested its efficacy at acute and chronic time points following cervical contusion SCI. MAIN RESULTS This injectable optimized acellular (iOA) nerve graft retains native chemical cues such as collagens and glycosaminoglycans. By varying hydrogel concentration, the rheological properties and compressive modulus of iOA were similar to that previous reported for rat central nervous tissue. iOA solution was compatible with rat Schwann cells in culture, and hydrogel injection into a rat cervical contusion model significantly reduced the ratio of M1:M2 macrophages after one week, favoring regenerative phenotypes (p < 0.05). Furthermore, while iOA treatment did not affect locomotor or respiratory recovery over an eight week period, the percentage of axonal coverage increased at the distal tissue interface (p < 0.05), suggesting enhanced axonal extension within this region. SIGNIFICANCE Our data indicate that this novel injectable form of acellular nerve grafts is amenable for use after contusion SCI and may bolster a simultaneous therapy by acutely modulating the inflammatory milieu and supporting axonal growth.
Collapse
Affiliation(s)
- R. Chase Cornelison
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| | | | - Stacy L. Porvasnik
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| | - Steven M. Wellman
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| | - James H. Park
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| | - David D. Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL 32611
| | - Christine E. Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| |
Collapse
|
34
|
Ras-Related C3 Botulinum Toxin Substrate 1 Promotes Axonal Regeneration after Stroke in Mice. Transl Stroke Res 2018; 9:506-514. [PMID: 29476448 DOI: 10.1007/s12975-018-0611-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/18/2022]
Abstract
Neurite plasticity is a critical aspect of brain functional recovery after stroke. Emerging data suggest that Ras-related C3 botulinum toxin substrate 1 (Rac1) plays a central role in axonal regeneration in the injured brain, specifically by stimulating neuronal intrinsic growth and counteracting the growth inhibitory signaling that leads to growth cone collapse. Therefore, we investigated the functional role of Rac1 in axonal regeneration after stroke.Delayed treatment with a specific Rac1 inhibitor, NSC 23766, worsened functional recovery, which was assessed by the pellet reaching test from day 14 to day 28 after stroke. It additionally reduced axonal density in the peri-infarct zone, assessed 28 days after stroke, with no effect on brain cavity size or on the number of newly formed cells. Accordingly, Rac1 overexpression using lentivirus promoted axonal regeneration and functional recovery after stroke from day 14 to day 28. Rac1 inhibition led to inactivation of pro-regenerative molecules, including mitogen-activated protein kinase kinase (p-MEK)1/2, LIM domain kinase (LIMK)1, and extracellular signal-regulated kinase (p-ERK)1/2 at 14 days after stroke. Inhibition of Rac1 reduced axonal length and number in cultured primary mouse cortical neurons using microfluidic chambers after oxygen-glucose deprivation (OGD) without affecting cell viability. In contrast, inhibition of Rac1 increased levels of glial fibrillary acidic protein, an extrinsic inhibitory signal for axonal growth, after stroke in vivo and in primary astrocytes after OGD.In conclusion, Rac1 signaling enhances axonal regeneration and improve post-stroke functional recovery in experimental models of stroke.
Collapse
|
35
|
Koh CH, Pronin S, Hughes M. Chondroitinase ABC for neurological recovery after acute brain injury: systematic review and meta-analyses of preclinical studies. Brain Inj 2018; 32:715-729. [PMID: 29436856 DOI: 10.1080/02699052.2018.1438665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Damage to critical brain regions causes deficits in important neurological functions. Chondroitinase ABC (ChABC) has been shown to promote neuroplasticity and may ameliorate neurological deficits caused by disease or trauma. This systematic review identifies and evaluates preclinical studies of ChABC as a treatment for acute brain injury. METHODS Four databases were searched for studies relating to ChABC and brain or brain injuries. Controlled studies in mammals with acute brain injuries treated with ChABC were included in meta-analyses of neurobehavioural outcomes. Means and standard deviations from the fifth day of treatment were extracted, and normalised mean differences were calculated. RESULTS Of 775 identified records, 16 studies administered ChABC after acute brain injury, of which 9 reported neurobehavioural outcomes. The estimated treatment effect on neurological recovery over the duration of included studies was 49.4% (CI: 30.3-68.4% with Hartung-Knapp-Sidik-Jonkman adjustment, p = 0.0002). The mechanisms of action may involve decreasing astroglial scar formation, promoting neuronal sprouting, and selective synaptic strengthening of sprouting neurites and activated neural pathways. CONCLUSIONS The summary of published evidence suggests that ChABC treatment is effective in improving neurological outcomes in preclinical models of acute brain injury. However, more studies are needed for better assessment of the specific translational potential of ChABC. ABBREVIATIONS AVM - Arteriovenous Malformation; ChABC - Chondroitinase ABC; CI - Confidence Interval; CSPG - Chondroitin Sulphate Proteoglycans; HKSJ - Hartung-Knapp-Sidik-Jonkman; MCA - Middle Cerebral Artery; NMD - Normalised Mean Difference; NSPC - Neural Stem/Progenitor Cells; PI - Prediction Interval; SD - Standard Deviation; SMD - Standardised Mean Difference; TBI - Traumatic Brain Injury.
Collapse
Affiliation(s)
- Chan Hee Koh
- a Edinburgh Medical School , University of Edinburgh , Edinburgh , United Kingdom
| | - Savva Pronin
- a Edinburgh Medical School , University of Edinburgh , Edinburgh , United Kingdom
| | - Mark Hughes
- b Translational Neurosurgery Unit , Centre for Clinical Brain Sciences, University of Edinburgh , Edinburgh , United Kingdom
| |
Collapse
|
36
|
Heindryckx F, Li JP. Role of proteoglycans in neuro-inflammation and central nervous system fibrosis. Matrix Biol 2018; 68-69:589-601. [PMID: 29382609 DOI: 10.1016/j.matbio.2018.01.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/26/2017] [Accepted: 01/20/2018] [Indexed: 12/19/2022]
Abstract
Fibrosis is defined as the thickening and scarring of connective tissue, usually as a consequence of tissue damage. The central nervous system (CNS) is special in the sense that fibrogenic cells are restricted to vascular and meningeal areas. Inflammation and the disruption of the blood-brain barrier can lead to the infiltration of fibroblasts and trigger fibrotic response. While the initial function of the fibrotic tissue is to restore the blood-brain barrier and to limit the site of injury, it also demolishes the structure of extracellular matrix and impedes the healing process by producing inhibitory molecules and forming a physical and biochemical barrier that prevents axon regeneration. As a major constituent in the extracellular matrix, proteoglycans participate in the neuro-inflammation, modulating the fibrotic process. In this review, we will discuss the pathophysiology of fibrosis during acute injuries of the CNS, as well as during chronic neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, multiple sclerosis and age-related neurodegeneration with focus on the functional roles of proteoglycans.
Collapse
Affiliation(s)
- Femke Heindryckx
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology/SciLifeLab, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
37
|
George N, Geller HM. Extracellular matrix and traumatic brain injury. J Neurosci Res 2018; 96:573-588. [PMID: 29344975 DOI: 10.1002/jnr.24151] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/21/2017] [Accepted: 08/14/2017] [Indexed: 12/27/2022]
Abstract
The brain extracellular matrix (ECM) plays a crucial role in both the developing and adult brain by providing structural support and mediating cell-cell interactions. In this review, we focus on the major constituents of the ECM and how they function in both normal and injured brain, and summarize the changes in the composition of the ECM as well as how these changes either promote or inhibit recovery of function following traumatic brain injury (TBI). Modulation of ECM composition to facilitates neuronal survival, regeneration and axonal outgrowth is a potential therapeutic target for TBI treatment.
Collapse
Affiliation(s)
- Naijil George
- Laboratory of Developmental Neurobiology, Cell Biology and Physiology Center, NHLBI, NIH, Bethesda, MD, 20892-1603, USA
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, Cell Biology and Physiology Center, NHLBI, NIH, Bethesda, MD, 20892-1603, USA
| |
Collapse
|
38
|
Şekerdağ E, Solaroğlu I, Gürsoy-Özdemir Y. Cell Death Mechanisms in Stroke and Novel Molecular and Cellular Treatment Options. Curr Neuropharmacol 2018; 16:1396-1415. [PMID: 29512465 PMCID: PMC6251049 DOI: 10.2174/1570159x16666180302115544] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/18/2017] [Accepted: 03/01/2018] [Indexed: 02/06/2023] Open
Abstract
As a result of ischemia or hemorrhage, blood supply to neurons is disrupted which subsequently promotes a cascade of pathophysiological responses resulting in cell loss. Many mechanisms are involved solely or in combination in this disorder including excitotoxicity, mitochondrial death pathways, and the release of free radicals, protein misfolding, apoptosis, necrosis, autophagy and inflammation. Besides neuronal cell loss, damage to and loss of astrocytes as well as injury to white matter contributes also to cerebral injury. The core problem in stroke is the loss of neuronal cells which makes recovery difficult or even not possible in the late states. Acute treatment options that can be applied for stroke are mainly targeting re-establishment of blood flow and hence, their use is limited due to the effective time window of thrombolytic agents. However, if the acute time window is exceeded, neuronal loss starts due to the activation of cell death pathways. This review will explore the most updated cellular death mechanisms leading to neuronal loss in stroke. Ischemic and hemorrhagic stroke as well as subarachnoid hemorrhage will be debated in the light of cell death mechanisms and possible novel molecular and cellular treatment options will be discussed.
Collapse
Affiliation(s)
- Emine Şekerdağ
- Address correspondence to this author at the Neuroscience Research Lab, Research Center for Translational Medicine, Koç University, Istanbul, Turkey; Tel: +90 850 250 8250; E-mail:
| | | | | |
Collapse
|
39
|
Teh DBL, Prasad A, Jiang W, Ariffin MZ, Khanna S, Belorkar A, Wong L, Liu X, All AH. Transcriptome Analysis Reveals Neuroprotective aspects of Human Reactive Astrocytes induced by Interleukin 1β. Sci Rep 2017; 7:13988. [PMID: 29070875 PMCID: PMC5656635 DOI: 10.1038/s41598-017-13174-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
Reactive astrogliosis is a critical process in neuropathological conditions and neurotrauma. Although it has been suggested that it confers neuroprotective effects, the exact genomic mechanism has not been explored. The prevailing dogma of the role of astrogliosis in inhibition of axonal regeneration has been challenged by recent findings in rodent model’s spinal cord injury, demonstrating its neuroprotection and axonal regeneration properties. We examined whether their neuroprotective and axonal regeneration potentials can be identify in human spinal cord reactive astrocytes in vitro. Here, reactive astrogliosis was induced with IL1β. Within 24 hours of IL1β induction, astrocytes acquired reactive characteristics. Transcriptome analysis of over 40000 transcripts of genes and analysis with PFSnet subnetwork revealed upregulation of chemokines and axonal permissive factors including FGF2, BDNF, and NGF. In addition, most genes regulating axonal inhibitory molecules, including ROBO1 and ROBO2 were downregulated. There was no increase in the gene expression of “Chondroitin Sulfate Proteoglycans” (CSPGs’) clusters. This suggests that reactive astrocytes may not be the main CSPG contributory factor in glial scar. PFSnet analysis also indicated an upregulation of “Axonal Guidance Signaling” pathway. Our result suggests that human spinal cord reactive astrocytes is potentially neuroprotective at an early onset of reactive astrogliosis.
Collapse
Affiliation(s)
- Daniel Boon Loong Teh
- Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, 5-COR, Singapore, 117456, Singapore
| | - Ankshita Prasad
- Department of Biomedical Engineering, National University of Singapore, E4, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Wenxuan Jiang
- Department of Orthopaedic Surgery, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Mohd Zacky Ariffin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sanjay Khanna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Abha Belorkar
- Department of Computer Science, National University of Singapore, 13 Computing Drive, Singapore, 117417, Singapore
| | - Limsoon Wong
- Department of Computer Science, National University of Singapore, 13 Computing Drive, Singapore, 117417, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| | - Angelo H All
- Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, 5-COR, Singapore, 117456, Singapore. .,Department of Biomedical Engineering and Johns Hopkins School of Medicine, 701C Rutland Avenue 720, Baltimore, MD 21205, USA. .,Department of Neurology, Johns Hopkins School of Medicine, 701C Rutland Avenue 720, Baltimore, MD 21205, USA.
| |
Collapse
|
40
|
Sammali E, Alia C, Vegliante G, Colombo V, Giordano N, Pischiutta F, Boncoraglio GB, Barilani M, Lazzari L, Caleo M, De Simoni MG, Gaipa G, Citerio G, Zanier ER. Intravenous infusion of human bone marrow mesenchymal stromal cells promotes functional recovery and neuroplasticity after ischemic stroke in mice. Sci Rep 2017; 7:6962. [PMID: 28761170 PMCID: PMC5537246 DOI: 10.1038/s41598-017-07274-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/27/2017] [Indexed: 12/13/2022] Open
Abstract
Transplantation of human bone marrow mesenchymal stromal cells (hBM-MSC) promotes functional recovery after stroke in animal models, but the mechanisms underlying these effects remain incompletely understood. We tested the efficacy of Good Manufacturing Practices (GMP) compliant hBM-MSC, injected intravenously 3.5 hours after injury in mice subjected to transient middle cerebral artery occlusion (tMCAo). We addressed whether hBM-MSC are efficacious and if this efficacy is associated with cortical circuit reorganization using neuroanatomical analysis of GABAergic neurons (parvalbumin; PV-positive cells) and perineuronal nets (PNN), a specialized extracellular matrix structure which acts as an inhibitor of neural plasticity. tMCAo mice receiving hBM-MSC, showed early and lasting improvement of sensorimotor and cognitive functions compared to control tMCAo mice. Furthermore, 5 weeks post-tMCAo, hBM-MSC induced a significant rescue of ipsilateral cortical neurons; an increased proportion of PV-positive neurons in the perilesional cortex, suggesting GABAergic interneurons preservation; and a lower percentage of PV-positive cells surrounded by PNN, indicating an enhanced plastic potential of the perilesional cortex. These results show that hBM-MSC improve functional recovery and stimulate neuroprotection after stroke. Moreover, the downregulation of “plasticity brakes” such as PNN suggests that hBM-MSC treatment stimulates plasticity and formation of new connections in the perilesional cortex.
Collapse
Affiliation(s)
- Eliana Sammali
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa,19, 20156, Milano, Italy.,Department of Cerebrovascular Diseases, Fondazione IRCCS - Istituto Neurologico Carlo Besta, Milano, Italy
| | - Claudia Alia
- Neuroscience Institute, CNR, Pisa, Italy.,Scuola Normale Superiore, Pisa, Italy
| | - Gloria Vegliante
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa,19, 20156, Milano, Italy
| | - Valentina Colombo
- Laboratory for Cell and Gene Therapy "Stefano Verri", ASST-Monza, San Gerardo Hospital, Monza, Italy.,Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, Monza, Italy
| | - Nadia Giordano
- Neuroscience Institute, CNR, Pisa, Italy.,Scuola Normale Superiore, Pisa, Italy
| | - Francesca Pischiutta
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa,19, 20156, Milano, Italy
| | - Giorgio B Boncoraglio
- Department of Cerebrovascular Diseases, Fondazione IRCCS - Istituto Neurologico Carlo Besta, Milano, Italy
| | - Mario Barilani
- Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milano, Italy
| | - Lorenza Lazzari
- Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milano, Italy
| | | | - Maria-Grazia De Simoni
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa,19, 20156, Milano, Italy
| | - Giuseppe Gaipa
- Laboratory for Cell and Gene Therapy "Stefano Verri", ASST-Monza, San Gerardo Hospital, Monza, Italy.,Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, Monza, Italy
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy.,Neurointensive Care, ASST-Monza, San Gerardo Hospital, Monza, Italy
| | - Elisa R Zanier
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa,19, 20156, Milano, Italy.
| |
Collapse
|
41
|
Sakamoto K, Kadomatsu K. Mechanisms of axon regeneration: The significance of proteoglycans. Biochim Biophys Acta Gen Subj 2017; 1861:2435-2441. [PMID: 28596106 DOI: 10.1016/j.bbagen.2017.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/04/2017] [Accepted: 06/05/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Therapeutics specific to neural injury have long been anticipated but remain unavailable. Axons in the central nervous system do not readily regenerate after injury, leading to dysfunction of the nervous system. This failure of regeneration is due to both the low intrinsic capacity of axons for regeneration and the various inhibitors emerging upon injury. After many years of concerted efforts, however, these hurdles to axon regeneration have been partially overcome. SCOPE OF REVIEW This review summarizes the mechanisms regulating axon regeneration. We highlight proteoglycans, particularly because it has become increasingly clear that these proteins serve as critical regulators for axon regeneration. MAJOR CONCLUSIONS Studies on proteoglycans have revealed that glycans not only assist in the modulation of protein functions but also act as main players-e.g., as functional ligands mediating intracellular signaling through specific receptors on the cell surface. By regulating clustering of the receptors, glycans in the proteoglycan moiety, i.e., glycosaminoglycans, promote or inhibit axon regeneration. In addition, proteoglycans are involved in various types of neural plasticity, ranging from synaptic plasticity to experience-dependent plasticity. GENERAL SIGNIFICANCE Although studies on proteins have progressively facilitated our understanding of the nervous system, glycans constitute a new frontier for further research and development in this field. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.
Collapse
Affiliation(s)
- Kazuma Sakamoto
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
42
|
De Luca C, Papa M. Matrix Metalloproteinases, Neural Extracellular Matrix, and Central Nervous System Pathology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:167-202. [PMID: 28662822 DOI: 10.1016/bs.pmbts.2017.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The functionality and stability of the central nervous system (CNS) pabulum, called neural extracellular matrix (nECM), is paramount for the maintenance of a healthy network. The loosening or the damage of the scaffold disrupts synaptic transmission with the consequent imbalance of the neurotransmitters, reactive cells invasion, astrocytosis, new matrix deposition, digestion of the previous structure and ultimately, maladaptive plasticity with the loss of neuronal viability. nECM is constantly affected by CNS disorders, particularly in chronic modifying such as neurodegenerative disease, or in acute/subacute with chronic sequelae, like cerebrovascular and inflammatory pathology. Matrix metalloproteinases (MMPs) are the main interfering agent of nECM, guiding the balance of degradation and new deposition of proteins such as proteoglycans and glycoproteins, or glycosaminoglycans, such as hyaluronic acid. Activation of these enzymes is modulated by their physiologic inhibitors, the tissue inhibitors of MMPs or via other proteases inhibitors, as well as genetic or epigenetic up- or downregulation through molecular interaction or receptor activation. The appropriate understanding of the pathways underlying nECM modifications in CNS pathology is probably one of the pivotal future directions to identify the healthy brain network and subsequently design new therapies to interfere with the progression of the CNS disease and eventually find appropriate therapies.
Collapse
Affiliation(s)
- Ciro De Luca
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Papa
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", Naples, Italy; SYSBIO, Centre for Systems Biology, University of Milano-Bicocca, Milano, Italy.
| |
Collapse
|
43
|
Lemarchant S, Wojciechowski S, Vivien D, Koistinaho J. ADAMTS-4 in central nervous system pathologies. J Neurosci Res 2017; 95:1703-1711. [DOI: 10.1002/jnr.24021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/23/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Sighild Lemarchant
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio; University of Eastern Finland; P.O. BOX 1627 70211 Kuopio Finland
| | - Sara Wojciechowski
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio; University of Eastern Finland; P.O. BOX 1627 70211 Kuopio Finland
| | - Denis Vivien
- INSERM, INSERM UMR-S 919, “Serine Proteases and Pathophysiology of the Neurovascular Unit”; University of Caen Basse-Normandie; GIP Cyceron, Bd H. Becquerel, BP 5229 14074 Caen Cedex France
| | - Jari Koistinaho
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio; University of Eastern Finland; P.O. BOX 1627 70211 Kuopio Finland
| |
Collapse
|
44
|
Lack of collagen XV is protective after ischemic stroke in mice. Cell Death Dis 2017; 8:e2541. [PMID: 28079884 PMCID: PMC5386367 DOI: 10.1038/cddis.2016.456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 02/07/2023]
Abstract
Collagens are key structural components of basement membranes, providing a scaffold for other components or adhering cells. Collagens and collagen-derived active fragments contribute to biological activities such as cell growth, differentiation and migration. Here, we report that collagen XV knock-out (ColXV KO) mice are resistant to experimental ischemic stroke. Interestingly, the infarcts of ColXV KO mice were as small as those of wild-type (WT) mice thrombolysed with recombinant tissue plasminogen activator (rtPA), the actual treatment for ischemic stroke. Importantly, there were no differences in the architecture of cerebrovascular anatomy between WT and ColXV KO mice. We found a twofold increase of the most potent pro-angiogenic factor, type A vascular growth endothelial factor (VEGF-A) in the ipsilateral cortex of rtPA-treated ischemic WT mice compared with untreated ischemic and sham-operated counterparts. A similar increase of VEGF-A was also found in both rtPA and untreated ischemic ColXV KO mice compared with sham ColXV KO mice. Finally, we evidenced that the levels of ColXV were increased in the plasma of WT mice treated with rtPA compared with untreated ischemic counterparts. Altogether, this study indicates that the lack ColXV is protective after stroke and that the degradation of endothelial ColXV may contribute to the beneficial effect of rtPA after ischemic stroke. The neuroprotection observed in ColXV KO mice may be attributed to the increased VEGF-A production following stroke in the ischemic territory.
Collapse
|
45
|
Reactive astrogliosis in stroke: Contributions of astrocytes to recovery of neurological function. Neurochem Int 2017; 107:88-103. [PMID: 28057555 DOI: 10.1016/j.neuint.2016.12.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/26/2016] [Accepted: 12/30/2016] [Indexed: 12/31/2022]
Abstract
Alterations in neuronal connectivity, particularly in the "peri-infarct" tissue adjacent to the region of ischemic damage, are important contributors to the spontaneous recovery of function that commonly follows stroke. Peri-infarct astrocytes undergo reactive astrogliosis and play key roles in modulating the adaptive responses in neurons. This reactive astrogliosis shares many features with that induced by other forms of damage to the central nervous system but also differs in details that potentially influence neurological recovery. A subpopulation of astrocytes within a few hundred micrometers of the infarct proliferate and are centrally involved in the development of the glial scar that separates the damaged tissue in the infarct from surrounding normal brain. The intertwined processes of astrocytes adjacent to the infarct provide the core structural component of the mature scar. Interventions that cause early disruption of glial scar formation typically impede restoration of neurological function. Marked reactive astrogliosis also develops in cells more distant from the infarct but these cells largely remain in the spatial territories they occupied prior to stroke. These cells play important roles in controlling the extracellular environment and release proteins and other molecules that are able to promote neuronal plasticity and improve functional recovery. Treatments manipulating aspects of reactive astrogliosis can enhance neuronal plasticity following stroke. Optimising these treatments for use in human stroke would benefit from a more complete characterization of the specific responses of peri-infarct astrocytes to stroke as well as a better understanding of the influence of other factors including age, sex, comorbidities and reperfusion of the ischemic tissue.
Collapse
|
46
|
Cholinergic Protection in Ischemic Brain Injury. SPRINGER SERIES IN TRANSLATIONAL STROKE RESEARCH 2017. [DOI: 10.1007/978-3-319-45345-3_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
47
|
Neurodegeneration and Glial Response after Acute Striatal Stroke: Histological Basis for Neuroprotective Studies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3173564. [PMID: 28090244 PMCID: PMC5165163 DOI: 10.1155/2016/3173564] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/26/2016] [Accepted: 10/12/2016] [Indexed: 11/24/2022]
Abstract
Stroke is a leading cause of death and neurological disability worldwide and striatal ischemic stroke is frequent in humans due to obstruction of middle cerebral artery. Several pathological events underlie damage progression and a comprehensive description of the pathological features following experimental stroke in both acute and chronic survival times is a necessary step for further functional studies. Here, we explored the patterns of microglial activation, astrocytosis, oligodendrocyte damage, myelin impairment, and Nogo-A immunoreactivity between 3 and 30 postlesion days (PLDs) after experimental striatal stroke in adult rats induced by microinjections of endothelin-1 (ET-1). The focal ischemia induced tissue loss concomitant with intense microglia activation between 3 and 14 PLDs (maximum at 7 PLDs), decreasing afterward. Astrocytosis was maximum around 7 PLDs. Oligodendrocyte damage and Nogo-A upregulation were higher at 3 PLDs. Myelin impairment was maximum between 7 and 14 PLDs. Nogo-A expression was higher in the first week in comparison to control. The results add important histopathological features of ET-1 induced stroke in subacute and chronic survival times. In addition, the establishment of the temporal evolution of these neuropathological events is an important step for future studies seeking suitable neuroprotective drugs targeting neuroinflammation and white matter damage.
Collapse
|
48
|
Role of Matricellular Proteins in Disorders of the Central Nervous System. Neurochem Res 2016; 42:858-875. [DOI: 10.1007/s11064-016-2088-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022]
|
49
|
A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries. Nat Commun 2016; 7:11980. [PMID: 27351915 PMCID: PMC4931241 DOI: 10.1038/ncomms11980] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/18/2016] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a major health and socio-economic problem, but no pharmacological agent is currently approved for the treatment of acute TBI. Thus, there is a great need for advances in this field. Here, we describe a short peptide (sequence CAQK) identified by in vivo phage display screening in mice with acute brain injury. The CAQK peptide selectively binds to injured mouse and human brain, and systemically injected CAQK specifically homes to sites of brain injury in mouse models. The CAQK target is a proteoglycan complex upregulated in brain injuries. Coupling to CAQK increased injury site accumulation of systemically administered molecules ranging from a drug-sized molecule to nanoparticles. CAQK-coated nanoparticles containing silencing oligonucleotides provided the first evidence of gene silencing in injured brain parenchyma by systemically administered siRNA. These findings present an effective targeting strategy for the delivery of therapeutics in clinical management of acute brain injuries.
Collapse
|
50
|
Lemarchant S, Dunghana H, Pomeshchik Y, Leinonen H, Kolosowska N, Korhonen P, Kanninen KM, García-Berrocoso T, Montaner J, Malm T, Koistinaho J. Anti-inflammatory effects of ADAMTS-4 in a mouse model of ischemic stroke. Glia 2016; 64:1492-507. [PMID: 27301579 DOI: 10.1002/glia.23017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 12/29/2022]
Abstract
ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs type 4) is a metalloprotease capable to degrade chondroitin sulfate proteoglycans leading to cartilage destruction during arthritis or to neuroplasticity during spinal cord injury (SCI). Although ADAMTS-4 is an inflammatory-regulated enzyme, its role during inflammation has never been investigated. The aim of this study was to investigate the role of ADAMTS-4 in neuroinflammation. First, we evidenced an increase of ADAMTS-4 expression in the ischemic brain hemisphere of mouse and human patients suffering from ischemic stroke. Then, we described that ADAMTS-4 has predominantly an anti-inflammatory effect in the CNS. Treatment of primary microglia or astrocyte cultures with low doses of a human recombinant ADAMTS-4 prior to LPS exposure decreased NO production and the synthesis/release of pro-inflammatory cytokines including NOS2, CCL2, TNF-α, IL-1β and MMP-9. Accordingly, when cell cultures were transfected with silencing siRNA targeting ADAMTS-4 prior to LPS exposure, the production of NO and the synthesis/release of pro-inflammatory cytokines were increased. Finally, the feasibility of ADAMTS-4 to modulate neuroinflammation was investigated in vivo after permanent middle cerebral artery occlusion in mice. Although ADAMTS-4 treatment did not influence the lesion volume, it decreased astrogliosis and macrophage infiltration, and increased the number of microglia expressing arginase-1, a marker of alternatively activated cells with inflammation inhibiting functions. Additionally, ADAMTS-4 increased the production of IL-10 and IL-6 in the peri-ischemic area. By having anti-inflammatory and neuroregenerative roles, ADAMTS-4 may represent an interesting target to treat acute CNS injuries, such as ischemic stroke, SCI or traumatic brain injury. GLIA 2016;64:1492-1507.
Collapse
Affiliation(s)
- Sighild Lemarchant
- Department of Neurobiology, a. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio University of Eastern Finland, Kuopio, P.O. Box 1627, Finland
| | - Hiramani Dunghana
- Department of Neurobiology, a. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio University of Eastern Finland, Kuopio, P.O. Box 1627, Finland
| | - Yuriy Pomeshchik
- Department of Neurobiology, a. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio University of Eastern Finland, Kuopio, P.O. Box 1627, Finland
| | - Henri Leinonen
- Department of Neurobiology, a. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio University of Eastern Finland, Kuopio, P.O. Box 1627, Finland
| | - Natalia Kolosowska
- Department of Neurobiology, a. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio University of Eastern Finland, Kuopio, P.O. Box 1627, Finland
| | - Paula Korhonen
- Department of Neurobiology, a. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio University of Eastern Finland, Kuopio, P.O. Box 1627, Finland
| | - Katja M Kanninen
- Department of Neurobiology, a. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio University of Eastern Finland, Kuopio, P.O. Box 1627, Finland
| | - Teresa García-Berrocoso
- Neurovascular Research Laboratory, Vall D'Hebron Research Institute (VHIR), Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall D'Hebron Research Institute (VHIR), Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Tarja Malm
- Department of Neurobiology, a. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio University of Eastern Finland, Kuopio, P.O. Box 1627, Finland
| | - Jari Koistinaho
- Department of Neurobiology, a. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio University of Eastern Finland, Kuopio, P.O. Box 1627, Finland
| |
Collapse
|