1
|
Zhang Y, Tu J, Wang J, Dai T, Zheng L, Sun S, Tu C, Li H, Qian L. NFKBIE is a predictive factor of survival and is correlated with immune infiltration and antigen processing and presentation in hepatocellular carcinoma. Oncol Lett 2024; 28:480. [PMID: 39161335 PMCID: PMC11332585 DOI: 10.3892/ol.2024.14613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 02/21/2024] [Indexed: 08/21/2024] Open
Abstract
The important role of the nuclear factor κB (NFκB) pathway in tumour development has long been recognized; however, the role of the NFκB inhibitor family in liver cancer has not been elucidated. Hepatocellular carcinoma (HCC) is a serious public health burden with a high incidence, poor prognosis, and early detection, especially in Asia, where hepatitis is prevalent. In the present study, the mRNA expression level of the NFκB inhibitor family was assessed in HCC and normal tissues using the Metabolic Gene Rapid Visualizer, University of Alabama at Birmingham Cancer Data Analysis Portal, and the Tumor Immune Estimation Resource database (TIMER). Survival curves of nuclear factor of κ light polypeptide gene enhancer in B-cells inhibitor (NFKBI)E were obtained using the Kaplan-Meier method. Genes co-expressed with NFKBIE in HCC samples were studied using data from the LinkedOmics and the Hepatocellular Carcinoma Databases. Protein-protein interaction networks, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment pathway analyses were used to assess the NFKBIE mechanism in HCC. Using the TIMER database, the association between immune infiltration and NFKBIE was determined. RNA-sequencing (RNA-seq) was used to evaluate the function of NFKBIE in HCC and its impact on proliferation and migration. Western blotting was used to confirm the expression of NFKBIE in HCC cell lines. In addition, NFKBIE overexpression in HCC was demonstrated using tissue microarrays encompassing 80 pairs of HCC and normal liver tissues. NFKBIE was the only NFκB inhibitor with high expression and an improved prognosis in HCC compared with other NFκB inhibitors. NFKBIE was correlated with clinical characteristics, such as tumour grade, tumour protein P53 mutation status and tumour stage. Data obtained from Gene Set Cancer Analysis suggested that NFKBIE may inhibit the PI3K/AKT, RAS/MAPK, RTK and TSC/mTOR pathways. In addition, NFKBIE was significantly associated with B-cell immune infiltration and the RNA-seq data demonstrated that knockdown of NFKBIE significantly affected 'Antigen processing and presentation' and 'hepatocellular carcinoma' pathways. Immunohistochemistry of microarrays of tissue samples revealed that NFKBIE was overexpressed in several stages of HCC. Finally, inhibition of NFKBIE decreased the proliferation and migration of HCC cells. In conclusion, due to its prognostic value and overexpression in HCC, NFKBIE distinguished itself from other NFκB inhibitors. As such, it may provide a novel prognostic indicator and immunotherapeutic target for HCC.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Comprehensive Surgery, The First Affiliated Hospital of University of Science and Technology of China West District, Hefei, Anhui 230031, P.R. China
| | - Jinqi Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui 241001, P.R. China
| | - Jian Wang
- Department of Comprehensive Surgery, The First Affiliated Hospital of University of Science and Technology of China West District, Hefei, Anhui 230031, P.R. China
| | - Tiancheng Dai
- Department of Medical Laboratory Technology, The First Clinical College of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Lin Zheng
- Department of Comprehensive Surgery, The First Affiliated Hospital of University of Science and Technology of China West District, Hefei, Anhui 230031, P.R. China
| | - Sinan Sun
- Department of Radiation Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, P.R. China
| | - Conyin Tu
- Department of Comprehensive Surgery, The First Affiliated Hospital of University of Science and Technology of China West District, Hefei, Anhui 230031, P.R. China
| | - Heng Li
- Department of Comprehensive Surgery, The First Affiliated Hospital of University of Science and Technology of China West District, Hefei, Anhui 230031, P.R. China
| | - Liting Qian
- Department of Radiation Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
2
|
Almotiri A, Abdelfattah A, Storch E, Stemmler MP, Brabletz S, Brabletz T, Rodrigues NP. Zeb1 maintains long-term adult hematopoietic stem cell function and extramedullary hematopoiesis. Exp Hematol 2024; 134:104177. [PMID: 38336135 DOI: 10.1016/j.exphem.2024.104177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Emerging evidence implicates the epithelial-mesenchymal transition transcription factor Zeb1 as a critical regulator of hematopoietic stem cell (HSC) differentiation. Whether Zeb1 regulates long-term maintenance of HSC function remains an open question. Using an inducible Mx-1-Cre mouse model that deletes conditional Zeb1 alleles in the adult hematopoietic system, we found that mice engineered to be deficient in Zeb1 for 32 weeks displayed expanded immunophenotypically defined adult HSCs and multipotent progenitors associated with increased abundance of lineage-biased/balanced HSC subsets and augmented cell survival characteristics. During hematopoietic differentiation, persistent Zeb1 loss increased B cells in the bone marrow and spleen and decreased monocyte generation in the peripheral blood. In competitive transplantation experiments, we found that HSCs from adult mice with long-term Zeb1 deletion displayed a cell autonomous defect in multilineage differentiation capacity. Long-term Zeb1 loss perturbed extramedullary hematopoiesis characterized by increased splenic weight and a paradoxical reduction in splenic cellularity that was accompanied by HSC exhaustion, lineage-specific defects, and an accumulation of aberrant, preleukemic like c-kit+CD16/32+ progenitors. Loss of Zeb1 for up to 42 weeks can lead to progressive splenomegaly and an accumulation of Gr-1+Mac-1+ cells, further supporting the notion that long-term expression of Zeb1 suppresses preleukemic activity. Thus, sustained Zeb1 deletion disrupts HSC functionality in vivo and impairs regulation of extramedullary hematopoiesis with potential implications for tumor suppressor functions of Zeb1 in myeloid neoplasms.
Collapse
Affiliation(s)
- Alhomidi Almotiri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Shaqra University, Dawadmi, Saudi Arabia; European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, UK
| | - Ali Abdelfattah
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, UK; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Elis Storch
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, UK
| | - Marc P Stemmler
- Department of Experimental Medicine, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Brabletz
- Department of Experimental Medicine, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Neil P Rodrigues
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, UK.
| |
Collapse
|
3
|
Do KK, Wang F, Sun X, Zhang Y, Liang W, Liu JY, Jiang DY, Lu X, Wang W, Zhang L, Dean DC, Liu Y. Conditional deletion of Zeb1 in Csf1r + cells reduces inflammatory response of the cornea to alkali burn. iScience 2024; 27:109694. [PMID: 38660397 PMCID: PMC11039400 DOI: 10.1016/j.isci.2024.109694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
ZEB1 is an essential factor in embryonic development. In adults, it is often highly expressed in malignant tumors with low expression in normal tissues. The major biological function of ZEB1 in developing embryos and progressing cancers is to transdifferentiate cells from an epithelial to mesenchymal phenotype; but what roles ZEB1 plays in normal adult tissues are largely unknown. We previously reported that the reduction of Zeb1 in monoallelic global knockout (Zeb1+/-) mice reduced corneal inflammation-associated neovascularization following alkali burn. To uncover the cellular mechanism underlying the Zeb1 regulation of corneal inflammation, we functionally deleted Zeb1 alleles in Csf1r+ myeloid cells using a conditional knockout (cKO) strategy and found that Zeb1 cKO reduced leukocytes in the cornea after alkali burn. The reduction of immune cells was due to their increased apoptotic rate and linked to a Zeb1-downregulated apoptotic pathway. We conclude that Zeb1 facilitates corneal inflammatory response by maintaining Csf1r+ cell viability.
Collapse
Affiliation(s)
- Khoi K. Do
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Fuhua Wang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Eye Institute and Eye Hospital of Shangdong First Medical University, Jinan 250021, China
| | - Xiaolei Sun
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Eye Institute and Eye Hospital of Shangdong First Medical University, Jinan 250021, China
| | - Yingnan Zhang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- The Rosenberg School of Optometry, University of the Incarnate Word, San Antonio, TX 78229, USA
| | - Wei Liang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Ophthalmology, Third People’s Hospital of Dalian, Dalian Medical University, Dalian 116033, China
| | - John Y. Liu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Daniel Y. Jiang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Xiaoqin Lu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Wei Wang
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Lijun Zhang
- Department of Ophthalmology, Third People’s Hospital of Dalian, Dalian Medical University, Dalian 116033, China
| | - Douglas C. Dean
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Yongqing Liu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
4
|
Rithvik A, Samarpita S, Rasool M. Unleashing the pathological imprinting of cancer in autoimmunity: Is ZEB1 the answer? Life Sci 2023; 332:122115. [PMID: 37739160 DOI: 10.1016/j.lfs.2023.122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The intriguing scientific relationship between autoimmunity and cancer immunology have been traditionally indulged to throw spotlight on novel pathological targets. Understandably, these "slowly killing" diseases are on the opposite ends of the immune spectrum. However, the immune regulatory mechanisms between autoimmunity and cancer are not always contradictory and sometimes mirror each other based on disease stage, location, and timepoint. Moreover, the blockade of immune checkpoint molecules or signalling pathways that unleashes the immune response against cancer is being leveraged to preserve self-tolerance and treat many autoimmune disorders. Therefore, understanding the common crucial factors involved in cancer is of paramount importance to paint the autoimmune disease spectrum and validate novel drug candidates. In the current review, we will broadly describe how ZEB1, or Zinc-finger E-box Binding Homeobox 1, reinforces immune exhaustion in cancer or contributes to loss of self-tolerance in auto-immune conditions. We made an effort to exchange information about the molecular pathways and pathological responses (immune regulation, cell proliferation, senescence, autophagy, hypoxia, and circadian rhythm) that can be regulated by ZEB1 in the context of autoimmunity. This will help untwine the intricate and closely postured pathogenesis of ZEB1, that is less explored from the perspective of autoimmunity than its counterpart, cancer. This review will further consider several approaches for targeting ZEB1 in autoimmunity.
Collapse
Affiliation(s)
- Arulkumaran Rithvik
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nādu, India
| | - Snigdha Samarpita
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nādu, India.
| |
Collapse
|
5
|
Yang T, Barros-Martins J, Wang Z, Wencker M, Zhang J, Smout J, Gambhir P, Janssen A, Schimrock A, Georgiev H, León-Lara X, Weiss S, Huehn J, Prinz I, Krueger A, Foerster R, Walzer T, Ravens S. RORγt + c-Maf + Vγ4 + γδ T cells are generated in the adult thymus but do not reach the periphery. Cell Rep 2023; 42:113230. [PMID: 37815917 DOI: 10.1016/j.celrep.2023.113230] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/30/2023] [Accepted: 09/21/2023] [Indexed: 10/12/2023] Open
Abstract
T cell receptor (TCR) Vγ4-expressing γδ T cells comprise interferon γ (IFNγ)- and interleukin-17 (IL-17)-producing effector subsets, with a preference for IL-17 effector fate decisions during early ontogeny. The existence of adult-thymus-derived IL-17+ T cells (γδ17) remains controversial. Here, we use a mouse model in which T cells are generated exclusively in the adult thymus and employ single-cell chromatin state analysis to study their development. We identify adult-thymus-derived Vγ4 T cells that have all the molecular programs to become IL-17 producers. However, they have reduced IL-17 production capabilities and rarely reach the periphery. Moreover, this study provides high-resolution profiles of Vγ4 T cells in the adult thymus and lymph nodes and identifies Zeb1 as a potential γδ17 cell regulator. Together, this study provides valuable insights into the developmental traits of Vγ4 T cells during adulthood and supports the idea of age-specific signals required for thymic export and/or peripheral maturation of γδ17 cells.
Collapse
Affiliation(s)
- Tao Yang
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | | | - Ziqing Wang
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Melanie Wencker
- Centre International de Recherche en Infectiologie, INSERM U1111, École Normale Supérieure de Lyon, Claude Bernard University Lyon 1, CNRS, UMR 5308, 69365 Lyon, France
| | - Jiang Zhang
- Centre International de Recherche en Infectiologie, INSERM U1111, École Normale Supérieure de Lyon, Claude Bernard University Lyon 1, CNRS, UMR 5308, 69365 Lyon, France
| | - Justine Smout
- Experimental Immunology, Helmholtz Centre for Infection Research, 39124 Braunschweig, Germany
| | - Prerna Gambhir
- Molecular Immunology, Justus-Liebig-University, 35392 Gießen, Germany
| | - Anika Janssen
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Anja Schimrock
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Hristo Georgiev
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Ximena León-Lara
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Siegfried Weiss
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, 39124 Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Immo Prinz
- Institute of Systems Immunology, University Hamburg-Eppendorf, 20246 Hamburg, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Krueger
- Molecular Immunology, Justus-Liebig-University, 35392 Gießen, Germany
| | - Reinhold Foerster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie, INSERM U1111, École Normale Supérieure de Lyon, Claude Bernard University Lyon 1, CNRS, UMR 5308, 69365 Lyon, France
| | - Sarina Ravens
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
6
|
Wang Y, Zhang Q, He T, Wang Y, Lu T, Wang Z, Wang Y, Lin S, Yang K, Wang X, Xie J, Zhou Y, Hong Y, Liu WH, Mao K, Cheng SC, Chen X, Li Q, Xiao N. The transcription factor Zeb1 controls homeostasis and function of type 1 conventional dendritic cells. Nat Commun 2023; 14:6639. [PMID: 37863917 PMCID: PMC10589231 DOI: 10.1038/s41467-023-42428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Type 1 conventional dendritic cells (cDC1) are the most efficient cross-presenting cells that induce protective cytotoxic T cell response. However, the regulation of their homeostasis and function is incompletely understood. Here we observe a selective reduction of splenic cDC1 accompanied by excessive cell death in mice with Zeb1 deficiency in dendritic cells, rendering the mice more resistant to Listeria infection. Additionally, cDC1 from other sources of Zeb1-deficient mice display impaired cross-presentation of exogenous antigens, compromising antitumor CD8+ T cell responses. Mechanistically, Zeb1 represses the expression of microRNA-96/182 that target Cybb mRNA of NADPH oxidase Nox2, and consequently facilitates reactive-oxygen-species-dependent rupture of phagosomal membrane to allow antigen export to the cytosol. Cybb re-expression in Zeb1-deficient cDC1 fully restores the defective cross-presentation while microRNA-96/182 overexpression in Zeb1-sufficient cDC1 inhibits cross-presentation. Therefore, our results identify a Zeb1-microRNA-96/182-Cybb pathway that controls cross-presentation in cDC1 and uncover an essential role of Zeb1 in cDC1 homeostasis.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Quan Zhang
- National Institute for Data Science in Health and Medicine, Xiamen University, Fujian, 361102, China
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Tingting He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yechen Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Tianqi Lu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zengge Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yiyi Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shen Lin
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Kang Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xinming Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jun Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ying Zhou
- National Institute for Data Science in Health and Medicine, Xiamen University, Fujian, 361102, China
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yazhen Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Kairui Mao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shih-Chin Cheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xin Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qiyuan Li
- National Institute for Data Science in Health and Medicine, Xiamen University, Fujian, 361102, China.
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China.
| | - Nengming Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
7
|
Radhakrishnan K, Truong L, Carmichael CL. An "unexpected" role for EMT transcription factors in hematological development and malignancy. Front Immunol 2023; 14:1207360. [PMID: 37600794 PMCID: PMC10435889 DOI: 10.3389/fimmu.2023.1207360] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) is a fundamental developmental process essential for normal embryonic development. It is also important during various pathogenic processes including fibrosis, wound healing and epithelial cancer cell metastasis and invasion. EMT is regulated by a variety of cell signalling pathways, cell-cell interactions and microenvironmental cues, however the key drivers of EMT are transcription factors of the ZEB, TWIST and SNAIL families. Recently, novel and unexpected roles for these EMT transcription factors (EMT-TFs) during normal blood cell development have emerged, which appear to be largely independent of classical EMT processes. Furthermore, EMT-TFs have also begun to be implicated in the development and pathogenesis of malignant hematological diseases such as leukemia and lymphoma, and now present themselves or the pathways they regulate as possible new therapeutic targets within these malignancies. In this review, we discuss the ZEB, TWIST and SNAIL families of EMT-TFs, focusing on what is known about their normal roles during hematopoiesis as well as the emerging and "unexpected" contribution they play during development and progression of blood cancers.
Collapse
Affiliation(s)
- Karthika Radhakrishnan
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Lynda Truong
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Catherine L. Carmichael
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Monash University, Faculty of Medicine, Nursing and Health Sciences, Clayton, VIC, Australia
| |
Collapse
|
8
|
Adori M, Khoenkhoen S, Zhang J, Dopico XC, Karlsson Hedestam GB. Enhanced B Cell Receptor Signaling Partially Compensates for Impaired Toll-like Receptor 4 Responses in LPS-Stimulated IκBNS-Deficient B Cells. Cells 2023; 12:cells12091229. [PMID: 37174629 PMCID: PMC10177494 DOI: 10.3390/cells12091229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Lipopolysaccharide (LPS) stimulates dual receptor signaling by bridging the B cell receptor and Toll-like receptor 4 (BCR/TLR4). B cells from IκBNS-deficient bumble mice treated with LPS display reduced proliferative capacity and impaired plasma cell differentiation. To improve our understanding of the regulatory role of IκBNS in B cell activation and differentiation, we investigated the BCR and TLR4 signaling pathways separately by using dimeric anti-IgM Fab (F(ab')2) or lipid A, respectively. IκBNS-deficient B cells exhibited reduced survival and defective proliferative capacity in response to lipid A compared to B cells from wildtype (wt) control mice. In contrast, anti-IgM stimulation of bumble B cells resulted in enhanced viability and increased differentiation into CD138+ cells compared to control B cells. Anti-IgM-stimulated IκBNS-deficient B cells also showed enhanced cycle progression with increased levels of c-Myc and cyclin D2, and augmented levels of pCD79a, pSyk, and pERK compared to control B cells. These results suggest that IκBNS acts as a negative regulator of BCR signaling and a positive regulator of TLR4 signaling in mouse B cells.
Collapse
Affiliation(s)
- Monika Adori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sharesta Khoenkhoen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jingdian Zhang
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism and Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | |
Collapse
|
9
|
Poonaki E, Kahlert UD, Meuth SG, Gorji A. The role of the ZEB1–neuroinflammation axis in CNS disorders. J Neuroinflammation 2022; 19:275. [PMCID: PMC9675144 DOI: 10.1186/s12974-022-02636-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022] Open
Abstract
Zinc finger E-box binding homeobox 1 (ZEB1) is a master modulator of the epithelial–mesenchymal transition (EMT), a process whereby epithelial cells undergo a series of molecular changes and express certain characteristics of mesenchymal cells. ZEB1, in association with other EMT transcription factors, promotes neuroinflammation through changes in the production of inflammatory mediators, the morphology and function of immune cells, and multiple signaling pathways that mediate the inflammatory response. The ZEB1–neuroinflammation axis plays a pivotal role in the pathogenesis of different CNS disorders, such as brain tumors, multiple sclerosis, cerebrovascular diseases, and neuropathic pain, by promoting tumor cell proliferation and invasiveness, formation of the hostile inflammatory micromilieu surrounding neuronal tissues, dysfunction of microglia and astrocytes, impairment of angiogenesis, and dysfunction of the blood–brain barrier. Future studies are needed to elucidate whether the ZEB1–neuroinflammation axis could serve as a diagnostic, prognostic, and/or therapeutic target for CNS disorders.
Collapse
Affiliation(s)
- Elham Poonaki
- grid.411327.20000 0001 2176 9917Department of Neurology, Faculty of Medicine, Heinrich-Heine-University, Düsseldorf, Germany ,grid.5949.10000 0001 2172 9288Epilepsy Research Center, Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Domagkstr. 11, 48149 Münster, Germany
| | - Ulf Dietrich Kahlert
- grid.5807.a0000 0001 1018 4307Molecular and Experimental Surgery, Faculty of Medicine, University Clinic for General-, Visceral-, Vascular- and Transplantation Surgery, Otto-Von-Guericke-University, Magdeburg, Germany
| | - Sven G. Meuth
- grid.411327.20000 0001 2176 9917Department of Neurology, Faculty of Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ali Gorji
- grid.5949.10000 0001 2172 9288Epilepsy Research Center, Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Domagkstr. 11, 48149 Münster, Germany ,grid.512981.60000 0004 0612 1380Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran ,grid.411583.a0000 0001 2198 6209Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Khoenkhoen S, Ádori M, Solís-Sayago D, Soulier J, Russell J, Beutler B, Pedersen GK, Karlsson Hedestam GB. IκBNS expression in B cells is dispensable for IgG responses to T cell-dependent antigens. Front Immunol 2022; 13:1000755. [DOI: 10.3389/fimmu.2022.1000755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Mice lacking the atypical inhibitory kappa B (IκB) protein, IκBNS, a regulator of the NF-κB pathway encoded by the nfkbid gene, display impaired antibody responses to both T cell-independent (TI) and T cell-dependent (TD) antigens. To better understand the basis of these defects, we crossed mice carrying floxed nfkbid alleles with mice expressing Cre under the transcriptional control of the Cd79a gene to create mice that lacked IκBNS expression only in B cells. Analyses of these conditional knock-out mice revealed intact CD4+ and CD8+ T cell populations, including preserved frequencies of FoxP3+ regulatory T cells, which are known to be reduced in IκBNS knock-out mice. Like IκBNS knock-out mice, mice with conditional IκBNS ablation in B cells displayed defective IgM responses to TI antigens and a severe reduction in peritoneal B-1a cells. However, in contrast to mice lacking IκBNS altogether, the conditional IκBNS knock-out mice responded well to TD antigens compared to the control mice, with potent IgG responses following immunization with the viral antigen, rSFV-βGal or the widely used hapten-protein model antigen, NP-CGG. Furthermore, B cell intrinsic IκBNS expression was dispensable for germinal center (GC) formation and T follicular helper cell responses to NP-CGG immunization. The results presented here suggest that the defect in antibody responses to TD antigens observed in IκBNS knock-out mice results from a B cell extrinsic defect.
Collapse
|
11
|
Su X, Zheng G, Gui Z, Yang X, Zhang L, Pan F. A Systematic Analysis Reveals the Prognostic and Immunological Role of Reptin/RUVBL2 in Human Tumors. Front Genet 2022; 13:911223. [PMID: 35754815 PMCID: PMC9213802 DOI: 10.3389/fgene.2022.911223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/16/2022] [Indexed: 12/03/2022] Open
Abstract
Reptin/RUVBL2 is involved in the remodeling of chromatin, DNA damage repair, and regulation of the cell cycle, all of which help to play essential roles in cancer. However, relevant pan-cancer analysis of Reptin is lacking. This study first investigated the potential oncogenic roles of Reptin and revealed a relationship between Reptin with clinicopathological characteristics and immune infiltration based on big data. Here, we showed that Reptin is overexpressed in many cancers. A significant association exists between the expression of Reptin and the prognosis of cancer cases. Reptin had a meaningful interaction with the immune infiltration of CD4+ Th1 cells and immune modulator genes in multiple cancer types. And negative correlation exists between Reptin and cancer-associated fibroblasts in BRCA, PRAD, TGCT, and THYM. A significant negative association exists between Reptin and regulatory T cells in TGCT and THCA. Moreover, Reptin is significantly associated with genomic heterogeneity, DNA mismatch repair genes, methyltransferase, and RNA modification genes in specific cancer types. Spliceosome, Hippo signaling pathway, DNA replication pathway, and acetyltransferase activity-associated functions were observed in the effect of Reptin on the tumor. This systematic analysis highlights Reptin as a vital cancer regulator among numerous genes and proved its potential prognosticator value and therapeutic target role for specific tumor types.
Collapse
Affiliation(s)
- Xiaoru Su
- Department of Clinical Laboratory, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Gaoming Zheng
- Department of Clinical Laboratory, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhifang Gui
- Department of Clinical Laboratory, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xiao Yang
- Department of Clinical Laboratory, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Lahong Zhang
- Department of Clinical Laboratory, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Feng Pan
- Department of Clinical Laboratory, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
12
|
Sánchez-Arcila JC, Jensen KDC. Forward Genetics in Apicomplexa Biology: The Host Side of the Story. Front Cell Infect Microbiol 2022; 12:878475. [PMID: 35646724 PMCID: PMC9133346 DOI: 10.3389/fcimb.2022.878475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Forward genetic approaches have been widely used in parasitology and have proven their power to reveal the complexities of host-parasite interactions in an unbiased fashion. Many aspects of the parasite's biology, including the identification of virulence factors, replication determinants, antibiotic resistance genes, and other factors required for parasitic life, have been discovered using such strategies. Forward genetic approaches have also been employed to understand host resistance mechanisms to parasitic infection. Here, we will introduce and review all forward genetic approaches that have been used to identify host factors involved with Apicomplexa infections, which include classical genetic screens and QTL mapping, GWAS, ENU mutagenesis, overexpression, RNAi and CRISPR-Cas9 library screens. Collectively, these screens have improved our understanding of host resistance mechanisms, immune regulation, vaccine and drug designs for Apicomplexa parasites. We will also discuss how recent advances in molecular genetics give present opportunities to further explore host-parasite relationships.
Collapse
Affiliation(s)
- Juan C. Sánchez-Arcila
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, United States
| | - Kirk D. C. Jensen
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, United States
- Health Science Research Institute, University of California, Merced, Merced, CA, United States
| |
Collapse
|
13
|
RNPS1 inhibits excessive tumor necrosis factor/tumor necrosis factor receptor signaling to support hematopoiesis in mice. Proc Natl Acad Sci U S A 2022; 119:e2200128119. [PMID: 35482923 DOI: 10.1073/pnas.2200128119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceMessenger RNA (mRNA) splicing is fundamental to protein expression in mammals. Homozygous deletion of single protein components of the splicing machinery or its regulatory factors is embryonic lethal. However, through forward genetic screening in mice, we identified a viable hypomorphic missense mutation of the splicing regulator RNPS1. Homozygous mutant mice displayed altered immune cell development due to excessive tumor necrosis factor (TNF)-dependent immune cell apoptosis. Splicing was impaired in CD8+ T cells and hematopoietic stem cells from RNPS1 mutant mice. TNF knockout rescued hematopoiesis and dramatically reduced splicing defects in RNPS1 hematopoietic cells, demonstrating a surprising link between elevated TNF and defects in splicing caused by RNPS1 deficiency.
Collapse
|
14
|
Erikson E, Ádori M, Khoenkhoen S, Zhang J, Rorbach J, Castro Dopico X, Karlsson Hedestam GB. Impaired plasma cell differentiation associates with increased oxidative metabolism in IκBNS-deficient B cells. Cell Immunol 2022; 375:104516. [DOI: 10.1016/j.cellimm.2022.104516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/03/2022]
|
15
|
Chen W, Lv X, Zhang W, Hu T, Cao X, Ren Z, Getachew T, Mwacharo JM, Haile A, Sun W. Insights Into Long Non-Coding RNA and mRNA Expression in the Jejunum of Lambs Challenged With Escherichia coli F17. Front Vet Sci 2022; 9:819917. [PMID: 35498757 PMCID: PMC9039264 DOI: 10.3389/fvets.2022.819917] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
It has long been recognized that enterotoxigenic Escherichia coli (ETEC) is the major pathogen responsible for vomiting and diarrhea. E. coli F17, a main subtype of ETEC, is characterized by high morbidity and mortality in young livestock. However, the transcriptomic basis underlying E. coli F17 infection has not been fully understood. In the present study, RNA sequencing was conducted to explore the expression profiles of mRNAs and long non-coding RNAs (lncRNAs) in the jejunum of lambs who were identified as resistant or sensitive to E. coli F17 that was obtained in a challenge experiment. A total of 772 differentially expressed (DE) mRNAs and 190 DE lncRNAs were detected between the E. coli F17—resistance and E. coli F17-sensitive lambs (i.e., TFF2, LOC105606142, OLFM4, LYPD8, REG4, APOA4, TCONS_00223467, and TCONS_00241897). Then, a two-step machine learning approach (RX) combination Random Forest and Extreme Gradient Boosting were performed, which identified 16 mRNAs and 17 lncRNAs as potential biomarkers, within which PPP2R3A and TCONS_00182693 were prioritized as key biomarkers involved in E. coli F17 infection. Furthermore, functional enrichment analysis showed that peroxisome proliferator-activated receptor (PPAR) pathway was significantly enriched in response to E. coli F17 infection. Our finding will help to improve the knowledge of the mechanisms underlying E. coli F17 infection and may provide novel targets for future treatment of E. coli F17 infection.
Collapse
Affiliation(s)
- Weihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaoyang Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Weibo Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tingyan Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiukai Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ziming Ren
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Joram M. Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Aynalem Haile
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- *Correspondence: Wei Sun
| |
Collapse
|
16
|
Myrzabekova M, Labeit S, Niyazova R, Akimniyazova A, Ivashchenko A. Identification of Bovine miRNAs with the Potential to Affect Human Gene Expression. Front Genet 2022; 12:705350. [PMID: 35087564 PMCID: PMC8787201 DOI: 10.3389/fgene.2021.705350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Milk and other products from large mammals have emerged during human evolution as an important source of nutrition. Recently, it has been recognized that exogenous miRNAs (mRNA inhibited RNA) contained in milk and other tissues of the mammalian body can enter the human body, which in turn have the ability to potentially regulate human metabolism by affecting gene expression. We studied for exogenous miRNAs from Bos taurus that are potentially contain miRNAs from milk and that could act postprandially as regulators of human gene expression. The interaction of 17,508 human genes with 1025 bta-miRNAs, including 245 raw milk miRNAs was studied. The milk bta-miR-151-5p, bta-miR-151-3p, bta-miRNA-320 each have 11 BSs (binding sites), and bta-miRNA-345-5p, bta-miRNA-614, bta-miRNA-1296b and bta-miRNA-149 has 12, 14, 15 and 26 BSs, respectively. The bta-miR-574-5p from cow’s milk had 209 human genes in mRNAs from one to 25 repeating BSs. We found 15 bta-miRNAs that have 100% complementarity to the mRNA of 13 human target genes. Another 12 miRNAs have BSs in the mRNA of 19 human genes with 98% complementarity. The bta-miR-11975, bta-miR-11976, and bta-miR-2885 BSs are located with the overlap of nucleotide sequences in the mRNA of human genes. Nucleotide sequences of BSs of these miRNAs in 5′UTR mRNA of human genes consisted of GCC repeats with a total length of 18 nucleotides (nt) in 18 genes, 21 nt in 11 genes, 24 nt in 14 genes, and 27–48 nt in nine genes. Nucleotide sequences of BSs of bta-miR-11975, bta-miR-11976, and bta-miR-2885 in CDS mRNA of human genes consisted of GCC repeats with a total length of 18 nt in 33 genes, 21 nt in 13 genes, 24 nt in nine genes, and 27–36 nt in 11 genes. These BSs encoded polyA or polyP peptides. In only one case, the polyR (SLC24A3 gene) was encoded. The possibility of regulating the expression of human genes by exogenous bovine miRNAs is discussed.
Collapse
Affiliation(s)
- Moldir Myrzabekova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Siegfried Labeit
- Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.,Myomedix GmbH, Neckargemuend, Germany
| | - Raigul Niyazova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Aigul Akimniyazova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Anatoliy Ivashchenko
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| |
Collapse
|
17
|
Souza SP, Splitt SD, Sànchez-Arcila JC, Alvarez JA, Wilson JN, Wizzard S, Luo Z, Baumgarth N, Jensen KDC. Genetic mapping reveals Nfkbid as a central regulator of humoral immunity to Toxoplasma gondii. PLoS Pathog 2021; 17:e1010081. [PMID: 34871323 PMCID: PMC8675933 DOI: 10.1371/journal.ppat.1010081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/16/2021] [Accepted: 11/01/2021] [Indexed: 12/29/2022] Open
Abstract
Protective immunity to parasitic infections has been difficult to elicit by vaccines. Among parasites that evade vaccine-induced immunity is Toxoplasma gondii, which causes lethal secondary infections in chronically infected mice. Here we report that unlike susceptible C57BL/6J mice, A/J mice were highly resistant to secondary infection. To identify correlates of immunity, we utilized forward genetics to identify Nfkbid, a nuclear regulator of NF-κB that is required for B cell activation and B-1 cell development. Nfkbid-null mice (“bumble”) did not generate parasite-specific IgM and lacked robust parasite-specific IgG, which correlated with defects in B-2 cell maturation and class-switch recombination. Though high-affinity antibodies were B-2 derived, transfer of B-1 cells partially rescued the immunity defects observed in bumble mice and were required for 100% vaccine efficacy in bone marrow chimeric mice. Immunity in resistant mice correlated with robust isotype class-switching in both B cell lineages, which can be fine-tuned by Nfkbid gene expression. We propose a model whereby humoral immunity to T. gondii is regulated by Nfkbid and requires B-1 and B-2 cells for full protection. Eukaryotic parasitic diseases account for approximately one fifth of all childhood deaths, yet no highly protective vaccine exists for any human parasite. More research must be done to discover how to elicit protective vaccine-induced immunity to parasitic pathogens. We used an unbiased genetic screen to find key genes responsible for immunity to the eukaryotic parasite Toxoplasma gondii. Our screen found Nfkbid, a transcription factor regulator, which controls B cell activation and innate-like B-1 cell development. Mice without Nfkbid were not protected against T. gondii and were deficient at making antibodies against the parasite. Our survival studies of vaccinated mice with and without B-1 compartments found that B-1 cells improved survival, suggesting that B-1 cells act in conjunction with B-2 cells to provide vaccine-induced immunity. Nfkbid and other loci identified in our unbiased screen represent potential targets for vaccines to elicit protective immune responses against parasitic pathogens.
Collapse
Affiliation(s)
- Scott P. Souza
- School of Natural Sciences, Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
- Graduate Program in Quantitative and Systems Biology, University of California, Merced, Merced, California, United States of America
| | - Samantha D. Splitt
- School of Natural Sciences, Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
- Graduate Program in Quantitative and Systems Biology, University of California, Merced, Merced, California, United States of America
| | - Juan C. Sànchez-Arcila
- School of Natural Sciences, Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Julia A. Alvarez
- School of Natural Sciences, Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
- Graduate Program in Quantitative and Systems Biology, University of California, Merced, Merced, California, United States of America
| | - Jessica N. Wilson
- School of Natural Sciences, Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
- Graduate Program in Quantitative and Systems Biology, University of California, Merced, Merced, California, United States of America
| | - Safuwra Wizzard
- School of Natural Sciences, Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Zheng Luo
- Center for Immunology & Infectious Diseases, and Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, California, United States of America
| | - Nicole Baumgarth
- Center for Immunology & Infectious Diseases, and Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, California, United States of America
| | - Kirk D. C. Jensen
- School of Natural Sciences, Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
- Health Science Research Institute, University of California, Merced, Merced, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
OCT2 pre-positioning facilitates cell fate transition and chromatin architecture changes in humoral immunity. Nat Immunol 2021; 22:1327-1340. [PMID: 34556886 PMCID: PMC9829245 DOI: 10.1038/s41590-021-01025-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 08/05/2021] [Indexed: 01/12/2023]
Abstract
During the germinal center (GC) reaction, B cells undergo profound transcriptional, epigenetic and genomic architectural changes. How such changes are established remains unknown. Mapping chromatin accessibility during the humoral immune response, we show that OCT2 was the dominant transcription factor linked to differential accessibility of GC regulatory elements. Silent chromatin regions destined to become GC-specific super-enhancers (SEs) contained pre-positioned OCT2-binding sites in naive B cells (NBs). These preloaded SE 'seeds' featured spatial clustering of regulatory elements enriched in OCT2 DNA-binding motifs that became heavily loaded with OCT2 and its GC-specific coactivator OCAB in GC B cells (GCBs). SEs with high abundance of pre-positioned OCT2 binding preferentially formed long-range chromatin contacts in GCs, to support expression of GC-specifying factors. Gain in accessibility and architectural interactivity of these regions were dependent on recruitment of OCAB. Pre-positioning key regulators at SEs may represent a broadly used strategy for facilitating rapid cell fate transitions.
Collapse
|
19
|
Zhang J, Wencker M, Marliac Q, Berton A, Hasan U, Schneider R, Laubreton D, Cherrier DE, Mathieu AL, Rey A, Jiang W, Caramel J, Genestier L, Marçais A, Marvel J, Ghavi-Helm Y, Walzer T. Zeb1 represses TCR signaling, promotes the proliferation of T cell progenitors and is essential for NK1.1 + T cell development. Cell Mol Immunol 2021; 18:2140-2152. [PMID: 32398809 PMCID: PMC8429412 DOI: 10.1038/s41423-020-0459-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 01/15/2023] Open
Abstract
T cell development proceeds under the influence of a network of transcription factors (TFs). The precise role of Zeb1, a member of this network, remains unclear. Here, we report that Zeb1 expression is induced early during T cell development in CD4-CD8- double-negative (DN) stage 2 (DN2). Zeb1 expression was further increased in the CD4+CD8+ double-positive (DP) stage before decreasing in more mature T cell subsets. We performed an exhaustive characterization of T cells in Cellophane mice that bear Zeb1 hypomorphic mutations. The Zeb1 mutation profoundly affected all thymic subsets, especially DN2 and DP cells. Zeb1 promoted the survival and proliferation of both cell populations in a cell-intrinsic manner. In the periphery of Cellophane mice, the number of conventional T cells was near normal, but invariant NKT cells, NK1.1+ γδ T cells and Ly49+ CD8 T cells were virtually absent. This suggested that Zeb1 regulates the development of unconventional T cell types from DP progenitors. A transcriptomic analysis of WT and Cellophane DP cells revealed that Zeb1 regulated the expression of multiple genes involved in the cell cycle and TCR signaling, which possibly occurred in cooperation with Tcf1 and Heb. Indeed, Cellophane DP cells displayed stronger signaling than WT DP cells upon TCR engagement in terms of the calcium response, phosphorylation events, and expression of early genes. Thus, Zeb1 is a key regulator of the cell cycle and TCR signaling during thymic T cell development. We propose that thymocyte selection is perturbed in Zeb1-mutated mice in a way that does not allow the survival of unconventional T cell subsets.
Collapse
Affiliation(s)
- Jiang Zhang
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Mélanie Wencker
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Quentin Marliac
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Aurore Berton
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Uzma Hasan
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Raphaël Schneider
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie, F-69364, Lyon, France
| | - Daphné Laubreton
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Dylan E Cherrier
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Anne-Laure Mathieu
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Amaury Rey
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Julie Caramel
- CRCL, Centre de Recherche sur le Cancer de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| | - Laurent Genestier
- CRCL, Centre de Recherche sur le Cancer de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| | - Antoine Marçais
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Jacqueline Marvel
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Yad Ghavi-Helm
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie, F-69364, Lyon, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.
| |
Collapse
|
20
|
Qian Y, Arellano G, Ifergan I, Lin J, Snowden C, Kim T, Thomas JJ, Law C, Guan T, Balabanov RD, Kaech SM, Miller SD, Choi J. ZEB1 promotes pathogenic Th1 and Th17 cell differentiation in multiple sclerosis. Cell Rep 2021; 36:109602. [PMID: 34433042 PMCID: PMC8431781 DOI: 10.1016/j.celrep.2021.109602] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 05/18/2021] [Accepted: 08/04/2021] [Indexed: 12/28/2022] Open
Abstract
Inappropriate CD4+ T helper (Th) differentiation can compromise host immunity or promote autoimmune disease. To identify disease-relevant regulators of T cell fate, we examined mutations that modify risk for multiple sclerosis (MS), a canonical organ-specific autoimmune disease. This analysis identified a role for Zinc finger E-box-binding homeobox (ZEB1). Deletion of ZEB1 protects against experimental autoimmune encephalitis (EAE), a mouse model of multiple sclerosis (MS). Mechanistically, ZEB1 in CD4+ T cells is required for pathogenic Th1 and Th17 differentiation. Genomic analyses of paired human and mouse expression data elucidated an unexpected role for ZEB1 in JAK-STAT signaling. ZEB1 inhibits miR-101-3p that represses JAK2 expression, STAT3/STAT4 phosphorylation, and subsequent expression of interleukin-17 (IL-17) and interferon gamma (IFN-γ). Underscoring its clinical relevance, ZEB1 and JAK2 downregulation decreases pathogenic cytokines expression in T cells from MS patients. Moreover, a Food and Drug Administration (FDA)-approved JAK2 inhibitor is effective in EAE. Collectively, these findings identify a conserved, potentially targetable mechanism regulating disease-relevant inflammation. Qian et al. show that ZEB1 is required for the development of the autoimmune disease multiple sclerosis (MS). ZEB1, a transcription factor, promotes JAK-STAT signaling during Th1/Th17 differentiation by repressing expression of a JAK2-targeting miRNA. ZEB1 and JAK2 are potentially clinically relevant therapeutic targets for MS.
Collapse
Affiliation(s)
- Yuan Qian
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Gabriel Arellano
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Igal Ifergan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jean Lin
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA; Department of Medicine, Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Caroline Snowden
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Taehyeung Kim
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Jane Joy Thomas
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Calvin Law
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Tianxia Guan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Roumen D Balabanov
- Department of Neurology, Northwestern University, Chicago, IL 60611, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA; Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
21
|
Zhang R, Cheung CY, Seo SU, Liu H, Pardeshi L, Wong KH, Chow LMC, Chau MP, Wang Y, Lee AR, Kwon WY, Chen S, Chan BKW, Wong K, Choy RKW, Ko BCB. RUVBL1/2 Complex Regulates Pro-Inflammatory Responses in Macrophages via Regulating Histone H3K4 Trimethylation. Front Immunol 2021; 12:679184. [PMID: 34276666 PMCID: PMC8282052 DOI: 10.3389/fimmu.2021.679184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages play an important role in the host defense mechanism. In response to infection, macrophages activate a genetic program of pro-inflammatory response to kill any invading pathogen, and initiate an adaptive immune response. We have identified RUVBL2 - an ATP-binding protein belonging to the AAA+ (ATPase associated with diverse cellular activities) superfamily of ATPases - as a novel regulator in pro-inflammatory response of macrophages. Gene knockdown of Ruvbl2, or pharmacological inhibition of RUVBL1/2 activity, compromises type-2 nitric oxide synthase (Nos2) gene expression, nitric oxide production and anti-bacterial activity of mouse macrophages in response to lipopolysaccharides (LPS). RUVBL1/2 inhibitor similarly inhibits pro-inflammatory response in human monocytes, suggesting functional conservation of RUVBL1/2 in humans. Transcriptome analysis further revealed that major LPS-induced pro-inflammatory pathways in macrophages are regulated in a RUVBL1/2-dependent manner. Furthermore, RUVBL1/2 inhibition significantly reduced the level of histone H3K4me3 at the promoter region of Nos2 and Il6, two prototypical pro-inflammatory genes, and diminished the recruitment of NF-kappaB to the corresponding enhancers. Our study reveals RUVBL1/2 as an integral component of macrophage pro-inflammatory responses through epigenetic regulations, and the therapeutic potentials of RUVBL1/2 inhibitors in the treatment of diseases caused by aberrant activation of pro-inflammatory pathways.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.,State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chris Y Cheung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.,State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sang-Uk Seo
- Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hang Liu
- The University Research Facility in Chemical and Environmental Analysis, The Hong Kong Polytechnic University, Hong Kong, China
| | - Lakhansing Pardeshi
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau.,Genomics and Bioinformatics Core, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Larry M C Chow
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.,State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| | - Mary P Chau
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.,State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yixiang Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.,State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ah Ra Lee
- Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Woon Yong Kwon
- Department of Emergency Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, The City University of Hong Kong, Hong Kong, China
| | - Bill Kwan-Wai Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kenneth Wong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Richard K W Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ben C B Ko
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.,State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
22
|
Gómez-Chávez F, Correa D, Navarrete-Meneses P, Cancino-Diaz JC, Cancino-Diaz ME, Rodríguez-Martínez S. NF-κB and Its Regulators During Pregnancy. Front Immunol 2021; 12:679106. [PMID: 34025678 PMCID: PMC8131829 DOI: 10.3389/fimmu.2021.679106] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/23/2021] [Indexed: 12/25/2022] Open
Abstract
The transcriptional factor NF-κB is a nuclear factor involved in both physiological and pathological processes. This factor can control the transcription of more than 400 genes, including cytokines, chemokines, and their modulators, immune and non-immune receptors, proteins involved in antigen presentation and cell adhesion, acute phase and stress response proteins, regulators of apoptosis, growth factors, other transcription factors and their regulators, as well as different enzymes; all these molecules control several biological processes. NF-κB is a tightly regulated molecule that has also been related to apoptosis, cell proliferation, inflammation, and the control of innate and adaptive immune responses during onset of labor, in which it has a crucial role; thus, early activation of this factor may have an adverse effect, by inducing premature termination of pregnancy, with bad outcomes for the mother and the fetus, including product loss. Reviews compiling the different activities of NF-κB have been reported. However, an update regarding NF-κB regulation during pregnancy is lacking. In this work, we aimed to describe the state of the art around NF-κB activity, its regulatory role in pregnancy, and the effect of its dysregulation due to invasion by pathogens like Trichomonas vaginalis and Toxoplasma gondii as examples.
Collapse
Affiliation(s)
- Fernando Gómez-Chávez
- Secretaría de Salud, Cátedras CONACyT-Instituto Nacional de Pediatría, Mexico City, Mexico
- Secretaría de Salud, Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, Mexico City, Mexico
- Departamento de Formación Básica Disciplinaria, Escuela Nacional de Medicina y Homeopatía-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Dolores Correa
- Dirección de Investigación, Universidad Anáhuac, Huixquilucan, Mexico
| | - Pilar Navarrete-Meneses
- Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Secretaría de Salud Mexico City, Mexico City, Mexico
| | - Juan Carlos Cancino-Diaz
- Laboratorio de Inmunomicrobiología, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Mario Eugenio Cancino-Diaz
- Laboratorio de Inmunidad Innata, Departamento de Inmunología, ENCB-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Sandra Rodríguez-Martínez
- Laboratorio de Inmunidad Innata, Departamento de Inmunología, ENCB-Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
23
|
Lü Z, Gong L, Ren Y, Chen Y, Wang Z, Liu L, Li H, Chen X, Li Z, Luo H, Jiang H, Zeng Y, Wang Y, Wang K, Zhang C, Jiang H, Wan W, Qin Y, Zhang J, Zhu L, Shi W, He S, Mao B, Wang W, Kong X, Li Y. Large-scale sequencing of flatfish genomes provides insights into the polyphyletic origin of their specialized body plan. Nat Genet 2021; 53:742-751. [PMID: 33875864 PMCID: PMC8110480 DOI: 10.1038/s41588-021-00836-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 03/05/2021] [Indexed: 11/09/2022]
Abstract
The evolutionary and genetic origins of the specialized body plan of flatfish are largely unclear. We analyzed the genomes of 11 flatfish species representing 9 of the 14 Pleuronectiforme families and conclude that Pleuronectoidei and Psettodoidei do not form a monophyletic group, suggesting independent origins from different percoid ancestors. Genomic and transcriptomic data indicate that genes related to WNT and retinoic acid pathways, hampered musculature and reduced lipids might have functioned in the evolution of the specialized body plan of Pleuronectoidei. Evolution of Psettodoidei involved similar but not identical genes. Our work provides valuable resources and insights for understanding the genetic origins of the unusual body plan of flatfishes.
Collapse
Affiliation(s)
- Zhenming Lü
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Li Gong
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Yandong Ren
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yongjiu Chen
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Zhongkai Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Liqin Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Haorong Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Xianqing Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zhenzhu Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Hairong Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Hui Jiang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Yan Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yifan Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Chen Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Haifeng Jiang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wenting Wan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yanli Qin
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Jianshe Zhang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Liang Zhu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wei Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Shunping He
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Xiaoyu Kong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Yongxin Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
24
|
SoRelle JA, Chen Z, Wang J, Yue T, Choi JH, Wang K, Zhong X, Hildebrand S, Russell J, Scott L, Xu D, Zhan X, Bu CH, Wang T, Choi M, Tang M, Ludwig S, Zhan X, Li X, Moresco EMY, Beutler B. Dominant atopy risk mutations identified by mouse forward genetic analysis. Allergy 2021; 76:1095-1108. [PMID: 32810290 DOI: 10.1111/all.14564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Atopy, the overall tendency to become sensitized to an allergen, is heritable but seldom ascribed to mutations within specific genes. Atopic individuals develop abnormally elevated IgE responses to immunization with potential allergens. To gain insight into the genetic causes of atopy, we carried out a forward genetic screen for atopy in mice. METHODS We screened mice carrying homozygous and heterozygous N-ethyl-N-nitrosourea (ENU)-induced germline mutations for aberrant antigen-specific IgE and IgG1 production in response to immunization with the model allergen papain. Candidate genes were validated by independent gene mutation. RESULTS Of 31 candidate genes selected for investigation, the effects of mutations in 23 genes on papain-specific IgE or IgG1 were verified. Among the 20 verified genes influencing the IgE response, eight were necessary for the response, while 12 repressed IgE. Nine genes were not previously implicated in the IgE response. Fifteen genes encoded proteins contributing to IgE class switch recombination or B-cell receptor signaling. The precise roles of the five remaining genes (Flcn, Map1lc3b, Me2, Prkd2, and Scarb2) remain to be determined. Loss-of-function mutations in nine of the 12 genes limiting the IgE response were dominant or semi-dominant for the IgE phenotype but did not cause immunodeficiency in the heterozygous state. Using damaging allele frequencies for the corresponding human genes and in silico simulations (Monte Carlo) of undiscovered atopy mutations, we estimated the percentage of humans with heterozygous atopy risk mutations. CONCLUSIONS Up to 37% of individuals may be heterozygous carriers for at least one dominant atopy risk mutation.
Collapse
Affiliation(s)
- Jeffrey A. SoRelle
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
- Department of Pathology University of Texas Southwestern Medical Center Dallas TX USA
| | - Zhe Chen
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Jianhui Wang
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Tao Yue
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Jin Huk Choi
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
- Department of Immunology University of Texas Southwestern Medical Center Dallas TX USA
| | - Kuan‐wen Wang
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Xue Zhong
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Sara Hildebrand
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Jamie Russell
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Lindsay Scott
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Darui Xu
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Xiaowei Zhan
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Chun Hui Bu
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Tao Wang
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
- Department of Population and Data Sciences Quantitative Biomedical Research Center University of Texas Southwestern Medical Center Dallas TX USA
| | - Mihwa Choi
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Miao Tang
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Sara Ludwig
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Xiaoming Zhan
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Xiaohong Li
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Eva Marie Y. Moresco
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| |
Collapse
|
25
|
Zang X, Gu T, Hu Q, Xu Z, Xie Y, Zhou C, Zheng E, Huang S, Xu Z, Meng F, Cai G, Wu Z, Hong L. Global Transcriptomic Analyses Reveal Genes Involved in Conceptus Development During the Implantation Stages in Pigs. Front Genet 2021; 12:584995. [PMID: 33719331 PMCID: PMC7943634 DOI: 10.3389/fgene.2021.584995] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 02/08/2021] [Indexed: 01/18/2023] Open
Abstract
Prenatal mortality remains a significant concern to the pig farming industry around the world. Spontaneous fetal loss ranging from 20 to 45% by term occur after fertilization, with most of the loss happening during the implantation period. Since the factors regulating the high mortality rates of early conceptus during implantation phases are poorly understood, we sought to analyze the overall gene expression changes during this period, and identify the molecular mechanisms involved in conceptus development. This work employed Illumina's next-generation sequencing (RNA-Seq) and quantitative real-time PCR to analyze differentially expressed genes (DEGs). Soft clustering was subsequently used for the cluster analysis of gene expression. We identified 8236 DEGs in porcine conceptus at day 9, 12, and 15 of pregnancy. Annotation analysis of these genes revealed rRNA processing (GO:0006364), cell adhesion (GO:1904874), and heart development (GO:0007507), as the most significantly enriched biological processes at day 9, 12, and 15 of pregnancy, respectively. In addition, we found various genes, such as T-complex 1, RuvB-like AAA ATPase 2, connective tissue growth factor, integrins, interferon gamma, SLA-1, chemokine ligand 9, PAG-2, transforming growth factor beta receptor 1, and Annexin A2, that play essential roles in conceptus morphological development and implantation in pigs. Furthermore, we investigated the function of PAG-2 in vitro and found that PAG-2 can inhibit trophoblast cell proliferation and migration. Our analysis provides a valuable resource for understanding the mechanisms of conceptus development and implantation in pigs.
Collapse
Affiliation(s)
- Xupeng Zang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Qun Hu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Zhiqian Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Yanshe Xie
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Chen Zhou
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Sixiu Huang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Zheng Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Fanming Meng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| |
Collapse
|
26
|
Genetic and structural studies of RABL3 reveal an essential role in lymphoid development and function. Proc Natl Acad Sci U S A 2020; 117:8563-8572. [PMID: 32220963 DOI: 10.1073/pnas.2000703117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The small GTPase RABL3 is an oncogene of unknown physiological function. Homozygous knockout alleles of mouse Rabl3 were embryonic lethal, but a viable hypomorphic allele (xiamen [xm]) causing in-frame deletion of four amino acids from the interswitch region resulted in profound defects in lymphopoiesis. Impaired lymphoid progenitor development led to deficiencies of B cells, T cells, and natural killer (NK) cells in Rabl3 xm/xm mice. T cells and NK cells exhibited impaired cytolytic activity, and mice infected with mouse cytomegalovirus (MCMV) displayed elevated titers in the spleen. Myeloid cells were normal in number and function. Biophysical and crystallographic studies demonstrated that RABL3 formed a homodimer in solution via interactions between the effector binding surfaces on each subunit; monomers adopted a typical small G protein fold. RABL3xm displayed a large compensatory alteration in switch I, which adopted a β-strand configuration normally provided by the deleted interswitch residues, thereby permitting homodimer formation. Dysregulated effector binding due to conformational changes in the switch I-interswitch-switch II module likely underlies the xm phenotype. One such effector may be GPR89, putatively an ion channel or G protein-coupled receptor (GPCR). RABL3, but not RABL3xm, strongly associated with and stabilized GPR89, and an N-ethyl-N-nitrosourea (ENU)-induced mutation (explorer) in Gpr89 phenocopied Rabl3 xm.
Collapse
|
27
|
Choi JH, Han J, Theodoropoulos PC, Zhong X, Wang J, Medler D, Ludwig S, Zhan X, Li X, Tang M, Gallagher T, Yu G, Beutler B. Essential requirement for nicastrin in marginal zone and B-1 B cell development. Proc Natl Acad Sci U S A 2020; 117:4894-4901. [PMID: 32071239 PMCID: PMC7060662 DOI: 10.1073/pnas.1916645117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
γ-secretase is an intramembrane protease complex that catalyzes the proteolytic cleavage of amyloid precursor protein and Notch. Impaired γ-secretase function is associated with the development of Alzheimer's disease and familial acne inversa in humans. In a forward genetic screen of mice with N-ethyl-N-nitrosourea-induced mutations for defects in adaptive immunity, we identified animals within a single pedigree exhibiting both hypopigmentation of the fur and diminished T cell-independent (TI) antibody responses. The causative mutation was in Ncstn, an essential gene encoding the protein nicastrin (NCSTN), a member of the γ-secretase complex that functions to recruit substrates for proteolysis. The missense mutation severely limits the glycosylation of NCSTN to its mature form and impairs the integrity of the γ-secretase complex as well as its catalytic activity toward its substrate Notch, a critical regulator of B cell and T cell development. Strikingly, however, this missense mutation affects B cell development but not thymocyte or T cell development. The Ncstn allele uncovered in these studies reveals an essential requirement for NCSTN during the type 2 transitional-marginal zone precursor stage and peritoneal B-1 B cell development, the TI antibody response, fur pigmentation, and intestinal homeostasis in mice.
Collapse
Affiliation(s)
- Jin Huk Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390;
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jonghee Han
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Panayotis C Theodoropoulos
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Internal Medicine, Physician Scientist Training Program, Washington University in St. Louis, Barnes Jewish Hospital, St. Louis, MO 63110
| | - Xue Zhong
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jianhui Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Dawson Medler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xiaoming Zhan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xiaohong Li
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Miao Tang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Thomas Gallagher
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Gang Yu
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390;
| |
Collapse
|
28
|
Choi JH, Zhong X, Zhang Z, Su L, McAlpine W, Misawa T, Liao TC, Zhan X, Russell J, Ludwig S, Li X, Tang M, Anderton P, Moresco EMY, Beutler B. Essential cell-extrinsic requirement for PDIA6 in lymphoid and myeloid development. J Exp Med 2020; 217:133654. [PMID: 31985756 PMCID: PMC7144532 DOI: 10.1084/jem.20190006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/06/2019] [Accepted: 12/20/2019] [Indexed: 01/21/2023] Open
Abstract
In a forward genetic screen of N-ethyl-N-nitrosourea (ENU)–induced mutant mice for aberrant immune function, we identified mice with a syndromic disorder marked by growth retardation, diabetes, premature death, and severe lymphoid and myeloid hypoplasia together with diminished T cell–independent (TI) antibody responses. The causative mutation was in Pdia6, an essential gene encoding protein disulfide isomerase A6 (PDIA6), an oxidoreductase that functions in nascent protein folding in the endoplasmic reticulum. The immune deficiency caused by the Pdia6 mutation was, with the exception of a residual T cell developmental defect, completely rescued in irradiated wild-type recipients of PDIA6-deficient bone marrow cells, both in the absence or presence of competition. The viable hypomorphic allele uncovered in these studies reveals an essential role for PDIA6 in hematopoiesis, but one extrinsic to cells of the hematopoietic lineage. We show evidence that this role is in the proper folding of Wnt3a, BAFF, IL-7, and perhaps other factors produced by the extra-hematopoietic compartment that contribute to the development and lineage commitment of hematopoietic cells.
Collapse
Affiliation(s)
- Jin Huk Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Xue Zhong
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zhao Zhang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Lijing Su
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - William McAlpine
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Takuma Misawa
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Tzu-Chieh Liao
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Xiaoming Zhan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jamie Russell
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Xiaohong Li
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Miao Tang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Priscilla Anderton
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
29
|
Choi JH, Zhong X, McAlpine W, Liao TC, Zhang D, Fang B, Russell J, Ludwig S, Nair-Gill E, Zhang Z, Wang KW, Misawa T, Zhan X, Choi M, Wang T, Li X, Tang M, Sun Q, Yu L, Murray AR, Moresco EMY, Beutler B. LMBR1L regulates lymphopoiesis through Wnt/β-catenin signaling. Science 2019; 364:364/6440/eaau0812. [PMID: 31073040 DOI: 10.1126/science.aau0812] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 11/06/2018] [Accepted: 03/11/2019] [Indexed: 12/26/2022]
Abstract
Precise control of Wnt signaling is necessary for immune system development. In this study, we detected severely impaired development of all lymphoid lineages in mice, resulting from an N-ethyl-N-nitrosourea-induced mutation in the limb region 1-like gene (Lmbr1l), which encodes a membrane-spanning protein with no previously described function in immunity. The interaction of LMBR1L with glycoprotein 78 (GP78) and ubiquitin-associated domain-containing protein 2 (UBAC2) attenuated Wnt signaling in lymphocytes by preventing the maturation of FZD6 and LRP6 through ubiquitination within the endoplasmic reticulum and by stabilizing "destruction complex" proteins. LMBR1L-deficient T cells exhibited hallmarks of Wnt/β-catenin activation and underwent apoptotic cell death in response to proliferative stimuli. LMBR1L has an essential function during lymphopoiesis and lymphoid activation, acting as a negative regulator of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jin Huk Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xue Zhong
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - William McAlpine
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tzu-Chieh Liao
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Duanwu Zhang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Beibei Fang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jamie Russell
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Evan Nair-Gill
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhao Zhang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kuan-Wen Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Takuma Misawa
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoming Zhan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mihwa Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tao Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Quantitative Biomedical Research Center, Department of Clinical Science, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaohong Li
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Miao Tang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qihua Sun
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Liyang Yu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anne R Murray
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
30
|
Wu D, Kittana H, Shu J, Kachman SD, Cui J, Ramer-Tait AE, Zempleni J. Dietary Depletion of Milk Exosomes and Their MicroRNA Cargos Elicits a Depletion of miR-200a-3p and Elevated Intestinal Inflammation and Chemokine (C-X-C Motif) Ligand 9 Expression in Mdr1a-/- Mice. Curr Dev Nutr 2019; 3:nzz122. [PMID: 32154493 PMCID: PMC7053579 DOI: 10.1093/cdn/nzz122] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/14/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Exosomes transfer regulatory microRNAs (miRs) from donor cells to recipient cells. Exosomes and miRs originate from both endogenous synthesis and dietary sources such as milk. miR-200a-3p is a negative regulator of the proinflammatory chemokine (C-X-C motif) ligand 9 (CXCL9). Male Mdr1a-/- mice spontaneously develop clinical signs of inflammatory bowel disease (IBD). OBJECTIVES We assessed whether dietary depletion of exosomes and miRs alters the severity of IBD in Mdr1a-/- mice owing to aberrant regulation of proinflammatory cytokines. METHODS Starting at 5 wk of age, 16 male Mdr1a-/- mice were fed either milk exosome- and RNA-sufficient (ERS) or milk exosome- and RNA-depleted (ERD) diets. The ERD diet is characterized by a near-complete depletion of miRs and a 60% loss of exosome bioavailability compared with ERS. Mice were killed when their weight loss exceeded 15% of peak body weight. Severity of IBD was assessed by histopathological evaluation of cecum. Serum cytokine and chemokine concentrations and mRNA and miR tissue expression were analyzed by multiplex ELISAs, RNA-sequencing analysis, and qRT-PCR, respectively. RESULTS Stromal collapse, gland hyperplasia, and additive microscopic disease scores were (mean ± SD) 56.7% ± 23.3%, 23.5% ± 11.8%, and 29.6% ± 8.2% lower, respectively, in ceca of ERS mice than of ERD mice (P < 0.05). The serum concentration of CXCL9 was 35.0% ± 31.0% lower in ERS mice than in ERD mice (P < 0.05). Eighty-seven mRNAs were differentially expressed in the ceca from ERS and ERD mice; 16 of these mRNAs are implicated in immune function. The concentrations of 4 and 1 out of 5 miRs assessed (including miR-200a-3p) were ≤63% lower in livers and ceca, respectively, from ERD mice than from ERS mice. CONCLUSIONS Milk exosome and miR depletion exacerbates cecal inflammation in Mdr1a-/- mice.
Collapse
Affiliation(s)
- Di Wu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Hatem Kittana
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jiang Shu
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Stephen D Kachman
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Juan Cui
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
31
|
Murine Leukemia Virus Exploits Innate Sensing by Toll-Like Receptor 7 in B-1 Cells To Establish Infection and Locally Spread in Mice. J Virol 2019; 93:JVI.00930-19. [PMID: 31434732 DOI: 10.1128/jvi.00930-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/06/2019] [Indexed: 01/24/2023] Open
Abstract
Lymph-borne Friend murine leukemia virus (FrMLV) exploits the sentinel macrophages in the draining popliteal lymph node (pLN) to infect highly permissive innate-like B-1 cells and establish infection in mice. The reason for FrMLV sensitivity of B-1 cells and their impact on viral spread is unknown. Here we demonstrate that Toll-like receptor 7 (TLR7) sensing and type I interferon (IFN-I) signaling in B-1 cells contribute to FrMLV susceptibility. FrMLV infection in B-1 cell-deficient mice (bumble; IκBNS dysfunctional) was significantly lower than that in the wild-type mice and was rescued by adoptive transfer of wild-type B-1 cells. This rescue of FrMLV infection in bumble mice was dependent on intact TLR7 sensing and IFN-I signaling within B-1 cells. Analyses of infected cell types revealed that the reduced infection in bumble mice was due predominantly to compromised virus spread to the B-2 cell population. Our data reveal how FrMLV exploits innate immune sensing and activation in the B-1 cell population for infection and subsequent spread to other lymphocytes.IMPORTANCE Viruses establish infection in hosts by targeting highly permissive cell types. The retrovirus Friend murine leukemia virus (FrMLV) infects a subtype of B cells called B-1 cells that permit robust virus replication. The reason for their susceptibility had remained unknown. We found that innate sensing of incoming virus and the ensuing type I interferon response within B-1 cells are responsible for their observed susceptibility. Our data provide insights into how retroviruses coevolved with the host to co-opt innate immune sensing pathways designed to fight virus infections for establishing infection. Understanding early events in viral spread can inform antiviral intervention strategies that prevent the colonization of a host.
Collapse
|
32
|
Enhanced susceptibility to chemically induced colitis caused by excessive endosomal TLR signaling in LRBA-deficient mice. Proc Natl Acad Sci U S A 2019; 116:11380-11389. [PMID: 31097594 DOI: 10.1073/pnas.1901407116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
LPS-responsive beige-like anchor (LRBA) protein deficiency in humans causes immune dysregulation resulting in autoimmunity, inflammatory bowel disease (IBD), hypogammaglobulinemia, regulatory T (Treg) cell defects, and B cell functional defects, but the cellular and molecular mechanisms responsible are incompletely understood. In an ongoing forward genetic screen for N-ethyl-N-nitrosourea (ENU)-induced mutations that increase susceptibility to dextran sodium sulfate (DSS)-induced colitis in mice, we identified two nonsense mutations in Lrba Although Treg cells have been a main focus in LRBA research to date, we found that dendritic cells (DCs) contribute significantly to DSS-induced intestinal inflammation in LRBA-deficient mice. Lrba -/- DCs exhibited excessive IRF3/7- and PI3K/mTORC1-dependent signaling and type I IFN production in response to the stimulation of the Toll-like receptors (TLRs) 3, TLR7, and TLR9. Substantial reductions in cytokine expression and sensitivity to DSS in LRBA-deficient mice were caused by knockout of Unc93b1, a chaperone necessary for trafficking of TLR3, TLR7, and TLR9 to endosomes. Our data support a function for LRBA in limiting endosomal TLR signaling and consequent intestinal inflammation.
Collapse
|
33
|
Khoenkhoen S, Erikson E, Ádori M, Stark JM, Scholz JL, Cancro MP, Pedersen GK, Karlsson Hedestam GB. TACI expression and plasma cell differentiation are impaired in the absence of functional IκBNS. Immunol Cell Biol 2019; 97:485-497. [PMID: 30597621 PMCID: PMC6850186 DOI: 10.1111/imcb.12228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/17/2018] [Accepted: 12/27/2018] [Indexed: 12/15/2022]
Abstract
Impaired classical NF‐κB pathway signaling causes reduced antibody responses to T‐independent (TI) antigens. We investigated the potential reasons for defective TI responses in mice lacking the atypical inhibitory kappa B (IκB) protein of the NF‐κB pathway, IκBNS. Analyses of the plasma cell compartment in vitro and in vivo after challenge with lipopolysaccharide (LPS) showed significant decreases in the frequencies of plasma cells in the absence of IκBNS. In vitro activation of B cells via the B cell receptor or via Toll‐like receptor 4 revealed that early activation events were unaffected in IκBNS‐deficient B cells, while proliferation was reduced compared to in similarly stimulated wildtype (wt) B cells. IκBNS‐deficient B cells also displayed impaired upregulation of the transmembrane activator and calcium modulator cyclophilin ligand interactor (TACI), which is essential for TI responses, and decreased sensitivity to TACI ligands upon stimulation. Furthermore, IκBNS‐deficient B cells, in contrast to wt B cells, displayed altered expression of IRF4, Blimp‐1 and Pax5 upon LPS‐induced differentiation, indicating impaired transcriptional regulation of plasma cell generation.
Collapse
Affiliation(s)
- Sharesta Khoenkhoen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Elina Erikson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Monika Ádori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julian M Stark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jean L Scholz
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Cancro
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriel K Pedersen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
34
|
Smita S, Ahad A, Ghosh A, Biswas VK, Koga MM, Gupta B, Acha-Orbea H, Raghav SK. Importance of EMT Factor ZEB1 in cDC1 "MutuDC Line" Mediated Induction of Th1 Immune Response. Front Immunol 2018; 9:2604. [PMID: 30483264 PMCID: PMC6243008 DOI: 10.3389/fimmu.2018.02604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
The role of Epithelial to Mesenchymal Transition (EMT) factor Zeb1 is well defined in metastasis and cancer progression but it's importance in dendritic cells (DCs) is unexplored until now. For the first time we report here that Zeb1 controls immunogenic responses of CD8α+ conventional Type-I (cDC1) DCs. We found that ZEB1 expression increases significantly after TLR9 stimulation and its depletion impairs activation, co-stimulation and secretion of important cytokines like IL-6, IL-10 and IL-12 in cDC1 MutuDC line. We further confirmed our findings in primary cDC1 DCs derived from bone marrow. Co-culture of these Zeb1 knock down (KD) DCs with OT-II CD4+ T helper cells skewed their differentiation toward Th2 subtype. Moreover, adoptive transfer of activated Zeb1 KD DCs cleared intestinal worms in helminth infected mice by increasing Th2 responses in vivo. Integrative genomic analysis showed Zeb1 as an activator of immune response genes in cDC1 MutuDCs as compared to other pathway genes. In addition, differentially regulated genes in Zeb1 KD RNA-seq showed significant enrichment of Th2 activation pathways supporting our in vitro findings. Mechanistically, we showed that decreased IL-12 secreted by Zeb1 KD DCs is the plausible mechanism for increased Th2 differentiation. Collectively our data demonstrate that Zeb1 could be targeted in DCs to modulate T-cell mediated adaptive immune responses.
Collapse
Affiliation(s)
- Shuchi Smita
- Immuno-genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India.,Manipal Academy of Higher Education, Manipal, India
| | - Abdul Ahad
- Immuno-genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India.,Manipal Academy of Higher Education, Manipal, India
| | - Arup Ghosh
- Immuno-genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India.,Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Viplov K Biswas
- Immuno-genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India.,Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Marianna M Koga
- Department of Biochemistry CIIL, University of Lausanne (UNIL), Epalinges, Switzerland
| | - Bhawna Gupta
- Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Hans Acha-Orbea
- Department of Biochemistry CIIL, University of Lausanne (UNIL), Epalinges, Switzerland
| | - Sunil K Raghav
- Immuno-genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India.,Manipal Academy of Higher Education, Manipal, India.,Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| |
Collapse
|
35
|
Presa M, Racine JJ, Dwyer JR, Lamont DJ, Ratiu JJ, Sarsani VK, Chen YG, Geurts A, Schmitz I, Stearns T, Allocco J, Chapman HD, Serreze DV. A Hypermorphic Nfkbid Allele Contributes to Impaired Thymic Deletion of Autoreactive Diabetogenic CD8 + T Cells in NOD Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:1907-1917. [PMID: 30127089 PMCID: PMC6143397 DOI: 10.4049/jimmunol.1800465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/23/2018] [Indexed: 11/19/2022]
Abstract
In both NOD mice and humans, the development of type 1 diabetes (T1D) is dependent in part on autoreactive CD8+ T cells recognizing pancreatic β cell peptides presented by often quite common MHC class I variants. Studies in NOD mice previously revealed that the common H2-Kd and/or H2-Db class I molecules expressed by this strain aberrantly lose the ability to mediate the thymic deletion of pathogenic CD8+ T cell responses through interactions with T1D susceptibility genes outside the MHC. A gene(s) mapping to proximal chromosome 7 was previously shown to be an important contributor to the failure of the common class I molecules expressed by NOD mice to mediate the normal thymic negative selection of diabetogenic CD8+ T cells. Using an inducible model of thymic negative selection and mRNA transcript analyses, we initially identified an elevated Nfkbid expression variant as a likely NOD-proximal chromosome 7 region gene contributing to impaired thymic deletion of diabetogenic CD8+ T cells. CRISPR/Cas9-mediated genetic attenuation of Nfkbid expression in NOD mice resulted in improved negative selection of autoreactive diabetogenic AI4 and NY8.3 CD8+ T cells. These results indicated that allelic variants of Nfkbid contribute to the efficiency of intrathymic deletion of diabetogenic CD8+ T cells. However, although enhancing thymic deletion of pathogenic CD8+ T cells, ablating Nfkbid expression surprisingly accelerated T1D onset that was associated with numeric decreases in both regulatory T and B lymphocytes in NOD mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Aron Geurts
- Medical College of Wisconsin, Milwaukee, WI 53226
| | - Ingo Schmitz
- Systems-Oriented Immunology and Inflammation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; and
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | | | | | | | | |
Collapse
|
36
|
Silva STN, Brito JA, Arranz R, Sorzano CÓS, Ebel C, Doutch J, Tully MD, Carazo JM, Carrascosa JL, Matias PM, Bandeiras TM. X-ray structure of full-length human RuvB-Like 2 - mechanistic insights into coupling between ATP binding and mechanical action. Sci Rep 2018; 8:13726. [PMID: 30213962 PMCID: PMC6137109 DOI: 10.1038/s41598-018-31997-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/30/2018] [Indexed: 01/27/2023] Open
Abstract
RuvB-Like transcription factors function in cell cycle regulation, development and human disease, such as cancer and heart hyperplasia. The mechanisms that regulate adenosine triphosphate (ATP)-dependent activity, oligomerization and post-translational modifications in this family of enzymes are yet unknown. We present the first crystallographic structure of full-length human RuvBL2 which provides novel insights into its mechanistic action and biology. The ring-shaped hexameric RuvBL2 structure presented here resolves for the first time the mobile domain II of the human protein, which is responsible for protein-protein interactions and ATPase activity regulation. Structural analysis suggests how ATP binding may lead to domain II motion through interactions with conserved N-terminal loop histidine residues. Furthermore, a comparison between hsRuvBL1 and 2 shows differences in surface charge distribution that may account for previously described differences in regulation. Analytical ultracentrifugation and cryo electron microscopy analyses performed on hsRuvBL2 highlight an oligomer plasticity that possibly reflects different physiological conformations of the protein in the cell, as well as that single-stranded DNA (ssDNA) can promote the oligomerization of monomeric hsRuvBL2. Based on these findings, we propose a mechanism for ATP binding and domain II conformational change coupling.
Collapse
Affiliation(s)
- Sara T N Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
| | - José A Brito
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Rocío Arranz
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, 28049, Madrid, Spain
| | - Carlos Óscar S Sorzano
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, 28049, Madrid, Spain
| | - Christine Ebel
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, 71 avenue des Martyrs CS 10090, 38044, Grenoble, France
| | - James Doutch
- ISIS Pulsed Neutron and Muon Source, STFC, Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - Mark D Tully
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - José-María Carazo
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, 28049, Madrid, Spain
| | - José L Carrascosa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, 28049, Madrid, Spain
| | - Pedro M Matias
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
| | - Tiago M Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal.
| |
Collapse
|
37
|
Pedersen GK, Li X, Khoenkhoen S, Ádori M, Beutler B, Karlsson Hedestam GB. B-1a Cell Development in Splenectomized Neonatal Mice. Front Immunol 2018; 9:1738. [PMID: 30105023 PMCID: PMC6077197 DOI: 10.3389/fimmu.2018.01738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/13/2018] [Indexed: 11/13/2022] Open
Abstract
B-1a cells are mainly generated from fetal liver progenitor cells, peri- and neonatally. The developmental steps and anatomical sites required for these cells to become mature B-1a cells remain elusive. We recently described a phenotypically distinct transitional B cell subset in the spleen of neonatal mice that generated B-1a cells when adoptively transferred. This, in combination with findings demonstrating that B-1a cells are lacking in congenitally asplenic mice, led us to hypothesize that the neonatal spleen is required for B-1a cell development. In accordance with previous reports, we found that B-1a cell numbers were reduced in adult mice that had undergone splenectomy compared to after sham surgery. In contrast, neonatal splenectomy led to peritoneal B-1a cell frequencies comparable to those observed in sham-operated mice until 6 weeks after surgery, suggesting that an intact spleen is required for B-1a cell maintenance rather than development. To study the role of the prenatal spleen in generating B-1a cells, we transferred fetal liver cells from pre-splenic embryos [embryonic age 11 (E11) days] into splenectomized recipient mice. B-1a cells were generated in the absence of the spleen, albeit at slightly reduced frequencies, and populated the peritoneal cavity and bone marrow. Lower bone marrow B-1a cell frequencies were also observed both after neonatal and adult splenectomy. These results demonstrated that B-1a cells could be generated in the complete absence of an intact spleen, but that asplenia led to a decline in these cells, suggesting a role of the spleen for maintaining the B-1a compartment.
Collapse
Affiliation(s)
- Gabriel K Pedersen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xiaohong Li
- UT Southwestern Medical Center, Center for the Genetics of Host Defense, Dallas, TX, United States
| | - Sharesta Khoenkhoen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Monika Ádori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Bruce Beutler
- UT Southwestern Medical Center, Center for the Genetics of Host Defense, Dallas, TX, United States
| | | |
Collapse
|
38
|
ZEB Proteins in Leukemia: Friends, Foes, or Friendly Foes? Hemasphere 2018; 2:e43. [PMID: 31723771 PMCID: PMC6745990 DOI: 10.1097/hs9.0000000000000043] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 01/06/2023] Open
Abstract
ZEB1 and ZEB2 play pivotal roles in solid cancer metastasis by allowing cancer cells to invade and disseminate through the transcriptional regulation of epithelial-to-mesenchymal transition. ZEB expression is also associated with the acquisition of cancer stem cell properties and therapy resistance. Consequently, expression levels of ZEB1/2 and of their direct target genes are widely seen as reliable prognostic markers for solid tumor aggressiveness and cancer patient outcome. Recent loss-of-function mouse models demonstrated that both ZEBs are also essential hematopoietic transcription factors governing blood lineage commitment and fidelity. Interestingly, both gain- and loss-of-function mutations have been reported in multiple hematological malignancies. Combined with emerging functional studies, these data suggest that ZEB1 and ZEB2 can act as tumor suppressors and/or oncogenes in blood borne malignancies, depending on the cellular context. Here, we review these novel insights and discuss how balanced expression of ZEB proteins may be essential to safeguard the functionality of the immune system and prevent leukemia.
Collapse
|
39
|
Zhang H, Vieira Resende e Silva B, Cui J. miRDis: a Web tool for endogenous and exogenous microRNA discovery based on deep-sequencing data analysis. Brief Bioinform 2018; 19:415-424. [PMID: 28073746 PMCID: PMC5952930 DOI: 10.1093/bib/bbw140] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/07/2016] [Indexed: 01/09/2023] Open
Abstract
Small RNA sequencing is the most widely used tool for microRNA (miRNA) discovery, and shows great potential for the efficient study of miRNA cross-species transport, i.e., by detecting the presence of exogenous miRNA sequences in the host species. Because of the increased appreciation of dietary miRNAs and their far-reaching implication in human health, research interests are currently growing with regard to exogenous miRNAs bioavailability, mechanisms of cross-species transport and miRNA function in cellular biological processes. In this article, we present microRNA Discovery (miRDis), a new small RNA sequencing data analysis pipeline for both endogenous and exogenous miRNA detection. Specifically, we developed and deployed a Web service that supports the annotation and expression profiling data of known host miRNAs and the detection of novel miRNAs, other noncoding RNAs, and the exogenous miRNAs from dietary species. As a proof-of-concept, we analyzed a set of human plasma sequencing data from a milk-feeding study where 225 human miRNAs were detected in the plasma samples and 44 show elevated expression after milk intake. By examining the bovine-specific sequences, data indicate that three bovine miRNAs (bta-miR-378, -181* and -150) are present in human plasma possibly because of the dietary uptake. Further evaluation based on different sets of public data demonstrates that miRDis outperforms other state-of-the-art tools in both detection and quantification of miRNA from either animal or plant sources. The miRDis Web server is available at: http://sbbi.unl.edu/miRDis/index.php.
Collapse
Affiliation(s)
- Hanyuan Zhang
- Systems Biology and Biomedical Informatics (SBBI) Laboratory, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Bruno Vieira Resende e Silva
- Systems Biology and Biomedical Informatics (SBBI) Laboratory, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Juan Cui
- Systems Biology and Biomedical Informatics (SBBI) Laboratory, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
40
|
Upregulation of Microglial ZEB1 Ameliorates Brain Damage after Acute Ischemic Stroke. Cell Rep 2018; 22:3574-3586. [DOI: 10.1016/j.celrep.2018.03.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/10/2018] [Accepted: 03/02/2018] [Indexed: 02/07/2023] Open
|
41
|
Zhang J, Marotel M, Fauteux-Daniel S, Mathieu AL, Viel S, Marçais A, Walzer T. T-bet and Eomes govern differentiation and function of mouse and human NK cells and ILC1. Eur J Immunol 2018; 48:738-750. [PMID: 29424438 DOI: 10.1002/eji.201747299] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/14/2017] [Accepted: 02/06/2018] [Indexed: 11/08/2022]
Abstract
T-bet and Eomes are T-box transcription factors that drive the differentiation and function of cytotoxic lymphocytes such as NK cells. Their DNA-binding domains are highly similar, suggesting redundant transcriptional activity. However, while these transcription factors have different patterns of expression, the phenotype of loss-of-function mouse models suggests that they play distinct roles in the development of NK cells and other innate lymphoid cells (ILCs). Recent technological advances using reporter mice and conditional knockouts were fundamental in defining the regulation and function of these factors at steady state and during pathological conditions such as various types of cancer or infection. Here, we review these recent developments, focusing on NK cells as prototypical cytotoxic lymphocytes and their development, and also discuss parallels between NK cells and T cells. We also examine the role of T-bet and Eomes in human NK cells and ILC1s. Considering divergent findings on mouse and human ILC1s, we propose that NK cells are defined by coexpression of T-bet and Eomes, while ILC1s express only one of these factors, either T-bet or Eomes, depending on the tissue or the species.
Collapse
Affiliation(s)
- Jiang Zhang
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France.,Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Marie Marotel
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - Sébastien Fauteux-Daniel
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - Anne-Laure Mathieu
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - Sébastien Viel
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France.,Laboratoire d'Immunologie, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69495, Pierre-Bénite, France
| | - Antoine Marçais
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France
| |
Collapse
|
42
|
Ádori M, Pedersen GK, Ádori C, Erikson E, Khoenkhoen S, Stark JM, Choi JH, Dosenovic P, Karlsson MCI, Beutler B, Karlsson Hedestam GB. Altered Marginal Zone B Cell Selection in the Absence of IκBNS. THE JOURNAL OF IMMUNOLOGY 2018; 200:775-787. [PMID: 29222168 DOI: 10.4049/jimmunol.1700791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022]
Abstract
Marginal zone (MZ) B cells reside in the splenic MZ and play important roles in T cell-independent humoral immune responses against blood-borne pathogens. IκBNS-deficient bumble mice exhibit a severe reduction in the MZ B compartment but regain an MZ B population with age and, thus, represent a valuable model to examine the biology of MZ B cells. In this article, we characterized the MZ B cell defect in further detail and investigated the nature of the B cells that appear in the MZ of aged bumble mice. Flow cytometry analysis of the splenic transitional B cell subsets demonstrated that MZ B cell development was blocked at the transitional-1 to transitional-2-MZ precursor stage in the absence of functional IκBNS. Immunohistochemical analysis of spleen sections from wild-type and bumble mice revealed no alteration in the cellular MZ microenvironment, and analysis of bone marrow chimeras indicated that the MZ B cell development defect in bumble mice was B cell intrinsic. Further, we demonstrate that the B cells that repopulate the MZ in aged bumble mice were distinct from age-matched wild-type MZ B cells. Specifically, the expression of surface markers characteristic for MZ B cells was altered and the L chain Igλ+ repertoire was reduced in bumble mice. Finally, plasma cell differentiation of sorted LPS-stimulated MZ B cells was impaired, and aged bumble mice were unable to respond to NP-Ficoll immunization. These results demonstrate that IκBNS is required for an intact MZ B cell compartment in C57BL/6 mice.
Collapse
Affiliation(s)
- Monika Ádori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Gabriel K Pedersen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Csaba Ádori
- Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden; and
| | - Elina Erikson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Sharesta Khoenkhoen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Julian M Stark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Jin Huk Choi
- Center for the Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX 75390-8505
| | - Pia Dosenovic
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Bruce Beutler
- Center for the Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX 75390-8505
| | | |
Collapse
|
43
|
Malpeli G, Barbi S, Zupo S, Tosadori G, Scardoni G, Bertolaso A, Sartoris S, Ugel S, Vicentini C, Fassan M, Adamo A, Krampera M, Scupoli MT, Croce CM, Scarpa A. Identification of microRNAs implicated in the late differentiation stages of normal B cells suggests a central role for miRNA targets ZEB1 and TP53. Oncotarget 2017; 8:11809-11826. [PMID: 28107180 PMCID: PMC5355306 DOI: 10.18632/oncotarget.14683] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/12/2016] [Indexed: 12/11/2022] Open
Abstract
In the late B cell differentiation stages, miRNAs expression modifications promoting or inhibiting key pathways are only partially defined. We isolated 29 CD19+ human B cell samples at different stages of differentiation: B cells from peripheral blood; naïve, germinal center (GC) and subepithelial (SE) B cells from tonsils. SE cells were further split in activated and resting B cell. The miRNA expression profile of these B cells was assessed by microarray analysis and selected miRNAs were validated by quantitative RT-PCR and in situ hybridization on normal tonsils. The comparison of all samples showed changes in 107 miRNAs in total. Among 48 miRNAs differentially expressed in naïve, GC and SE cells, we identified 8 miRNAs: mir-323, mir-138, mir-9*, mir-211, mir-149, mir-373, mir-135a and mir-184, strictly specific to follicular cells that had never been implicated before in late stages of B cell development. Moreover, we unveiled 34 miRNAs able to discriminate between CD5− activated B cells and resting B cells. The miRNAs profile of CD5− resting B cells showed a higher similarity to naïve CD5+ than CD5− activated B cells. Finally, network analysis on shortest paths connecting gene targets suggested ZEB1 and TP53 as key miRNA targets during the follicular differentiation pathway. These data confirm and extend our knowledge on the miRNAs-related regulatory pathways involved in the late B cell maturation.
Collapse
Affiliation(s)
- Giorgio Malpeli
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Section of Surgery, University of Verona, Verona, Italy.,Department of Diagnostics and Public Health, Section of Pathological Anatomy, University of Verona, Verona, Italy
| | - Stefano Barbi
- Department of Diagnostics and Public Health, Section of Pathological Anatomy, University of Verona, Verona, Italy
| | - Simonetta Zupo
- Laboratory of Molecular Diagnostics, IRCCS-AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Gabriele Tosadori
- Center for BioMedical Computing (CBMC), University of Verona, Verona, Italy
| | - Giovanni Scardoni
- Center for BioMedical Computing (CBMC), University of Verona, Verona, Italy
| | - Anna Bertolaso
- Department of Diagnostics and Public Health, Section of Pathological Anatomy, University of Verona, Verona, Italy
| | - Silvia Sartoris
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Caterina Vicentini
- Department of Diagnostics and Public Health, Section of Pathological Anatomy, University of Verona, Verona, Italy.,Applied Research on Cancer-Network (ARC-NET), University of Verona, Verona, Italy
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology and Cytopathology Unit, University of Padua, Padua, Italy
| | - Annalisa Adamo
- Department of Medicine, Section of Hematology, Stem Cell Research Laboratory, University of Verona, Italy
| | - Mauro Krampera
- Department of Medicine, Section of Hematology, Stem Cell Research Laboratory, University of Verona, Italy
| | | | - Carlo Maria Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathological Anatomy, University of Verona, Verona, Italy.,Applied Research on Cancer-Network (ARC-NET), University of Verona, Verona, Italy
| |
Collapse
|
44
|
Yokota M, Tamachi T, Yokoyama Y, Maezawa Y, Takatori H, Suto A, Suzuki K, Hirose K, Takeda K, Nakajima H. IκBNS induces Muc5ac expression in epithelial cells and causes airway hyper-responsiveness in murine asthma models. Allergy 2017; 72:1043-1053. [PMID: 27878831 DOI: 10.1111/all.13079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND In allergic asthma, environmental allergens including house dust mite (HDM) trigger pattern recognition receptors and activate downstream signaling pathways including NF-κB pathways not only in immune cells but also in airway epithelial cells. Recent studies have shown that NF-κB activation is regulated positively or negatively depending on the cellular context by IκBNS (encoded by the gene Nfkbid), one of atypical IκB proteins, in the nucleus. Therefore, we hypothesized that IκBNS expressed in immune cells or epithelial cells is involved in the regulation of asthmatic responses. AIM To determine the roles of IκBNS in HDM-induced asthmatic responses. METHODS Roles of IκBNS in HDM-induced airway inflammation and airway hyper-responsiveness (AHR) were examined by using IκBNS-deficient (Nfkbid-/- ) mice. Roles of IκBNS expressed in hematopoietic cells and nonhematopoietic cells were separately evaluated by bone marrow chimeric mice. Roles of IκBNS expressed in murine tracheal epithelial cells (mTECs) were examined by air-liquid interface culture. RESULTS House dust mite-induced airway inflammation and AHR were exacerbated in mice lacking IκBNS in hematopoietic cells. In contrast, HDM-induced airway inflammation was exacerbated, but AHR was attenuated in mice lacking IκBNS in nonhematopoietic cells. The induction of Muc5ac, a representative mucin in asthmatic airways, was reduced in Nfkbid-/- mTEC, whereas the induction of Spdef, a master regulator of goblet cell metaplasia, was not impaired in Nfkbid-/- mTEC. Moreover, IκBNS bound to and activated the MUC5AC distal promoter in epithelial cells. CONCLUSION IκBNS is involved in inducing Muc5ac expression in lung epithelial cells and causing AHR in HDM-induced asthma models.
Collapse
Affiliation(s)
- M. Yokota
- Department of Allergy and Clinical Immunology; Graduate School of Medicine; Chiba University; Chiba Japan
| | - T. Tamachi
- Department of Allergy and Clinical Immunology; Graduate School of Medicine; Chiba University; Chiba Japan
| | - Y. Yokoyama
- Department of Allergy and Clinical Immunology; Graduate School of Medicine; Chiba University; Chiba Japan
| | - Y. Maezawa
- Department of Allergy and Clinical Immunology; Graduate School of Medicine; Chiba University; Chiba Japan
| | - H. Takatori
- Department of Allergy and Clinical Immunology; Graduate School of Medicine; Chiba University; Chiba Japan
| | - A. Suto
- Department of Allergy and Clinical Immunology; Graduate School of Medicine; Chiba University; Chiba Japan
| | - K. Suzuki
- Department of Allergy and Clinical Immunology; Graduate School of Medicine; Chiba University; Chiba Japan
| | - K. Hirose
- Department of Allergy and Clinical Immunology; Graduate School of Medicine; Chiba University; Chiba Japan
| | - K. Takeda
- Laboratory of Immune Regulation; Department of Microbiology and Immunology; Graduate School of Medicine and Laboratory of Mucosal Immunology; WPI Immunology Frontier Research Center; Osaka University; Osaka Japan
| | - H. Nakajima
- Department of Allergy and Clinical Immunology; Graduate School of Medicine; Chiba University; Chiba Japan
| |
Collapse
|
45
|
Hosokawa J, Suzuki K, Meguro K, Tanaka S, Maezawa Y, Suto A, Fujimura L, Sakamoto A, Clevers H, Ohara O, Nakajima H. IκBNS enhances follicular helper T-cell differentiation and function downstream of ASCl2. J Allergy Clin Immunol 2017; 140:288-291.e8. [DOI: 10.1016/j.jaci.2016.10.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/20/2016] [Accepted: 10/25/2016] [Indexed: 12/20/2022]
|
46
|
Schuster M, Plaza-Sirvent C, Matthies AM, Heise U, Jeron A, Bruder D, Visekruna A, Huehn J, Schmitz I. c-REL and IκB NS Govern Common and Independent Steps of Regulatory T Cell Development from Novel CD122-Expressing Pre-Precursors. THE JOURNAL OF IMMUNOLOGY 2017; 199:920-930. [PMID: 28652399 DOI: 10.4049/jimmunol.1600877] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 05/31/2017] [Indexed: 01/13/2023]
Abstract
Foxp3-expressing regulatory T cells (Tregs) are essential regulators of immune homeostasis and, thus, are prime targets for therapeutic interventions of diseases such as cancer and autoimmunity. c-REL and IκBNS are important regulators of Foxp3 induction in Treg precursors upon γ-chain cytokine stimulation. In c-REL/IκBNS double-deficient mice, Treg numbers were dramatically reduced, indicating that together, c-REL and IκBNS are pivotal for Treg development. However, despite the highly reduced Treg compartment, double-deficient mice did not develop autoimmunity even when aged to more than 1 y, suggesting that c-REL and IκBNS are required for T cell effector function as well. Analyzing Treg development in more detail, we identified a CD122+ subset within the CD25-Foxp3- precursor population, which gave rise to classical CD25+Foxp3- Treg precursors. Importantly, c-REL, but not IκBNS, controlled the generation of classical CD25+Foxp3- precursors via direct binding to the Cd25 locus. Thus, we propose that CD4+GITR+CD122+CD25-Foxp3- cells represent a Treg pre-precursor population, whose transition into Treg precursors is mediated via c-REL.
Collapse
Affiliation(s)
- Marc Schuster
- Systems-Oriented Immunology and Inflammation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Carlos Plaza-Sirvent
- Systems-Oriented Immunology and Inflammation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Anne-Marie Matthies
- Systems-Oriented Immunology and Inflammation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Ulrike Heise
- Mouse Pathology Platform, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Andreas Jeron
- Institute of Medical Microbiology, Otto-von-Guericke University, 39120 Magdeburg, Germany.,Immune Regulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Dunja Bruder
- Institute of Medical Microbiology, Otto-von-Guericke University, 39120 Magdeburg, Germany.,Immune Regulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Alexander Visekruna
- Institute of Medical Microbiology and Hospital Hygiene, Phillips-University Marburg, 35043 Marburg, Germany; and
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Ingo Schmitz
- Systems-Oriented Immunology and Inflammation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; .,Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
47
|
IgD class switching is initiated by microbiota and limited to mucosa-associated lymphoid tissue in mice. Proc Natl Acad Sci U S A 2017; 114:E1196-E1204. [PMID: 28137874 DOI: 10.1073/pnas.1621258114] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Class-switch recombination (CSR) alters the Ig isotype to diversify antibody effector functions. IgD CSR is a rare event, and its regulation is poorly understood. We report that deficiency of 53BP1, a DNA damage-response protein, caused age-dependent overproduction of secreted IgD resulting from increased IgD CSR exclusively within B cells of mucosa-associated lymphoid tissues. IgD overproduction was dependent on activation-induced cytidine deaminase, hematopoietic MyD88 expression, and an intact microbiome, against which circulating IgD, but not IgM, was reactive. IgD CSR occurred via both alternative nonhomologous end-joining and homologous recombination pathways. Microbiota-dependent IgD CSR also was detected in nasal-associated lymphoid tissue of WT mice. These results identify a pathway, present in WT mice and hyperactivated in 53BP1-deficient mice, by which microbiota signal via Toll-like receptors to elicit IgD CSR.
Collapse
|
48
|
Abstract
As it is a hard-wired system for responses to microbes, innate immunity is particularly susceptible to classical genetic analysis. Mutations led the way to the discovery of many of the molecular elements of innate immune sensing and signaling pathways. In turn, the need for a faster way to find the molecular causes of mutation-induced phenotypes triggered a huge transformation in forward genetics. During the 1980s and 1990s, many heritable phenotypes were ascribed to mutations through positional cloning. In mice, this required three steps. First, a genetic mapping step was used to show that a given phenotype emanated from a circumscribed region of the genome. Second, a physical mapping step was undertaken, in which all of the region was cloned and its gene content determined. Finally, a concerted search for the mutation was performed. Such projects usually lasted for several years, but could produce breakthroughs in our understanding of biological processes. Publication of the annotated mouse genome sequence in 2002 made physical mapping unnecessary. More recently we devised a new technology for automated genetic mapping, which eliminated both genetic mapping and the search for mutations among candidate genes. The cause of phenotype can now be determined instantaneously. We have created more than 100,000 coding/splicing mutations. And by screening for defects of innate and adaptive immunity we have discovered many "new" proteins needed for innate immune function.
Collapse
Affiliation(s)
- Bruce Beutler
- Center for the Genetics of Host Defense, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8505, United States.
| |
Collapse
|
49
|
Ron-Harel N, Santos D, Ghergurovich JM, Sage PT, Reddy A, Lovitch SB, Dephoure N, Satterstrom FK, Sheffer M, Spinelli JB, Gygi S, Rabinowitz JD, Sharpe AH, Haigis MC. Mitochondrial Biogenesis and Proteome Remodeling Promote One-Carbon Metabolism for T Cell Activation. Cell Metab 2016; 24:104-17. [PMID: 27411012 PMCID: PMC5330619 DOI: 10.1016/j.cmet.2016.06.007] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/12/2016] [Accepted: 06/10/2016] [Indexed: 01/06/2023]
Abstract
Naive T cell stimulation activates anabolic metabolism to fuel the transition from quiescence to growth and proliferation. Here we show that naive CD4(+) T cell activation induces a unique program of mitochondrial biogenesis and remodeling. Using mass spectrometry, we quantified protein dynamics during T cell activation. We identified substantial remodeling of the mitochondrial proteome over the first 24 hr of T cell activation to generate mitochondria with a distinct metabolic signature, with one-carbon metabolism as the most induced pathway. Salvage pathways and mitochondrial one-carbon metabolism, fed by serine, contribute to purine and thymidine synthesis to enable T cell proliferation and survival. Genetic inhibition of the mitochondrial serine catabolic enzyme SHMT2 impaired T cell survival in culture and antigen-specific T cell abundance in vivo. Thus, during T cell activation, mitochondrial proteome remodeling generates specialized mitochondria with enhanced one-carbon metabolism that is critical for T cell activation and survival.
Collapse
Affiliation(s)
- Noga Ron-Harel
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Santos
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Jonathan M Ghergurovich
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Peter T Sage
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Anita Reddy
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Scott B Lovitch
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Noah Dephoure
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - F Kyle Satterstrom
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Michal Sheffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica B Spinelli
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua D Rabinowitz
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Marcia C Haigis
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
50
|
Kusuma RJ, Manca S, Friemel T, Sukreet S, Nguyen C, Zempleni J. Human vascular endothelial cells transport foreign exosomes from cow's milk by endocytosis. Am J Physiol Cell Physiol 2016; 310:C800-7. [PMID: 26984735 DOI: 10.1152/ajpcell.00169.2015] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 03/09/2016] [Indexed: 01/15/2023]
Abstract
Encapsulation of microRNAs in exosomes confers protection against degradation and a vehicle for shuttling of microRNAs between cells and tissues, and cellular uptake by endocytosis. Exosomes can be found in foods including milk. Humans absorb cow's milk exosomes and deliver the microRNA cargo to peripheral tissues, consistent with gene regulation by dietary nucleic acids across species boundaries. Here, we tested the hypothesis that human vascular endothelial cells transport milk exosomes by endocytosis, constituting a step crucial for the delivery of dietary exosomes and their cargo to peripheral tissues. We tested this hypothesis by using human umbilical vein endothelial cells and fluorophore-labeled exosomes isolated from cow's milk. Exosome uptake followed Michaelis-Menten kinetics (Vmax = 0.057 ± 0.004 ng exosome protein × 40,000 cells/h; Km = 17.97 ± 3.84 μg exosomal protein/200 μl media) and decreased by 80% when the incubation temperature was lowered from 37°C to 4°C. When exosome surface proteins were removed by treatment with proteinase K, or transport was measured in the presence of the carbohydrate competitor d-galactose or measured in the presence of excess unlabeled exosomes, transport rates decreased by 45% to 80% compared with controls. Treatment with an inhibitor of endocytosis, cytochalasin D, caused a 50% decrease in transport. When fluorophore-labeled exosomes were administered retro-orbitally, exosomes accumulated in liver, spleen, and lungs in mice. We conclude that human vascular endothelial cells transport bovine exosomes by endocytosis and propose that this is an important step in the delivery of dietary exosomes and their cargo to peripheral tissues.
Collapse
Affiliation(s)
- Rio Jati Kusuma
- Department of Nutrition and Health Science, University of Nebraska-Lincoln, Lincoln, Nebraska; and
| | - Sonia Manca
- Department of Nutrition and Health Science, University of Nebraska-Lincoln, Lincoln, Nebraska; and
| | - Taylor Friemel
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Sonal Sukreet
- Department of Nutrition and Health Science, University of Nebraska-Lincoln, Lincoln, Nebraska; and
| | - Christopher Nguyen
- Department of Nutrition and Health Science, University of Nebraska-Lincoln, Lincoln, Nebraska; and
| | - Janos Zempleni
- Department of Nutrition and Health Science, University of Nebraska-Lincoln, Lincoln, Nebraska; and
| |
Collapse
|